101
|
Molecular Chaperones and Proteolytic Machineries Regulate Protein Homeostasis In Aging Cells. Cells 2020; 9:cells9051308. [PMID: 32456366 PMCID: PMC7291254 DOI: 10.3390/cells9051308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Throughout their life cycles, cells are subject to a variety of stresses that lead to a compromise between cell death and survival. Survival is partially provided by the cell proteostasis network, which consists of molecular chaperones, a ubiquitin-proteasome system of degradation and autophagy. The cooperation of these systems impacts the correct function of protein synthesis/modification/transport machinery starting from the adaption of nascent polypeptides to cellular overcrowding until the utilization of damaged or needless proteins. Eventually, aging cells, in parallel to the accumulation of flawed proteins, gradually lose their proteostasis mechanisms, and this loss leads to the degeneration of large cellular masses and to number of age-associated pathologies and ultimately death. In this review, we describe the function of proteostasis mechanisms with an emphasis on the possible associations between them.
Collapse
|
102
|
Hansen PJ. Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology 2020; 154:190-202. [PMID: 32622199 DOI: 10.1016/j.theriogenology.2020.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022]
Abstract
In cattle, genetic variation exists in regulation of body temperature and stabilization of cellular function during heat stress. There are opportunities to reduce the impact of heat stress on cattle production by identifying the causative mutations responsible for genetic variation in thermotolerance and transferring specific alleles that confer thermotolerance to breeds not adapted to hot climates. An example of a mutation conferring superior ability to regulate body temperature is the group of frame-sift mutations in the prolactin receptor gene (PRLR) that lead to a truncated receptor and development of cattle with a short, sleek hair coat. Slick mutations in PRLR have been found in several extant breeds derived from criollo cattle. The slick mutation in Senepol cattle has been introgressed into dairy cattle in Puerto Rico, Florida and New Zealand. An example of a mutation that confers cellular protection against elevated body temperature is a deletion mutation in the promoter region of a heat shock protein 70 gene called HSPA1L. Inheritance of the mutation results in amplification of the transcriptional response of HSPA1L to heat shock and increased cell survival. The case of PRLR provides a promising example of the efficacy of the genetic approach outlined in this paper. Identification of other mutations conferring thermotolerance at the whole-animal or cellular level will lead to additional opportunities for using genetic solutions to reduce the impact of heat stress.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|
103
|
Ahmed K, Zaidi SF, Rehman R, Kondo T. Hyperthermia and protein homeostasis: Cytoprotection and cell death. J Therm Biol 2020; 91:102615. [PMID: 32716865 DOI: 10.1016/j.jtherbio.2020.102615] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/05/2020] [Accepted: 05/03/2020] [Indexed: 12/26/2022]
Abstract
Protein homeostasis or proteostasis, the correct balance between production and degradation of proteins, is an essential pillar for proper cellular function. Among the several cellular mechanisms that disrupt homeostatic conditions in cancer cells, hyperthermia (HT) has shown promising anti-tumor effects. However, cancer cells are also capable of thermoresistance. Indeed, HT-induced protein denaturation and aggregation results in the up regulation of heat shock proteins, a group of molecular chaperones with cytoprotective and anti-apoptotic properties via stress-inducible transcription factor, heat shock factor 1(HSF1). Heat shock proteins assist in the refolding of misfolded proteins and aids in their elimination if they become irreversibly damaged by various stressors. Furthermore, HSF1 also initiates the unfolded protein response in the endoplasmic reticulum (ER) to assist in the protein folding capacity of ER and also promotes the translation of pro-survival proteins' mRNA such as activating transcription factor 4 (ATF 4). Moreover, HT associated induction of microRNAs is also involved in thermal resistance of cancer cells via up-regulation of anti-apoptotic Bcl-2 proteins and down regulation of pro-apoptotic Bax and caspase 3 activities. Another cellular protection in response to stressors is Autophagy, which is regulated by the Mammalian target of rapamycin (mTOR) protein. Kinase activity in mTOR phosphorylates HSF1 and promotes its nuclear translocation for heat shock protein synthesis. Over-expression of heat shock proteins are reported to up-regulate Beclin-1, an autophagy initiator. Moreover, HT-induced reactive oxygen species (ROS) generation is sensitized by transcription factor NF-E2 related factor 2 (Nrf2) and activates the cellular expression of antioxidants and autophagy gene. Furthermore, ROS also potentiates autophagy via activation of Beclin-1. Inhibition of thermotolerance can potentiate HT-induced apoptosis. Here, we outlined that heat stress alters cellular proteins which activates cellular homeostatic processes to promote cell survival and make cancer cells thermotolerant.
Collapse
Affiliation(s)
- Kanwal Ahmed
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, 21423, Saudi Arabia.
| | - Syed Faisal Zaidi
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, 21423, Saudi Arabia
| | - Rafey Rehman
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Takashi Kondo
- Division of Radiation Oncology, Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, 2630, Toyama, Japan
| |
Collapse
|
104
|
Kalisch-Smith JI, Ved N, Sparrow DB. Environmental Risk Factors for Congenital Heart Disease. Cold Spring Harb Perspect Biol 2020; 12:a037234. [PMID: 31548181 PMCID: PMC7050589 DOI: 10.1101/cshperspect.a037234] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Congenital heart disease (CHD) has many forms and a wide range of causes. Clinically, it is important to understand the causes. This allows estimation of recurrence rate, guides treatment options, and may also be used to formulate public health advice to reduce the population prevalence of CHD. The recent advent of sophisticated genetic and genomic methods has led to the identification of more than 100 genes associated with CHD. However, despite these great strides, to date only one-third of CHD cases have been shown to have a simple genetic cause. This is because CHD can also be caused by oligogenic factors, environmental factors, and/or gene-environment interaction. Although solid evidence for environmental causes of CHD have been available for almost 80 years, it is only very recently that the molecular mechanisms for these risk factors have begun to be investigated. In this review, we describe the most important environmental CHD risk factors, and what is known about how they cause CHD.
Collapse
Affiliation(s)
| | - Nikita Ved
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, United Kingdom
| | - Duncan Burnaby Sparrow
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, United Kingdom
| |
Collapse
|
105
|
Wang YL, Wu W, Su YN, Ai ZP, Mou HC, Wan LS, Luo Y, Qiu MH, Zhang JH. Buxus alkaloid compound destabilizes mutant p53 through inhibition of the HSF1 chaperone axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153187. [PMID: 32097779 DOI: 10.1016/j.phymed.2020.153187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/15/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND P53 is the most frequently mutated gene in most tumour types, and the mutant p53 protein accumulates at high levels in tumours to promote tumour development and progression. Thus, targeting mutant p53 for degradation is one of the therapeutic strategies used to manage tumours that depend on mutant p53 for survival. Buxus alkaloids are traditionally used in the treatment of cardiovascular diseases. We found that triterpenoid alkaloids extracted from Buxus sinica found in the Yunnan Province exhibit anticancer activity by depleting mutant p53 levels in colon cancer cells. PURPOSE To explore the anticancer mechanism of action of the triterpenoid alkaloid KBA01 compound by targeting mutant p53 degradation. STUDY DESIGN AND METHODS Different mutant p53 cell lines were used to evaluate the anticancer activity of KBA01. MTT assay, colony formation assay and cell cycle analysis were performed to examine the effect of KBA01 on cancer cell proliferation. Western blotting and qPCR were used to investigate effects of depleting mutant p53, and a ubiquitination assay was used to determine mutant p53 ubiquitin levels after cells were treated with the compound. Co-IP and small interfering RNA assays were used to explore the effects of KBA01 on the interaction of Hsp90 with mutant p53. RESULTS The triterpenoid alkaloid KBA01 can induce G2/M cell cycle arrest and the apoptosis of HT29 colon cancer cells. KBA01 decreases the stability of DNA contact mutant p53 proteins through the proteasomal pathway with minimal effects on p53 mutant protein conformation. Moreover, KBA01 enhances the interaction of mutant p53 with Hsp70, CHIP and MDM2, and knocking down CHIP and MDM2 stabilizes mutant p53 levels in KBA01-treated cells. In addition, KBA01 disrupts the HSF1-mutant p53-Hsp90 complex and releases mutant p53 to enable its MDM2- and CHIP-mediated degradation. CONCLUSION Our study reveals that KBA01 depletes mutant p53 protein in a chaperone-assisted ubiquitin/proteasome degradation pathway in cancer cells, providing insights into potential strategies to target mutant p53 tumours.
Collapse
Affiliation(s)
- Yu-Ling Wang
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Wei Wu
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yong-Nan Su
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Zhi-Peng Ai
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Han-Chuan Mou
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Luo-Sheng Wan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Ying Luo
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| | - Ji-Hong Zhang
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
106
|
Janus P, Toma-Jonik A, Vydra N, Mrowiec K, Korfanty J, Chadalski M, Widłak P, Dudek K, Paszek A, Rusin M, Polańska J, Widłak W. Pro-death signaling of cytoprotective heat shock factor 1: upregulation of NOXA leading to apoptosis in heat-sensitive cells. Cell Death Differ 2020; 27:2280-2292. [PMID: 31996779 PMCID: PMC7308270 DOI: 10.1038/s41418-020-0501-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/15/2023] Open
Abstract
Heat shock can induce either cytoprotective mechanisms or cell death. We found that in certain human and mouse cells, including spermatocytes, activated heat shock factor 1 (HSF1) binds to sequences located in the intron(s) of the PMAIP1 (NOXA) gene and upregulates its expression which induces apoptosis. Such a mode of PMAIP1 activation is not dependent on p53. Therefore, HSF1 not only can activate the expression of genes encoding cytoprotective heat shock proteins, which prevents apoptosis, but it can also positively regulate the proapoptotic PMAIP1 gene, which facilitates cell death. This could be the primary cause of hyperthermia-induced elimination of heat-sensitive cells, yet other pro-death mechanisms might also be involved.
Collapse
Affiliation(s)
- Patryk Janus
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Agnieszka Toma-Jonik
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Natalia Vydra
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Katarzyna Mrowiec
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Joanna Korfanty
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Marek Chadalski
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Piotr Widłak
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Karolina Dudek
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Anna Paszek
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland.,Department of Data Science and Engineering, The Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Marek Rusin
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Joanna Polańska
- Department of Data Science and Engineering, The Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Wiesława Widłak
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland.
| |
Collapse
|
107
|
Kültz D. Evolution of cellular stress response mechanisms. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:359-378. [PMID: 31970941 DOI: 10.1002/jez.2347] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
The cellular stress response (CSR) is pervasive to all domains of life. It has shaped the interaction between organisms and their environment since the origin of the first cell. Although the CSR has been subject to a myriad of nuanced modifications in the various branches of life present today, its core features remain preserved. The scientific literature covering the CSR is enormous and the broad scope of this brief overview was challenging. However, it is critical to conceptually understand how cells respond to stress in a holistic sense and to point out how fundamental aspects of the CSR framework are integrated. It was necessary to be extremely selective and not feasible to even mention many interesting and important developments in this expansive field. The purpose of this overview is to sketch out general and emerging CSR concepts with an emphasis on the initial cellular strain resulting from stress (macromolecular damage) and the evolutionarily most highly conserved elements of the CSR. Examples emphasize fish and aquatic invertebrates to highlight what is known in organisms beyond mammals, yeast, and other common models. Nonetheless, select pioneering studies using canonical models are also considered and the concepts discussed are applicable to all cells. More detail on important aspects of the CSR in aquatic animals is provided in the accompanying articles of this special issue.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Davis, California
| |
Collapse
|
108
|
Forcella M, Lau P, Oldani M, Melchioretto P, Bogni A, Gribaldo L, Fusi P, Urani C. Neuronal specific and non-specific responses to cadmium possibly involved in neurodegeneration: A toxicogenomics study in a human neuronal cell model. Neurotoxicology 2020; 76:162-173. [DOI: 10.1016/j.neuro.2019.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
|
109
|
Kovács D, Sigmond T, Hotzi B, Bohár B, Fazekas D, Deák V, Vellai T, Barna J. HSF1Base: A Comprehensive Database of HSF1 (Heat Shock Factor 1) Target Genes. Int J Mol Sci 2019; 20:ijms20225815. [PMID: 31752429 PMCID: PMC6888953 DOI: 10.3390/ijms20225815] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
HSF1 (heat shock factor 1) is an evolutionarily conserved master transcriptional regulator of the heat shock response (HSR) in eukaryotic cells. In response to high temperatures, HSF1 upregulates genes encoding molecular chaperones, also called heat shock proteins, which assist the refolding or degradation of damaged intracellular proteins. Accumulating evidence reveals however that HSF1 participates in several other physiological and pathological processes such as differentiation, immune response, and multidrug resistance, as well as in ageing, neurodegenerative demise, and cancer. To address how HSF1 controls these processes one should systematically analyze its target genes. Here we present a novel database called HSF1Base (hsf1base.org) that contains a nearly comprehensive list of HSF1 target genes identified so far. The list was obtained by manually curating publications on individual HSF1 targets and analyzing relevant high throughput transcriptomic and chromatin immunoprecipitation data derived from the literature and the Yeastract database. To support the biological relevance of HSF1 targets identified by high throughput methods, we performed an enrichment analysis of (potential) HSF1 targets across different tissues/cell types and organisms. We found that general HSF1 functions (targets are expressed in all tissues/cell types) are mostly related to cellular proteostasis. Furthermore, HSF1 targets that are conserved across various animal taxa operate mostly in cellular stress pathways (e.g., autophagy), chromatin remodeling, ribosome biogenesis, and ageing. Together, these data highlight diverse roles for HSF1, expanding far beyond the HSR.
Collapse
Affiliation(s)
- Dániel Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
| | - Tímea Sigmond
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
| | - Bernadette Hotzi
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
| | - Balázs Bohár
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- Earlham Institute, Norwich NR4 7UZ, UK
- Quadram Institute, Norwich NR4 7UA, UK
| | - Dávid Fazekas
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- Earlham Institute, Norwich NR4 7UZ, UK
- Quadram Institute, Norwich NR4 7UA, UK
| | - Veronika Deák
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, University of Technology, H-1111 Budapest, Hungary;
| | - Tibor Vellai
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, H-1117 Budapest, Hungary
- Correspondence: (T.V.); (J.B.); Tel.: +36-1-372-2500 (ext. 8684) (T.V.); +36-1-372-2500 (ext. 8349) (J.B.); Fax: +36-1-372-2641 (T.V.)
| | - János Barna
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, H-1117 Budapest, Hungary
- Correspondence: (T.V.); (J.B.); Tel.: +36-1-372-2500 (ext. 8684) (T.V.); +36-1-372-2500 (ext. 8349) (J.B.); Fax: +36-1-372-2641 (T.V.)
| |
Collapse
|
110
|
Quantitative Immunomorphological Analysis of Heat Shock Proteins in Thyroid Follicular Adenoma and Carcinoma Tissues Reveals Their Potential for Differential Diagnosis and Points to a Role in Carcinogenesis. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hsp27, Hsp60, Hsp70, and Hsp90 are chaperones that play a crucial role in cellular homeostasis and differentiation, but they may be implicated in carcinogenesis. Follicular neoplasms of the thyroid include follicular adenoma and follicular carcinoma. The former is a very frequent benign encapsulated nodule, whereas the other is a nodule that infiltrates the capsule, blood vessels and the adjacent parenchyma, with a tendency to metastasize. The main objective was to assess the potential of the Hsps in differential diagnosis and carcinogenesis. We quantified by immunohistochemistry Hsp27, Hsp60, Hsp70, and Hsp90 on thin sections of human thyroid tissue with follicular adenoma or follicular carcinoma, comparing the tumor with the adjacent peritumoral tissue. Hsp60, Hsp70, and Hsp90 were increased in follicular carcinoma compared to follicular adenoma, while Hsp27 showed no difference. Histochemical quantification of Hsp60, Hsp70, and Hsp90 allows diagnostic distinction between follicular adenoma and carcinoma, and between tumor and adjacent non-tumoral tissue. The quantitative variations of these chaperones in follicular carcinoma suggest their involvement in tumorigenesis, for instance in processes such as invasion of thyroid parenchyma and metastasization.
Collapse
|
111
|
Bhatti M, Dinn S, Miskiewicz EI, MacPhee DJ. Expression of heat shock factor 1, heat shock protein 90 and associated signaling proteins in pregnant rat myometrium: Implications for myometrial proliferation. Reprod Biol 2019; 19:374-385. [PMID: 31522994 DOI: 10.1016/j.repbio.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
During pregnancy and labour the myometrium undergoes structural and physiological adaptations as part of a program of development. Heat shock factor 1 (HSF1) is a master regulator of both stress and developmental processes. A noted HSF1-induced gene is the 90 kDa heat shock protein (HSP90), which acts as a chaperone and regulator of cellular processes. Immunoblot analysis demonstrated HSF1 expression levels in pregnant rat myometrium on gestational day (d) 6 were maintained at a significantly higher level compared with d12 to post-partum (PP) time points (P < 0.05), while expression on d12 was significantly higher compared to d15 and d19. The transcriptionally active form pSer230-HSF1 was detected at a significantly greater level at d6 compared with d21 and d23 time points and also at d12 compared with d21, d22 and 23 (labour). Similarly, phosphorylated (P)-HSP90AA1 protein detection was significantly greater on d6 compared to d19 to d23 time points and on d12 compared with d15 to PP time points. In contrast, P-HSP90AB1 showed significantly greater detection levels on d12 compared with d15 while levels on d22 were significantly higher compared to d15, d17 and d19. Immunofluorescence analysis demonstrated that total HSF1 and HSP90 were localized mainly in the cytoplasm of myometrial cells with some detection of HSF1 in nuclei. This work advances our scientific knowledge of the myometrium during pregnancy and the expression profiles of HSF1 and HSP90 within the proliferative phase of myometrial programming suggests a role for them in this period of hyperplasia and myometrial adaptation.
Collapse
Affiliation(s)
- Masooma Bhatti
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada; One Reproductive Health Research Group, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Sarah Dinn
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Ewa I Miskiewicz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada; One Reproductive Health Research Group, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Daniel J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada; One Reproductive Health Research Group, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
112
|
Dukay B, Csoboz B, Tóth ME. Heat-Shock Proteins in Neuroinflammation. Front Pharmacol 2019; 10:920. [PMID: 31507418 PMCID: PMC6718606 DOI: 10.3389/fphar.2019.00920] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023] Open
Abstract
The heat-shock response, one of the main pro-survival mechanisms of a living organism, has evolved as the biochemical response of cells to cope with heat stress. The most well-characterized aspect of the heat-shock response is the accumulation of a conserved set of proteins termed heat-shock proteins (HSPs). HSPs are key players in protein homeostasis acting as chaperones by aiding the folding and assembly of nascent proteins and protecting against protein aggregation. HSPs have been associated with neurological diseases in the context of their chaperone activity, as they were found to suppress the aggregation of misfolded toxic proteins. In recent times, HSPs have proven to have functions apart from the classical molecular chaperoning in that they play a role in a wider scale of neurological disorders by modulating neuronal survival, inflammation, and disease-specific signaling processes. HSPs are gaining importance based on their ability to fine-tune inflammation and act as immune modulators in various bodily fluids. However, their effect on neuroinflammation processes is not yet fully understood. In this review, we summarize the role of neuroinflammation in acute and chronic pathological conditions affecting the brain. Moreover, we seek to explore the existing literature on HSP-mediated inflammatory function within the central nervous system and compare the function of these proteins when they are localized intracellularly compared to being present in the extracellular milieu.
Collapse
Affiliation(s)
- Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
113
|
Yang T, Ren C, Lu C, Qiao P, Han X, Wang L, Wang D, Lv S, Sun Y, Yu Z. Phosphorylation of HSF1 by PIM2 Induces PD-L1 Expression and Promotes Tumor Growth in Breast Cancer. Cancer Res 2019; 79:5233-5244. [PMID: 31409638 DOI: 10.1158/0008-5472.can-19-0063] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/17/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
Abstract
Heat shock transcription factor 1 (HSF1) is the master regulator of the proteotoxic stress response, which plays a key role in breast cancer tumorigenesis. However, the mechanisms underlying regulation of HSF1 protein stability are still unclear. Here, we show that HSF1 protein stability is regulated by PIM2-mediated phosphorylation of HSF1 at Thr120, which disrupts the binding of HSF1 to the E3 ubiquitin ligase FBXW7. In addition, HSF1 Thr120 phosphorylation promoted proteostasis and carboplatin-induced autophagy. Interestingly, HSF1 Thr120 phosphorylation induced HSF1 binding to the PD-L1 promoter and enhanced PD-L1 expression. Furthermore, HSF1 Thr120 phosphorylation promoted breast cancer tumorigenesis in vitro and in vivo. PIM2, pThr120-HSF1, and PD-L1 expression positively correlated with each other in breast cancer tissues. Collectively, these findings identify PIM2-mediated HSF1 phosphorylation at Thr120 as an essential mechanism that regulates breast tumor growth and potential therapeutic target for breast cancer. SIGNIFICANCE: These findings identify heat shock transcription factor 1 as a new substrate for PIM2 kinase and establish its role in breast tumor progression.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Li Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Dan Wang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Shijun Lv
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Yonghong Sun
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| |
Collapse
|
114
|
HSF1 phosphorylation by cyclosporin A confers hyperthermia sensitivity through suppression of HSP expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:846-857. [DOI: 10.1016/j.bbagrm.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022]
|
115
|
Cronshaw M, Parker S, Arany P. Feeling the Heat: Evolutionary and Microbial Basis for the Analgesic Mechanisms of Photobiomodulation Therapy. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:517-526. [PMID: 31329512 DOI: 10.1089/photob.2019.4684] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: The clinical therapeutic benefits of Photobiomodulation (PBM) therapy have been well established in many clinical scenarios. However, we are far from having developed a complete understanding of the underlying mechanisms of photon-biological tissue interactions. Concurrent to ongoing PBM studies, there are several parallel fields with evidences from cell and tissue physiology such as evolutionary biology, photobiology, and microbiology among others. Objective: This review is focused on extrapolating evidences from an expanded range of studies that may contribute to a better understanding of PBM mechanisms especially focusing on analgesia. Further, the choice of a PBM device source and relevant dosimetry with regards to specific mechanisms are discussed to enable broader clinical use of PBM therapies. Materials and methods: This discussion article is referenced from an expanded range of peer reviewed publications, including literature associated with evolutionary biology, microbiology, oncology, and photo-optical imaging technology, amongst others. Results and discussion: Materials drawn from many disparate disciplines is described. By inference from the current evidence base, a novel theory is offered to partially explain the cellular basis of PBM-induced analgesia. It is proposed that this may involve the activity of a class of transmembrane proteins known as uncoupling proteins. Furthermore, it is proposed that this may activate the heat stress protein response and that intracellur microthermal inclines may be of significance in PBM analgesia. It is suggested that the PBM dose response as a simple binary model of PBM effects as represented by the Arndt-Schulz law is clinically less useful than a multiphasic biological response. Finally, comments are made concerning the nature of photon to tissue interaction that can have significance in regard to the effective choice and delivery of dose to clinical target. Conclusions: It is suggested that a re-evaluation of phototransduction pathways may lead to an improvement in outcome in phototheraphy. An enhanced knowledge of safe parameters and a better knowledge of the mechanics of action at target level will permit more reliable and predictable clinical gain and assist the acceptance of PBM therapy within the wider medical community.
Collapse
Affiliation(s)
- Mark Cronshaw
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Steven Parker
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Praveen Arany
- Department of Oral Biology and Biomedical Engineering, School of Dental Medicine, Engineering and Applied Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
116
|
miR-455-3p Alleviates Hepatic Stellate Cell Activation and Liver Fibrosis by Suppressing HSF1 Expression. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:758-769. [PMID: 31150929 PMCID: PMC6539335 DOI: 10.1016/j.omtn.2019.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 12/31/2022]
Abstract
Liver fibrosis is a common pathological process of end-stage liver diseases. However, the role of microRNA (miRNA) in liver fibrosis is poorly understood. The activated hepatic stellate cells (HSCs) are the major source of fibrogenic cells and play a central role in liver fibrosis. In this study, we investigated the differential expression of miRNAs in resting and transforming growth factor β1 (TGF-β1) activated HSCs by microarray analysis and found that miR-455-3p was significantly downregulated during HSCs activation. In addition, the reduction of miR-455-3p was correlated with liver fibrosis in mice with carbon tetrachloride (CCl4), bile duct ligation (BDL), and high-fat diet (HFD)-induced liver fibrosis. Our functional analyses demonstrated that miR-455-3p inhibited expression of profibrotic markers and cell proliferation in HSCs in vitro. Moreover, miR-455-3p regulated heat shock factor 1 (HSF1) expression by binding to the 3′ UTR of its mRNA directly. Overexpression of HSF1 facilitated HSCs activation and proliferation by promoting heat shock protein 47 (Hsp47) expression, leading to activation of the TGF-β/Smad4 signaling pathway. To explore the clinical potential of miR-455-3p, we injected ago-miR-455-3p into mice with CCl4-, BDL-, and HFD-induced hepatic fibrosis in vivo. The overexpression of miR-455-3p suppressed HSF1 expression and reduced fibrosis marker expression, which resulted in alleviated liver fibrosis in mice. In conclusion, our present study suggests that miR-455-3p inhibits the activation of HSCs through targeting HSF1 involved in the Hsp47/TGF-β/Smad4 signaling pathway. Therefore, miR-455-3p might be a promising therapeutic target for liver fibrosis.
Collapse
|
117
|
Tan J, MacRae TH. The synthesis of diapause-specific molecular chaperones in embryos of Artemia franciscana is determined by the quantity and location of heat shock factor 1 (Hsf1). Cell Stress Chaperones 2019; 24:385-392. [PMID: 30701477 PMCID: PMC6439115 DOI: 10.1007/s12192-019-00971-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 01/09/2023] Open
Abstract
The crustacean, Artemia franciscana, displays a complex life history in which embryos either arrest development and undertake diapause as cysts or they develop into swimming nauplii. Diapause entry is preceded during embryogenesis by the synthesis of specific molecular chaperones, namely the small heat shock proteins p26, ArHsp21, and ArHsp22, and the ferritin homolog, artemin. Maximal synthesis of diapause-specific molecular chaperones is dependent on the transcription factor, heat shock factor 1 (Hsf1), found in similar amounts in cysts and nauplii newly released from females. This investigation was performed to determine why, if cysts and nauplii contain comparable amounts of Hsf1, only cyst-destined embryos synthesize diapause-specific molecular chaperones. Quantification by qPCR and immunoprobing of Western blots, respectively, demonstrated that hsf1 mRNA and Hsf1 peaked by day 2 post-fertilization in embryos that were developing into cysts and then declined. hsf1 mRNA and Hsf1 were present in nauplii-destined embryos on day 2 post-fertilization, but in much smaller amounts than in cyst-destined embryos, and they increased in quantity until release of nauplii from females. Immunofluorescent staining revealed that the amount of Hsf1 in nuclei was greatest on day 4 post-fertilization in cyst-destined embryos but could not be detected in nuclei of nauplius-destined embryos at this time. The differences in quantity and location of Hsf1 explain why embryos fated to become cysts and eventually enter diapause synthesize p26, ArHsp21, ArHsp22, and artemin, whereas nauplius-destined embryos do not produce these molecular chaperones.
Collapse
Affiliation(s)
- Jiabo Tan
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
118
|
Park AY, Park YS, So D, Song IK, Choi JE, Kim HJ, Lee KJ. Activity-Regulated Cytoskeleton-Associated Protein (Arc/Arg3.1) is Transiently Expressed after Heat Shock Stress and Suppresses Heat Shock Factor 1. Sci Rep 2019; 9:2592. [PMID: 30796345 PMCID: PMC6385231 DOI: 10.1038/s41598-019-39292-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins are induced by activation of heat shock factor 1 (HSF1) in response to heat shock and protect against heat stress. However, the molecular mechanisms underlying the downstream signal of heat shock have not been fully elucidated. We found that similarly to canonical Hsps, Arc/Arg3.1 is also markedly induced by heat shock and by other cellular stress inducers, including diamide, sodium arsenite and H2O2 in various cells. We noted that heat stress–induced Arc/Arg3.1 protein is short lived, with a half-life of <30 min, and is readily degraded by the ubiquitin–proteasome system. Arc/Arg3.1 overexpression inhibited the up-regulation of heat shock–induced Hsp70 and Hsp27, suggesting that Arc/Arg3.1 is a negative regulator of heat shock response (HSR). Studying the effect of Arc/Arg3.1 on HSF1, a major transcription factor in HSR, we found that Arc/Arg3.1 binds to HSF1 and inhibits its binding to the heat shock element in gene promoters, resulting in reduced induction of Hsp27 and Hsp70 mRNAs, without affecting HSF1′s phosphorylation-dependent activation, or nuclear localization. Arc/Arg3.1 overexpression decreased cell survival in response to heat shock. We conclude that Arc/Arg3.1 is transiently expressed after heat shock and negatively regulates HSF1 in the feedback loop of HSR.
Collapse
Affiliation(s)
- A Young Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Yeon Seung Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Dami So
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - In-Kang Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Jung-Eun Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Hee-Jung Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea. .,Spark biopharma, #203-207A, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| | - Kong-Joo Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
119
|
Li S, Wang J, Xu Z, Wang X, Xu G, Zhang J, Shen X, Tong S. Exploring associations of maternal exposure to ambient temperature with duration of gestation and birth weight: a prospective study. BMC Pregnancy Childbirth 2018; 18:513. [PMID: 30594173 PMCID: PMC6311008 DOI: 10.1186/s12884-018-2100-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
Background Evidence suggests the possible impact of ambient high temperature on fetal growth and birth outcomes. However, little is known about the relative impact of exposure to heat and cold and the possible vulnerable window during pregnancy. Methods Data on a total of 237,585 pregnant women from January 1st, 2001 to December 31st, 2010 were acquired from the Queensland Health, Australia. Daily data on meteorological factors, including ambient temperature, relative humidity, barometric pressure, and air pollutants, such as PM10, SO2, NO2, and O3, were obtained from relevant government agencies. This study was to examine the associations of maternal exposure to ambient temperature (high and low temperatures, in early vs. late pregnancy) with the duration of gestation and birth weight. Results A J-shaped association between minimum temperature at conception and duration of gestation was observed after adjusting for seasonality and other confounders. Compared to women who were exposed to the minimum temperature of 15–20 °C in the first gestational week, exposure to the minimum temperature of > 20 °C significantly increased the duration of gestation by 0.029 weeks (95% CI: 0.008, 0.049). A cumulative effect was found when exposure across the first four weeks was examined. There was an inverted U-shaped relationship between minimum temperature at delivery and the duration of gestation. Compared to women exposed to 15–20 °C, exposure to minimum temperature of > 20 °C and ≤ 10 °C was associated with a shortened gestation by 0.030 weeks (95% CI: -0.052, − 0.008) and 0.018 weeks (95% CI: -0.057, − 0.004), respectively. By contrast, an inverse relationship between maximum temperature and birth weight was observed. Compared to exposure to the maximum temperature of > 30 °C in the last week of pregnancy, maternal exposure to 20–25 °C and < 20 °C significantly increased birth weight by 0.011 kg (95% CI: 0.008, 0.018) and 0.018 kg (95% CI: 0.010, 0.031), respectively. Similarly, a mild cumulative effect was observed when maximum temperature exposure across the four weeks before delivery was evaluated. Conclusions The finding emphasized the importance of keeping an optimal temperature range during pregnancy for reducing the risk of preterm birth and low birthweight. Electronic supplementary material The online version of this article (10.1186/s12884-018-2100-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shenghui Li
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China. .,MOE - Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jiajia Wang
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Zhiwei Xu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Xiaoyu Wang
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Gang Xu
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China.,MOE - Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoming Shen
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China.,MOE - Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shilu Tong
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
120
|
When safeguarding goes wrong: Impact of oxidative stress on protein homeostasis in health and neurodegenerative disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:221-264. [PMID: 30635082 DOI: 10.1016/bs.apcsb.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cellular redox status is an established player in many different cellular functions. The buildup of oxidants within the cell is tightly regulated to maintain a balance between the positive and negative outcomes of cellular oxidants. Proteins are highly sensitive to oxidation, since modification can cause widespread unfolding and the formation of toxic aggregates. In response, cells have developed highly regulated systems that contribute to the maintenance of both the global redox status and protein homeostasis at large. Changes to these systems have been found to correlate with aging and age-related disorders, such as neurodegenerative pathologies. This raises intriguing questions as to the source of the imbalance in the redox and protein homeostasis systems, their interconnectivity, and their role in disease progression. Here we focus on the crosstalk between the redox and protein homeostasis systems in neurodegenerative diseases, specifically in Alzheimer's, Parkinson's, and ALS. We elaborate on some of the main players of the stress response systems, including the master regulators of oxidative stress and the heat shock response, Nrf2 and Hsf1, which are essential features of protein folding, and mediators of protein turnover. We illustrate the elegant mechanisms used by these components to provide an immediate response, including protein plasticity controlled by redox-sensing cysteines and the recruitment of naive proteins to the redox homeostasis array that act as chaperons in an ATP-independent manner.
Collapse
|
121
|
Dai W, Ye J, Zhang Z, Yang L, Ren H, Wu H, Chen J, Ma J, Zhai E, Cai S, He Y. Increased expression of heat shock factor 1 (HSF1) is associated with poor survival in gastric cancer patients. Diagn Pathol 2018; 13:80. [PMID: 30326922 PMCID: PMC6191912 DOI: 10.1186/s13000-018-0755-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Background Heat shock factor 1 (HSF1) was initially identified as a transcription factor encoding heat shock proteins, which assist in refolding or degrading damaged proteins. Recent studies have reported that HSF1 can act as an oncogene that regulates tumour progression. The present study aimed to elucidate the clinicopathological significance and prognostic value of HSF1 expression in gastric cancer (GC). Methods The data from The Cancer Genome Atlas (TCGA) were used to analyse HSF1 expression in GC and normal tissues, while 8 pairs of freshly frozen tissue samples were used to investigate HSF1 expression at the mRNA and protein levels in GC tissues and adjacent normal tissues using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting assays. The correlations between HSF1 expression and clinicopathological parameters, including the survival rate, were investigated in 117 GC tissue samples by immunohistochemical analysis. Results The results of bioinformatics analysis, qRT-PCR, and western blot showed that HSF1 expression was higher in GC tissues than in normal tissues. High HSF1 expression was found in 54.7% (64/117) patients. Patients with high HSF1 expression had larger tumour size (P = 0.001), advanced Bornmann classification (P = 0.002), advanced depth of invasion (P = 0.015), lymph node metastasis (P<0.001), distant metastasis (P = 0.011) and tumour-node-metastasis (P<0.001). Moreover, the Kaplan-Meier and Cox proportional hazards analyses indicated that high HSF1 expression was significantly associated with poor overall survival and recurrence-free survival in GC patients and that high HSF1 expression was an independent prognostic factor for the long-term survival in GC patients. Conclusions Taken together, our results show that high HSF1 expression is significantly correlated with advanced tumour progression and poor prognosis. In addition, HSF1 expression can serve as a biomarker for the prognosis of patients with GC.
Collapse
Affiliation(s)
- Weigang Dai
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Jinning Ye
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zhimei Zhang
- Department of Pathology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Hui Ren
- Department of General Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hui Wu
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Jianhui Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Jieyi Ma
- General Surgical Laboratory, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ertao Zhai
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China. .,General Surgical Laboratory, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Shirong Cai
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yulong He
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
122
|
Caforio M, Sorino C, Iacovelli S, Fanciulli M, Locatelli F, Folgiero V. Recent advances in searching c-Myc transcriptional cofactors during tumorigenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:239. [PMID: 30261904 PMCID: PMC6161371 DOI: 10.1186/s13046-018-0912-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/19/2018] [Indexed: 01/28/2023]
Abstract
Background The mechanism by which c-Myc exerts its oncogenic functions is not completely clear and different hypotheses are still under investigation. The knowledge of the capacity of c-Myc to bind exclusively E-box sequences determined the discrepancy between, on the one hand, genomic studies showing the binding of c-Myc to all active promoters and, on the other hand, the evidence that only 60% or less of the binding sites have E-box sequences. Main body In this review, we provide support to the hypothesis that the cooperation of c-Myc with transcriptional cofactors mediates c-Myc-induced cellular functions. We produce evidence that recently identified cofactors are involved in c-Myc control of survival mechanisms of cancer cells. Conclusion The identification of new c-Myc cofactors could favor the development of therapeutic strategies able to compensate the difficulty of targeting c-Myc.
Collapse
Affiliation(s)
- Matteo Caforio
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, 00146, Rome, Italy
| | - Cristina Sorino
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Stefano Iacovelli
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, 00146, Rome, Italy
| | - Maurizio Fanciulli
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, 00146, Rome, Italy.,Department of Pediatric Science, University of Pavia, 27100, Pavia, Italy
| | - Valentina Folgiero
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, 00146, Rome, Italy.
| |
Collapse
|