101
|
Acinar-to-ductal metaplasia induced by adenovirus-mediated pancreatic expression of Isl1. PLoS One 2012; 7:e47536. [PMID: 23077629 PMCID: PMC3471997 DOI: 10.1371/journal.pone.0047536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/13/2012] [Indexed: 12/20/2022] Open
Abstract
Tubular complexes (TCs) are aggregates of duct-like monolayered cells in the developing and regenerating pancreas. Recent studies showed that TCs have regenerative potential, including islet neogenesis. We previously delivered adenovirus vector (AdV) into exocrine cells of the pancreas by intra-common bile ductal (ICBD) injection, and found that AdV expressing Pdx1, a pancreas-specific transcription factor, causes TC formation and islet neogenesis. We also established RTF-Pdx1-EGFP mice, which ubiquitously express Pdx1 when tetracycline is removed from the drinking water. However, exogenous Pdx1 expression in adult RTF-Pdx1-EGFP mice did not cause any pathological changes in the pancreas during three weeks of observation after tetracycline withdrawal. To examine whether the host immune response induced by AdV was involved in TC formation, we delivered AdVs expressing pancreas-related transcription factors or an irrelevant protein into the pancreas of RTF-Pdx1-EGFP mice. Histological analyses showed that both AdV injection and Pdx1 expression are required for TC formation. We also analyzed the effects of these ICBD-injected AdVs. AdV expressing Isl1, a proendocrine transcription factor, effectively induced TC formation through acinar-to-ductal metaplasia, and exogenous Pdx1 expression facilitated this process. Considering the regenerative potential of TCs, a strategy that efficiently induces TC formation may lead to novel therapies for diabetes.
Collapse
|
102
|
Abstract
Diabetes is a disease characterized by a relative or absolute lack of insulin, leading to hyperglycaemia. There are two main types of diabetes: type 1 diabetes and type 2 diabetes. Type 1 diabetes is due to an autoimmune destruction of the insulin-producing pancreatic beta cells, and type 2 diabetes is caused by insulin resistance coupled by a failure of the beta cell to compensate. Animal models for type 1 diabetes range from animals with spontaneously developing autoimmune diabetes to chemical ablation of the pancreatic beta cells. Type 2 diabetes is modelled in both obese and non-obese animal models with varying degrees of insulin resistance and beta cell failure. This review outlines some of the models currently used in diabetes research. In addition, the use of transgenic and knock-out mouse models is discussed. Ideally, more than one animal model should be used to represent the diversity seen in human diabetic patients.
Collapse
|
103
|
Hansen JB, Tonnesen MF, Madsen AN, Hagedorn PH, Friberg J, Grunnet LG, Heller RS, Nielsen AØ, Størling J, Baeyens L, Anker-Kitai L, Qvortrup K, Bouwens L, Efrat S, Aalund M, Andrews NC, Billestrup N, Karlsen AE, Holst B, Pociot F, Mandrup-Poulsen T. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic β cell fate in response to cytokines. Cell Metab 2012; 16:449-61. [PMID: 23000401 DOI: 10.1016/j.cmet.2012.09.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 06/27/2012] [Accepted: 08/27/2012] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) contribute to target-cell damage in inflammatory and iron-overload diseases. Little is known about iron transport regulation during inflammatory attack. Through a combination of in vitro and in vivo studies, we show that the proinflammatory cytokine IL-1β induces divalent metal transporter 1 (DMT1) expression correlating with increased β cell iron content and ROS production. Iron chelation and siRNA and genetic knockdown of DMT1 expression reduce cytokine-induced ROS formation and cell death. Glucose-stimulated insulin secretion in the absence of cytokines in Dmt1 knockout islets is defective, highlighting a physiological role of iron and ROS in the regulation of insulin secretion. Dmt1 knockout mice are protected against multiple low-dose streptozotocin and high-fat diet-induced glucose intolerance, models of type 1 and type 2 diabetes, respectively. Thus, β cells become prone to ROS-mediated inflammatory damage via aberrant cellular iron metabolism, a finding with potential general cellular implications.
Collapse
Affiliation(s)
- Jakob Bondo Hansen
- Center for Medical Research Methodology, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Chhoun JM, Voltzke KJ, Firpo MT. From cell culture to a cure: pancreatic β-cell replacement strategies for diabetes mellitus. Regen Med 2012; 7:685-95. [DOI: 10.2217/rme.12.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous advances have been made in pancreatic β-cell replacement therapies for diabetes mellitus. While these therapies provide a positive impact and possible cure for the individual recipient, access is limited by availability of donor tissues. The derivation of pluripotent stem cells using efficient differentiation technologies has resulted in the generation of insulin-producing cells with characteristics similar to islet β-cells. Experimental transplantation studies have shown that these cells are capable of reducing hyperglycemia in short-term assays. Novel methodologies that facilitate the neogenesis of β-cells from endogenous hepatic or pancreatic tissue sources are also being investigated as a β-cell replacement strategy. Further research is necessary to protect these transplanted or regenerated cells from diabetic autoimmune pathology.
Collapse
Affiliation(s)
- Jennifer M Chhoun
- University of Minnesota, Department of Medicine, 2001 6th Street SE, Minneapolis, MN 55455, USA
| | - Kristin J Voltzke
- University of Minnesota, Department of Medicine, 2001 6th Street SE, Minneapolis, MN 55455, USA
| | - Meri T Firpo
- University of Minnesota, Department of Medicine, 2001 6th Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
105
|
Fujisawa H, Zhang Z, Sun W, Huang M, Kobayashi J, Yasuda H, Kinoshita Y, Ando R, Tamura K. Histopathological changes in the pancreas from a spontaneous hyperglycemic cynomolgus monkey. J Toxicol Pathol 2012; 25:215-9. [PMID: 22988340 PMCID: PMC3434337 DOI: 10.1293/tox.25.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 04/06/2012] [Indexed: 11/29/2022] Open
Abstract
Morphological and immunohistochemical examinations were carried out on the pancreas of a hyperglycemic 5-year-old male cynomolgus monkey. Body weight gradually decreased from 6 months before termination, accompanying a slight reduction in food consumption and anorexia for the last 2 days. The blood glucose level was markedly elevated when examined at termination. Histopathologically, in the exocrine pancreas, diffuse hyperplasia of centroacinar and intercalated duct cells and diffuse atrophy of acinar cells with sporadic apoptosis were observed, although most centroacinar and intercalated duct cells were proliferating cell nuclear antigen (PCNA)-positive in both the present case and age-matched control animals. In the endocrine pancreas, the islets tended to be hypertrophic, with an increase in insulin-positive cells in comparison with the age-matched control animals. PCNA-positive cells also tended to increase in the islets, although positive cells for phospho-histone H3, a marker for mitotic cells, were not detected in the endocrine and exocrine pancreas. Moreover, neither inflammation nor amyloidosis was noted in the islets. In conclusion, the present case probably suffered from early-stage type 2 diabetes mellitus, and it provides fundamental information concerning pancreatic histopathology under insulin-related derangement in monkeys.
Collapse
Affiliation(s)
- Hideki Fujisawa
- Bozo Research Center Inc., 1284 Kamado, Gotemba-shi,
Shizuoka 412-0039, Japan
| | - Zean Zhang
- Center for Drug Safety Evaluation and Research, Shanghai
University of T.C.M., 1200 Cailun Road, Shanghai 201203, China
| | - Wei Sun
- Center for Drug Safety Evaluation and Research, Shanghai
University of T.C.M., 1200 Cailun Road, Shanghai 201203, China
| | - Mingshu Huang
- National Shanghai Center for New Drug Safety Evaluation and
Research, 199 Guoshoujing Road, Shanghai 201203, China
| | - Junichi Kobayashi
- Bozo Research Center Inc., 1284 Kamado, Gotemba-shi,
Shizuoka 412-0039, Japan
| | - Hitoshi Yasuda
- Bozo Research Center Inc., 1284 Kamado, Gotemba-shi,
Shizuoka 412-0039, Japan
| | - Yuichi Kinoshita
- Bozo Research Center Inc., 1284 Kamado, Gotemba-shi,
Shizuoka 412-0039, Japan
| | - Ryo Ando
- Bozo Research Center Inc., 1284 Kamado, Gotemba-shi,
Shizuoka 412-0039, Japan
| | - Kazutoshi Tamura
- Bozo Research Center Inc., 1284 Kamado, Gotemba-shi,
Shizuoka 412-0039, Japan
| |
Collapse
|
106
|
Asuelime GE, Shi Y. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine. J Mol Cell Biol 2012; 4:190-6. [PMID: 22371436 PMCID: PMC3408064 DOI: 10.1093/jmcb/mjs005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The field of regenerative medicine is rapidly gaining momentum as an increasing number of reports emerge concerning the induced conversions observed in cellular fate reprogramming. While in recent years, much attention has been focused on the conversion of fate-committed somatic cells to an embryonic-like or pluripotent state, there are still many limitations associated with the applications of induced pluripotent stem cell reprogramming, including relatively low reprogramming efficiency, the times required for the reprogramming event to take place, the epigenetic instability, and the tumorigenicity associated with the pluripotent state. On the other hand, lineage reprogramming involves the conversion from one mature cell type to another without undergoing conversion to an unstable intermediate. It provides an alternative approach in regenerative medicine that has a relatively lower risk of tumorigenesis and increased efficiency within specific cellular contexts. While lineage reprogramming provides exciting potential, there is still much to be assessed before this technology is ready to be applied in a clinical setting.
Collapse
Affiliation(s)
- Grace E. Asuelime
- Department of Neurosciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
- Department of Biological Sciences, California State Polytechnic University Pomona, 3801 West Temple Ave., Pomona, CA 91768, USA
| | - Yanhong Shi
- Department of Neurosciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
107
|
Lima MJ, Docherty HM, Chen Y, Docherty K. Efficient differentiation of AR42J cells towards insulin-producing cells using pancreatic transcription factors in combination with growth factors. Mol Cell Endocrinol 2012; 358:69-80. [PMID: 22429991 DOI: 10.1016/j.mce.2012.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/24/2012] [Accepted: 02/26/2012] [Indexed: 01/12/2023]
Abstract
The AR42J-B13 rat pancreatic acinar cell line was used to identify pancreatic transcription factors and exogenous growth factors (GFs) that might facilitate the reprogramming of exocrine cells into islets. Adenoviruses were used to induce exogenous expression of the pancreatic transcription factors (TFs) Pdx1, MafA, Ngn3 and Pax4. Individually Pdx1, MafA and Pax4 had no effect on the expression of endocrine markers, whilst adeno-Ngn3 on its own increased the expression of Pax4, Ngn3 and NeuroD. In combination the four TFs had a significant effect on the expression of insulin 1 and 2 that was associated with a change in cell morphology from a rounded to a spindle-like shape. Amongst a range of growth factors, Betacellulin and Nicotinamide were shown to enhance the effects of the four TFs. The presence of adeno-Pax4 in the differentiation cocktail was important in limiting the expression of glucagon and in generating glucose sensitive insulin secretion. Further experiments asked whether the adenoviral TFs could be replaced by protein transduction domain (PTD)-containing TFs. The results showed that the PTD-TFs could mimic in part the effects of the adeno-TFs, but the resultant cells did not undergo the important morphological change associated with differentiation to endocrine lineages and levels of endogenous markers were very much lower. In summary, the results describe a cocktail of four TFs and two GFs that can be used to induce formation of glucose sensitive insulin secreting cells from ARJ42 cells, and demonstrate that it would be difficult to replace adenoviral transduction with PTD-TFS.
Collapse
Affiliation(s)
- Maria João Lima
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | |
Collapse
|
108
|
Efrat S, Russ HA. Making β cells from adult tissues. Trends Endocrinol Metab 2012; 23:278-85. [PMID: 22537825 DOI: 10.1016/j.tem.2012.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/12/2012] [Accepted: 03/22/2012] [Indexed: 02/06/2023]
Abstract
β-Cell replacement represents an attractive prospect for diabetes therapy. Although much hope has been placed on derivation of insulin-producing cells from human pluripotent stem cells, this approach continues to face considerable challenges. Cells from adult human tissues, with both stem/progenitor and mature phenotypes, offer a possible alternative. This review summarizes recent progress in two major strategies based on this cell source, ex vivo expansion of human islet β cells and conversion of non-β cells into insulin-producing cells by nuclear reprogramming, and examines the obstacles that remain to be overcome for bringing these strategies closer to clinical application in diabetes therapy.
Collapse
Affiliation(s)
- Shimon Efrat
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel.
| | | |
Collapse
|
109
|
Kaucher AV, Oatley MJ, Oatley JM. NEUROG3 is a critical downstream effector for STAT3-regulated differentiation of mammalian stem and progenitor spermatogonia. Biol Reprod 2012; 86:164, 1-11. [PMID: 22378757 DOI: 10.1095/biolreprod.111.097386] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spermatogenesis relies on coordinated differentiation of stem and progenitor spermatogonia, and the transcription factor STAT3 is essential for this process in mammals. Here we studied the THY1+ spermatogonial population in mouse testes, which contains spermatogonial stem cells (SSC) and non-stem cell progenitor spermatogonia, to further define the downstream mechanism regulating differentiation. Transcript abundance for the bHLH transcription factor Neurog3 was found to be significantly reduced upon transient inhibition of STAT3 signaling in these cells and exposure to GDNF, a key growth factor regulating self-renewal of SSCs, suppressed activation of STAT3 and in accordance Neurog3 gene expression. Moreover, STAT3 was found to bind the distal Neurog3 promoter/enhancer region in THY1+ spermatogonia and regulate transcription. Transient inhibition of Neurog3 expression in cultures of proliferating THY1+ spermatogonia increased stem cell content after several self-renewal cycles without effecting overall proliferation of the cells, indicating impaired differentiation of SSCs to produce progenitor spermatogonia. Furthermore, cultured THY1+ spermatogonia with induced deficiency of Neurog3 were found to be incapable of differentiation in vivo following transplantation into testes of recipient mice. Collectively, these results establish a mechanism by which activation of STAT3 regulates the expression of NEUROG3 to subsequently drive differentiation of SSC and progenitor spermatogonia in the mammalian germline.
Collapse
Affiliation(s)
- Amy V Kaucher
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | | | | |
Collapse
|
110
|
Johnson CL, Peat JM, Volante SN, Wang R, McLean CA, Pin CL. Activation of protein kinase Cδ leads to increased pancreatic acinar cell dedifferentiation in the absence of MIST1. J Pathol 2012; 228:351-65. [PMID: 22374815 DOI: 10.1002/path.4015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/14/2012] [Accepted: 02/22/2012] [Indexed: 12/19/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a 5 year survival rate post-diagnosis of < 5%. Individuals with chronic pancreatitis (CP) are 20-fold more likely to develop PDAC, making it a significant risk factor for PDAC. While the relationship for the increased susceptibility to PDAC is unknown, loss of the acinar cell phenotype is common to both pathologies. Pancreatic acinar cells can dedifferentiate or trans-differentiate into a number of cell types including duct cells, β cells, hepatocytes and adipocytes. Knowledge of the molecular pathways that regulate this plasticity should provide insight into PDAC and CP. MIST1 (encoded by Bhlha15 in mice) is a transcription factor required for complete acinar cell maturation. The goal of this study was to examine the plasticity of acinar cells that do not express MIST1 (Mist1(-/-) ). The fate of acinar cells from C57Bl6 or congenic Mist1(-/-) mice expressing an acinar specific, tamoxifen-inducible Cre recombinase mated to Rosa26 reporter LacZ mice (Mist1(CreERT/-) R26r) was determined following culture in a three-dimensional collagen matrix. Mist1(CreERT/-) R26r acini showed increased acinar dedifferentiation, formation of ductal cysts and transient increases in PDX1 expression compared to wild-type acinar cells. Other progenitor cell markers, including Foxa1, Sox9, Sca1 and Hes1, were elevated only in Mist1(-/-) cultures. Analysis of protein kinase C (PKC) isoforms by western blot and immunofluorescence identified increased PKCε accumulation and nuclear localization of PKCδ that correlated with increased duct formation. Treatment with rottlerin, a PKCδ-specific inhibitor, but not the PKCε-specific antagonist εV1-2, reduced acinar dedifferentiation, progenitor gene expression and ductal cyst formation. Immunocytochemistry on CP or PDAC tissue samples showed reduced MIST1 expression combined with increased nuclear PKCδ accumulation. These results suggest that the loss of MIST1 is a common event during PDAC and CP and events that affect MIST1 function and expression may increase susceptibility to these pathologies.
Collapse
|
111
|
Zhang T, Saunee NA, Breslin MB, Song K, Lan MS. Functional role of an islet transcription factor, INSM1/IA-1, on pancreatic acinar cell trans-differentiation. J Cell Physiol 2012; 227:2470-9. [PMID: 21830214 DOI: 10.1002/jcp.22982] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, the functional role of INSM1 is examined with an AR42J acinar cell model for trans-differentiation into insulin-positive cells. Islet transcription factors (ITFs: INSM1, Pdx-1, and NeuroD1) are over-expressed in AR42J cells using adenoviral vectors. Addition of Ad-INSM1 alone or the combination of three ITFs to the AR42J cells triggers cellular trans-differentiation. Ectopic expression of INSM1 directly induces insulin, Pax6, and Nkx6.1 expression, whereas Pdx-1 and NeuroD1 were slightly suppressed by INSM1. Addition of Pdx-1 and NeuroD1 with INSM1 further enhances endocrine trans-differentiation by increasing both the numbers and intensity of the insulin-positive cells with simultaneous activation of ITFs, Ngn3 and MafA. INSM1 expression alone partially inhibits dexamethasone-induced exocrine amylase expression. The combination of the three ITFs completely inhibits amylase expression and concomitantly induces greater acinar cell trans-differentiation into endocrine cells. Also, addition of the three ITFs promotes EGF and TGFβ receptors expression. Stimulation by the three ITFs along with the EGF/TGFβ growth factors strongly promotes insulin gene expression. The combination of the three ITFs and EGF/TGFβ growth factors with the primary cultured pancreatic acini also facilitates exocrine to endocrine cell differentiation. Taken together, both the AR42J cell line and the primary cultured mouse acinar cells support INSM1 induced acini trans-differentiation model.
Collapse
Affiliation(s)
- Tao Zhang
- The Research Institute for Children, Children's Hospital, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
112
|
Mfopou JK, Baeyens L, Bouwens L. Hedgehog signals inhibit postnatal beta cell neogenesis from adult rat exocrine pancreas in vitro. Diabetologia 2012; 55:1024-34. [PMID: 22237687 DOI: 10.1007/s00125-011-2434-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
AIMS/HYPOTHESIS Transdifferentiation of pancreatic exocrine cells into insulin-producing beta cells may represent an important alternative to islets required for diabetes cell therapy. Rat pancreatic acinar cells are known to transdifferentiate into functional beta cells, with recapitulation of several pancreas developmental features. Considering the inhibitory functions of hedgehog signalling in early and mid-stage pancreatic development, we questioned whether it also operates in transdifferentiating acinar cells and whether its modulation would influence postnatal beta cell neogenesis in vitro. METHODS Rat exocrine cells were precultured in suspension for 4 days and then incubated with EGF and leukaemia inhibitory factor (LIF) for 72 h. The hedgehog signalling pathway was modulated during this, and its effects analysed by RT-PCR, immunocytochemistry and western blot. RESULTS Our data indicate induction of Dhh and Ihh, but not Shh, expression during acinar cell culture, resulting in activation of hedgehog targets (Ptc1, Gli1). Exposure of the metaplastic cells to EGF and LIF induced beta cell differentiation without affecting endogenous hedgehog activity. Whereas blocking endogenous hedgehog only slightly increased beta cell neogenesis, exposure to embryoid body-conditioned medium activated hedgehog signalling as well as other pathways such as Notch, resulting in severe blockade of beta cell neogenesis. Interestingly, this effect was partially rescued by treatment with the hedgehog inhibitor, 3-keto-N-(aminoethyl-aminocaproyl-dihydrocinnamoyl)-cyclopamine (KAAD-cyclopamine), alone. CONCLUSIONS/INTERPRETATION We report here Dhh/Ihh-dependent activation of hedgehog targets during pancreatic exocrine cell metaplasia in vitro and a persistent inhibitory function of hedgehog signalling in a model of postnatal beta cell differentiation.
Collapse
Affiliation(s)
- J K Mfopou
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan, Brussels, Belgium
| | | | | |
Collapse
|
113
|
Buishand FO, van Erp MG, Groenveld HA, Mol JA, Kik M, Robben JH, Kooistra HS, Kirpensteijn J. Expression of insulin-like growth factor-1 by canine insulinomas and their metastases. Vet J 2012; 191:334-40. [DOI: 10.1016/j.tvjl.2011.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/17/2010] [Accepted: 03/16/2011] [Indexed: 12/22/2022]
|
114
|
Chou FC, Huang SH, Sytwu HK. Genetically engineered islets and alternative sources of insulin-producing cells for treating autoimmune diabetes: quo vadis? Int J Endocrinol 2012; 2012:296485. [PMID: 22690214 PMCID: PMC3368364 DOI: 10.1155/2012/296485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 03/29/2012] [Indexed: 01/29/2023] Open
Abstract
Islet transplantation is a promising therapy for patients with type 1 diabetes that can provide moment-to-moment metabolic control of glucose and allow them to achieve insulin independence. However, two major problems need to be overcome: (1) detrimental immune responses, including inflammation induced by the islet isolation/transplantation procedure, recurrence autoimmunity, and allorejection, can cause graft loss and (2) inadequate numbers of organ donors. Several gene therapy approaches and pharmaceutical treatments have been demonstrated to prolong the survival of pancreatic islet grafts in animal models; however, the clinical applications need to be investigated further. In addition, for an alternative source of pancreatic β-cell replacement therapy, the ex vivo generation of insulin-secreting cells from diverse origins of stem/progenitor cells has become an attractive option in regenerative medicine. This paper focuses on the genetic manipulation of islets during transplantation therapy and summarizes current strategies to obtain functional insulin-secreting cells from stem/progenitor cells.
Collapse
Affiliation(s)
- Feng-Cheng Chou
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Neihu, Taipei 114, Taiwan
| | - Shing-Hwa Huang
- Department of General Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Neihu, Taipei 114, Taiwan
- *Huey-Kang Sytwu:
| |
Collapse
|
115
|
Houbracken I, Mathijs I, Bouwens L. Lineage tracing of pancreatic stem cells and beta cell regeneration. Methods Mol Biol 2012; 933:303-15. [PMID: 22893416 DOI: 10.1007/978-1-62703-068-7_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Restoring a functional β cell mass in diabetes patients by β cell transplantation or stimulation of β cell regeneration are promising approaches. It requires knowledge on the mechanisms of β cell neogenesis, an issue that is still quite controversial. Postnatal islet regeneration may or may not depend on an influx of new islet cells from adult progenitors. To solve this issue in animal models, genetic lineage tracing has become a crucial research method. This method allows to test the various hypotheses that have been proposed concerning β cell neogenesis and regeneration.
Collapse
|
116
|
Zhao M, Huang GC. Conversion of non-endocrine human pancreatic cells to insulin-producing cells for treatment of diabetes. Methods Mol Biol 2012; 806:73-85. [PMID: 22057446 DOI: 10.1007/978-1-61779-367-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Type I diabetes results from the autoimmune destruction of the insulin-secreting pancreatic β-cells, affecting many millions of people worldwide. The optimal treatment is to restore the endogenous supply of insulin either through the transplantation of pancreas or the transplantation of islets of langerhans or simply the β-cells. However, the donated pancreas organs are limited and the available organs are only able to treat a small portion of the diabetes patients. Thus, glucose-responsive, insulin-producing cells from human origin are urgently needed. The aim of this chapter is to give some insight views to how to turn the potential human pancreatic non-endocrine cells into cells that are capable of secreting insulin in response to glucose and ameliorating insulin-deficient diabetes conditions after transplantation.
Collapse
Affiliation(s)
- Min Zhao
- Department of Diabetes and Endocrinology, King's College London - School of Medicine, London, UK
| | | |
Collapse
|
117
|
Wang X, Metzger DL, Meloche M, Hao J, Ao Z, Warnock GL. Generation of transplantable Beta cells for patient-specific cell therapy. Int J Endocrinol 2012; 2012:414812. [PMID: 22611393 PMCID: PMC3350967 DOI: 10.1155/2012/414812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/24/2012] [Indexed: 01/09/2023] Open
Abstract
Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell) source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Surgery, University of British Columbia, 3100, 910 West 10th Avenue, Vancouver, BC, Canada V5Z 4E3
| | - Daniel L. Metzger
- Department of Pediatrics, University of British Columbia, 3100, 910 West 10th Avenue, Vancouver, BC, Canada V5Z 4E3
| | - Mark Meloche
- Department of Surgery, University of British Columbia, 3100, 910 West 10th Avenue, Vancouver, BC, Canada V5Z 4E3
| | - Jianqiang Hao
- Department of Surgery, University of British Columbia, 3100, 910 West 10th Avenue, Vancouver, BC, Canada V5Z 4E3
| | - Ziliang Ao
- Department of Surgery, University of British Columbia, 3100, 910 West 10th Avenue, Vancouver, BC, Canada V5Z 4E3
| | - Garth L. Warnock
- Department of Surgery, University of British Columbia, 3100, 910 West 10th Avenue, Vancouver, BC, Canada V5Z 4E3
- *Garth L. Warnock:
| |
Collapse
|
118
|
Gong Z, Muzumdar RH. Pancreatic function, type 2 diabetes, and metabolism in aging. Int J Endocrinol 2012; 2012:320482. [PMID: 22675349 PMCID: PMC3362843 DOI: 10.1155/2012/320482] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/15/2012] [Accepted: 03/02/2012] [Indexed: 12/21/2022] Open
Abstract
Aging is a risk factor for impaired glucose tolerance and diabetes. Of the reported 25.8 million Americans estimated to have diabetes, 26.9% are over the age of 65. In certain ethnic groups, the proportion is even higher; almost 1 in 3 older Hispanics and African Americans and 3 out of 4 Pima Indian elders have diabetes. As per the NHANES III (Third National Health and Nutrition Examination) survey, the percentage of physician-diagnosed diabetes increased from 3.9% in middle-aged adults (40-49 years) to 13.2% in elderly adults (≥75 years). The higher incidence of diabetes is especially alarming considering that diabetes in itself increases the risk for multiple other age-related diseases such as cancer, stroke, cardiovascular diseases, Parkinson's disease, and Alzheimer's disease (AD). In this review, we summarize the current evidence on how aging affects pancreatic β cell function, β cell mass, insulin secretion and insulin sensitivity. We also review the effects of aging on the relationship between insulin sensitivity and insulin secretion. Understanding the mechanisms that lead to impaired glucose homeostasis and T2D in the elderly will lead to development of novel treatments that will prevent or delay diabetes, substantially improve quality of life and ultimately increase overall life span.
Collapse
Affiliation(s)
- Zhenwei Gong
- Department of Pediatrics, Divisions of Endocrinology and Geriatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Radhika H. Muzumdar
- Department of Pediatrics, Divisions of Endocrinology and Geriatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Divisions of Endocrinology and Geriatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- *Radhika H. Muzumdar:
| |
Collapse
|
119
|
Durvasula K, Thulé PM, Sambanis A. Combinatorial insulin secretion dynamics of recombinant hepatic and enteroendocrine cells. Biotechnol Bioeng 2011; 109:1074-82. [PMID: 22094821 DOI: 10.1002/bit.24373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 10/31/2011] [Indexed: 12/29/2022]
Abstract
One of the most promising cell-based therapies for combating insulin-dependent diabetes entails the use of genetically engineered non-β cells that secrete insulin in response to physiologic stimuli. A normal pancreatic β cell secretes insulin in a biphasic manner in response to glucose. The first phase is characterized by a transient stimulation of insulin to rapidly lower the blood glucose levels, which is followed by a second phase of insulin secretion to sustain the lowered blood glucose levels over a longer period of time. Previous studies have demonstrated hepatic and enteroendocrine cells to be appropriate hosts for recombinant insulin expression. Due to different insulin secretion kinetics from these cells, we hypothesized that a combination of the two cell types would mimic the biphasic insulin secretion of normal β cells with higher fidelity than either cell type alone. In this study, insulin secretion experiments were conducted with two hepatic cell lines (HepG2 and H4IIE) transduced with 1 of 3 adenoviruses expressing the insulin transgene and with a stably transfected recombinant intestinal cell line (GLUTag-INS). Insulin secretion was stimulated by exposing the cells to glucose only (hepatic cells), meat hydrolysate only (GLUTag-INS), or to a cocktail of the two secretagogues. It was found experimentally that the recombinant hepatic cells secreted insulin in a more sustained manner, whereas the recombinant intestinal cell line exhibited rapid insulin secretion kinetics upon stimulation. The insulin secretion profiles were computationally combined at different cell ratios to arrive at the combinatorial kinetics. Results indicate that combinations of these two cell types allow for tuning the first and second phase of insulin secretion better than either cell type alone. This work provides the basic framework in understanding the secretion kinetics of the combined system and advances it towards preclinical studies.
Collapse
Affiliation(s)
- Kiranmai Durvasula
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | |
Collapse
|
120
|
Peng Q, Zhang ZR, Gong T, Chen GQ, Sun X. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles. Biomaterials 2011; 33:1583-8. [PMID: 22112760 DOI: 10.1016/j.biomaterials.2011.10.072] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/27/2011] [Indexed: 02/06/2023]
Abstract
The application of poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) for sustained and controlled delivery of hydrophilic insulin was made possible by preparing insulin phospholipid complex loaded biodegradable PHBHHx nanoparticles (INS-PLC-NPs). The INS-PLC-NPs produced by a solvent evaporation method showed a spherical shape with a mean particle size, zeta potential and entrapment efficiency of 186.2 nm, -38.4 mv and 89.73%, respectively. In vitro studies demonstrated that only 20% of insulin was released within 31 days with a burst release of 5.42% in the first 8 h. The hypoglycaemic effect in STZ induced diabetic rats lasted for more than 3 days after the subcutaneous injection of INS-PLC-NPs, which significantly prolonged the therapeutic effect compared with the administration of insulin solution. The pharmacological bioavailability (PA) of INS-PLC-NPs relative to insulin solution was over 350%, indicating that the bioavailability of insulin was significantly enhanced by INS-PLC-NPs. Therefore, the INS-PLC-NPs system is promising to serve as a long lasting insulin release formulation, by which the patient compliance can be enhanced significantly. This study also showed that phospholipid complex loaded biodegradable nanoparticles (PLC-NPs) have a great potential to be used as a sustained delivery system for hydrophilic proteins to be encapsulated in hydrophobic polymers.
Collapse
Affiliation(s)
- Qiang Peng
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, PR China
| | | | | | | | | |
Collapse
|
121
|
Venkatesan V, Gopurappilly R, Goteti SK, Dorisetty RK, Bhonde RR. Pancreatic progenitors: The shortest route to restore islet cell mass. Islets 2011; 3:295-301. [PMID: 21934353 DOI: 10.4161/isl.3.6.17704] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The regenerative process of the pancreas is of interest because the main pathogenesis of diabetes mellitus is an inadequate number of insulin-producing β-cells. The functional mass of β-cells is decreased in most forms of diabetes, so replacing missing β-cells or triggering their regeneration may allow for improved diabetes treatment. Therefore, expansion of the β-cell mass from endogenous sources, either in vivo or in vitro, represents an area of increasing interest. The mechanism of islet regeneration remains poorly understood, but the identification of islet progenitor sources is critical for understanding β-cell regeneration. One potential source is the islet proper, via the de-differentiation, proliferation and redifferentiation of facultative progenitors residing within the islet. The new pancreatic islets derived from progenitor cells present within the ducts have been reported, but the existence and identity of the progenitor cells have been debated. In this mini-review, we focus primarily on pancreatic progenitors, which are islet progenitors capable of differentiating into insulin producing cells. We also emphasize the importance of pancreatic progenitors as a target for stem cell therapy for diabetes.
Collapse
Affiliation(s)
- Vijayalakshmi Venkatesan
- Department of Biochemistry/Stem Cell Research, National Institute of Nutrition, Hyderabad, India.
| | | | | | | | | |
Collapse
|
122
|
β-Cell Generation: Can Rodent Studies Be Translated to Humans? J Transplant 2011; 2011:892453. [PMID: 22007286 PMCID: PMC3189575 DOI: 10.1155/2011/892453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/31/2011] [Accepted: 07/31/2011] [Indexed: 12/26/2022] Open
Abstract
β-cell replacement by allogeneic islet transplantation is a promising approach for patients with type 1 diabetes, but the shortage of organ donors requires new sources of β cells. Islet regeneration in vivo and generation of β-cells ex vivo followed by transplantation represent attractive therapeutic alternatives to restore the β-cell mass. In this paper, we discuss different postnatal cell types that have been envisaged as potential sources for future β-cell replacement therapy. The ultimate goal being translation to the clinic, a particular attention is given to the discrepancies between findings from studies performed in rodents (both ex vivo on primary cells and in vivo on animal models), when compared with clinical data and studies performed on human cells.
Collapse
|
123
|
Nakamura K, Minami K, Tamura K, Iemoto K, Miki T, Seino S. Pancreatic β-cells are generated by neogenesis from non-β-cells after birth. ACTA ACUST UNITED AC 2011; 32:167-74. [PMID: 21551953 DOI: 10.2220/biomedres.32.167] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mass of pancreatic β-cells is maintained throughout lifetime to control blood glucose levels. Although the major mechanism of the maintenance of β-cell mass after birth is thought to be selfreplication of pre-existing β-cells, it is possible that pancreatic β-cells are also generated from non-β-cells. Here, we address this issue by using the inducible Cre/loxP system to trace β-cells. We generated Ins2-CreERT2/R26R-YFP double knock-in mice, in which pancreatic β-cells can be labeled specifically and permanently upon injection of the synthetic estrogen analog tamoxifien, and then traced the β-cells by pulse and chase experiment in several different conditions. When β-cells were labeled in adults under physiological and untreated conditions, the frequency of the labeling (labeling index) was not altered significantly throughout the 12-month experimental period. In addition, the labeling index was not changed after ablation of β-cells by streptozotocin treatment. However, when tamoxifen was injected to pregnant mothers just before they gave birth, the labeling index in the neonates was decreased significantly around weaning, suggesting that β-cells are generated from non-β-cells. These results indicate that various mechanisms are involved in the maintenance of β-cells after birth, and that the present system using knock-in mice is useful for investigation of β-cell fate.
Collapse
Affiliation(s)
- Korefumi Nakamura
- Division of Cellular and Molecular Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
124
|
Houbracken I, de Waele E, Lardon J, Ling Z, Heimberg H, Rooman I, Bouwens L. Lineage tracing evidence for transdifferentiation of acinar to duct cells and plasticity of human pancreas. Gastroenterology 2011; 141:731-41, 741.e1-4. [PMID: 21703267 DOI: 10.1053/j.gastro.2011.04.050] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 04/06/2011] [Accepted: 04/15/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Animal studies have indicated that pancreatic exocrine acinar cells have phenotypic plasticity. In rodents, acinar cells can differentiate into ductal precursors that can be converted to pancreatic ductal adenocarcinoma or insulin-producing endocrine cells. However, little is known about human acinar cell plasticity. We developed nongenetic and genetic lineage tracing methods to study the fate of human acinar cells in culture. METHODS Human exocrine tissue was obtained from organ donors, dissociated, and cultured. Cell proliferation and survival were measured, and cell phenotypes were analyzed by immunocytochemistry. Nongenetic tracing methods were developed based on selective binding and uptake by acinar cells of a labeled lectin (Ulex europaeus agglutinin 1). Genetic tracing methods were developed based on adenoviral introduction of a Cre-lox reporter system, controlled by the amylase promoter. RESULTS Both tracing methods showed that human acinar cells can transdifferentiate into cells that express specific ductal markers, such as cytokeratin 19, hepatocyte nuclear factor 1β, SOX9, CD133, carbonic anhydrase II, and cystic fibrosis transmembrane conductance regulator. Within 1 week of culture, all surviving acinar cells had acquired a ductal phenotype. This transdifferentiation was decreased by inhibiting mitogen-activated protein kinase signaling. CONCLUSIONS Human acinar cells have plasticity similar to that described in rodent cells. These results might be used to develop therapeutic strategies for patients with diabetes or pancreatic cancer.
Collapse
Affiliation(s)
- Isabelle Houbracken
- Cell Differentiation Laboratory, Diabetes Research Center, Free University of Brussels, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
125
|
Insulin-producing cells from human pancreatic islet-derived progenitor cells following transplantation in mice. Cell Biol Int 2011; 35:483-90. [PMID: 21080910 DOI: 10.1042/cbi20100152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Stem/progenitor cells hold promise for alleviating/curing type 1 diabetes due to the capacity to differentiate into functional insulin-producing cells. The current study aims to assess the differentiation potential of human pancreatic IPCs (islet-derived progenitor cells). IPCs were derived from four human donors and subjected to more than 2000-fold expansion before turning into ICCs (islet-like cell clusters). The ICCs expressed ISL-1 Glut2, PDX-1, ngn3, insulin, glucagon and somatostatin at the mRNA level and stained positive for insulin and glucagon by immunofluorescence. Following glucose challenge in vitro, C-peptide was detected in the sonicated ICCs, instead of in the conditioned medium. To examine the function of the cells in vivo, IPCs or ICCs were transplanted under the renal capsule of immunodeficient mice. One month later, 19 of 28 mice transplanted with ICCs and 4 of 14 mice with IPCs produced human C-peptide detectable in blood, indicating that the in vivo environment further facilitated the maturation of ICCs. However, among the hormone-positive mice, only 9 of 19 mice with ICCs and two of four mice with IPCs were able to secrete C-peptide in response to glucose.
Collapse
|
126
|
Wong RSY. Extrinsic factors involved in the differentiation of stem cells into insulin-producing cells: an overview. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:406182. [PMID: 21747828 PMCID: PMC3124109 DOI: 10.1155/2011/406182] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/28/2011] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus is a chronic disease with many debilitating complications. Treatment of diabetes mellitus mainly revolves around conventional oral hypoglycaemic agents and insulin replacement therapy. Recently, scientists have turned their attention to the generation of insulin-producing cells (IPCs) from stem cells of various sources. To date, many types of stem cells of human and animal origins have been successfully turned into IPCs in vitro and have been shown to exert glucose-lowering effect in vivo. However, scientists are still faced with the challenge of producing a sufficient number of IPCs that can in turn produce sufficient insulin for clinical use. A careful choice of stem cells, methods, and extrinsic factors for induction may all be contributing factors to successful production of functional beta-islet like IPCs. It is also important that the mechanism of differentiation and mechanism by which IPCs correct hyperglycaemia are carefully studied before they are used in human subjects.
Collapse
Affiliation(s)
- Rebecca S Y Wong
- Division of Human Biology, School of Medical and Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| |
Collapse
|
127
|
Gefen-Halevi S, Rachmut IH, Molakandov K, Berneman D, Mor E, Meivar-Levy I, Ferber S. NKX6.1 promotes PDX-1-induced liver to pancreatic β-cells reprogramming. Cell Reprogram 2011; 12:655-64. [PMID: 21108535 DOI: 10.1089/cell.2010.0030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Reprogramming adult mammalian cells is an attractive approach for generating cell-based therapies for degenerative diseases, such as diabetes. Adult human liver cells exhibit a high level of developmental plasticity and have been suggested as a potential source of pancreatic progenitor tissue. An instructive role for dominant pancreatic transcription factors in altering the hepatic developmental fate along the pancreatic lineage and function has been demonstrated. Here we analyze whether transcription factors expressed in mature pancreatic β-cells preferentially activate β-cell lineage differentiation in liver. NKX6.1 is a transcription factor uniquely expressed in β-cells of the adult pancreas, its potential role in reprogramming liver cells to pancreatic lineages has never been analyzed. Our results suggest that NKX6.1 activates immature pancreatic markers such as NGN-3 and ISL-1 but not pancreatic hormones gene expression in human liver cells. We hypothesized that its restricted capacity to activate a wide pancreatic repertoire in liver could be related to its incapacity to activate endogenous PDX-1 expression in liver cells. Indeed, the complementation of NKX6.1 by ectopic PDX-1 expression substantially and specifically promoted insulin expression and glucose regulated processed hormone secretion to a higher extent than that of PDX-1 alone, without increasing the reprogrammed cells. This may suggest a potential role for NKX6.1 in promoting PDX-1 reprogrammed cells maturation along the β-cell-like lineage. By contrast, NKX6.1 repressed PDX-1 induced proglucagon gene expression. The individual and concerted effects of pancreatic transcription factors in adult extra-pancreatic cells, is expected to facilitate developing regenerative medicine approaches for cell replacement therapy in diabetics.
Collapse
Affiliation(s)
- Shiraz Gefen-Halevi
- Sheba Regenerative Medicine, Stem cells and Tissue engineering Center , Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
128
|
Seeberger KL, Eshpeter A, Korbutt GS. Isolation and culture of human multipotent stromal cells from the pancreas. Methods Mol Biol 2011; 698:123-140. [PMID: 21431515 DOI: 10.1007/978-1-60761-999-4_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mesenchymal stem cells, also termed multipotent mesenchymal stromal cells (MSCs), can be isolated from most adult tissues. Although the exact origin of MSCs expanded from the human pancreas has not been resolved, we have developed protocols to isolate and expand MSCs from human pancreatic tissue that remains after islet procurement. Similar to techniques used to isolate MSCs from bone marrow, pancreatic MSCs are isolated based on their cell adherence, expression of several cell surface antigens, and multilineage differentiation. The protocols for isolating, characterizing, and differentiating MSCs from the pancreas are presented in this chapter.
Collapse
Affiliation(s)
- Karen L Seeberger
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
129
|
Wen Y, Chen B, Ildstad ST. Stem cell-based strategies for the treatment of type 1 diabetes mellitus. Expert Opin Biol Ther 2010; 11:41-53. [PMID: 21110785 DOI: 10.1517/14712598.2011.540235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE OF THE FIELD β-Cell regeneration and β-cell preservation are two promising therapeutic approaches for the management of patients with type 1 diabetes (T1D). Stem cell-based strategies to address the problems of shortage in β cells, autoimmune and alloimmune responses have become an area of intense study. AREAS COVERED IN THIS REVIEW This review focuses on the progress that has been made in obtaining functional, insulin-producing cells from various types of stem/progenitor cells, including the current knowledge on the immunomodulatory roles of hematopoietic stem cell and multipotent stromal cell in the therapies for T1D. WHAT THE READER WILL GAIN A broad overview of recent advancements in this field is provided. The hurdles that remain in the path of using stem cell-based strategies for the treatment of T1D and possible approaches to overcome these challenges are discussed. TAKE HOME MESSAGE Stem cell-based strategies hold great promise for the treatment of T1D. In spite of the progress that has been made over the last decade, a number of obstacles and concerns need to be cleared before widespread clinical application is possible. In particular, the mechanism of ESC and iPSC-derived β-cell maturation in vivo is poorly understood.
Collapse
Affiliation(s)
- Yujie Wen
- University of Louisville, Institute for Cellular Therapeutics, Louisville, KY 40202-1760, USA
| | | | | |
Collapse
|
130
|
Stem Cells and Their Derivatives: A Renaissance in Cardiovascular Translational Research. J Cardiovasc Transl Res 2010; 4:66-72. [DOI: 10.1007/s12265-010-9235-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/26/2010] [Indexed: 12/29/2022]
|
131
|
Different effects of islet transplantation and Detemir treatment on the reversal of streptozotocin-induced diabetes associated with β-cell regeneration. Diabetol Int 2010. [DOI: 10.1007/s13340-010-0005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
132
|
Li G, Huang LS, Jiang MH, Wu HL, Chen J, Huang Y, Shen Y, He-Xi-Ge S, Fan WW, Lu ZQ, Lu DR. Implantation of bFGF-treated islet progenitor cells ameliorates streptozotocin-induced diabetes in rats. Acta Pharmacol Sin 2010; 31:1454-63. [PMID: 20953209 DOI: 10.1038/aps.2010.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIM To examine whether implantation of islet preparation-derived proliferating islet cells (PIC) could ameliorate diabetes in rats. METHODS PIC were expanded from rat islet preparation by supplementation of basic fibroblast growth factor (bFGF) and implanted into rats with streptozotocin (STZ)-induced diabetes through the portal vein. Body weight and blood glucose levels were measured. Serum insulin levels were measured by radioimmunoassay. The presence of insulin-positive cells was determined by hematoxylin and immunohistochemical staining. RESULTS Cultured islet cells (CIC) were demonstrated to dedifferentiate in vitro, and the apoptosis ratios reached more than 50% by the 15th day post-isolation. PIC cells treated with bFGF (20 ng/mL) continued growing within 30 days after isolation, and no apoptotic cells were detected. Implantation of PIC into diabetic rats was capable of ameliorating diabetes, in terms of the restoration of euglycemia, weight gain, improved glucose response and elevated serum insulin levels for up to 130 days. Livers derived from PIC-implanted rats were examined for insulin expression and single insulin-positive cells. In addition, most islets of PIC-implanted STZ-induced diabetic rats were intact at 130 days post-transplantation and comparable to those of normal rats. CONCLUSION Implantation of bFGF-treated proliferating islet cells is a promising cellular therapeutic approach for diabetes.
Collapse
|
133
|
Chintinne M, Stangé G, Denys B, In 't Veld P, Hellemans K, Pipeleers-Marichal M, Ling Z, Pipeleers D. Contribution of postnatally formed small beta cell aggregates to functional beta cell mass in adult rat pancreas. Diabetologia 2010; 53:2380-8. [PMID: 20645074 DOI: 10.1007/s00125-010-1851-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 06/24/2010] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Neogenesis of beta cells and their clustering to small aggregates is a key process in prenatal development of beta cell mass. We investigated the contribution of postnatally formed small aggregates to functional beta cell mass in adult rats. METHODS Conditions were defined for (1) counting total beta cell number in pancreases with relative error of <10% and (2) determining their distribution over aggregates of different size and over functionally different subpopulations. RESULTS Pancreases of 10-week-old male Wistar rats contained 2.8 ± 0.2 × 10⁶ beta cells, of which >90% was generated postnatally, involving: (1) neo-formation of 30,000 aggregates with diameter <50 μm including single cells; and (2) growth of 5,500 aggregates to larger sizes, accounting for 90% of the increase in cell number, with number of growing aggregates in the tail 50% greater than elsewhere. At 10 weeks, 86% of aggregates were <50 μm; compared with aggregates >200 μm, their beta cells exhibited a higher basal insulin content that was also resistant to glibenclamide-induced degranulation. The pool of Ki67-positive beta cells was sixfold larger than at birth and distributed over all aggregate sizes. CONCLUSIONS/INTERPRETATION We describe a method for in situ counting of beta cell numbers and subpopulations with low relative error. In adult rats, >90% of beta cells and beta cell aggregates are formed after birth. Aggregates <50 μm are more than 100-fold more abundant than aggregates >200 μm, which are selected for isolated islet studies. Their topographic and functional properties contribute to the functional heterogeneity of the beta cell population; their growth to larger aggregates with characteristic beta cell functions may serve future metabolic needs.
Collapse
Affiliation(s)
- M Chintinne
- Diabetes Research Center, Brussels Free University-VUB, Laarbeeklaan 103, 1090, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Wagner RT, Lewis J, Cooney A, Chan L. Stem cell approaches for the treatment of type 1 diabetes mellitus. Transl Res 2010; 156:169-79. [PMID: 20801414 PMCID: PMC2935591 DOI: 10.1016/j.trsl.2010.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/10/2010] [Accepted: 06/15/2010] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes is characterized by near total absence of pancreatic b cells. Current treatments consisting of insulin injections and islet transplantation are clinically unsatisfactory. In order to develop a cure for type 1 diabetes, we must find a way to reverse autoimmunity, which underlies b cell destruction, as well as an effective strategy to generate new b cells. This article reviews the different approaches that are being taken to produce new b cells. Much emphasis has been placed on selecting the right non-b cell population, either in vivo or in vitro, as the starting material. Different cell types, including adult stem cells, other types of progenitor cells in situ, and even differentiated cell populations, as well as embryonic stem cells and induced pluripotent stem cells, will require different methods for islet and b cell induction. We discussed the pros and cons of the different strategies that are being used to re-invent the pancreatic b cell.
Collapse
Affiliation(s)
- Ryan T Wagner
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
135
|
Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010; 142:375-86. [PMID: 20691899 DOI: 10.1016/j.cell.2010.07.002] [Citation(s) in RCA: 1808] [Impact Index Per Article: 129.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/18/2010] [Accepted: 06/25/2010] [Indexed: 12/12/2022]
Abstract
The reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs) raises the possibility that a somatic cell could be reprogrammed to an alternative differentiated fate without first becoming a stem/progenitor cell. A large pool of fibroblasts exists in the postnatal heart, yet no single "master regulator" of direct cardiac reprogramming has been identified. Here, we report that a combination of three developmental transcription factors (i.e., Gata4, Mef2c, and Tbx5) rapidly and efficiently reprogrammed postnatal cardiac or dermal fibroblasts directly into differentiated cardiomyocyte-like cells. Induced cardiomyocytes expressed cardiac-specific markers, had a global gene expression profile similar to cardiomyocytes, and contracted spontaneously. Fibroblasts transplanted into mouse hearts one day after transduction of the three factors also differentiated into cardiomyocyte-like cells. We believe these findings demonstrate that functional cardiomyocytes can be directly reprogrammed from differentiated somatic cells by defined factors. Reprogramming of endogenous or explanted fibroblasts might provide a source of cardiomyocytes for regenerative approaches.
Collapse
Affiliation(s)
- Masaki Ieda
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
Patients with type 1 diabetes, and most patients with type 2 diabetes, have associated hyperglycemia due to the absence or reduction of insulin production by pancreatic β-cells. Surgical resection of the pancreas may also cause insulin-dependent diabetes depending on the size of the remaining pancreas. Insulin therapy has greatly improved the quality of life of diabetic patients, but this method is inaccurate and requires lifelong treatment that only mitigates the symptoms. The successes achieved over the last few decades by the transplantation of whole pancreas and isolated islets suggest that diabetes can be cured by the replenishment of deficient β-cells. These observations are proof-of-principle and have intensified interest in treating diabetes by cell transplantation, and by the use of stem cells. Pancreatic stem/progenitor cells could be one of the sources for the treatment of diabetes. Islet neogenesis, the budding of new islets from pancreatic stem/progenitor cells located in or near pancreatic ducts, has long been assumed to be an active process in the postnatal pancreas. Several in vitro studies have shown that insulin-producing cells can be generated from adult pancreatic ductal tissues. Acinar cells may also be a potential source for differentiation into insulin-producing cells. This review describes recent progress on pancreatic stem/progenitor cell research for the treatment of diabetes.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Regenerative Research Islet Transplant Program, Baylor Research Institute, 1400 8th Avenue, Fort Worth, TX 76104, USA.
| |
Collapse
|
137
|
Liew CG. Generation of insulin-producing cells from pluripotent stem cells: from the selection of cell sources to the optimization of protocols. Rev Diabet Stud 2010; 7:82-92. [PMID: 21060967 DOI: 10.1900/rds.2010.7.82] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The pancreas arises from Pdx1-expressing progenitors in developing foregut endoderm in early embryo. Expression of Ngn3 and NeuroD1 commits the cells to form endocrine pancreas, and to differentiate into subsets of cells that constitute islets of Langerhans. β-cells in the islets transcribe gene-encoding insulin, and subsequently process and secrete insulin, in response to circulating glucose. Dysfunction of β-cells has profound metabolic consequences leading to hyperglycemia and diabetes mellitus. β-cells are destroyed via autoimmune reaction in type 1 diabetes (T1D). Type 2 diabetes (T2D), characterized by impaired β-cell functions and reduced insulin sensitivity, accounts for 90% of all diabetic patients. Islet transplantation is a promising treatment for T1D. Pluripotent stem cells provide an unlimited cell source to generate new β-cells for patients with T1D. Furthermore, derivation of induced pluripotent stem cells (iPSCs) from patients captures "disease-in-a-dish" for autologous cell replacement therapy, disease modeling, and drug screening for both types of diabetes. This review highlights essential steps in pancreas development, and potential stem cell applications in cell regeneration therapy for diabetes mellitus.
Collapse
Affiliation(s)
- Chee-Gee Liew
- UCR Stem Cell Center, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
138
|
Houbracken I, Bouwens L. The quest for tissue stem cells in the pancreas and other organs, and their application in beta-cell replacement. Rev Diabet Stud 2010; 7:112-23. [PMID: 21060970 PMCID: PMC2989784 DOI: 10.1900/rds.2010.7.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 07/07/2010] [Accepted: 07/10/2010] [Indexed: 02/06/2023] Open
Abstract
Adult stem cell research has drawn a lot of attention by many researchers, due to its medical hope of cell replacement or regenerative therapy for diabetes patients. Despite the many research efforts to date, there is no consensus on the existence of stem cells in adult pancreas. Genetic lineage tracing experiments have put into serious doubt whether β-cell neogenesis from stem/progenitor cells takes place postnatally. Different in vitro experiments have suggested centroacinar, ductal, acinar, stellate, or yet unidentified clonigenic cells as candidate β-cell progenitors. As in the rest of the adult stem cell field, sound and promising observations have been made. However, these observations still need to be replicated. As an alternative to committed stem/progenitor cells in the pancreas, transdifferentiation or lineage reprogramming of exocrine acinar and endocrine α-cells may be used to generate new β-cells. At present, it is unclear which approach is most medically promising. This article highlights the progress being made in knowledge about tissue stem cells, their existence and availability for therapy in diabetes. Particular attention is given to the assessment of methods to verify the existence of tissue stem cells.
Collapse
Affiliation(s)
| | - Luc Bouwens
- Cell Differentiation Lab, Diabetes Research Center, Vrije Universiteit Brussel (Free University of Brussels), Laarbeeklaan 103, 1090 - Brussels, Belgium
| |
Collapse
|
139
|
Collombat P, Xu X, Heimberg H, Mansouri A. Pancreatic beta-cells: from generation to regeneration. Semin Cell Dev Biol 2010; 21:838-44. [PMID: 20688184 DOI: 10.1016/j.semcdb.2010.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 07/25/2010] [Indexed: 12/28/2022]
Abstract
The pancreas is composed of two main compartments consisting of endocrine and exocrine tissues. The majority of the organ is exocrine and responsible for the synthesis of digestive enzymes and for their transport via an intricate ductal system into the duodenum. The endocrine tissue represents less than 2% of the organ and is organized into functional units called islets of Langerhans, comprising alpha-, beta-, delta-, epsilon- and PP-cells, producing the hormones glucagon, insulin, somatostatin, ghrelin and pancreatic polypeptide (PP), respectively. Insulin-producing beta-cells play a central role in the control of the glucose homeostasis. Accordingly, absolute or relative deficiency in beta-cells may ultimately lead to type 1 and/or type 2 diabetes, respectively. One major goal of diabetes research is therefore to understand the molecular mechanisms controlling the development of beta-cells during pancreas morphogenesis, but also those underlying the regeneration of adult injured pancreas, and assess their significance for future cell-based therapy. In this review, we will therefore present new insights into beta-cell development with focus on beta-cell regeneration.
Collapse
|
140
|
Blaine SA, Ray KC, Anunobi R, Gannon MA, Washington MK, Means AL. Adult pancreatic acinar cells give rise to ducts but not endocrine cells in response to growth factor signaling. Development 2010; 137:2289-96. [PMID: 20534672 PMCID: PMC2889602 DOI: 10.1242/dev.048421] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2010] [Indexed: 12/26/2022]
Abstract
Studies in both humans and rodents have found that insulin(+) cells appear within or near ducts of the adult pancreas, particularly following damage or disease, suggesting that these insulin(+) cells arise de novo from ductal epithelium. We have found that insulin(+) cells are continuous with duct cells in the epithelium that makes up the hyperplastic ducts of both chronic pancreatitis and pancreatic cancer in humans. Therefore, we tested the hypothesis that both hyperplastic ductal cells and their associated insulin(+) cells arise from the same cell of origin. Using a mouse model that develops insulin(+) cell-containing hyperplastic ducts in response to the growth factor TGFalpha, we performed genetic lineage tracing experiments to determine which cells gave rise to both hyperplastic ductal cells and duct-associated insulin(+) cells. We found that hyperplastic ductal cells arose largely from acinar cells that changed their cell fate, or transdifferentiated, into ductal cells. However, insulin(+) cells adjacent to acinar-derived ductal cells arose from pre-existing insulin(+) cells, suggesting that islet endocrine cells can intercalate into hyperplastic ducts as they develop. We conclude that apparent pancreatic plasticity can result both from the ability of acinar cells to change fate and of endocrine cells to reorganize in association with duct structures.
Collapse
Affiliation(s)
- Stacy A. Blaine
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-0443, USA
| | - Kevin C. Ray
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-0443, USA
| | - Reginald Anunobi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-0443, USA
| | - Maureen A. Gannon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-0443, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-0443, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232-0443, USA
| | - Mary K. Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-0443, USA
| | - Anna L. Means
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-0443, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-0443, USA
| |
Collapse
|
141
|
Fanjul M, Gmyr V, Sengenès C, Ratovo G, Dufresne M, Lefebvre B, Kerr-Conte J, Hollande E. Evidence for epithelial-mesenchymal transition in adult human pancreatic exocrine cells. J Histochem Cytochem 2010; 58:807-23. [PMID: 20530463 DOI: 10.1369/jhc.2010.955807] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It has been shown that adult pancreatic ductal cells can dedifferentiate and act as pancreatic progenitors. Dedifferentiation of epithelial cells is often associated with the epithelial-mesenchymal transition (EMT). In this study, we investigated the occurrence of EMT in adult human exocrine pancreatic cells both in vitro and in vivo. Cells of exocrine fraction isolated from the pancreas of brain-dead donors were first cultured in suspension for eight days. This led to the formation of spheroids, composed of a principal population of cells with duct-like phenotype. When cultivated in tissue culture-treated flasks, spheroid cells exhibited a proliferative capacity and coexpressed epithelial (cytokeratin7 and cytokeratin19) and mesenchymal (vimentin and alpha-smooth muscle actin) markers as well as marker of progenitor pancreatic cells (pancreatic duodenal homeobox factor-1) and surface markers of mesenchymal stem cells. The switch from E-cadherin to N-cadherin associated with Snail1 expression suggested that these cells underwent EMT. In addition, we showed coexpression of epithelial and mesenchymal markers in ductal cells of one normal adult pancreas and three type 2 diabetic pancreases. Some of the vimentin-positive cells were found to coexpress glucagon or amylase. These results point to the occurrence of EMT, which may take place on dedifferentiation of ductal cells during the regeneration or renewal of human pancreatic tissues.
Collapse
Affiliation(s)
- Marjorie Fanjul
- Institut National de la Santé et de la Recherche Médicale U858, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
142
|
van Arensbergen J, García-Hurtado J, Moran I, Maestro MA, Xu X, Van de Casteele M, Skoudy AL, Palassini M, Heimberg H, Ferrer J. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Res 2010; 20:722-32. [PMID: 20395405 DOI: 10.1101/gr.101709.109] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The epigenome changes that underlie cellular differentiation in developing organisms are poorly understood. To gain insights into how pancreatic beta-cells are programmed, we profiled key histone methylations and transcripts in embryonic stem cells, multipotent progenitors of the nascent embryonic pancreas, purified beta-cells, and 10 differentiated tissues. We report that despite their endodermal origin, beta-cells show a transcriptional and active chromatin signature that is most similar to ectoderm-derived neural tissues. In contrast, the beta-cell signature of trimethylated H3K27, a mark of Polycomb-mediated repression, clusters with pancreatic progenitors, acinar cells and liver, consistent with the epigenetic transmission of this mark from endoderm progenitors to their differentiated cellular progeny. We also identified two H3K27 methylation events that arise in the beta-cell lineage after the pancreatic progenitor stage. One is a wave of cell-selective de novo H3K27 trimethylation in non-CpG island genes. Another is the loss of bivalent and H3K27me3-repressed chromatin in a core program of neural developmental regulators that enables a convergence of the gene activity state of beta-cells with that of neural cells. These findings reveal a dynamic regulation of Polycomb repression programs that shape the identity of differentiated beta-cells.
Collapse
Affiliation(s)
- Joris van Arensbergen
- Genomic Programming of Beta Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010; 464:1149-54. [PMID: 20364121 PMCID: PMC2877635 DOI: 10.1038/nature08894] [Citation(s) in RCA: 854] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 02/10/2010] [Indexed: 12/11/2022]
Abstract
Pancreatic insulin-producing β-cells have a long lifespan, such that in healthy conditions they replicate little during a lifetime. Nevertheless, they show increased self-duplication upon increased metabolic demand or after injury (i.e. β-cell loss). It is unknown if adult mammals can differentiate (regenerate) new β-cells after extreme, total β-cell loss, as in diabetes. This would imply differentiation from precursors or other heterologous (non β-cell) source. Here we show β-cell regeneration in a transgenic model of diphtheria toxin (DT)-induced acute selective near-total β-cell ablation. If given insulin, the mice survived and displayed β-cell mass augmentation with time. Lineage-tracing to label the glucagon-producing α-cells before β-cell ablation tracked large fractions of regenerated β-cells as deriving from α-cells, revealing a previously disregarded degree of pancreatic cell plasticity. Such inter-endocrine spontaneous adult cell conversion could be harnessed towards methods of producing β-cells for diabetes therapies, either in differentiation settings in vitro or in induced regeneration.
Collapse
Affiliation(s)
- Fabrizio Thorel
- Department of Cell Physiology & Metabolism, University of Geneva Faculty of Medicine, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
144
|
Yechoor V, Chan L. Minireview: beta-cell replacement therapy for diabetes in the 21st century: manipulation of cell fate by directed differentiation. Mol Endocrinol 2010; 24:1501-11. [PMID: 20219891 DOI: 10.1210/me.2009-0311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic beta-cell failure underlies type 1 diabetes; it also contributes in an essential way to type 2 diabetes. beta-Cell replacement is an important component of any cure for diabetes. The current options of islet and pancreas transplantation are not satisfactory as definitive forms of therapy. Here, we review strategies for induced de novo pancreatic beta-cell formation, which depend on the targeted differentiation of cells into pancreatic beta-cells. With this objective in mind, one can manipulate the fate of three different types of cells: 1) from terminally differentiated cells, e.g. exocrine pancreatic cells, into beta-cells; 2) from multipotent adult stem cells, e.g. hepatic oval cells, into pancreatic islets; and 3) from pluripotent stem cells, e.g. embryonic stem cells and induced pluripotent stem cells, into beta-cells. We will examine the pros and cons of each strategy as well as the hurdles that must be overcome before these approaches to generate new beta-cells will be ready for clinical application.
Collapse
Affiliation(s)
- Vijay Yechoor
- One Baylor Plaza, R614, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
145
|
Abstract
The use of stem cells in regenerative medicine holds great promise for the cure of many diseases, including type 1 diabetes mellitus (T1DM). Any potential stem-cell-based cure for T1DM should address the need for beta-cell replacement, as well as control of the autoimmune response to cells which express insulin. The ex vivo generation of beta cells suitable for transplantation to reconstitute a functional beta-cell mass has used pluripotent cells from diverse sources, as well as organ-specific facultative progenitor cells from the liver and the pancreas. The most effective protocols to date have produced cells that express insulin and have molecular characteristics that closely resemble bona fide insulin-secreting cells; however, these cells are often unresponsive to glucose, a characteristic that should be addressed in future protocols. The use of mesenchymal stromal cells or umbilical cord blood to modulate the immune response is already in clinical trials; however, definitive results are still pending. This Review focuses on current strategies to obtain cells which express insulin from different progenitor sources and highlights the main pathways and genes involved, as well as the different approaches for the modulation of the immune response in patients with T1DM.
Collapse
Affiliation(s)
- Cristina Aguayo-Mazzucato
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Place, Boston, MA 02215, USA
| | | |
Collapse
|
146
|
Seino S, Shibasaki T, Minami K. Pancreatic beta-cell signaling: toward better understanding of diabetes and its treatment. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:563-577. [PMID: 20551594 PMCID: PMC3081169 DOI: 10.2183/pjab.86.563] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/14/2010] [Indexed: 05/29/2023]
Abstract
Pancreatic beta-cells play a central role in the maintenance glucose homeostasis by secreting insulin, a key hormone that regulates blood glucose levels. Dysfunction of the beta-cells and/or a decrease in the beta-cell mass are associated closely with the pathogenesis and pathophysiology of diabetes mellitus, a major metabolic disease that is rapidly increasing worldwide. Clarification of the mechanisms of insulin secretion and beta-cell fate provides a basis for the understanding of diabetes and its better treatment. In this review, we discuss cell signaling critical for the insulin secretory function based on our recent studies.
Collapse
Affiliation(s)
- Susumu Seino
- Division of Cellular and Molecular Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan.
| | | | | |
Collapse
|
147
|
Noguchi H. Recent advances in stem cell research for the treatment of diabetes. World J Stem Cells 2009; 1:36-42. [PMID: 21607105 PMCID: PMC3097914 DOI: 10.4252/wjsc.v1.i1.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/15/2009] [Accepted: 10/22/2009] [Indexed: 02/06/2023] Open
Abstract
The success achieved over the last decade with islet transplantation has intensified interest in treating diabetes, not only by cell transplantation, but also by stem cells. The formation of insulin-producing cells from pancreatic duct, acinar, and liver cells is an active area of investigation. Protocols for the in vitro differentiation of embryonic stem (ES) cells based on normal developmental processes, have generated insulin-producing cells, though at low efficiency and without full responsiveness to extracellular levels of glucose. Induced pluripotent stem cells, which have been generated from somatic cells by introducing Oct3/4, Sox2, Klf4, and c-Myc, and which are similar to ES cells in morphology, gene expression, epigenetic status and differentiation, can also differentiate into insulin-producing cells. Overexpression of embryonic transcription factors in stem cells could efficiently induce their differentiation into insulin-expressing cells. The purpose of this review is to demonstrate recent progress in the research for new sources of β-cells, and to discuss strategies for the treatment of diabetes.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Hirofumi Noguchi, Regenerative Research Islet Cell Transplant Program, Baylor All Saints Medical Center, Baylor Research Institute, Fort Worth, TX 76104, United States
| |
Collapse
|
148
|
Abstract
Prospects for inducing endogenous beta-cell regeneration in the pancreas, one of the most attractive approaches to reverse type 1 and type 2 diabetes, have gained substantially from recent evidence that cells in the adult pancreas exhibit more plasticity than previously recognized. There are two major pathways to beta-cell regeneration, beta-cell replication and beta-cell neogenesis. Substantial evidence for a role for both processes exists in different models. While beta-cell replication clearly occurs during development and early in life, the potential for replication appears to decline substantially with age. In contrast, we have demonstrated that the exocrine compartment of the adult human pancreas contains a facultative stem cell that can differentiate into beta-cells under specific circumstances. We have favoured the idea that, similar to models described in liver regeneration, beta-cell mass can be increased either by neogenesis or replication, depending on the intensity of different stimuli or stressors. Understanding the nature of endocrine stem/progenitor cells and the mechanism by which external stimuli mobilize them to exhibit endocrine differentiation is central for success in therapeutic approaches to induce meaningful endogenous beta-cell neogenesis.
Collapse
Affiliation(s)
- C Demeterco
- Department of Pediatrics, University of California San Diego, Rady Children's Hospital, La Jolla, USA
| | | | | | | | | |
Collapse
|
149
|
Abstract
To unravel the cellular and molecular mechanisms involved in beta-cell renewal and expansion throughout life, several different experimental models were devised in the past. A number of experimental approaches and transgenic models have been engineered to trigger specifically pancreatic injury and thus explore regeneration. Globally, three main strategies are followed to induce pancreas damage: surgical, chemical and genetic. Some of the most relevant studies regarding these three approaches are briefly summarized in this short overview. Although significant progress has been achieved in recent years, there is much room for improving our understanding of many fundamental processes regulating beta-cell mass maintenance.
Collapse
Affiliation(s)
- P L Herrera
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.
| |
Collapse
|
150
|
Abstract
With the already heightened demand placed on organ donation, stem cell therapy has become a tantalizing idea to provide glucose-responsive insulin-producing cells to Type 1 diabetic patients as an alternative to islet transplantation. Multiple groups have developed varied approaches to create a population of cells with the appropriate characteristics. Both adult and embryonic stem cells have received an enormous amount of attention as possible sources of insulin-producing cells. Although adult stem cells lack the pluripotent nature of their embryonic counterparts, they appear to avoid the ethical debate that has centred around the latter. This may limit the eventual application of embryonic stem cells, which have already shown promise in early mouse models. One must also consider the potential of stem cells to form teratomas, a complication which would prove devastating in an immunologically compromised transplant recipient. The present review looks at the progress to date in both the adult and embryonic stem cells fields as potential treatments for diabetes. We also consider some of the limitations of stem cell therapy and the potential complications that may develop with their use.
Collapse
|