101
|
Meikle TG, Keizer DW, Babon JJ, Drummond CJ, Separovic F, Conn CE, Yao S. Physiochemical Characterization and Stability of Lipidic Cubic Phases by Solution NMR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6254-6260. [PMID: 32418433 DOI: 10.1021/acs.langmuir.0c00949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipidic inverse bicontinuous cubic phases (LCPs), formed via the spontaneous self-assembly of lipids such as monoolein, have found increasing applications in the stabilization and crystallization of integral membrane proteins for structural characterization using X-ray crystallography. Their use as effective drug release matrices has also been demonstrated. Nuclear magnetic resonance (NMR) spectroscopy, both solution and solid state, has previously been employed for the characterization of LCPs and related systems. Herein, we report a number of novel features of solution NMR for probing the fundamental composition and structural properties of monoolein-based LCPs. These include (1) more complete assignments of both 1H and 13C chemical shifts, (2) direct quantification of hydration level in LCPs using one-dimensional (1D) 1H NMR, and (3) monitoring longer-term stability of LCPs and evaluating alterations introduced into standard LCPs at the submolecular level.
Collapse
Affiliation(s)
- Thomas G Meikle
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - David W Keizer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, VIC 3010, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Frances Separovic
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
- School of Chemistry, The University of Melbourne, VIC 3010, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|
102
|
Piai A, Fu Q, Cai Y, Ghantous F, Xiao T, Shaik MM, Peng H, Rits-Volloch S, Chen W, Seaman MS, Chen B, Chou JJ. Structural basis of transmembrane coupling of the HIV-1 envelope glycoprotein. Nat Commun 2020; 11:2317. [PMID: 32385256 PMCID: PMC7210310 DOI: 10.1038/s41467-020-16165-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The prefusion conformation of HIV-1 envelope protein (Env) is recognized by most broadly neutralizing antibodies (bnAbs). Studies showed that alterations of its membrane-related components, including the transmembrane domain (TMD) and cytoplasmic tail (CT), can reshape the antigenic structure of the Env ectodomain. Using nuclear magnetic resonance (NMR) spectroscopy, we determine the structure of an Env segment encompassing the TMD and a large portion of the CT in bicelles. The structure reveals that the CT folds into amphipathic helices that wrap around the C-terminal end of the TMD, thereby forming a support baseplate for the rest of Env. NMR dynamics measurements provide evidences of dynamic coupling across the TMD between the ectodomain and CT. Pseudovirus-based neutralization assays suggest that CT-TMD interaction preferentially affects antigenic structure near the apex of the Env trimer. These results explain why the CT can modulate the Env antigenic properties and may facilitate HIV-1 Env-based vaccine design.
Collapse
Affiliation(s)
- Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Fadi Ghantous
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Md Munan Shaik
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA.
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
103
|
Marousis KD, Birkou M, Asimakopoulou A, Spyroulias GA. 1H, 13C, 15N backbone and side-chain resonance assignment of the native form of UbcH7 (UBE2L3) through solution NMR spectroscopy. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:73-78. [PMID: 31792831 DOI: 10.1007/s12104-019-09923-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Ubiquitination is a post-translational modification that regulates a plethora of processes in cells. Ubiquitination requires three type of enzyme: E1 ubiquitin (Ub) activating enzymes, E2 Ub conjugating enzymes and E3 ubiquitin ligases. The E2 enzymes perform a variety of functions, as Ub chain initiation, elongation and regulation of the topology and the process of chain formation. The E2 enzymes family is mainly characterized by a highly conserved ubiquitin conjugating domain (UBC), which comprises the binding region for the activated Ub, E1 and E3 enzymes. The E2 enzyme UbcH7 (UBE2L3) is a known interacting partner for different types of E3 Ub ligases such as HECT, RING and RBR. A structural analysis of the apo form of the native UbcH7 will provide the structural information to understand how this E2 enzyme is implicated in a wide range of diseases and how it interacts with its partners. In the present study we present the high yield expression of the native UbcH7 E2 enzyme and its preliminary analysis via solution NMR spectroscopy. The E2 enzyme is folded in solution and nearly a complete backbone assignment was achieved. Additionally, TALOS+ analysis was performed and the results indicated that UbcH7 adopts a αββββααα topology which is similar to that of the majority of E2 enzymes.
Collapse
Affiliation(s)
| | - Maria Birkou
- Department of Pharmacy, University of Patras, 26504, Patras, Greece
| | | | | |
Collapse
|
104
|
Lu X, Ebelle DL, Matsuo H, Walters KJ. An Extended Conformation for K48 Ubiquitin Chains Revealed by the hRpn2:Rpn13:K48-Diubiquitin Structure. Structure 2020; 28:495-506.e3. [PMID: 32160516 DOI: 10.1016/j.str.2020.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 12/24/2022]
Abstract
Rpn13/Adrm1 is recruited to the proteasome by PSMD1/Rpn2, where it serves as a substrate receptor that binds preferentially to K48-linked ubiquitin chains, an established signal for protein proteolysis. Here, we use NMR to solve the structure of hRpn13 Pru:hRpn2 (940-953):K48-diubiquitin. Surprisingly, hRpn2-bound hRpn13 selects a dynamic, extended conformation of K48-diubiquitin that is unique from previously determined structures. NMR experiments on free K48-diubiquitin demonstrate the presence of the reported "closed" conformation observed by crystallography, but also this more extended state, in which the hRpn13-binding surface is exposed. This extended K48-diubiquitin conformation is defined by interactions between L73 from G76-linked (distal) ubiquitin and a Y59-centered surface of K48-linked (proximal) ubiquitin. Furthermore, hRpn13 exchanges between the two ubiquitins within 100 ms, although prefers the proximal ubiquitin due to interactions with the K48 linker region. Altogether, these data lead to a revised model of how ubiquitinated substrates interact with the proteasome.
Collapse
Affiliation(s)
- Xiuxiu Lu
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Danielle L Ebelle
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Hiroshi Matsuo
- Basic Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
105
|
Buel GR, Chen X, Chari R, O'Neill MJ, Ebelle DL, Jenkins C, Sridharan V, Tarasov SG, Tarasova NI, Andresson T, Walters KJ. Structure of E3 ligase E6AP with a proteasome-binding site provided by substrate receptor hRpn10. Nat Commun 2020; 11:1291. [PMID: 32157086 PMCID: PMC7064531 DOI: 10.1038/s41467-020-15073-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/15/2020] [Indexed: 12/16/2022] Open
Abstract
Regulated proteolysis by proteasomes involves ~800 enzymes for substrate modification with ubiquitin, including ~600 E3 ligases. We report here that E6AP/UBE3A is distinguished from other E3 ligases by having a 12 nM binding site at the proteasome contributed by substrate receptor hRpn10/PSMD4/S5a. Intrinsically disordered by itself, and previously uncharacterized, the E6AP-binding domain in hRpn10 locks into a well-defined helical structure to form an intermolecular 4-helix bundle with the E6AP AZUL, which is unique to this E3. We thus name the hRpn10 AZUL-binding domain RAZUL. We further find in human cells that loss of RAZUL by CRISPR-based gene editing leads to loss of E6AP at proteasomes. Moreover, proteasome-associated ubiquitin is reduced following E6AP knockdown or displacement from proteasomes, suggesting that E6AP ubiquitinates substrates at or for the proteasome. Altogether, our findings indicate E6AP to be a privileged E3 for the proteasome, with a dedicated, high affinity binding site contributed by hRpn10.
Collapse
Affiliation(s)
- Gwen R Buel
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Maura J O'Neill
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Danielle L Ebelle
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Conor Jenkins
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vinidhra Sridharan
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Sergey G Tarasov
- Biophysics Resource, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Nadya I Tarasova
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
106
|
Xiao T, Frey G, Fu Q, Lavine CL, Scott DA, Seaman MS, Chou JJ, Chen B. HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes. Nat Chem Biol 2020; 16:529-537. [PMID: 32152540 PMCID: PMC7723321 DOI: 10.1038/s41589-020-0496-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Combination antiretroviral therapy has transformed HIV-1 infection, once a fatal illness, into a manageable chronic condition. Drug resistance, severe side effects and treatment noncompliance bring challenges to combination antiretroviral therapy implementation in clinical settings and indicate the need for additional molecular targets. Here, we have identified several small-molecule fusion inhibitors, guided by a neutralizing antibody, against an extensively studied vaccine target-the membrane proximal external region (MPER) of the HIV-1 envelope spike. These compounds specifically inhibit the HIV-1 envelope-mediated membrane fusion by blocking CD4-induced conformational changes. An NMR structure of one compound complexed with a trimeric MPER construct reveals that the compound partially inserts into a hydrophobic pocket formed exclusively by the MPER residues, thereby stabilizing its prefusion conformation. These results suggest that the MPER is a potential therapeutic target for developing fusion inhibitors and that strategies employing an antibody-guided search for novel therapeutics may be applied to other human diseases.
Collapse
Affiliation(s)
- Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Gary Frey
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David A Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
107
|
Lebetin Peptides, A New Class of Potent Platelet Aggregation Inhibitors: Chemical Synthesis, Biological Activity and NMR Spectroscopic Study. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
108
|
Gunasekera S, Muhammad T, Strömstedt AA, Rosengren KJ, Göransson U. Backbone Cyclization and Dimerization of LL-37-Derived Peptides Enhance Antimicrobial Activity and Proteolytic Stability. Front Microbiol 2020; 11:168. [PMID: 32153522 PMCID: PMC7046553 DOI: 10.3389/fmicb.2020.00168] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/23/2020] [Indexed: 01/07/2023] Open
Abstract
Can antimicrobial activity and peptide stability of alpha-helical peptides be increased by making them into dimers and macrocycles? Here, we explore that concept by using KR-12 as the starting point for peptide engineering. KR-12 has previously been determined as the minimalized antimicrobial fragment of the human host defense peptide LL-37. Backbone-cyclized KR-12 dimers, tethered by linkers of two to four amino acid residues, were synthesized and their antimicrobial activity, proteolytic stability and structures characterized. A modified KR-12 sequence, with substitutions at previously identified key residues, were also included in the screening panel. The backbone cyclized KR-12 dimers showed improved antimicrobial activity and increased stability compared to monomeric KR-12. The most active cyclic dimer displayed 16-fold higher antibacterial activity compared to KR-12 against Pseudomonas aeruginosa and Staphylococcus aureus, and 8-fold increased fungicidal activity against Candida albicans. It also showed increased hemolytic and cytotoxic activity. Enhanced antimicrobial activity coincided with increased membrane permeabilization of liposomes with one distinct discrepancy: monomeric KR-12 was much less disruptive of liposomes with bacterial lipid composition compared to liposomes from fungal lipid extract. Circular dichroism showed that the four-residue linked most active cyclic dimer had 65% helical content when bound to lyso-phosphatidylglycerol micelles, indicating that the helical propensity of the parent peptide is maintained in the new macrocyclic form. In conclusion, the current work on KR-12 suggests that dimerization together with backbone cyclization is an effective strategy for improving both potency and stability of linear antimicrobial peptides.
Collapse
Affiliation(s)
- Sunithi Gunasekera
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Taj Muhammad
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Adam A Strömstedt
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ulf Göransson
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
109
|
Garrett DS, Cai M, Clore GM. XIPP: multi-dimensional NMR analysis software. JOURNAL OF BIOMOLECULAR NMR 2020; 74:9-25. [PMID: 31748843 PMCID: PMC7021585 DOI: 10.1007/s10858-019-00286-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/01/2019] [Indexed: 05/15/2023]
Abstract
Here we present the XIPP (eXtensible Interactive Peak Picker) NMR software for analyzing multidimensional NMR data of proteins, DNA, RNA and protein-nucleic acid complexes. XIPP organizes experiments into pre-defined studies and replaces our original PIPP software suite which is no longer supported. Default study types exist for backbone assignment, sidechain assignment, NOE assignment and several relaxation series experiments, used in solution NMR studies. XIPP is written in Java and Jython. The default study types are defined in Jython which can be modified and extended to create new types of studies.
Collapse
Affiliation(s)
- Daniel S Garrett
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| | - Mengli Cai
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
110
|
Three-Dimensional Structure Determination of Peptides Using Solution Nuclear Magnetic Resonance Spectroscopy. Methods Mol Biol 2020; 2068:129-162. [PMID: 31576526 DOI: 10.1007/978-1-4939-9845-6_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy has over the last few decades proven to be an extremely useful technique for, and indeed an integral part of, investigating the structural features of peptides and small proteins directly in solution, without the need for crystallization. This advantage over X-ray methods is important when dealing with peptides and small proteins that do not readily form crystals. In this chapter we outline what specific NMR experiments are useful, considerations about how to acquire and interpret these experiments, and how information derived from the NMR data can be used to determine solution structures of small peptides.
Collapse
|
111
|
Acton O, Grant T, Nicastro G, Ball NJ, Goldstone DC, Robertson LE, Sader K, Nans A, Ramos A, Stoye JP, Taylor IA, Rosenthal PB. Structural basis for Fullerene geometry in a human endogenous retrovirus capsid. Nat Commun 2019; 10:5822. [PMID: 31862888 PMCID: PMC6925226 DOI: 10.1038/s41467-019-13786-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023] Open
Abstract
The HML2 (HERV-K) group constitutes the most recently acquired family of human endogenous retroviruses, with many proviruses less than one million years old. Many maintain intact open reading frames and provirus expression together with HML2 particle formation are observed in early stage human embryo development and are associated with pluripotency as well as inflammatory disease, cancers and HIV-1 infection. Here, we reconstruct the core structural protein (CA) of an HML2 retrovirus, assemble particles in vitro and employ single particle cryogenic electron microscopy (cryo-EM) to determine structures of four classes of CA Fullerene shell assemblies. These icosahedral and capsular assemblies reveal at high-resolution the molecular interactions that allow CA to form both pentamers and hexamers and show how invariant pentamers and structurally plastic hexamers associate to form the unique polyhedral structures found in retroviral cores.
Collapse
Affiliation(s)
- Oliver Acton
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Tim Grant
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Neil J Ball
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - David C Goldstone
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Laura E Robertson
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Kasim Sader
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Thermo Fisher Scientific Materials and Structural Analysis, Eindhoven, Netherlands
| | - Andrea Nans
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andres Ramos
- Division of Molecular Structure, MRC National Institute for Medical Research, London, NW7 1AA, UK
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Jonathan P Stoye
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
112
|
Magrì A, Tabbì G, Cucci LM, Satriano C, Pietropaolo A, Malgieri G, Isernia C, La Mendola D. The curious case of opossum prion: a physicochemical study on copper(ii) binding to the bis-decarepeat fragment from the protein N-terminal domain. Dalton Trans 2019; 48:17533-17543. [PMID: 31748763 DOI: 10.1039/c9dt02510c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The opossum is a peculiar model of immunity to prion diseases. Here we scrutinised the bis-decarepeat peptide sequence of the opossum prion (Op_bis-deca) protein by a multitechnique approach, with a combined experimental (potentiometry, UV-visible, circular dichroism, NMR and EPR spectroscopy, quartz crystal microbalance with dissipation monitoring and confocal microscopy) and simulation (DFT calculations) approach. Results showed that the macrochelate structures formed upon the binding to Cu(ii) by the analogous bis-octarepeat peptide sequence of human prion (Hu_bis-octa) are not found in the case of Op_bis-deca. At physiological pH and equimolar amount of copper ions, the [CuLH-2] is the major species formed by Op_bis-deca. In this species one imidazole and two amide nitrogen atoms are involved in metal coordination and its stability constant value is lower than that of the analogous species formed by Hu_bis-octa, due to the presence of an extra proline residue. Moreover, the study on the interaction of the peptides or the peptide/Cu(ii) complexes with the model cell membranes made of supported lipid bilayers disclosed different levels of interaction, monitored by the viscoelastic changes of the membranes, which exhibited a similar viscoelastic response at the interface of the two complexes, while in the absence of Cu(ii), the Hu_bis-octa/SLB interface was more viscoelastic than the Op_bis-deca one.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Crystallography, National Research Council (CNR), S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Mercurio FA, Di Natale C, Pirone L, Vincenzi M, Marasco D, De Luca S, Pedone EM, Leone M. Exploring the Ability of Cyclic Peptides to Target SAM Domains: A Computational and Experimental Study. Chembiochem 2019; 21:702-711. [DOI: 10.1002/cbic.201900444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Flavia A. Mercurio
- Institute of Biostructures and BioimagingNational Research Council Via Mezzocannone 16 80134 Naples Italy
| | - Concetta Di Natale
- Department of PharmacyUniversity of Naples “Federico II” Via Mezzocannone 16 80134 Naples Italy
| | - Luciano Pirone
- Institute of Biostructures and BioimagingNational Research Council Via Mezzocannone 16 80134 Naples Italy
| | - Marian Vincenzi
- Institute of Biostructures and BioimagingNational Research Council Via Mezzocannone 16 80134 Naples Italy
| | - Daniela Marasco
- Institute of Biostructures and BioimagingNational Research Council Via Mezzocannone 16 80134 Naples Italy
- Department of PharmacyUniversity of Naples “Federico II” Via Mezzocannone 16 80134 Naples Italy
| | - Stefania De Luca
- Institute of Biostructures and BioimagingNational Research Council Via Mezzocannone 16 80134 Naples Italy
| | - Emilia M. Pedone
- Institute of Biostructures and BioimagingNational Research Council Via Mezzocannone 16 80134 Naples Italy
| | - Marilisa Leone
- Institute of Biostructures and BioimagingNational Research Council Via Mezzocannone 16 80134 Naples Italy
| |
Collapse
|
114
|
Wißbrock A, Goradia NB, Kumar A, Paul George AA, Kühl T, Bellstedt P, Ramachandran R, Hoffmann P, Galler K, Popp J, Neugebauer U, Hampel K, Zimmermann B, Adam S, Wiendl M, Krönke G, Hamza I, Heinemann SH, Frey S, Hueber AJ, Ohlenschläger O, Imhof D. Structural insights into heme binding to IL-36α proinflammatory cytokine. Sci Rep 2019; 9:16893. [PMID: 31729440 PMCID: PMC6858345 DOI: 10.1038/s41598-019-53231-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Cytokines of the interleukin (IL)-1 family regulate immune and inflammatory responses. The recently discovered IL-36 family members are involved in psoriasis, rheumatoid arthritis, and pulmonary diseases. Here, we show that IL-36α interacts with heme thereby contributing to its regulation. Based on in-depth spectroscopic analyses, we describe two heme-binding sites in IL-36α that associate with heme in a pentacoordinated fashion. Solution NMR analysis reveals structural features of IL-36α and its complex with heme. Structural investigation of a truncated IL-36α supports the notion that the N-terminus is necessary for association with its cognate receptor. Consistent with our structural studies, IL-36-mediated signal transduction was negatively regulated by heme in synovial fibroblast-like synoviocytes from rheumatoid arthritis patients. Taken together, our results provide a structural framework for heme-binding proteins and add IL-1 cytokines to the group of potentially heme-regulated proteins.
Collapse
Affiliation(s)
- Amelie Wißbrock
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121, Bonn, Germany
| | - Nishit B Goradia
- CS Protein Production, Leibniz Institute on Aging/Fritz Lipmann Institute, D-07745, Jena, Germany.,European Molecular Biology Laboratory, D-22607, Hamburg, Germany
| | - Amit Kumar
- CS Protein Production, Leibniz Institute on Aging/Fritz Lipmann Institute, D-07745, Jena, Germany
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121, Bonn, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121, Bonn, Germany
| | - Peter Bellstedt
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Ramadurai Ramachandran
- CS Protein Production, Leibniz Institute on Aging/Fritz Lipmann Institute, D-07745, Jena, Germany
| | - Patrick Hoffmann
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747, Jena, Germany.,Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745, Jena, Germany
| | - Kerstin Galler
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747, Jena, Germany.,Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747, Jena, Germany.,Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | | | | | - Susanne Adam
- Department of Internal Medicine 3 - Rheumatology and Immunology, University of Erlangen-Nürnberg (FAU) and University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Maximilian Wiendl
- Department of Internal Medicine 3 - Rheumatology and Immunology, University of Erlangen-Nürnberg (FAU) and University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, University of Erlangen-Nürnberg (FAU) and University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, D-07745, Jena, Germany
| | - Silke Frey
- Department of Internal Medicine 3 - Rheumatology and Immunology, University of Erlangen-Nürnberg (FAU) and University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Axel J Hueber
- Department of Internal Medicine 3 - Rheumatology and Immunology, University of Erlangen-Nürnberg (FAU) and University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Oliver Ohlenschläger
- CS Protein Production, Leibniz Institute on Aging/Fritz Lipmann Institute, D-07745, Jena, Germany.
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121, Bonn, Germany.
| |
Collapse
|
115
|
Biancospino M, Buel GR, Niño CA, Maspero E, Scotto di Perrotolo R, Raimondi A, Redlingshöfer L, Weber J, Brodsky FM, Walters KJ, Polo S. Clathrin light chain A drives selective myosin VI recruitment to clathrin-coated pits under membrane tension. Nat Commun 2019; 10:4974. [PMID: 31672988 PMCID: PMC6823378 DOI: 10.1038/s41467-019-12855-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022] Open
Abstract
Clathrin light chains (CLCa and CLCb) are major constituents of clathrin-coated vesicles. Unique functions for these evolutionary conserved paralogs remain elusive, and their role in clathrin-mediated endocytosis in mammalian cells is debated. Here, we find and structurally characterize a direct and selective interaction between CLCa and the long isoform of the actin motor protein myosin VI, which is expressed exclusively in highly polarized tissues. Using genetically-reconstituted Caco-2 cysts as proxy for polarized epithelia, we provide evidence for coordinated action of myosin VI and CLCa at the apical surface where these proteins are essential for fission of clathrin-coated pits. We further find that myosin VI and Huntingtin-interacting protein 1-related protein (Hip1R) are mutually exclusive interactors with CLCa, and suggest a model for the sequential function of myosin VI and Hip1R in actin-mediated clathrin-coated vesicle budding.
Collapse
Affiliation(s)
- Matteo Biancospino
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139, Milan, Italy
| | - Gwen R Buel
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Carlos A Niño
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139, Milan, Italy
| | - Elena Maspero
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139, Milan, Italy
| | | | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Lisa Redlingshöfer
- Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Janine Weber
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139, Milan, Italy
| | - Frances M Brodsky
- Division of Biosciences, University College London, London, WC1E 6BT, UK.
| | - Kylie J Walters
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139, Milan, Italy.
- Dipartimento di Oncologia ed Emato-oncologia, Universita' degli Studi di Milano, 20122, Milan, Italy.
| |
Collapse
|
116
|
Pritišanac I, Würz JM, Alderson TR, Güntert P. Automatic structure-based NMR methyl resonance assignment in large proteins. Nat Commun 2019; 10:4922. [PMID: 31664028 PMCID: PMC6820720 DOI: 10.1038/s41467-019-12837-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/02/2019] [Indexed: 11/10/2022] Open
Abstract
Isotopically labeled methyl groups provide NMR probes in large, otherwise deuterated proteins. However, the resonance assignment constitutes a bottleneck for broader applicability of methyl-based NMR. Here, we present the automated MethylFLYA method for the assignment of methyl groups that is based on methyl-methyl nuclear Overhauser effect spectroscopy (NOESY) peak lists. MethylFLYA is applied to five proteins (28–358 kDa) comprising a total of 708 isotope-labeled methyl groups, of which 612 contribute NOESY cross peaks. MethylFLYA confidently assigns 488 methyl groups, i.e. 80% of those with NOESY data. Of these, 459 agree with the reference, 6 were different, and 23 were without reference assignment. MethylFLYA assigns significantly more methyl groups than alternative algorithms, has an average error rate of 1%, modest runtimes of 0.4–1.2 h, and can handle arbitrary isotope labeling patterns and data from other types of NMR spectra. The structures and dynamics of large proteins can be studied with methyl-based NMR but peak assignment is still challenging. Here the authors present MethylFLYA that allows automated assignment of methyl groups and apply it to five proteins with molecular weights in the range from 28 to 358 kDa.
Collapse
Affiliation(s)
- Iva Pritišanac
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Julia M Würz
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - T Reid Alderson
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Peter Güntert
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany. .,Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland. .,Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
117
|
Binding site plasticity in viral PPxY Late domain recognition by the third WW domain of human NEDD4. Sci Rep 2019; 9:15076. [PMID: 31636332 PMCID: PMC6803667 DOI: 10.1038/s41598-019-50701-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/13/2019] [Indexed: 11/26/2022] Open
Abstract
The recognition of PPxY viral Late domains by the third WW domain of the HECT-E3 ubiquitin ligase NEDD4 (hNEDD4-WW3) is essential for the completion of the budding process of numerous enveloped viruses, including Ebola, Marburg, HTLV1 or Rabies. hNEDD4-WW3 has been validated as a promising target for the development of novel host-oriented broad spectrum antivirals. Nonetheless, finding inhibitors with good properties as therapeutic agents remains a challenge since the key determinants of binding affinity and specificity are still poorly understood. We present here a detailed structural and thermodynamic study of the interactions of hNEDD4-WW3 with viral Late domains combining isothermal titration calorimetry, NMR structural determination and molecular dynamics simulations. Structural and energetic differences in Late domain recognition reveal a highly plastic hNEDD4-WW3 binding site that can accommodate PPxY-containing ligands with varying orientations. These orientations are mostly determined by specific conformations adopted by residues I859 and T866. Our results suggest a conformational selection mechanism, extensive to other WW domains, and highlight the functional relevance of hNEDD4-WW3 domain conformational flexibility at the binding interface, which emerges as a key element to consider in the search for potent and selective inhibitors of therapeutic interest.
Collapse
|
118
|
Ruetalo N, Anders S, Stollmaier C, Jäckl M, Schütz-Stoffregen MC, Stefan N, Wolf C, Wiesner S. The WW1 Domain Enhances Autoinhibition in Smurf Ubiquitin Ligases. J Mol Biol 2019; 431:4834-4847. [PMID: 31628949 DOI: 10.1016/j.jmb.2019.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Downregulation of ubiquitin (Ub) ligase activity prevents premature ubiquitination and is critical for cellular homeostasis. Nedd4 Ub ligases share a common domain architecture and yet are regulated in distinct ways through interactions of the catalytic HECT domain with the N-terminal C2 domain or the central WW domain region. Smurf1 and Smurf2 are two highly related Nedd4 ligases with ~70% overall sequence identity. Here, we show that the Smurf1 C2 domain interacts with the HECT domain and inhibits ligase activity in trans. However, in contrast to Smurf2, we find that full-length Smurf1 is a highly active Ub ligase, and we can attribute this striking difference in regulation to the lack of one WW domain (WW1) in Smurf1. Using NMR spectroscopy and biochemical assays, we identified the WW1 region as an additional inhibitory element in Smurf2 that cooperates with the C2 domain to enhance HECT domain binding and Smurf2 inhibition. Our work provides important insights into Smurf regulation and highlights that the activities of highly related proteins can be controlled in distinct ways.
Collapse
Affiliation(s)
- Natalia Ruetalo
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Samira Anders
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Carsten Stollmaier
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany; Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Magnus Jäckl
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Mira C Schütz-Stoffregen
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany; Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Nadine Stefan
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Christine Wolf
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Silke Wiesner
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany; Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany.
| |
Collapse
|
119
|
Sala D, Huang YJ, Cole CA, Snyder DA, Liu G, Ishida Y, Swapna GVT, Brock KP, Sander C, Fidelis K, Kryshtafovych A, Inouye M, Tejero R, Valafar H, Rosato A, Montelione GT. Protein structure prediction assisted with sparse NMR data in CASP13. Proteins 2019; 87:1315-1332. [PMID: 31603581 DOI: 10.1002/prot.25837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 01/05/2023]
Abstract
CASP13 has investigated the impact of sparse NMR data on the accuracy of protein structure prediction. NOESY and 15 N-1 H residual dipolar coupling data, typical of that obtained for 15 N,13 C-enriched, perdeuterated proteins up to about 40 kDa, were simulated for 11 CASP13 targets ranging in size from 80 to 326 residues. For several targets, two prediction groups generated models that are more accurate than those produced using baseline methods. Real NMR data collected for a de novo designed protein were also provided to predictors, including one data set in which only backbone resonance assignments were available. Some NMR-assisted prediction groups also did very well with these data. CASP13 also assessed whether incorporation of sparse NMR data improves the accuracy of protein structure prediction relative to nonassisted regular methods. In most cases, incorporation of sparse, noisy NMR data results in models with higher accuracy. The best NMR-assisted models were also compared with the best regular predictions of any CASP13 group for the same target. For six of 13 targets, the most accurate model provided by any NMR-assisted prediction group was more accurate than the most accurate model provided by any regular prediction group; however, for the remaining seven targets, one or more regular prediction method provided a more accurate model than even the best NMR-assisted model. These results suggest a novel approach for protein structure determination, in which advanced prediction methods are first used to generate structural models, and sparse NMR data is then used to validate and/or refine these models.
Collapse
Affiliation(s)
- Davide Sala
- Magnetic Resonance Center, University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Yuanpeng Janet Huang
- Center for Advanced Biotechnology and Medicine, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Department of Chemistry and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Casey A Cole
- Department of Computer Science & Engineering, University of South Carolina, Columbia, South Carolina
| | - David A Snyder
- Department of Chemistry, College of Science and Health, William Paterson University, Wayne, New Jersey
| | - Gaohua Liu
- Center for Advanced Biotechnology and Medicine, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Nexomics Biosciences, Bordentown, New Jersey
| | - Yojiro Ishida
- Center for Advanced Biotechnology and Medicine, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Department of Biochemistry and Molecular Biology, The Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - G V T Swapna
- Center for Advanced Biotechnology and Medicine, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Kelly P Brock
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Chris Sander
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts.,cBio Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | - Masayori Inouye
- Department of Biochemistry and Molecular Biology, The Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Roberto Tejero
- Departamento de Quimica Fisica, Universidad de Valencia, Valencia, Spain
| | - Homayoun Valafar
- Department of Computer Science & Engineering, University of South Carolina, Columbia, South Carolina
| | - Antonio Rosato
- Magnetic Resonance Center, University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Department of Chemistry and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.,Department of Biochemistry and Molecular Biology, The Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
120
|
Zhang D, Wei H, Xue H, Guo S, Wu B, Kuang Z. Backbone 1H, 13C, and 15N resonance assignments of the PRY-SPRY domain of RNF135. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:299-304. [PMID: 31065957 DOI: 10.1007/s12104-019-09895-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
RING finger protein 135 (RNF135, also named Riplet or REUL) exerts multiple biological functions and its C-terminal PRY-SPRY/B30.2 domain is indispensable for most of these functions. RNF135 interacts with RIG-I (retinoic acid-inducible gene-I) via the PRY-SPRY domain and ubiquitinates RIG-I to promote innate anti-viral signaling, while mutations in the RNF135 gene can cause the Macrocephaly, macrosomia, facial dysmorphism (MMFD) syndrome, and RNF135 reportedly regulates the proliferation of glioblastoma cells as well as tongue cancer cells. Nevertheless, structure of full-length RNF135 or its PRY-SPRY domain has not been determined, and structural basis for molecular interactions involving RNF135 is largely unknown. Here we report the backbone 1H, 13C, and 15N chemical shift assignments of the PRY-SPRY domain of RNF135 and the secondary structure elements predicted based on chemical shifts, as well as the perturbations caused by the R286H mutation that is associated with MMFD syndrome. We found that the mutation did not alter the gross structure of the PRY-SPRY domain, so it may have impaired RNF135 function by affecting protein-protein interactions mediated by the domain.
Collapse
Affiliation(s)
- Danting Zhang
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China
| | - Huan Wei
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hongjuan Xue
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Shujun Guo
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China
| | - Bin Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Zhihe Kuang
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China.
| |
Collapse
|
121
|
Development of a Fragment-Based Screening Assay for the Focal Adhesion Targeting Domain Using SPR and NMR. Molecules 2019; 24:molecules24183352. [PMID: 31540099 PMCID: PMC6766811 DOI: 10.3390/molecules24183352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
The Focal Adhesion Targeting (FAT) domain of Focal Adhesion Kinase (FAK) is a promising drug target since FAK is overexpressed in many malignancies and promotes cancer cell metastasis. The FAT domain serves as a scaffolding protein, and its interaction with the protein paxillin localizes FAK to focal adhesions. Various studies have highlighted the importance of FAT-paxillin binding in tumor growth, cell invasion, and metastasis. Targeting this interaction through high-throughput screening (HTS) provides a challenge due to the large and complex binding interface. In this report, we describe a novel approach to targeting FAT through fragment-based drug discovery (FBDD). We developed two fragment-based screening assays-a primary SPR assay and a secondary heteronuclear single quantum coherence nuclear magnetic resonance (HSQC-NMR) assay. For SPR, we designed an AviTag construct, optimized SPR buffer conditions, and created mutant controls. For NMR, resonance backbone assignments of the human FAT domain were obtained for the HSQC assay. A 189-compound fragment library from Enamine was screened through our primary SPR assay to demonstrate the feasibility of a FAT-FBDD pipeline, with 19 initial hit compounds. A final total of 11 validated hits were identified after secondary screening on NMR. This screening pipeline is the first FBDD screen of the FAT domain reported and represents a valid method for further drug discovery efforts on this difficult target.
Collapse
|
122
|
Meikle TG, Sethi A, Keizer DW, Babon JJ, Separovic F, Gooley PR, Conn CE, Yao S. Heteronuclear NMR spectroscopy of proteins encapsulated in cubic phase lipids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:146-151. [PMID: 31284168 DOI: 10.1016/j.jmr.2019.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/24/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Lipidic cubic phases, which form spontaneously via the self-assembly of certain lipids in an aqueous environment, are highly prospective nanomaterials with applications in membrane protein X-ray crystallography and drug delivery. Here we report 1H-15N heteronuclear single/multiple quantum coherence (HSQC, HMQC) spectra of 15N-enriched proteins encapsulated in inverse bicontinuous lipidic cubic phases obtained on a standard commercial high resolution NMR spectrometer at ambient temperature. 15N-enriched proteins encapsulated in this lipidic cubic phase show: (i) no significant changes in tertiary structure, (ii) significantly reduced solvent chemical exchange of backbone amides, which potentially provides a novel concept for quantifying residue-specific hydration; and (iii) improved spectral sensitivity achieved with band-selective excitation short-transient (BEST) spectroscopy, which is attributed to the presence of an abundant source of 1H nuclear spins originating from the lipid component of the cubic phase.
Collapse
Affiliation(s)
- Thomas G Meikle
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Ashish Sethi
- Department of Biochemistry & Molecular Biology, The University of Melbourne, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - David W Keizer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia; School of Chemistry, The University of Melbourne, VIC 3010, Australia
| | - Paul R Gooley
- Department of Biochemistry & Molecular Biology, The University of Melbourne, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
123
|
Martínez-Orozco H, Mariño L, Uceda AB, Ortega-Castro J, Vilanova B, Frau J, Adrover M. Nitration and Glycation Diminish the α-Synuclein Role in the Formation and Scavenging of Cu 2+-Catalyzed Reactive Oxygen Species. ACS Chem Neurosci 2019; 10:2919-2930. [PMID: 30973706 DOI: 10.1021/acschemneuro.9b00142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Human α-synuclein is a small monomeric protein (140 residues) essential to maintain the function of the dopaminergic neurons and the neuronal redox balance. However, it holds a dark side since it is able to clump inside the neurons forming insoluble aggregates known as Lewy bodies, which are considered the hallmark of Parkinson's disease. Sporadic mutations and nonenzymatic post-translational modifications are well-known to stimulate the formation of Lewy bodies. Yet, the effect of nonenzymatic post-translational modifications on the function of α-synuclein has been studied less intense. Therefore, here we study how nitration and glycation mediated by methylglyoxal affect the redox features of α-synuclein. Both diminish the ability of α-synuclein to chelate Cu2+, except when Nε-(carboxyethyl)lysine or Nε-(carboxymethyl)lysine (two advanced glycation end products highly prevalent in vivo) are formed. This results in a lower capacity to prevent the Cu-catalyzed ascorbic acid degradation and to delay the formation of H2O2. However, only methylglyoxal was able to abolish the ability of α-synuclein to inhibit the free radical release. Both nitration and glycation enhanced the α-synuclein availability to be damaged by O2•-, although glycation made α-synuclein less reactive toward HO•. Our data represent the first report describing how nonenzymatic post-translational modifications might affect the redox function of α-synuclein, thus contributing to a better understanding of its pathological implications.
Collapse
Affiliation(s)
- Humberto Martínez-Orozco
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Laura Mariño
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Ana Belén Uceda
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Joaquín Ortega-Castro
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
124
|
Abstract
Online citizen science projects such as GalaxyZoo1, Eyewire2 and Phylo3 have been very successful for data collection, annotation, and processing, but for the most part have harnessed human pattern recognition skills rather than human creativity. An exception is the game EteRNA4, in which game players learn to build new RNA structures by exploring the discrete two-dimensional space of Watson-Crick base pairing possibilities. Building new proteins, however, is a more challenging task to present in a game, as both the representation and evaluation of a protein structure are intrinsically three-dimensional. We posed the challenge of de novo protein design in the online protein folding game Foldit5. Players were presented with a fully extended peptide chain and challenged to craft a folded protein structure with an amino acid sequence encoding that structure. After many iterations of player design, analysis of the top scoring solutions, and subsequent game improvement, Foldit players can now, starting from an extended polypeptide chain, generate a diversity of protein structures and sequences which encode them in silico. 146 Foldit player designs with sequences unrelated to naturally occurring proteins were encoded in synthetic genes; 56 were found to be expressed in E. coli with good solubility and to adopt stable monomeric folded structures in solution. The diversity of these structures is unprecedented in de novo protein design, representing 20 different folds—including a new fold not observed in natural proteins. High resolution structures were determined for four of the designs, and are nearly identical to the player models. This work makes explicit the considerable implicit knowledge contributing to success in de novo protein design, and shows that citizen scientists can discover creative new solutions to outstanding scientific challenges, such as the protein design problem.
Collapse
|
125
|
Buommino E, Carotenuto A, Antignano I, Bellavita R, Casciaro B, Loffredo MR, Merlino F, Novellino E, Mangoni ML, Nocera FP, Brancaccio D, Punzi P, Roversi D, Ingenito R, Bianchi E, Grieco P. The Outcomes of Decorated Prolines in the Discovery of Antimicrobial Peptides from Temporin-L. ChemMedChem 2019; 14:1283-1290. [PMID: 31087626 DOI: 10.1002/cmdc.201900221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/12/2019] [Indexed: 01/17/2023]
Abstract
Previously, we identified a potent antimicrobial analogue of temporin L (TL), [Pro3 ]TL, in which glutamine at position 3 was substituted with proline. In this study, a series of analogues in which position 3 is substituted with non-natural proline derivatives, was investigated for correlations between the conformational properties of the compounds and their antibacterial, cytotoxic, and hemolytic activities. Non-natural proline analogues with substituents at position 4 of the pyrrolidine ring were considered. Structure-activity relationship (SAR) studies of these analogues were performed by means of antimicrobial and cytotoxicity assays along with circular dichroism (CD) and NMR spectroscopic analyses for selected compounds. The most promising peptides were additionally evaluated for their activity against some representative veterinary microbial strains to compare with those from human strains. We identified novel analogues with interesting properties that make them attractive lead compounds.
Collapse
Affiliation(s)
- Elisabetta Buommino
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| | - Ignazio Antignano
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| | - Bruno Casciaro
- Department of Biochemical Sciences, Laboratory affiliated to Pasteur Institute Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00185, Italy.,Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, 00161, Italy
| | - Maria Rosa Loffredo
- Department of Biochemical Sciences, Laboratory affiliated to Pasteur Institute Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00185, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory affiliated to Pasteur Institute Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00185, Italy
| | - Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, 80137, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| | - Pasqualina Punzi
- Peptide Chemistry Unit, IRBM S.p.A., via Pontina km 30 600, Pomezia, 00071, Italy
| | - Daniela Roversi
- Peptide Chemistry Unit, IRBM S.p.A., via Pontina km 30 600, Pomezia, 00071, Italy
| | - Raffaele Ingenito
- Peptide Chemistry Unit, IRBM S.p.A., via Pontina km 30 600, Pomezia, 00071, Italy
| | - Elisabetta Bianchi
- Peptide Chemistry Unit, IRBM S.p.A., via Pontina km 30 600, Pomezia, 00071, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy.,Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPEB), University of Naples "Federico II", Naples, 80134, Italy
| |
Collapse
|
126
|
Cruz-Gallardo I, Martino L, Kelly G, Atkinson R, Trotta R, De Tito S, Coleman P, Ahdash Z, Gu Y, Bui TTT, Conte MR. LARP4A recognizes polyA RNA via a novel binding mechanism mediated by disordered regions and involving the PAM2w motif, revealing interplay between PABP, LARP4A and mRNA. Nucleic Acids Res 2019; 47:4272-4291. [PMID: 30820564 PMCID: PMC6486636 DOI: 10.1093/nar/gkz144] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 11/22/2022] Open
Abstract
LARP4A belongs to the ancient RNA-binding protein superfamily of La-related proteins (LARPs). In humans, it acts mainly by stabilizing mRNAs, enhancing translation and controlling polyA lengths of heterologous mRNAs. These activities are known to implicate its association with mRNA, protein partners and translating ribosomes, albeit molecular details are missing. Here, we characterize the direct interaction between LARP4A, oligoA RNA and the MLLE domain of the PolyA-binding protein (PABP). Our study shows that LARP4A-oligoA association entails novel RNA recognition features involving the N-terminal region of the protein that exists in a semi-disordered state and lacks any recognizable RNA-binding motif. Against expectations, we show that the La module, the conserved RNA-binding unit across LARPs, is not the principal determinant for oligoA interaction, only contributing to binding to a limited degree. Furthermore, the variant PABP-interacting motif 2 (PAM2w) featured in the N-terminal region of LARP4A was found to be important for both RNA and PABP recognition, revealing a new role for this protein-protein binding motif. Our analysis demonstrates the mutual exclusive nature of the PAM2w-mediated interactions, thereby unveiling a tantalizing interplay between LARP4A, polyA and PABP.
Collapse
Affiliation(s)
- Isabel Cruz-Gallardo
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Luigi Martino
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Geoff Kelly
- MRC Biomedical NMR Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - R Andrew Atkinson
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
- Centre for Biomolecular Spectroscopy, King’s College London, London SE1 1UL, UK
| | - Roberta Trotta
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Stefano De Tito
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Pierre Coleman
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Zainab Ahdash
- Department of Chemistry, King’s College London, London SE1 1DB, UK
| | - Yifei Gu
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Tam T T Bui
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
- Centre for Biomolecular Spectroscopy, King’s College London, London SE1 1UL, UK
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
- Centre for Biomolecular Spectroscopy, King’s College London, London SE1 1UL, UK
| |
Collapse
|
127
|
Lee W, Bahrami A, Dashti HT, Eghbalnia HR, Tonelli M, Westler WM, Markley JL. I-PINE web server: an integrative probabilistic NMR assignment system for proteins. JOURNAL OF BIOMOLECULAR NMR 2019; 73:213-222. [PMID: 31165321 PMCID: PMC6579641 DOI: 10.1007/s10858-019-00255-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/21/2019] [Indexed: 05/12/2023]
Abstract
Various methods for understanding the structural and dynamic properties of proteins rely on the analysis of their NMR chemical shifts. These methods require the initial assignment of NMR signals to particular atoms in the sequence of the protein, a step that can be very time-consuming. The probabilistic interaction network of evidence (PINE) algorithm for automated assignment of backbone and side chain chemical shifts utilizes a Bayesian probabilistic network model that analyzes sequence data and peak lists from multiple NMR experiments. PINE, which is one of the most popular and reliable automated chemical shift assignment algorithms, has been available to the protein NMR community for longer than a decade. We announce here a new web server version of PINE, called Integrative PINE (I-PINE), which supports more types of NMR experiments than PINE (including three-dimensional nuclear Overhauser enhancement and four-dimensional J-coupling experiments) along with more comprehensive visualization of chemical shift based analysis of protein structure and dynamics. The I-PINE server is freely accessible at http://i-pine.nmrfam.wisc.edu . Help pages and tutorial including browser capability are available at: http://i-pine.nmrfam.wisc.edu/instruction.html . Sample data that can be used for testing the web server are available at: http://i-pine.nmrfam.wisc.edu/examples.html .
Collapse
Affiliation(s)
- Woonghee Lee
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Arash Bahrami
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
- NetSeer, Inc, 555 Ellis Street, Suite B, Mountain View, CA, 94043, USA
| | - Hesam T Dashti
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Hamid R Eghbalnia
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - William M Westler
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John L Markley
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
128
|
Patel A, Perrin AJ, Flynn HR, Bisson C, Withers-Martinez C, Treeck M, Flueck C, Nicastro G, Martin SR, Ramos A, Gilberger TW, Snijders AP, Blackman MJ, Baker DA. Cyclic AMP signalling controls key components of malaria parasite host cell invasion machinery. PLoS Biol 2019; 17:e3000264. [PMID: 31075098 PMCID: PMC6530879 DOI: 10.1371/journal.pbio.3000264] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/22/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023] Open
Abstract
Cyclic AMP (cAMP) is an important signalling molecule across evolution, but its role in malaria parasites is poorly understood. We have investigated the role of cAMP in asexual blood stage development of Plasmodium falciparum through conditional disruption of adenylyl cyclase beta (ACβ) and its downstream effector, cAMP-dependent protein kinase (PKA). We show that both production of cAMP and activity of PKA are critical for erythrocyte invasion, whilst key developmental steps that precede invasion still take place in the absence of cAMP-dependent signalling. We also show that another parasite protein with putative cyclic nucleotide binding sites, Plasmodium falciparum EPAC (PfEpac), does not play an essential role in blood stages. We identify and quantify numerous sites, phosphorylation of which is dependent on cAMP signalling, and we provide mechanistic insight as to how cAMP-dependent phosphorylation of the cytoplasmic domain of the essential invasion adhesin apical membrane antigen 1 (AMA1) regulates erythrocyte invasion.
Collapse
Affiliation(s)
- Avnish Patel
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Abigail J. Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Helen R. Flynn
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Claudine Bisson
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | | | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Christian Flueck
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Stephen R. Martin
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andres Ramos
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Tim W. Gilberger
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ambrosius P. Snijders
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Michael J. Blackman
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David A. Baker
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
129
|
Tsika AC, Melekis E, Tsatsouli SA, Papageorgiou N, Maté MJ, Canard B, Coutard B, Bentrop D, Spyroulias GA. Deciphering the Nucleotide and RNA Binding Selectivity of the Mayaro Virus Macro Domain. J Mol Biol 2019; 431:2283-2297. [PMID: 30998933 PMCID: PMC7094482 DOI: 10.1016/j.jmb.2019.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 12/25/2022]
Abstract
Mayaro virus (MAYV) is a member of Togaviridae family, which also includes Chikungunya virus as a notorious member. MAYV recently emerged in urban areas of the Americas, and this emergence emphasized the current paucity of knowledge about its replication cycle. The macro domain (MD) of MAYV belongs to the N-terminal region of its non-structural protein 3, part of the replication complex. Here, we report the first structural and dynamical characterization of a previously unexplored Alphavirus MD investigated through high-resolution NMR spectroscopy, along with data on its ligand selectivity and binding properties. The structural analysis of MAYV MD reveals a typical "macro" (ββαββαβαβα) fold for this polypeptide, while NMR-driven interaction studies provide in-depth insights into MAYV MD-ligand adducts. NMR data in concert with thermodynamics and biochemical studies provide convincing experimental evidence for preferential binding of adenosine diphosphate ribose (ADP-r) and adenine-rich RNAs to MAYV MD, thus shedding light on the structure-function relationship of a previously unexplored viral MD. The emerging differences with any other related MD are expected to enlighten distinct functions.
Collapse
Affiliation(s)
| | | | | | | | - Maria J Maté
- AFMB, UMR7257 CNRS/Aix Marseille Université, Marseille, CEDEX 9, France
| | - Bruno Canard
- AFMB, UMR7257 CNRS/Aix Marseille Université, Marseille, CEDEX 9, France
| | - Bruno Coutard
- UVE: Aix-Marseille Univ-IRD 190-Inserm 27-IHU Méditerranée Infection, Marseille, France.
| | - Detlef Bentrop
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | | |
Collapse
|
130
|
Eichmann C, Frey L, Maslennikov I, Riek R. Probing Ion Binding in the Selectivity Filter of the KcsA Potassium Channel. J Am Chem Soc 2019; 141:7391-7398. [DOI: 10.1021/jacs.9b01092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cédric Eichmann
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Lukas Frey
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
131
|
Mohanty B, Hanson-Manful P, Finn TJ, Chambers CR, McKellar JLO, Macindoe I, Helder S, Setiyaputra S, Zhong Y, Mackay JP, Patrick WM. The uncharacterized bacterial protein YejG has the same architecture as domain III of elongation factor G. Proteins 2019; 87:699-705. [PMID: 30958578 DOI: 10.1002/prot.25687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/23/2019] [Accepted: 04/04/2019] [Indexed: 11/08/2022]
Abstract
InterPro family IPR020489 comprises ~1000 uncharacterized bacterial proteins. Previously we showed that overexpressing the Escherichia coli representative of this family, EcYejG, conferred low-level resistance to aminoglycoside antibiotics. In an attempt to shed light on the biochemical function of EcYejG, we have solved its structure using multinuclear solution NMR spectroscopy. The structure most closely resembles that of domain III from elongation factor G (EF-G). EF-G catalyzes ribosomal translocation and mutations in EF-G have also been associated with aminoglycoside resistance. While we were unable to demonstrate a direct interaction between EcYejG and the ribosome, the protein might play a role in translation.
Collapse
Affiliation(s)
- Biswaranjan Mohanty
- Faculty of Pharmacy and Pharmaceutical Sciences, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Paulina Hanson-Manful
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Thomas J Finn
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | - Ingrid Macindoe
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Stephanie Helder
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Surya Setiyaputra
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Yichen Zhong
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Wayne M Patrick
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| |
Collapse
|
132
|
Mercurio FA, Scaloni A, Caira S, Leone M. The antimicrobial peptides casocidins I and II: Solution structural studies in water and different membrane-mimetic environments. Peptides 2019; 114:50-58. [PMID: 30243923 DOI: 10.1016/j.peptides.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
Antimicrobial peptides (AMPs) represent crucial components of the natural immune defense machinery of different organisms. Generally, they are short and positively charged, and bind to and destabilize bacterial cytoplasmic membranes, ultimately leading to cell death. Natural proteolytic cleavage of αs2-casein in bovine milk generates the antimicrobial peptides casocidin I and II. In the current study, we report for the first time on a detailed structure characterization of casocidins in solution by means of Nuclear Magnetic Resonance spectroscopy (NMR). Structural studies were conducted in H2O and different membrane mimetic environments, including 2,2,2-trifluoroethanol (TFE) and lipid anionic and zwitterionic vesicles. For both peptides, results indicate a mainly disordered conformation in H2O, with a few residues in a partial helical structure. No wide increase of order occurs upon interaction with lipid vesicles. Conversely, peptide conformation becomes highly ordered in presence of TFE, with both casocidins presenting a large helical content. Our data point out a preference of casocidins to interact with model anionic membranes. These results are compatible with possible mechanisms of action underlying the antimicrobial activity of casocidins that ultimately may affect membrane bilayer stability.
Collapse
Affiliation(s)
- Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging (IBB), National Research Council & Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Via Mezzocannone 16, 80134 Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Via Argine 1085, 80147 Naples, Italy
| | - Simonetta Caira
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Via Argine 1085, 80147 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging (IBB), National Research Council & Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
133
|
Cruz-Gallardo I, Martino L, Trotta R, De Tito S, Kelly G, Atkinson RA, Randazzo A, Conte MR. Resonance assignment of human LARP4A La module. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:169-172. [PMID: 30632004 PMCID: PMC6439165 DOI: 10.1007/s12104-019-09871-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Human LARP4A belongs to a superfamily of RNA binding proteins called La-related proteins (LARPs). Whilst being a positive regulator of protein synthesis and a promoter of mRNA stability, LARP4A also controls cell morphology and motility in human breast and prostate cancer cells. All LARPs share a characteristic RNA binding unit named the La-module, which despite a high level of primary structure conservation exhibits a great versatility in RNA target selection. Human LARP4A La-module is the most divergent compared with other LARPs and its RNA recognition properties have only recently started to be revealed. Given the key role of LARP4A protein in cancer cell biology, we have initiated a complete NMR characterisation of its La-module and here we report the assignment of 1H, 15N and 13C resonances resulting from our studies.
Collapse
Affiliation(s)
- Isabel Cruz-Gallardo
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK
| | - Luigi Martino
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Roberta Trotta
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano De Tito
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Geoff Kelly
- MRC Biomedical NMR Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - R Andrew Atkinson
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- Centre for Biomolecular Spectroscopy, King's College London, London, SE1 1UL, UK
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
- Centre for Biomolecular Spectroscopy, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
134
|
Rosario-Cruz Z, Eletsky A, Daigham NS, Al-Tameemi H, Swapna GVT, Kahn PC, Szyperski T, Montelione GT, Boyd JM. The copBL operon protects Staphylococcus aureus from copper toxicity: CopL is an extracellular membrane-associated copper-binding protein. J Biol Chem 2019; 294:4027-4044. [PMID: 30655293 PMCID: PMC6422080 DOI: 10.1074/jbc.ra118.004723] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/08/2019] [Indexed: 12/22/2022] Open
Abstract
As complications associated with antibiotic resistance have intensified, copper (Cu) is attracting attention as an antimicrobial agent. Recent studies have shown that copper surfaces decrease microbial burden, and host macrophages use Cu to increase bacterial killing. Not surprisingly, microbes have evolved mechanisms to tightly control intracellular Cu pools and protect against Cu toxicity. Here, we identified two genes (copB and copL) encoded within the Staphylococcus aureus arginine-catabolic mobile element (ACME) that we hypothesized function in Cu homeostasis. Supporting this hypothesis, mutational inactivation of copB or copL increased copper sensitivity. We found that copBL are co-transcribed and that their transcription is increased during copper stress and in a strain in which csoR, encoding a Cu-responsive transcriptional repressor, was mutated. Moreover, copB displayed genetic synergy with copA, suggesting that CopB functions in Cu export. We further observed that CopL functions independently of CopB or CopA in Cu toxicity protection and that CopL from the S. aureus clone USA300 is a membrane-bound and surface-exposed lipoprotein that binds up to four Cu+ ions. Solution NMR structures of the homologous Bacillus subtilis CopL, together with phylogenetic analysis and chemical-shift perturbation experiments, identified conserved residues potentially involved in Cu+ coordination. The solution NMR structure also revealed a novel Cu-binding architecture. Of note, a CopL variant with defective Cu+ binding did not protect against Cu toxicity in vivo Taken together, these findings indicate that the ACME-encoded CopB and CopL proteins are additional factors utilized by the highly successful S. aureus USA300 clone to suppress copper toxicity.
Collapse
Affiliation(s)
- Zuelay Rosario-Cruz
- From the Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901
| | - Alexander Eletsky
- the Department of Chemistry, State University of New York at Buffalo and Northeast Structural Genomics Consortium, Buffalo, New York 14260, and
| | - Nourhan S Daigham
- the Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854
| | - Hassan Al-Tameemi
- From the Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901
| | - G V T Swapna
- the Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854
| | - Peter C Kahn
- From the Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901
| | - Thomas Szyperski
- the Department of Chemistry, State University of New York at Buffalo and Northeast Structural Genomics Consortium, Buffalo, New York 14260, and
| | - Gaetano T Montelione
- the Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854,
- the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854
| | - Jeffrey M Boyd
- From the Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901,
| |
Collapse
|
135
|
Design and analysis of EphA2-SAM peptide ligands: A multi-disciplinary screening approach. Bioorg Chem 2019; 84:434-443. [DOI: 10.1016/j.bioorg.2018.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/22/2018] [Accepted: 12/06/2018] [Indexed: 01/28/2023]
|
136
|
Chen X, Ebelle DL, Wright BJ, Sridharan V, Hooper E, Walters KJ. Structure of hRpn10 Bound to UBQLN2 UBL Illustrates Basis for Complementarity between Shuttle Factors and Substrates at the Proteasome. J Mol Biol 2019; 431:939-955. [PMID: 30664872 PMCID: PMC6389388 DOI: 10.1016/j.jmb.2019.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/07/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022]
Abstract
The 26S proteasome is a highly complex 2.5-MDa molecular machine responsible for regulated protein degradation. Proteasome substrates are typically marked by ubiquitination for recognition at receptor sites contributed by Rpn1/S2/PSMD2, Rpn10/S5a, and Rpn13/Adrm1. Each receptor site can bind substrates directly by engaging conjugated ubiquitin chains or indirectly by binding to shuttle factors Rad23/HR23, Dsk2/PLIC/UBQLN, or Ddi1, which contain a ubiquitin-like domain (UBL) that adopts the ubiquitin fold. Previous structural studies have defined how each of the proteasome receptor sites binds to ubiquitin chains as well as some of the interactions that occur with the shuttle factors. Here, we define how hRpn10 binds to the UBQLN2 UBL domain, solving the structure of this complex by NMR, and determine affinities for each UIM region by a titration experiment. UBQLN2 UBL exhibits 25-fold stronger affinity for the N-terminal UIM-1 over UIM-2 of hRpn10. Moreover, we discover that UBQLN2 UBL is fine-tuned for the hRpn10 UIM-1 site over the UIM-2 site by taking advantage of the additional contacts made available through the longer UIM-1 helix. We also test hRpn10 versatility for the various ubiquitin chains to find less specificity for any particular linkage type compared to hRpn1 and hRpn13, as expected from the flexible linker region that connects the two UIMs; nonetheless, hRpn10 does exhibit some preference for K48 and K11 linkages. Altogether, these results provide new insights into the highly complex and complementary roles of the proteasome receptor sites and shuttle factors.
Collapse
Affiliation(s)
- Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Danielle L Ebelle
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Brandon J Wright
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Vinidhra Sridharan
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Evan Hooper
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Linganore High School, Frederick, MD 21701, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
137
|
Zhang R, Zhang N, Mohri M, Wu L, Eckert T, Krylov VB, Antosova A, Ponikova S, Bednarikova Z, Markart P, Günther A, Norden B, Billeter M, Schauer R, Scheidig AJ, Ratha BN, Bhunia A, Hesse K, Enani MA, Steinmeyer J, Petridis AK, Kozar T, Gazova Z, Nifantiev NE, Siebert HC. Nanomedical Relevance of the Intermolecular Interaction Dynamics-Examples from Lysozymes and Insulins. ACS OMEGA 2019; 4:4206-4220. [PMID: 30847433 PMCID: PMC6398350 DOI: 10.1021/acsomega.8b02471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/28/2018] [Indexed: 06/01/2023]
Abstract
Insulin and lysozyme share the common features of being prone to aggregate and having biomedical importance. Encapsulating lysozyme and insulin in micellar nanoparticles probably would prevent aggregation and facilitate oral drug delivery. Despite the vivid structural knowledge of lysozyme and insulin, the environment-dependent oligomerization (dimer, trimer, and multimer) and associated structural dynamics remain elusive. The knowledge of the intra- and intermolecular interaction profiles has cardinal importance for the design of encapsulation protocols. We have employed various biophysical methods such as NMR spectroscopy, X-ray crystallography, Thioflavin T fluorescence, and atomic force microscopy in conjugation with molecular modeling to improve the understanding of interaction dynamics during homo-oligomerization of lysozyme (human and hen egg) and insulin (porcine, human, and glargine). The results obtained depict the atomistic intra- and intermolecular interaction details of the homo-oligomerization and confirm the propensity to form fibrils. Taken together, the data accumulated and knowledge gained will further facilitate nanoparticle design and production with insulin or lysozyme-related protein encapsulation.
Collapse
Affiliation(s)
- Ruiyan Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Ning Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
| | - Marzieh Mohri
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Lisha Wu
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Thomas Eckert
- Department
of Chemistry and Biology, University of
Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- Institut
für Veterinärphysiolgie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Vadim B. Krylov
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Andrea Antosova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Slavomira Ponikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Bednarikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Philipp Markart
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
- Pneumology,
Heart-Thorax-Center Fulda, Pacelliallee 4, 36043 Fulda, Germany
| | - Andreas Günther
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
| | - Bengt Norden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Martin Billeter
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 40530 Gothenburg, Sweden
| | - Roland Schauer
- Institute
of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Axel J. Scheidig
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Bhisma N. Ratha
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Anirban Bhunia
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Karsten Hesse
- Tierarztpraxis
Dr. Karsten Hesse, Rathausstraße
16, 35460 Stauffenberg, Germany
| | - Mushira Abdelaziz Enani
- Infectious
Diseases Division, Department of Medicine, King Fahad Medical City, P.O. Box 59046, 11525 Riyadh, Kingdom of Saudi
Arabia
| | - Jürgen Steinmeyer
- Laboratory
for Experimental Orthopaedics, Department of Orthopaedics, Justus-Liebig-University, Paul-Meimberg-Str. 3, D-35392 Giessen, Germany
| | - Athanasios K. Petridis
- Neurochirurgische
Klinik, Universität Düsseldorf, Geb. 11.54, Moorenstraße 5, 40255 Düsseldorf, Germany
| | - Tibor Kozar
- Center
for Interdisciplinary Biosciences, TIP-UPJS, Jesenna 5, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Nikolay E. Nifantiev
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Hans-Christian Siebert
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| |
Collapse
|
138
|
Pan L, Fu TM, Zhao W, Zhao L, Chen W, Qiu C, Liu W, Liu Z, Piai A, Fu Q, Chen S, Wu H, Chou JJ. Higher-Order Clustering of the Transmembrane Anchor of DR5 Drives Signaling. Cell 2019; 176:1477-1489.e14. [PMID: 30827683 DOI: 10.1016/j.cell.2019.02.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/14/2018] [Accepted: 01/29/2019] [Indexed: 12/18/2022]
Abstract
Receptor clustering on the cell membrane is critical in the signaling of many immunoreceptors, and this mechanism has previously been attributed to the extracellular and/or the intracellular interactions. Here, we report an unexpected finding that for death receptor 5 (DR5), a receptor in the tumor necrosis factor receptor superfamily, the transmembrane helix (TMH) alone in the receptor directly assembles a higher-order structure to drive signaling and that this structure is inhibited by the unliganded ectodomain. Nuclear magnetic resonance structure of the TMH in bicelles shows distinct trimerization and dimerization faces, allowing formation of dimer-trimer interaction networks. Single-TMH mutations that disrupt either trimerization or dimerization abolish ligand-induced receptor activation. Surprisingly, proteolytic removal of the DR5 ectodomain can fully activate downstream signaling in the absence of ligand. Our data suggest a receptor activation mechanism in which binding of ligand or antibodies to overcome the pre-ligand autoinhibition allows TMH clustering and thus signaling.
Collapse
Affiliation(s)
- Liqiang Pan
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Wenbin Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Linlin Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Chixiao Qiu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Wenhui Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China.
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
139
|
Identification and characterization of a factor Va-binding site on human prothrombin fragment 2. Sci Rep 2019; 9:2436. [PMID: 30792421 PMCID: PMC6385242 DOI: 10.1038/s41598-019-38857-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/11/2019] [Indexed: 11/18/2022] Open
Abstract
The fragment 2 domain (F2) of prothrombin and its interaction with factor (F) Va is known to contribute significantly to prothrombinase-catalyzed activation of prothrombin. The extent to which the F2-FVa interaction affects the overall thrombin generation, however, is uncertain. To study this interaction, nuclear magnetic resonance spectroscopy of recombinant F2 was used to identify seven residues within F2 that are significantly responsive to FVa binding. The functional role of this region in interacting with FVa during prothrombin activation was verified by the FVa-dependent inhibition of thrombin generation using peptides that mimic the same region of F2. Because six of the seven residues were within a 9-residue span, these were mutated to generate a prothrombin derivative (PT6). These mutations led to a decreased affinity for FVa as determined by surface plasmon resonance. When thrombin generation by an array of FXa containing prothrombinase components was monitored, a 54% decrease in thrombin generation was observed with PT6 compared with the wild-type, only when FVa was present. The functional significance of the specific low-affinity binding between F2 and FVa is discussed within the context of a dynamic model of molecular interactions between prothrombin and FVa engaging multiple contact sites.
Collapse
|
140
|
Merlino F, Billard É, Yousif AM, Di Maro S, Brancaccio D, Abate L, Carotenuto A, Bellavita R, d'Emmanuele di Villa Bianca R, Santicioli P, Marinelli L, Novellino E, Hébert TE, Lubell WD, Chatenet D, Grieco P. Functional Selectivity Revealed by N-Methylation Scanning of Human Urotensin II and Related Peptides. J Med Chem 2019; 62:1455-1467. [PMID: 30615452 DOI: 10.1021/acs.jmedchem.8b01601] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In accordance with their common but also divergent physiological actions, human urotensin II (1) and urotensin II-related peptide (2) could stabilize specific urotensin II receptor (UTR) conformations, thereby activating different signaling pathways, a feature referred to as biased agonism or functional selectivity. Sequential N-methylation of the amides in the conserved core sequence of 1, 2, and fragment U-II4-11 (3) shed light on structural requirements involved in their functional selectivity. Thus, 18 N-methylated UTR ligands were synthesized and their biological profiles evaluated using in vitro competition binding assays, ex vivo rat aortic ring bioassays and BRET-based biosensor experiments. Biological activity diverged from that of the parent structures contingent on the location of amide methylation, indicating relevant hydrogen-bond interactions for the function of the endogenous peptides. Conformational analysis of selected N-methyl analogs indicated the importance of specific amide residues of 2 for the distinct pharmacology relative to 1 and 3.
Collapse
Affiliation(s)
- Francesco Merlino
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Étienne Billard
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP) , Université du Québec , 531 Boulevard des Prairies , Ville de Laval , Québec H7V 1B7 , Canada
| | - Ali M Yousif
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Salvatore Di Maro
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Diego Brancaccio
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Luigi Abate
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Alfonso Carotenuto
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Rosa Bellavita
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | | | - Paolo Santicioli
- Department of Pharmacology , Menarini Ricerche , via Rismondo 12/A , Florence 50131 , Italy
| | - Luciana Marinelli
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Ettore Novellino
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec H3A 1A3 , Canada
| | - William D Lubell
- Département de Chimie , Université de Montréal , C.P. 6128, Station Centre-ville , Montréal , Québec H3C 3J7 , Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP) , Université du Québec , 531 Boulevard des Prairies , Ville de Laval , Québec H7V 1B7 , Canada
| | - Paolo Grieco
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| |
Collapse
|
141
|
The Growth Differentiation Factor 11 is Involved in Skin Fibroblast Ageing and is Induced by a Preparation of Peptides and Sugars Derived from Plant Cell Cultures. Mol Biotechnol 2019; 61:209-220. [DOI: 10.1007/s12033-019-00154-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
142
|
Lee EF, Smith NA, Soares da Costa TP, Meftahi N, Yao S, Harris TJ, Tran S, Pettikiriarachchi A, Perugini MA, Keizer DW, Evangelista M, Smith BJ, Fairlie WD. Structural insights into BCL2 pro-survival protein interactions with the key autophagy regulator BECN1 following phosphorylation by STK4/MST1. Autophagy 2019; 15:785-795. [PMID: 30626284 DOI: 10.1080/15548627.2018.1564557] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
BECN1/Beclin 1 is a critical protein in the initiation of autophagosome formation. Recent studies have shown that phosphorylation of BECN1 by STK4/MST1 at threonine 108 (T108) within its BH3 domain blocks macroautophagy/autophagy by increasing BECN1 affinity for its negative regulators, the anti-apoptotic proteins BCL2/Bcl-2 and BCL2L1/Bcl-xL. It was proposed that this increased binding is due to formation of an electrostatic interaction with a conserved histidine residue on the anti-apoptotic molecules. Here, we performed biophysical studies which demonstrated that a peptide corresponding to the BECN1 BH3 domain in which T108 is phosphorylated (p-T108) does show increased affinity for anti-apoptotic proteins that is significant, though only minor (<2-fold). We also determined X-ray crystal structures of BCL2 and BCL2L1 with T108-modified BECN1 BH3 peptides, but only showed evidence of an interaction between the BH3 peptide and the conserved histidine residue when the histidine flexibility was restrained due to crystal contacts. These data, together with molecular dynamics studies, indicate that the histidine is highly flexible, even when complexed with BECN1 BH3. Binding studies also showed that detergent can increase the affinity of the interaction. Although this increase was similar for both the phosphorylated and non-phosphorylated peptides, it suggests factors such as membranes could impact on the interaction between BECN1 and BCL2 proteins, and therefore, on the regulation of autophagy. Hence, we propose that phosphorylation of BECN1 by STK4/MST1 can increase the affinity of the interaction between BECN1 and anti-apoptotic proteins and this interaction can be stabilized by local environmental factors. Abbreviations: asu: asymmetric unit; BH3: BCL2/Bcl-2 homology 3; DAPK: death associated protein kinase; MD: molecular dynamics; MST: microscale thermophoresis; NMR: nuclear magnetic resonance; PDB: protein data bank; p-T: phosphothreonine; SPR: surface plasmon resonance; STK4/MST1: serine/threonine kinase 4.
Collapse
Affiliation(s)
- Erinna F Lee
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia.,b Cell Death and Survival Group , Olivia Newton-John Cancer Research Institute , Heidelberg , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia
| | - Nicholas A Smith
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | | | - Nastaran Meftahi
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Shenggen Yao
- d Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Australia
| | - Tiffany J Harris
- b Cell Death and Survival Group , Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
| | - Sharon Tran
- b Cell Death and Survival Group , Olivia Newton-John Cancer Research Institute , Heidelberg , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia
| | - Anne Pettikiriarachchi
- e Structural Biology Division , The Walter and Eliza Hall Institute of Medical Research , Parkville , Australia
| | - Matthew A Perugini
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - David W Keizer
- d Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Australia
| | - Marco Evangelista
- b Cell Death and Survival Group , Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
| | - Brian J Smith
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - W Douglas Fairlie
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia.,b Cell Death and Survival Group , Olivia Newton-John Cancer Research Institute , Heidelberg , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia
| |
Collapse
|
143
|
De Tommaso G, Malgieri G, De Rosa L, Fattorusso R, D'Abrosca G, Romanelli A, Iuliano M, D'Andrea LD, Isernia C. Coordination of a bis-histidine-oligopeptide to Re(i) and Ga(iii) in aqueous solution. Dalton Trans 2019; 48:15184-15191. [DOI: 10.1039/c9dt02406a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have spectroscopically analyzed the chemistry in aqueous solution and the properties of the histidine-based chelator pHis2 complexed to the fac-[Re(H2O)3(CO)3]+ and Ga(iii) to unveil the molecular determinants of their coordination.
Collapse
Affiliation(s)
- Gaetano De Tommaso
- Department of Chemical Sciences
- University of Naples “Federico II” Cupa Nuova Cintia
- 21-80126 Naples
- Italy
| | - Gaetano Malgieri
- Department of Environmental
- Biological and Pharmaceutical
- Sciences and Technologies
- University of Campania “L. Vanvitelli”
- 43-81100 Caserta
| | - Lucia De Rosa
- Institute of Biostructure and Bioimaging
- CNR
- 16-80134 Naples
- Italy
| | - Roberto Fattorusso
- Department of Environmental
- Biological and Pharmaceutical
- Sciences and Technologies
- University of Campania “L. Vanvitelli”
- 43-81100 Caserta
| | - Gianluca D'Abrosca
- Department of Environmental
- Biological and Pharmaceutical
- Sciences and Technologies
- University of Campania “L. Vanvitelli”
- 43-81100 Caserta
| | | | - Mauro Iuliano
- Department of Chemical Sciences
- University of Naples “Federico II” Cupa Nuova Cintia
- 21-80126 Naples
- Italy
| | | | - Carla Isernia
- Department of Environmental
- Biological and Pharmaceutical
- Sciences and Technologies
- University of Campania “L. Vanvitelli”
- 43-81100 Caserta
| |
Collapse
|
144
|
Kleist AB, Peterson F, Tyler RC, Gustavsson M, Handel TM, Volkman BF. Solution NMR spectroscopy of GPCRs: Residue-specific labeling strategies with a focus on 13C-methyl methionine labeling of the atypical chemokine receptor ACKR3. Methods Cell Biol 2018; 149:259-288. [PMID: 30616824 DOI: 10.1016/bs.mcb.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The past decade has witnessed remarkable progress in the determination of G protein-coupled receptor (GPCR) structures, profoundly expanding our understanding of how GPCRs recognize ligands, become activated, and interact with intracellular signaling components. In recent years, numerous studies have used solution nuclear magnetic resonance (NMR) spectroscopy to investigate GPCRs, providing fundamental insights into GPCR conformational changes, allostery, dynamics, and other facets of GPCR function are challenging to study using other structural techniques. Despite these advantages, NMR-based studies of GPCRs are few relative to the number of published structures, due in part to the challenges and limitations of NMR for the characterization of large membrane proteins. Several studies have circumvented these challenges using a variety of isotopic labeling strategies, including side chain derivatization and metabolic incorporation of NMR-active nuclei. In this chapter, we provide an overview of different isotopic labeling strategies and describe an in-depth protocol for the expression, purification, and NMR studies of the chemokine GPCR atypical chemokine receptor 3 (ACKR3) via 13CH3-methionine incorporation. The goal of this chapter is to provide a resource to the GPCR community for those interested in pursuing NMR studies of GPCRs.
Collapse
Affiliation(s)
- Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Francis Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert C Tyler
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
145
|
Gonzalez S, Gallier F, Kellouche S, Carreiras F, Novellino E, Carotenuto A, Chassaing G, Rovero P, Uziel J, Lubin-Germain N. Studies of membranotropic and fusogenic activity of two putative HCV fusion peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:50-61. [PMID: 30343120 DOI: 10.1016/j.bbamem.2018.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022]
Abstract
Over the past decades, membranotropic peptides such as positively charged cell-penetrating peptides (CPPs) or amphipathic antimicrobial peptides (AMPs) have received increasing interest in order to improve therapeutic agent cellular uptake. As far as we are concerned, we were interested in studying HCV fusion peptides as putative anchors. Two peptides, HCV6 and HCV7, were identified and conjugated to a fluorescent tag NBD and tested for their interaction with liposomes as model membranes. DSC and spectrofluorescence analyses demonstrate HCV7 propensity to insert or internalize in vesicles containing anionic lipids DMPG whereas no activity was observed with zwitterionic DMPC. This behavior could be explained by the peptide sequence containing a cationic arginine residue. On the contrary, HCV6 did not exhibit any membranotropic activity but was the only sequence able to induce liposomes' fusion or aggregation monitored by spectrofluorescence and DLS. This two peptides mild activity was related to their inefficient structuration in contact with membrane mimetics, which was demonstrated by CD and NMR experiments. Altogether, our data allowed us to identify two promising membrane-active peptides from E1 and E2 HCV viral proteins, one fusogenic (HCV6) and the other membranotropic (HCV7). The latter was also confirmed by fluorescence microscopy with CHO cells, indicating that HCV7 could cross the plasma membrane via an endocytosis process. Therefore, this study provides new evidences supporting the identification of HCV6 as the HCV fusion peptide as well as insights on a novel membranotropic peptide from the HCV-E2 viral protein.
Collapse
Affiliation(s)
- Simon Gonzalez
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, Cergy-Pontoise, France
| | - Florian Gallier
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, Cergy-Pontoise, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, rue Descartes, 95031, Neuville sur Oise Cedex, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, rue Descartes, 95031, Neuville sur Oise Cedex, France
| | - Ettore Novellino
- Department of Pharmacy, University of Naples 'Federico II', Naples 80131, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples 'Federico II', Naples 80131, Italy
| | - Gérard Chassaing
- Sorbonne Universités, UPMC University Paris 06, LBM, 4 place Jussieu, F-75005 Paris, France
| | - Paolo Rovero
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Jacques Uziel
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, Cergy-Pontoise, France
| | - Nadège Lubin-Germain
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, Cergy-Pontoise, France.
| |
Collapse
|
146
|
Calabrese DR, Chen X, Leon EC, Gaikwad SM, Phyo Z, Hewitt WM, Alden S, Hilimire TA, He F, Michalowski AM, Simmons JK, Saunders LB, Zhang S, Connors D, Walters KJ, Mock BA, Schneekloth JS. Chemical and structural studies provide a mechanistic basis for recognition of the MYC G-quadruplex. Nat Commun 2018; 9:4229. [PMID: 30315240 PMCID: PMC6185959 DOI: 10.1038/s41467-018-06315-w] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/16/2018] [Indexed: 01/06/2023] Open
Abstract
G-quadruplexes (G4s) are noncanonical DNA structures that frequently occur in the promoter regions of oncogenes, such as MYC, and regulate gene expression. Although G4s are attractive therapeutic targets, ligands capable of discriminating between different G4 structures are rare. Here, we describe DC-34, a small molecule that potently downregulates MYC transcription in cancer cells by a G4-dependent mechanism. Inhibition by DC-34 is significantly greater for MYC than other G4-driven genes. We use chemical, biophysical, biological, and structural studies to demonstrate a molecular rationale for the recognition of the MYC G4. We solve the structure of the MYC G4 in complex with DC-34 by NMR spectroscopy and illustrate specific contacts responsible for affinity and selectivity. Modification of DC-34 reveals features required for G4 affinity, biological activity, and validates the derived NMR structure. This work advances the design of quadruplex-interacting small molecules to control gene expression in therapeutic areas such as cancer. Targeting noncoding nucleic acids with small molecules represents an important and significant challenge in chemical biology and drug discovery. Here the authors characterize DC-34, a small molecule that exhibits selective binding to specific G4 structures, and provide a structural basis for its selectivity
Collapse
Affiliation(s)
- David R Calabrese
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Xiang Chen
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Elena C Leon
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Snehal M Gaikwad
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Zaw Phyo
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - William M Hewitt
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Stephanie Alden
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Thomas A Hilimire
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Fahu He
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | | | - John K Simmons
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Lindsey B Saunders
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shuling Zhang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Daniel Connors
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Kylie J Walters
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
147
|
Anchoori RK, Jiang R, Peng S, Soong RS, Algethami A, Rudek MA, Anders N, Hung CF, Chen X, Lu X, Kayode O, Dyba M, Walters KJ, Roden RBS. Covalent Rpn13-Binding Inhibitors for the Treatment of Ovarian Cancer. ACS OMEGA 2018; 3:11917-11929. [PMID: 30288466 PMCID: PMC6166221 DOI: 10.1021/acsomega.8b01479] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Substitution of the m,p-chloro groups of bis-benzylidinepiperidone RA190 for p-nitro, generating RA183, enhanced covalent drug binding to Cys88 of RPN13. Treatment of cancer cell lines with RA183 inhibited ubiquitin-mediated protein degradation, resulting in rapid accumulation of high-molecular-weight polyubiquitinated proteins, blockade of NFκB signaling, endoplasmic reticulum stress, an unfolded protein response, production of reactive oxygen species, and apoptotic cell death. High-grade ovarian cancer, triple-negative breast cancer, and multiple myeloma cell lines were particularly vulnerable to RA183. RA183 stabilized a tetraubiquitin-linked firefly luciferase reporter protein in cancer cell lines and mice, demonstrating in vitro and in vivo proteasomal inhibition, respectively. However, RA183 was rapidly cleared from plasma, likely reflecting its rapid degradation to the active compound RA9, as seen in human liver microsomes. Intraperitoneal administration of RA183 inhibited proteasome function and orthotopic tumor growth in mice bearing human ovarian cancer model ES2-luc ascites or syngeneic ID8-luc tumor.
Collapse
Affiliation(s)
- Ravi K. Anchoori
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Rosie Jiang
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Shiwen Peng
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Ruey-shyang Soong
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department of General Surgery, Chang Gung
Memorial Hospital at Keelung, Keelung
City, Taiwan 204, ROC
- College of Medicine, Chang Gung University, Taoyuan, Taiwan 33302, ROC
| | - Aliyah Algethami
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Michelle A. Rudek
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Nicole Anders
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Chien-Fu Hung
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Xiang Chen
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Xiuxiu Lu
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Olumide Kayode
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Marzena Dyba
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Kylie J. Walters
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Richard B. S. Roden
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| |
Collapse
|
148
|
Langella E, Buonanno M, Vullo D, Dathan N, Leone M, Supuran CT, De Simone G, Monti SM. Biochemical, biophysical and molecular dynamics studies on the proteoglycan-like domain of carbonic anhydrase IX. Cell Mol Life Sci 2018; 75:3283-3296. [PMID: 29564477 PMCID: PMC11105230 DOI: 10.1007/s00018-018-2798-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 12/11/2022]
Abstract
Human carbonic anhydrase IX (hCA IX) is a tumour-associated enzyme present in a limited number of normal tissues, but overexpressed in several malignant human tumours. It is a transmembrane protein, where the extracellular region consists of a greatly investigated catalytic CA domain and a much less investigated proteoglycan-like (PG) domain. Considering its important role in tumour biology, here, we report for the first time the full characterization of the PG domain, providing insights into its structural and functional features. In particular, this domain has been produced at high yields in bacterial cells and characterized by means of biochemical, biophysical and molecular dynamics studies. Results show that it belongs to the family of intrinsically disordered proteins, being globally unfolded with only some local residual polyproline II secondary structure. The observed conformational flexibility may have several important roles in tumour progression, facilitating interactions of hCA IX with partner proteins assisting tumour spreading and progression.
Collapse
Affiliation(s)
- Emma Langella
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Daniela Vullo
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Florence, Italy
| | - Nina Dathan
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Florence, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy.
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy.
| |
Collapse
|
149
|
Buchko GW, Pulavarti SV, Ovchinnikov V, Shaw EA, Rettie SA, Myler PJ, Karplus M, Szyperski T, Baker D, Bahl CD. Cytosolic expression, solution structures, and molecular dynamics simulation of genetically encodable disulfide-rich de novo designed peptides. Protein Sci 2018; 27:1611-1623. [PMID: 30152054 PMCID: PMC6194292 DOI: 10.1002/pro.3453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
Disulfide-rich peptides represent an important protein family with broad pharmacological potential. Recent advances in computational methods have made it possible to design new peptides which adopt a stable conformation de novo. Here, we describe a system to produce disulfide-rich de novo peptides using Escherichia coli as the expression host. The advantage of this system is that it enables production of uniformly 13 C- and 15 N-labeled peptides for solution nuclear magnetic resonance (NMR) studies. This expression system was used to isotopically label two previously reported de novo designed peptides, and to determine their solution structures using NMR. The ensemble of NMR structures calculated for both peptides agreed well with the design models, further confirming the accuracy of the design protocol. Collection of NMR data on the peptides under reducing conditions revealed a dependency on disulfide bonds to maintain stability. Furthermore, we performed long-time molecular dynamics (MD) simulations with tempering to assess the stability of two families of de novo designed peptides. Initial designs which exhibited a stable structure during simulations were more likely to adopt a stable structure in vitro, but attempts to utilize this method to redesign unstable peptides to fold into a stable state were unsuccessful. Further work is therefore needed to assess the utility of MD simulation techniques for de novo protein design.
Collapse
Affiliation(s)
- Garry W. Buchko
- Seattle Structural Genomics Center for Infectious DiseasesSeattleWashington
- Earth and Biological Sciences Directorate, Pacific Northwest National LaboratoryRichlandWashington99352
- School of Molecular BiosciencesWashington State UniversityPullmanWashington99164
| | | | - Victor Ovchinnikov
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMassachusetts
| | - Elizabeth A. Shaw
- Department of Chemistry, State University of New York at BuffaloBuffaloNew York14260
| | - Stephen A. Rettie
- Institute for Protein DesignUniversity of WashingtonSeattleWashington98195
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious DiseasesSeattleWashington
- Center for Infectious Disease ResearchSeattleWashington98109
- Department of Global HealthUniversity of WashingtonSeattleWashington98165
- Department of Biomedical Informatics and Health EducationUniversity of WashingtonSeattleWashington98195
| | - Martin Karplus
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMassachusetts
- Laboratoire de Chimie Biophysique, ISISUniversite de Strasbourg67000StrasbourgFrance
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at BuffaloBuffaloNew York14260
| | - David Baker
- Institute for Protein DesignUniversity of WashingtonSeattleWashington98195
- Department of BiochemistryUniversity of WashingtonSeattleWashington98195
- Howard Hughes Medical Institute, University of WashingtonSeattleWashington98195
| | - Christopher D. Bahl
- Institute for Protein DesignUniversity of WashingtonSeattleWashington98195
- Department of BiochemistryUniversity of WashingtonSeattleWashington98195
- Institute for Protein InnovationBostonMassachusetts02115
| |
Collapse
|
150
|
Aichem A, Anders S, Catone N, Rößler P, Stotz S, Berg A, Schwab R, Scheuermann S, Bialas J, Schütz-Stoffregen MC, Schmidtke G, Peter C, Groettrup M, Wiesner S. The structure of the ubiquitin-like modifier FAT10 reveals an alternative targeting mechanism for proteasomal degradation. Nat Commun 2018; 9:3321. [PMID: 30127417 PMCID: PMC6102260 DOI: 10.1038/s41467-018-05776-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/27/2018] [Indexed: 01/06/2023] Open
Abstract
FAT10 is a ubiquitin-like modifier that directly targets proteins for proteasomal degradation. Here, we report the high-resolution structures of the two individual ubiquitin-like domains (UBD) of FAT10 that are joined by a flexible linker. While the UBDs of FAT10 show the typical ubiquitin-fold, their surfaces are entirely different from each other and from ubiquitin explaining their unique binding specificities. Deletion of the linker abrogates FAT10-conjugation while its mutation blocks auto-FAT10ylation of the FAT10-conjugating enzyme USE1 but not bulk conjugate formation. FAT10- but not ubiquitin-mediated degradation is independent of the segregase VCP/p97 in the presence but not the absence of FAT10’s unstructured N-terminal heptapeptide. Stabilization of the FAT10 UBDs strongly decelerates degradation suggesting that the intrinsic instability of FAT10 together with its disordered N-terminus enables the rapid, joint degradation of FAT10 and its substrates without the need for FAT10 de-conjugation and partial substrate unfolding. The ubiquitin-like modifier FAT10 is composed of two ubiquitin-like domains (UBDs). Here the authors present the FAT10 UBD structures and show that the unstructured FAT10 N-terminal heptapeptide together with the poor stability of FAT10 facilitate the rapid proteasomal targeting of FAT10 along with its substrates.
Collapse
Affiliation(s)
- Annette Aichem
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Samira Anders
- Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Philip Rößler
- Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| | - Sophie Stotz
- Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| | - Andrej Berg
- Computational and Theoretical Chemistry, Department of Chemistry, University of Konstanz, Konstanz, D-78457, Germany
| | - Ricarda Schwab
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Sophia Scheuermann
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Johanna Bialas
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Mira C Schütz-Stoffregen
- Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany.,Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| | - Gunter Schmidtke
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Christine Peter
- Computational and Theoretical Chemistry, Department of Chemistry, University of Konstanz, Konstanz, D-78457, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany. .,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland.
| | - Silke Wiesner
- Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany. .,Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany.
| |
Collapse
|