101
|
Overgaard M, Mogensen J. Visual perception from the perspective of a representational, non-reductionistic, level-dependent account of perception and conscious awareness. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130209. [PMID: 24639581 PMCID: PMC3965164 DOI: 10.1098/rstb.2013.0209] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This article proposes a new model to interpret seemingly conflicting evidence concerning the correlation of consciousness and neural processes. Based on an analysis of research of blindsight and subliminal perception, the reorganization of elementary functions and consciousness framework suggests that mental representations consist of functions at several different levels of analysis, including truly localized perceptual elementary functions and perceptual algorithmic modules, which are interconnections of the elementary functions. We suggest that conscious content relates to the 'top level' of analysis in a 'situational algorithmic strategy' that reflects the general state of an individual. We argue that conscious experience is intrinsically related to representations that are available to guide behaviour. From this perspective, we find that blindsight and subliminal perception can be explained partly by too coarse-grained methodology, and partly by top-down enhancing of representations that normally would not be relevant to action.
Collapse
Affiliation(s)
- Morten Overgaard
- CNRU, CFIN, MindLab, Aarhus University, Noerrebrogade 44, Building 10G, DK-8000 Aarhus, Denmark
- CCN, Department of Psychology and Communication, Aalborg University, Aalborg, Denmark
| | - Jesper Mogensen
- Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
102
|
Railo H, Andersson E, Kaasinen V, Laine T, Koivisto M. Unlike in Clinical Blindsight Patients, Unconscious Processing of Chromatic Information Depends on Early Visual Cortex in Healthy Humans. Brain Stimul 2014; 7:415-20. [DOI: 10.1016/j.brs.2014.01.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 11/27/2022] Open
|
103
|
Lack of automatic attentional orienting by gaze cues following a bilateral loss of visual cortex. Neuropsychologia 2014; 58:75-80. [PMID: 24732381 DOI: 10.1016/j.neuropsychologia.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/28/2014] [Accepted: 04/04/2014] [Indexed: 11/23/2022]
Abstract
In social interactions, the location of relevant stimuli is often indicated by the orientation of gaze. It has been proposed that the direction of gaze might produce an automatic cueing of attention, similar to what is observed with exogenous cues. However, several reports have challenged this claim by demonstrating that the behavioral gain that arises with gaze cueing could be explained by shifts of attention, which are intentional and not automatic. We reasoned that if cueing by gaze was truly automatic, it should occur without awareness and should be sustained by subcortical circuits, including the amygdalae, independently of the main geniculo-striate visual pathway. We presented a cross-modal version of the Posner cueing paradigm to a patient (TN) with bilateral lesions of occipital cortex (Burra et al., 2013; Pegna, Khateb, Lazeyras, & Seghier, 2005). TN was asked to localize a sound using a key press. The location of the sound was congruent or incongruent with the direction of gaze of a face-cue. In groups of healthy young and age-matched participants, we observed significantly longer response times for incongruent than congruent sounds, suggesting that gaze direction interfered with processing of localized sounds. By contrast, TN׳s performance was not affected by sound-gaze congruence. The results suggest that the processing of gaze orientation cannot occur in the absence of geniculo-striate processing, suggesting that it is not automatic.
Collapse
|
104
|
Abstract
Neurons in cortical ventral-stream area V4 are thought to contribute to important aspects of visual processing by integrating information from primary visual cortex (V1). However, how V4 neurons respond to visual stimulation after V1 injury remains unclear: While electrophysiological investigation of V4 neurons during reversible V1 inactivation suggests that virtually all responses are eliminated (Girard et al., 1991), fMRI in humans and monkeys with permanent lesions shows reliable V1-independent activity (Baseler et al., 1999; Goebel et al., 2001; Schmid et al., 2010). To resolve this apparent discrepancy, we longitudinally assessed neuronal functions of macaque area V4 using chronically implanted electrode arrays before and after creating a permanent aspiration lesion in V1. During the month after lesioning, we observed weak yet significant spiking activity in response to stimuli presented to the lesion-affected part of the visual field. These V1-independent responses showed sensitivity for motion and likely reflect the effect of V1-bypassing geniculate input into extrastriate areas.
Collapse
|
105
|
Abstract
To what extent do we know our own minds when making decisions? Variants of this question have preoccupied researchers in a wide range of domains, from mainstream experimental psychology (cognition, perception, social behavior) to cognitive neuroscience and behavioral economics. A pervasive view places a heavy explanatory burden on an intelligent cognitive unconscious, with many theories assigning causally effective roles to unconscious influences. This article presents a novel framework for evaluating these claims and reviews evidence from three major bodies of research in which unconscious factors have been studied: multiple-cue judgment, deliberation without attention, and decisions under uncertainty. Studies of priming (subliminal and primes-to-behavior) and the role of awareness in movement and perception (e.g., timing of willed actions, blindsight) are also given brief consideration. The review highlights that inadequate procedures for assessing awareness, failures to consider artifactual explanations of "landmark" results, and a tendency to uncritically accept conclusions that fit with our intuitions have all contributed to unconscious influences being ascribed inflated and erroneous explanatory power in theories of decision making. The review concludes by recommending that future research should focus on tasks in which participants' attention is diverted away from the experimenter's hypothesis, rather than the highly reflective tasks that are currently often employed.
Collapse
|
106
|
Do conscious perception and unconscious processing rely on independent mechanisms? A meta-contrast study. Conscious Cogn 2014; 24:22-32. [PMID: 24398259 DOI: 10.1016/j.concog.2013.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/10/2013] [Accepted: 12/13/2013] [Indexed: 11/23/2022]
Abstract
There is currently no consensus regarding what measures are most valid to demonstrate perceptual processing without awareness. Likewise, whether conscious perception and unconscious processing rely on independent mechanisms or lie on a continuum remains a matter of debate. Here, we addressed these issues by comparing the time courses of subjective reports, objective discrimination performance and response priming during meta-contrast masking, under similar attentional demands. We found these to be strikingly similar, suggesting that conscious perception and unconscious processing cannot be dissociated by their time course. Our results also demonstrate that unconscious processing, indexed by response priming, occurs, and that objective discrimination performance indexes the same conscious processes as subjective visibility reports. Finally, our results underscore the role of attention by showing that how much attention the stimulus receives relative to the mask, rather than whether processing is measured by conscious discrimination or by priming, determines the time course of meta-contrast masking.
Collapse
|
107
|
Fayel A, Chokron S, Cavézian C, Vergilino-Perez D, Lemoine C, Doré-Mazars K. Characteristics of contralesional and ipsilesional saccades in hemianopic patients. Exp Brain Res 2013; 232:903-17. [PMID: 24366440 DOI: 10.1007/s00221-013-3803-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 11/29/2013] [Indexed: 11/25/2022]
Abstract
In order to further our understanding of action-blindsight, four hemianopic patients suffering from visual field loss contralateral to a unilateral occipital lesion were compared to six healthy controls during a double task of verbally reported target detection and saccadic responses toward the target. Three oculomotor tasks were used: a fixation task (i.e., without saccade) and two saccade tasks (eliciting reflexive and voluntary saccades, using step and overlap 600 ms paradigms, respectively), in separate sessions. The visual target was briefly presented at two different eccentricities (5° and 8°), in the right or left visual hemifield. Blank trials were interleaved with target trials, and signal detection theory was applied. Despite their hemifield defect, hemianopic patients retained the ability to direct a saccade toward their contralesional hemifield, whereas verbal detection reports were at chance level. However, saccade parameters (latency and amplitude) were altered by the defect. Saccades to the contralesional hemifield exhibited longer latencies and shorter amplitudes compared to those of the healthy group, whereas only the latencies of reflexive saccades to the ipsilesional hemifield were altered. Furthermore, healthy participants showed the expected latency difference between reflexive and voluntary saccades, with the latter longer than the former. This difference was not found in three out of four patients in either hemifield. Our results show action-blindsight for saccades, but also show that unilateral occipital lesions have effects on saccade generation in both visual hemifields.
Collapse
Affiliation(s)
- Alexandra Fayel
- Laboratoire Vision Action Cognition, EAU 01, INC, IUPDP, Institut de Psychologie, Université Paris Descartes, Sorbonne Paris Cité, 71 Avenue Edouard Vaillant, 92774, Boulogne-Billancourt Cedex, France
| | | | | | | | | | | |
Collapse
|
108
|
Feinberg TE, Mallatt J. The evolutionary and genetic origins of consciousness in the Cambrian Period over 500 million years ago. Front Psychol 2013; 4:667. [PMID: 24109460 PMCID: PMC3790330 DOI: 10.3389/fpsyg.2013.00667] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/05/2013] [Indexed: 11/21/2022] Open
Abstract
Vertebrates evolved in the Cambrian Period before 520 million years ago, but we do not know when or how consciousness arose in the history of the vertebrate brain. Here we propose multiple levels of isomorphic or somatotopic neural representations as an objective marker for sensory consciousness. All extant vertebrates have these, so we deduce that consciousness extends back to the group's origin. The first conscious sense may have been vision. Then vision, coupled with additional sensory systems derived from ectodermal placodes and neural crest, transformed primitive reflexive systems into image forming brains that map and perceive the external world and the body's interior. We posit that the minimum requirement for sensory consciousness and qualia is a brain including a forebrain (but not necessarily a developed cerebral cortex/pallium), midbrain, and hindbrain. This brain must also have (1) hierarchical systems of intercommunicating, isomorphically organized, processing nuclei that extensively integrate the different senses into representations that emerge in upper levels of the neural hierarchy; and (2) a widespread reticular formation that integrates the sensory inputs and contributes to attention, awareness, and neural synchronization. We propose a two-step evolutionary history, in which the optic tectum was the original center of multi-sensory conscious perception (as in fish and amphibians: step 1), followed by a gradual shift of this center to the dorsal pallium or its cerebral cortex (in mammals, reptiles, birds: step 2). We address objections to the hypothesis and call for more studies of fish and amphibians. In our view, the lamprey has all the neural requisites and is likely the simplest extant vertebrate with sensory consciousness and qualia. Genes that pattern the proposed elements of consciousness (isomorphism, neural crest, placodes) have been identified in all vertebrates. Thus, consciousness is in the genes, some of which are already known.
Collapse
Affiliation(s)
- Todd E. Feinberg
- Neurology and Psychiatry, Albert Einstein College of Medicine and Beth Israel Medical CenterNew York, NY, USA
| | - Jon Mallatt
- School of Biological Sciences, Washington State UniversityPullman, WA, USA
| |
Collapse
|
109
|
Bola M, Gall C, Sabel BA. "Sightblind": perceptual deficits in the "intact" visual field. Front Neurol 2013; 4:80. [PMID: 23805126 PMCID: PMC3691518 DOI: 10.3389/fneur.2013.00080] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/11/2013] [Indexed: 11/13/2022] Open
Abstract
Unilateral visual cortex lesions caused by stroke or trauma lead to blindness in contralateral visual field - a condition called homonymous hemianopia. Although the visual field area processed by the uninjured hemisphere is thought to be "intact," it also exhibits marked perceptual deficits in contrast sensitivity, processing speed, and contour integration. Such patients are "sightblind" - their blindness reaches far beyond the primary scotoma. Studies showing perceptual deficits in patients' intact fields are reviewed and implications of these findings are discussed. It is concluded that consequences of partial blindness are greater than previously thought, since perceptual deficits in the "intact" field likely contribute to subjective vision loss in patients with visual field defect. This has important implications for vision diagnosis and rehabilitation.
Collapse
Affiliation(s)
- Michał Bola
- Medical Faculty, Institute of Medical Psychology, Otto von Guericke University of Magdeburg Magdeburg, Germany
| | | | | |
Collapse
|
110
|
Differential contribution of cortical and subcortical visual pathways to the implicit processing of emotional faces: a tDCS study. J Neurosci 2013; 33:6469-75. [PMID: 23575845 DOI: 10.1523/jneurosci.3431-12.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The visual processing of emotional faces is subserved by both a cortical and a subcortical route. To investigate the specific contribution of these two functional pathways, two groups of neurologically healthy humans were tested using transcranial direct current stimulation (tDCS). In Experiment 1, participants received sham and active cathodal-inhibitory tDCS over the left occipital cortex, while, in control Experiment 2, participants received sham and active cathodal-inhibitory tDCS over the vertex, to exclude any unspecific effect of tDCS. After tDCS, participants performed a go/no-go task responding to happy or fearful target faces presented in the left visual field, while backwardly masked faces (emotionally congruent, incongruent, or neutral) were concurrently displayed in the right visual field. After both suppressing activity in the vertex (Experiment 2) and sham stimulation (Experiment 1 and 2) a reduction of reaction times was found for pairs of emotionally congruent stimuli. However, after suppressing the activity in the left occipital cortex, the congruency-dependent response facilitation disappeared, while a specific facilitative affect was evident when masked fearful faces were coupled with happy target faces. These results parallel the performances of hemianopic patients and suggest that when the occipital cortex is damaged or inhibited, and the visual processing for emotional faces is mainly dependent on the activation of the "low road" subcortical route, fearful faces represent the only visually processed stimuli capable of facilitating a behavioral response. This effect might reflect an adaptive mechanism implemented by the brain to quickly react to potential threats before their conscious identification.
Collapse
|
111
|
The second face of blindness: processing speed deficits in the intact visual field after pre- and post-chiasmatic lesions. PLoS One 2013; 8:e63700. [PMID: 23667657 PMCID: PMC3648511 DOI: 10.1371/journal.pone.0063700] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 04/09/2013] [Indexed: 01/25/2023] Open
Abstract
Purpose Damage along the visual pathway results in a visual field defect (scotoma), which retinotopically corresponds to the damaged neural tissue. Other parts of the visual field, processed by the uninjured tissue, are considered to be intact. However, perceptual deficits have been observed in the “intact” visual field, but these functional impairments are poorly understood. We now studied temporal processing deficits in the intact visual field of patients with either pre- or post-chiasmatic lesions to better understand the functional consequences of partial blindness. Methods Patients with pre- (n = 53) or post- chiasmatic lesions (n = 98) were tested with high resolution perimetry – a method used to map visual fields with supra-threshold light stimuli. Reaction time of detections in the intact visual field was then analyzed as an indicator of processing speed and correlated with features of the visual field defect. Results Patients from both groups exhibited processing speed deficits in their presumably “intact” field as indicated by comparison to a normative sample. Further, in both groups processing speed was found to be a function of two factors. Firstly, a spatially restricted (retinotopic) influence of the scotoma was seen in longer reaction times when stimuli were presented in intact field sectors close to the defect. Secondly, patients with larger scotomata had on average longer reaction times in their intact field indicating a more general (non-retinotopic) influence of the scotoma. Conclusions Processing speed deficits in the “intact” visual field of patients with visual system damage demonstrate that visual system lesions have more widespread consequences on perception than previously thought. Because dysfunctions of the seeing field are expected to contribute to subjective vision, including visual tests of the presumed “intact” field may help to better understand vision loss and to improve methods of vision restoration and rehabilitation.
Collapse
|
112
|
Bertini C, Cecere R, Làdavas E. I am blind, but I “see” fear. Cortex 2013; 49:985-93. [DOI: 10.1016/j.cortex.2012.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/21/2011] [Accepted: 02/15/2012] [Indexed: 01/10/2023]
|
113
|
Blindsight after hemidecortication: Visual stimuli in blind hemifield influence anti-saccades directed there. Cortex 2013; 49:861-76. [PMID: 22703968 DOI: 10.1016/j.cortex.2012.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 02/05/2012] [Accepted: 05/01/2012] [Indexed: 11/21/2022]
|
114
|
Evidence that primary visual cortex is required for image, orientation, and motion discrimination by rats. PLoS One 2013; 8:e56543. [PMID: 23441202 PMCID: PMC3575509 DOI: 10.1371/journal.pone.0056543] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/14/2013] [Indexed: 11/28/2022] Open
Abstract
The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.
Collapse
|
115
|
Bona S, Cattaneo Z, Vecchi T, Soto D, Silvanto J. Metacognition of Visual Short-Term Memory: Dissociation between Objective and Subjective Components of VSTM. Front Psychol 2013; 4:62. [PMID: 23420570 PMCID: PMC3572424 DOI: 10.3389/fpsyg.2013.00062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/28/2013] [Indexed: 11/13/2022] Open
Abstract
The relationship between the objective accuracy of visual short-term memory (VSTM) representations and their subjective conscious experience is unknown. We investigated this issue by assessing how the objective and subjective components of VSTM in a delayed cue-target orientation discrimination task are affected by intervening distracters. On each trial, participants were shown a memory cue (a grating), the orientation of which they were asked to hold in memory. On approximately half of the trials, a distracter grating appeared during the maintenance interval; its orientation was either identical to that of the memory cue, or it differed by 10° or 40°. The distracters were masked and presented briefly, so they were only consciously perceived on a subset of trials. At the end of the delay period, a memory test probe was presented, and participants were asked to indicate whether it was tilted to the left or right relative to the memory cue (VSTM accuracy; objective performance). In order to assess subjective metacognition, participants were asked indicate the vividness of their memory for the original memory cue. Finally, participants were asked rate their awareness of the distracter. Results showed that objective VSTM performance was impaired by distracters only when the distracters were very different from the cue, and that this occurred with both subjectively visible and invisible distracters. Subjective metacognition, however, was impaired by distracters of all orientations, but only when these distracters were subjectively invisible. Our results thus indicate that the objective and subjective components of VSTM are to some extent dissociable.
Collapse
Affiliation(s)
- Silvia Bona
- Brain Research Unit, O.V. Lounasmaa Laboratory, School of Science, Aalto University Aalto, Finland
| | | | | | | | | |
Collapse
|
116
|
Alexander I, Cowey A. Isoluminant coloured stimuli are undetectable in blindsight even when they move. Exp Brain Res 2012; 225:147-52. [DOI: 10.1007/s00221-012-3355-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/17/2012] [Indexed: 11/30/2022]
|
117
|
Lisman J, Sternberg EJ. Habit and nonhabit systems for unconscious and conscious behavior: implications for multitasking. J Cogn Neurosci 2012; 25:273-83. [PMID: 23163411 DOI: 10.1162/jocn_a_00319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The study of human consciousness has demonstrated that there are both conscious and unconscious systems. Other work, particularly in animals, has shown that there are habit and nonhabit systems and that these involve different brain regions and memory processes. Here we argue that habits can be equated with unconscious behavior and nonhabits with conscious behavior. This equation makes the extensive physiological literature on habit/nonhabit relevant to the less tractable issue of consciousness. On the basis of this line of reasoning, it appears that different parts of the BG and different memory structures mediate conscious and unconscious processes. It is further argued here that the unconscious system is highly capable; it can both process sensory information and produce behavior. The benefit of such a dual system is multitasking: The unconscious system can execute background tasks, leaving the conscious system to perform more difficult tasks.
Collapse
Affiliation(s)
- John Lisman
- Brandeis University, Waltham, MA 02454-9110, USA.
| | | |
Collapse
|
118
|
Cowey A, Alexander I, Ellison A. Modulation of cortical excitability can speed up blindsight but not improve it. Exp Brain Res 2012; 224:469-75. [PMID: 23229773 DOI: 10.1007/s00221-012-3327-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/26/2012] [Indexed: 11/28/2022]
Abstract
Blindsight has been widely investigated and its properties documented. One property still debated and contested is the puzzling absence of phenomenal visual percepts of visual stimuli that can be detected with perfect accuracy. We investigated the possibility that phenomenal visual percepts of exogenous visual stimuli in patient GY might be induced by using transcranial direct current stimulation. High contrast and low contrast stimuli were presented as a moving grating in his blind hemifield. When left area MT/V5 was anodally stimulated during the presentation of high-contrast gratings, he never reported a phenomenal percept of a moving grating but showed perfect blindsight performance. When applied along with low contrast gratings, for which accuracy was titrated to 60-70 %, performance did not improve but responses were significantly faster. Cathodal stimulation had no effect. Results are explained in the framework of GY's reorganized cortical connexions and oscillatory patterns known to be involved in awareness in GY. The apparent presence of phenomenal visual percepts in earlier studies is shown to be a semantic confusion about what he means when he says that he sees in his blind field.
Collapse
Affiliation(s)
- Alan Cowey
- Department of Experimental Psychology, Oxford University, South Parks Road, Oxford OX1 3UD, UK
| | | | | |
Collapse
|
119
|
Tamietto M, Pullens P, de Gelder B, Weiskrantz L, Goebel R. Subcortical Connections to Human Amygdala and Changes following Destruction of the Visual Cortex. Curr Biol 2012; 22:1449-55. [DOI: 10.1016/j.cub.2012.06.006] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/16/2012] [Accepted: 06/06/2012] [Indexed: 11/24/2022]
|
120
|
Overgaard M. Blindsight: recent and historical controversies on the blindness of blindsight. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2012; 3:607-614. [PMID: 26305269 DOI: 10.1002/wcs.1194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The phenomenon 'blindsight' has received much interest from neuroscientists, philosophers, and psychologists during the last decades. Several researchers seem to agree that blindsight might be of great importance in the ambition to find neural correlates of consciousness. However, the history of blindsight is a history of changing experimental paradigms and very few patients. In late 19th century, researchers debated why lesions to primary visual cortex seemingly left some visual abilities intact in animals, while human patients reported to be blind. From the 1970s until today, experiments have attempted to compare measures of conscious and unconscious perception, suggesting a distinction between visual functions and visual experience. However, more recently, newer methods and an interest in introspective reports have cast doubts about the 'blindness' of blindsight. A cautious conclusion is suggested, though current research can be interpreted in different ways. WIREs Cogn Sci 2012 doi: 10.1002/wcs.1194 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Morten Overgaard
- CNRU, Department of Communication and Psychology, Aalborg University, Kroghsttraede 3, 9220 Aalborg Oest, Aalborg, Denmark.,CNRU, Hammel Neurorehabilitation and Research Center, CFIN, MindLab, Aarhus University, Noerrebrogade 44, Build. 10G, 8000 Aarhus C, Denmark
| |
Collapse
|
121
|
Adaptive neuroplastic responses in early and late hemispherectomized monkeys. Neural Plast 2012; 2012:852423. [PMID: 22792495 PMCID: PMC3391903 DOI: 10.1155/2012/852423] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/29/2012] [Accepted: 04/12/2012] [Indexed: 11/18/2022] Open
Abstract
Behavioural recovery in children who undergo medically required hemispherectomy showcase the remarkable ability of the cerebral cortex to adapt and reorganize following insult early in life. Case study data suggest that lesions sustained early in childhood lead to better recovery compared to those that occur later in life. In these children, it is possible that neural reorganization had begun prior to surgery but was masked by the dysfunctional hemisphere. The degree of neural reorganization has been difficult to study systematically in human infants. Here we present a 20-year culmination of data on our nonhuman primate model (Chlorocebus sabeus) of early-life hemispherectomy in which behavioral recovery is interpreted in light of plastic processes that lead to the anatomical reorganization of the early-damaged brain. The model presented here suggests that significant functional recovery occurs after the removal of one hemisphere in monkeys with no preexisting neurological dysfunctions. Human and primate studies suggest a critical role for subcortical and brainstem structures as well as corticospinal tracts in the neuroanatomical reorganization which result in the remarkable behavioral recovery following hemispherectomy. The non-human primate model presented here offers a unique opportunity for studying the behavioral and functional neuroanatomical reorganization that underlies developmental plasticity.
Collapse
|
122
|
Railo H, Salminen-Vaparanta N, Henriksson L, Revonsuo A, Koivisto M. Unconscious and Conscious Processing of Color Rely on Activity in Early Visual Cortex: A TMS Study. J Cogn Neurosci 2012; 24:819-29. [DOI: 10.1162/jocn_a_00172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Chromatic information is processed by the visual system both at an unconscious level and at a level that results in conscious perception of color. It remains unclear whether both conscious and unconscious processing of chromatic information depend on activity in the early visual cortex or whether unconscious chromatic processing can also rely on other neural mechanisms. In this study, the contribution of early visual cortex activity to conscious and unconscious chromatic processing was studied using single-pulse TMS in three time windows 40–100 msec after stimulus onset in three conditions: conscious color recognition, forced-choice discrimination of consciously invisible color, and unconscious color priming. We found that conscious perception and both measures of unconscious processing of chromatic information depended on activity in early visual cortex 70–100 msec after stimulus presentation. Unconscious forced-choice discrimination was above chance only when participants reported perceiving some stimulus features (but not color).
Collapse
Affiliation(s)
| | | | | | - Antti Revonsuo
- 1University of Turku, Finland
- 3University of Skövde, Sweden
| | | |
Collapse
|
123
|
Are hemianopic monkeys and a human hemianope aware of visual events in the blind field? Exp Brain Res 2012; 219:47-57. [PMID: 22441257 DOI: 10.1007/s00221-012-3066-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/04/2012] [Indexed: 10/28/2022]
Abstract
In three hemianopic monkeys and one normal monkey who subsequently became hemianopic and in one human hemianope we measured reaction times to touch the remembered position of a brief visual target presented in the normal hemifield or in the blind hemifield, or on the blank trials where no visual target occurred and the correct response was to touch a separate and permanently outlined part of the display. This is the same procedure as first used to demonstrate blindsight in these hemianopic monkeys. In the present experiment physically salient high-contrast (0.95) grating stimuli, which we have previously shown are easily detected and localized in the blind field, were used, and the monkeys' reaction times were also measured. With rare exceptions the monkeys indicated that the visual targets in the blind field were blanks, but their otherwise identical motor responses to targets and blanks had significantly different latencies, which were longer for real targets than for blanks. The results indicate that when the monkeys detect that the stimulus has occurred but do not perceive it as a light, or are just guessing, reaction times are longer. Even when the target in the blind field was moving, it was categorized as a blank. In the human hemianope both high- and low-contrast stimuli were used, and the subject had to indicate whether he had been 'aware' or 'unaware' of the target, after making the reaching response. The latencies when he was correct and aware were significantly shorter than when he was unaware and 'just guessing'. However, he was also significantly faster to respond correctly to the blind-field target when he was unaware and correct than when he was unaware and incorrect, a difference reflected in his percentage correct scores even when totally unaware. Collectively, the results support the notion that the hemianopic monkeys, like the human hemianope, know that something has happened in the blind field as long as the stimuli are physically salient even though the stimuli are categorized as blanks, presumably because, like the human hemianope, there was no phenomenal visual percept.
Collapse
|
124
|
Two means of suppressing visual awareness: A direct comparison of visual masking and transcranial magnetic stimulation. Cortex 2012; 48:333-43. [DOI: 10.1016/j.cortex.2010.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/08/2010] [Accepted: 12/06/2010] [Indexed: 11/21/2022]
|
125
|
Liang M, Mouraux A, Iannetti GD. Bypassing primary sensory cortices--a direct thalamocortical pathway for transmitting salient sensory information. ACTA ACUST UNITED AC 2012; 23:1-11. [PMID: 22275480 DOI: 10.1093/cercor/bhr363] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Detection and appropriate reaction to sudden and intense events happening in the sensory environment is crucial for survival. By combining Bayesian model selection with dynamic causal modeling of functional magnetic resonance imaging data, a novel analysis approach that allows inferring the causality between neural activities in different brain areas, we demonstrate that salient sensory information reaches the multimodal cortical areas responsible for its detection directly from the thalamus, without being first processed in primary and secondary sensory-specific areas. This direct thalamocortical transmission of multimodal salient information is parallel to the processing of finer stimulus attributes, which are transmitted in a modality-specific fashion from the thalamus to the relevant primary sensory areas. Such direct thalamocortical connections bypassing primary sensory cortices provide a fast and efficient way for transmitting information from subcortical structures to multimodal cortical areas, to allow the early detection of salient events and, thereby, trigger immediate and appropriate behavior.
Collapse
Affiliation(s)
- M Liang
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | | | | |
Collapse
|
126
|
Treccani B, Cubelli R, Sellaro R, Umiltà C, Della Sala S. Dissociation between awareness and spatial coding: evidence from unilateral neglect. J Cogn Neurosci 2012; 24:854-67. [PMID: 22220726 DOI: 10.1162/jocn_a_00185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Prevalent theories about consciousness propose a causal relation between lack of spatial coding and absence of conscious experience: The failure to code the position of an object is assumed to prevent this object from entering consciousness. This is consistent with influential theories of unilateral neglect following brain damage, according to which spatial coding of neglected stimuli is defective, and this would keep their processing at the nonconscious level. Contrary to this view, we report evidence showing that spatial coding and consciousness can dissociate. A patient with left neglect, who was not aware of contralesional stimuli, was able to process their color and position. However, in contrast to (ipsilesional) consciously perceived stimuli, color and position of neglected stimuli were processed separately. We propose that individual object features, including position, can be processed without attention and consciousness and that conscious perception of an object depends on the binding of its features into an integrated percept.
Collapse
Affiliation(s)
- Barbara Treccani
- Dipartimento di Scienze della Cognizione e della Formazione, Università degli Studi di Trento, Corso Bettini 31, 38068 Rovereto, Trento, Italy.
| | | | | | | | | |
Collapse
|
127
|
Abstract
The primary visual cortex (V1) is the principal telencephalic recipient of visual input in humans and monkeys. It is unique among cortical areas in that its destruction results in chronic blindness. However, certain patients with V1 damage, though lacking visual awareness, exhibit visually guided behavior: blindsight. This phenomenon, together with evidence from electrophysiological, neuroimaging, and psychophysical experiments, has led to speculation that V1 activity has a special or direct role in generating conscious perception. To explore this issue, this article reviews experiments that have used two powerful paradigms--stimulus-induced perceptual suppression and chronic V1 ablation--each of which disrupts the ability to perceive salient visual stimuli. Focus is placed on recent neurophysiological, behavioral, and functional imaging studies from the nonhuman primate that shed light on V1's role in conscious awareness. In addition, anatomical pathways that relay visual information to the cortex during normal vision and in blindsight are reviewed. Although the critical role of V1 in primate vision follows naturally from its position as a bottleneck of visual signals, little evidence supports its direct contribution to visual awareness.
Collapse
Affiliation(s)
- David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| |
Collapse
|
128
|
Affiliation(s)
- Warrick Roseboom
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | | |
Collapse
|
129
|
Overgaard M, Grünbaum T. Consciousness and modality: On the possible preserved visual consciousness in blindsight subjects. Conscious Cogn 2011; 20:1855-9. [DOI: 10.1016/j.concog.2011.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/16/2011] [Accepted: 08/25/2011] [Indexed: 12/01/2022]
|
130
|
Kato R, Takaura K, Ikeda T, Yoshida M, Isa T. Contribution of the retino-tectal pathway to visually guided saccades after lesion of the primary visual cortex in monkeys. Eur J Neurosci 2011; 33:1952-60. [PMID: 21645091 DOI: 10.1111/j.1460-9568.2011.07729.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous reports on 'blindsight' have shown that some patients with lesions of the primary visual cortex (V1) could localize visual targets in their scotoma with hand and/or eye movements without visual awareness. A role of the retino-tectal pathway on residual vision has been proposed but the direct evidence for this still remains sparse. To examine this possibility, we inactivated the superior colliculus (SC) of unilateral V1-lesioned monkeys using microinjections of muscimol, and analysed the effects on visually guided saccades. Following muscimol injections into the contralesional SC, the monkeys performed the visually guided saccade task with relatively minor deficits. The effects of ipsilesional SC inactivation were more severe. After injections, the monkeys failed to localize the target within the visual field represented at the injection site on the SC map. The effects of ipsilesional SC inactivation may result from sensory deficits, motor deficits or a combination of both. To examine these possibilities, we tested the effects of SC inactivation on the motor system by investigating spontaneous saccades. After inactivation of the ipsilesional SC, spontaneous saccades toward the injection site were not abolished, suggesting that impairment of visually guided saccades following inactivation of the ipsilesional SC could not be explained solely by a motor deficit and was primarily due to a visual deficit, presumably by interfering with processing in the superficial layer. We conclude that the retino-tectal pathway plays an essential role in residual vision after V1 lesion. The results suggest that this pathway may be involved in mediating unconscious vision in blindsight patients.
Collapse
Affiliation(s)
- Rikako Kato
- Department of Developmental Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
131
|
Goodale MA. Transforming vision into action. Vision Res 2011; 51:1567-87. [PMID: 20691202 DOI: 10.1016/j.visres.2010.07.027] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/20/2010] [Accepted: 07/29/2010] [Indexed: 11/27/2022]
|
132
|
Stoerig P. Task-irrelevant blindsight and the impact of invisible stimuli. Front Psychol 2011; 2:66. [PMID: 21716576 PMCID: PMC3110775 DOI: 10.3389/fpsyg.2011.00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 03/29/2011] [Indexed: 11/13/2022] Open
Abstract
Despite their subjective invisibility, stimuli presented within regions of absolute cortical blindness can both guide forced-choice behavior when they are task-relevant and modulate responses to visible targets when they are task-irrelevant. We here tested three hemianopic patients to learn whether their performance in an attention-demanding rapid serial visual presentation task would be affected by task-irrelevant stimuli. Per trial, nine black letters and one white target letter appeared briefly at fixation; the white letter was to be named at the end of each trial. On 50% of trials, a task-irrelevant disk (-0.6 log contrast) was presented to the blind field; in separate blocks, the same or a very low negative contrast distractor was presented to the sighted field. Mean error rates were high and independent of distractor condition, although the high-contrast sighted-field disk impaired performance significantly in one participant. However, when trials with and without distractors were considered separately, performance was most impaired by the high-contrast disk in the blind field, whereas the same disk in the sighted field had no effect. As this disk was least visible in the blind and most visible in the sighted field, attentional suppression was inversely related to visibility. We suggest that visual awareness, or the processes that generate it and are compromised in the blind hemisphere, enhances or enables effective attentional suppression.
Collapse
Affiliation(s)
- Petra Stoerig
- Institute of Experimental Psychology II, Heinrich-Heine-University Dusseldorf Dusseldorf, Germany
| |
Collapse
|
133
|
Abstract
Theories about the neural correlates and functional relevance of consciousness have traditionally assigned a crucial role to the prefrontal cortex in generating consciousness as well as in orchestrating high-level conscious control over behavior. However, recent neuroscientific findings show that prefrontal cortex can be activated unconsciously. The depth, direction, and scope of these activations depend on several top-down factors such as the task being probed (task-set, strategy) and on (temporal/spatial) attention. Regardless, such activations—when mediated by feedforward activation only—do not lead to a conscious sensation. Although unconscious, these prefrontal activations are functional, in the sense that they are associated with behavioral effects of cognitive control, such as response inhibition, task switching, conflict monitoring, and error detection. These findings challenge the pivotal role of the prefrontal cortex in consciousness. Instead, it appears that specific brain areas (or cognitive modules) may support specific cognitive functions but that consciousness is independent of this. Conscious sensations arise only when the brain areas involved engage in recurrent interactions enabling the long-lasting exchange of information between brain regions. Moreover, recent evidence suggests that also the state of consciousness, for example, in vegetative state patients or during sleep and anesthesia, is closely related to the scope and extent of residual recurrent interactions among brain regions.
Collapse
Affiliation(s)
- Simon van Gaal
- Cognitive Neuroscience Group, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
- Inserm, Cognitive Neuroimaging Unit, Gif-sur-Yvette, France
- Commissarìat à l’Energie Atomique, Neurospin Center, Gif-sur-Yvette, France
| | - Victor A. F. Lamme
- Cognitive Neuroscience Group, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
- Cognitive Science Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
134
|
Abstract
PURPOSE OF REVIEW Both monkey and human neuroimaging studies show that visual processing beyond the striate cortex involves a highly complex network of regions with modular functions. Lesions within this network lead to specific clinical syndromes. In this review we discuss studies on blindsight, which is the ability of remaining regions to support vision in the absence of striate cortex or visual awareness, recent work on 'ventral stream' syndromes such as object agnosia, alexia, prosopagnosia, and topographagnosia, which follow damage to medial occipitotemporal structures, and simultanagnosia, the classic 'dorsal stream' deficit related to bilateral occipitoparietal lesions. RECENT FINDINGS We highlight work on the anatomic basis of blindsight, the recent description of the new disorder developmental topographic disorientation, and studies contrasting global and local perception in simultanagnosia. SUMMARY These studies advance our understanding of the mechanisms of complex visual processing and provide an important neuropsychological complement to our expanding knowledge about vision from functional neuroimaging.
Collapse
|
135
|
Whitwell RL, Striemer CL, Nicolle DA, Goodale MA. Grasping the non-conscious: Preserved grip scaling to unseen objects for immediate but not delayed grasping following a unilateral lesion to primary visual cortex. Vision Res 2011; 51:908-24. [DOI: 10.1016/j.visres.2011.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 01/20/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
|
136
|
Abstract
The concept of unconscious knowledge is fundamental for an understanding of human thought processes and mentation in general; however, the psychological community at large is not familiar with it. This paper offers a survey of the main psychological research currently being carried out into cognitive processes, and examines pathways that can be integrated into a discipline of unconscious knowledge. It shows that the field has already a defined history and discusses some of the features that all kinds of unconscious knowledge seem to share at a deeper level. With the aim of promoting further research, we discuss the main challenges which the postulation of unconscious cognition faces within the psychological community.
Collapse
Affiliation(s)
- Luís M. Augusto
- Institute of Philosophy, Faculty of Letters, University of Porto,
Portugal
| |
Collapse
|
137
|
Overgaard M. Visual experience and blindsight: a methodological review. Exp Brain Res 2011; 209:473-9. [DOI: 10.1007/s00221-011-2578-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/27/2011] [Indexed: 11/28/2022]
|
138
|
Kupers R, Pietrini P, Ricciardi E, Ptito M. The nature of consciousness in the visually deprived brain. Front Psychol 2011; 2:19. [PMID: 21713178 PMCID: PMC3111253 DOI: 10.3389/fpsyg.2011.00019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/25/2011] [Indexed: 11/16/2022] Open
Abstract
Vision plays a central role in how we represent and interact with the world around us. The primacy of vision is structurally imbedded in cortical organization as about one-third of the cortical surface in primates is involved in visual processes. Consequently, the loss of vision, either at birth or later in life, affects brain organization and the way the world is perceived and acted upon. In this paper, we address a number of issues on the nature of consciousness in people deprived of vision. Do brains from sighted and blind individuals differ, and how? How does the brain of someone who has never had any visual perception form an image of the external world? What is the subjective correlate of activity in the visual cortex of a subject who has never seen in life? More in general, what can we learn about the functional development of the human brain in physiological conditions by studying blindness? We discuss findings from animal research as well from recent psychophysical and functional brain imaging studies in sighted and blind individuals that shed some new light on the answers to these questions.
Collapse
Affiliation(s)
- Ron Kupers
- Institute of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen Copenhagen, Denmark
| | | | | | | |
Collapse
|
139
|
Current World Literature. Curr Opin Neurol 2011; 24:89-93. [DOI: 10.1097/wco.0b013e3283433a91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
140
|
Silvanto J, Rees G. What does Neural Plasticity Tell us about Role of Primary Visual Cortex (V1) in Visual Awareness? Front Psychol 2011; 2:6. [PMID: 21713187 PMCID: PMC3111426 DOI: 10.3389/fpsyg.2011.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/04/2011] [Indexed: 11/21/2022] Open
Abstract
The complete loss of visual awareness resulting from a lesion to the primary visual cortex (V1) suggests that this region is indispensable for conscious visual perception. There are however a number cases of conscious perception in the absence of V1 which appear to challenge this conclusion. These include reports of patients with bilateral V1 lesions sustained at an early age whose conscious vision has spontaneously recovered, as well as stroke patients who have recovered some conscious vision with the help of rehabilitation programs. In addition, the phenomenon of hemianopic completion and percepts induced by brain stimulation suggest that V1 may not be necessary for conscious perception in all circumstances. Furthermore, that the visual abilities in the cat are associated with the recovery of normal extrastriate tuning properties rather than emulation of V1 functions suggests that there is nothing unique about the functional properties of this region in visual awareness. Rather, the dramatic effect of a V1 lesion on visual awareness may be due to its role in providing the majority of extrastriate visual input, the loss of which abolishes normal neural responsiveness throughout the visual cortex.
Collapse
Affiliation(s)
- Juha Silvanto
- Brain Research Unit, Low Temperature Laboratory and Advanced Magnetic Imaging Centre, School of Science and Technology, Aalto University Espoo, Finland
| | | |
Collapse
|
141
|
Abstract
Motion detection is typically spared in blindsight, which results from damage to the striate cortex (area V1) of the brain that is sufficient to eliminate conscious visual awareness and severely reduce sensitivity to luminance contrast, especially for high spatial and low temporal frequencies. Here we show that the discrimination of motion direction within cortically blind fields is not attributable to feature tracking (the detection of changes in position or shape), but is due instead to the detection of first-order motion energy (spatiotemporal changes in luminance). The key to this finding was a version of the line motion illusion entailing reverse-phi motion in which opposing motion directions are simultaneously cued by motion energy and changes in stimulus shape. In forced-choice tests, a blindsighted test subject selected the direction cued by shape change when the stimulus was presented in his intact field, but reliably selected the direction cued by motion energy when the same stimulus was presented in his blind field, where relevant position information was either inaccessible or invalid. Motion energy has been characterized as objectless, so reliance on motion energy detection is consistent with impaired access to shape information in blindsight. The dissociation of motion direction by visual field (cortically blind vs. intact) provides evidence that two pathways from the retina to MT/V5 (the cortical area specialized for motion perception) are functionally distinct: the retinogeniculate pathway through V1 is specialized for feature-based motion perception, whereas the retinocollicular pathway, which bypasses V1, is specialized for detecting motion energy.
Collapse
|
142
|
Sani L, Ricciardi E, Gentili C, Vanello N, Haxby JV, Pietrini P. Effects of Visual Experience on the Human MT+ Functional Connectivity Networks: An fMRI Study of Motion Perception in Sighted and Congenitally Blind Individuals. Front Syst Neurosci 2010; 4:159. [PMID: 21191477 PMCID: PMC3010764 DOI: 10.3389/fnsys.2010.00159] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/07/2010] [Indexed: 11/13/2022] Open
Abstract
Human middle temporal complex (hMT+) responds also to the perception of non-visual motion in both sighted and early blind individuals, indicating a supramodal organization. Visual experience, however, leads to a segregation of hMT+ into a more anterior subregion, involved in the supramodal representation of motion, and a posterior subregion that processes visual motion only. In contrast, in congenitally blind subjects tactile motion activates the full extent of hMT+. Here, we used fMRI to investigate brain areas functionally connected with the two hMT+ subregions (seeds) during visual and tactile motion in sighted and blind individuals. A common functional connectivity network for motion processing, including bilateral ventral and dorsal extrastriate, inferior frontal, middle and inferior temporal areas, correlated with the two hMT+ seeds both in sighted and blind individuals during either visual or tactile motion, independently from the sensory modality through which the information was acquired. Moreover, ventral premotor, somatosensory, and posterior parietal areas correlated only with the anterior but not with the posterior portion of hMT+ in sighted subjects, and with both hMT+ seeds in blind subjects. Furthermore, a correlation between middle temporal and occipital areas with primary somatosensory seeds was demonstrated across conditions in both sighted and blind individuals, suggesting a cortico-cortical pathway that conveys non-visual information from somatosensory cortex, through posterior parietal regions, to ventral extrastriate cortex. These findings expand our knowledge about the development of the functional organization within hMT+ by showing that distinct patterns of brain functional correlations originate from the anterior and posterior hMT+ subregions as a result of visual experience.
Collapse
Affiliation(s)
- Lorenzo Sani
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa Pisa, Italy
| | | | | | | | | | | |
Collapse
|
143
|
Ffytche DH, Zeki S. The primary visual cortex, and feedback to it, are not necessary for conscious vision. ACTA ACUST UNITED AC 2010; 134:247-57. [PMID: 21097490 DOI: 10.1093/brain/awq305] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A compelling single case report of visual awareness (visual qualia) without primary visual cortex would be sufficient to refute the hypothesis that the primary visual cortex and the back-projections to it are necessary for conscious visual experience. In a previous study, we emphasized the presence of crude visual awareness in Patient G.Y., with a lesion of the primary visual cortex, who is aware of, and able to discriminate, fast-moving visual stimuli presented to his blind field. The visual nature of Patient G.Y.'s blind field experience has since been questioned and it has been suggested that the special circumstances of repeated testing over decades may have altered Patient G.Y.'s visual pathways. We therefore sought new evidence of visual awareness without primary visual cortex in patients for whom such considerations do not apply. Three patients with hemianopic field defects (Patient G.N. and Patient F.B. with MRI confirmed primary visual cortex lesions, Patient C.G. with an inferred lesion) underwent detailed psychophysical testing in their blind fields. Visual stimuli were presented at different velocities and contrasts in two- and four-direction discrimination experiments and the direction of motion and awareness reported using a forced-choice paradigm. Detailed verbal reports were also obtained of the nature of the blind field experience with comparison of the drawings of the stimulus presented in the blind and intact fields, where possible. All three patients reported visual awareness in their blind fields. Visual awareness was significantly more likely when a moving stimulus was present compared to no stimulus catch trials (P < 0.01 for each subject). Psychophysical performance in Patient F.B. and Patient G.N. was consistent with the Riddoch syndrome, with higher levels of visual awareness for moving compared to static stimuli (P < 0.001) and intact direction discrimination (P < 0.0001 for two- and four-direction experiments). Although the blind field experience of all three subjects was degraded, it was clearly visual in nature. We conclude that the primary visual cortex or back-projections to it are not necessary for visual awareness.
Collapse
Affiliation(s)
- Dominic H Ffytche
- Wellcome Laboratory of Neurobiology, University College London, London WC1E 6BT, UK.
| | | |
Collapse
|
144
|
Day-Brown JD, Wei H, Chomsung RD, Petry HM, Bickford ME. Pulvinar projections to the striatum and amygdala in the tree shrew. Front Neuroanat 2010; 4:143. [PMID: 21120139 PMCID: PMC2991220 DOI: 10.3389/fnana.2010.00143] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/04/2010] [Indexed: 11/17/2022] Open
Abstract
Visually guided movement is possible in the absence of conscious visual perception, a phenomenon referred to as “blindsight.” Similarly, fearful images can elicit emotional responses in the absence of their conscious perception. Both capabilities are thought to be mediated by pathways from the retina through the superior colliculus (SC) and pulvinar nucleus. To define potential pathways that underlie behavioral responses to unperceived visual stimuli, we examined the projections from the pulvinar nucleus to the striatum and amygdala in the tree shrew (Tupaia belangeri), a species considered to be a prototypical primate. The tree shrew brain has a large pulvinar nucleus that contains two SC-recipient subdivisions; the dorsal (Pd) and central (Pc) pulvinar both receive topographic (“specific”) projections from SC, and Pd receives an additional non-topographic (“diffuse”) projection from SC (Chomsung et al., 2008). Anterograde and retrograde tract tracing revealed that both Pd and Pc project to the caudate and putamen, and Pd, but not Pc, additionally projects to the lateral amygdala. Using immunocytochemical staining for substance P (SP) and parvalbumin (PV) to reveal the patch/matrix organization of tree shrew striatum, we found that SP-rich/PV-poor patches interlock with a PV-rich/SP-poor matrix. Confocal microscopy revealed that tracer-labeled pulvino-striatal terminals preferentially innervate the matrix. Electron microscopy revealed that the postsynaptic targets of tracer-labeled pulvino-striatal and pulvino-amygdala terminals are spines, demonstrating that the pulvinar nucleus projects to the spiny output cells of the striatum matrix and the lateral amygdala, potentially relaying: (1) topographic visual information from SC to striatum to aid in guiding precise movements, and (2) non-topographic visual information from SC to the amygdala alerting the animal to potentially dangerous visual images.
Collapse
Affiliation(s)
- Jonathan D Day-Brown
- Department of Anatomical Sciences and Neurobiology, University of Louisville Medical Center Louisville, KY, USA
| | | | | | | | | |
Collapse
|
145
|
Guzzetta A, D'Acunto G, Rose S, Tinelli F, Boyd R, Cioni G. Plasticity of the visual system after early brain damage. Dev Med Child Neurol 2010; 52:891-900. [PMID: 20561008 DOI: 10.1111/j.1469-8749.2010.03710.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this review is to discuss the existing evidence supporting different processes of visual brain plasticity after early damage, as opposed to damage that occurs during adulthood. There is initial evidence that some of the neuroplastic mechanisms adopted by the brain after early damage to the visual system are unavailable at a later stage. These are, for example, the ability to differentiate functional tissue within a larger dysplastic cortex during its formation, or to develop new thalamo-cortical connections able to bypass the lesion and reach their cortical destination in the occipital cortex. The young brain also uses the same mechanisms available at later stages of development but in a more efficient way. For example, in people with visual field defects of central origin, the anatomical expansion of the extrastriatal visual network is greater after an early lesion than after a later one, which results in more efficient mechanisms of visual exploration of the blind field. A similar mechanism is likely to support some of the differences found in people with blindsight, the phenomenon of unconscious visual perception in the blind field. In particular, compared with people with late lesions, those with early brain damage appear to have stronger subjective awareness of stimuli hitting the blind visual field, reported as a conscious feeling that something is present in the visual field. Expanding our knowledge of these mechanisms could help the development of early therapeutic interventions aimed at supporting and enhancing visual reorganization at a time of greatest potential brain plasticity.
Collapse
Affiliation(s)
- Andrea Guzzetta
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
146
|
Rosenthal CR, Kennard C, Soto D. Visuospatial sequence learning without seeing. PLoS One 2010; 5:e11906. [PMID: 20689577 PMCID: PMC2912760 DOI: 10.1371/journal.pone.0011906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 07/06/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The ability to detect and integrate associations between unrelated items that are close in space and time is a key feature of human learning and memory. Learning sequential associations between non-adjacent visual stimuli (higher-order visuospatial dependencies) can occur either with or without awareness (explicit vs. implicit learning) of the products of learning. Existing behavioural and neurocognitive studies of explicit and implicit sequence learning, however, are based on conscious access to the sequence of target locations and, typically, on conditions where the locations for orienting, or motor, responses coincide with the locations of the target sequence. METHODOLOGY/PRINCIPAL FINDINGS Dichoptic stimuli were presented on a novel sequence learning task using a mirror stereoscope to mask the eye-of-origin of visual input from conscious awareness. We demonstrate that conscious access to the sequence of target locations and responses that coincide with structure of the target sequence are dispensable features when learning higher-order visuospatial associations. Sequence knowledge was expressed in the ability of participants to identify the trained higher-order visuospatial sequence on a recognition test, even though the trained and untrained recognition sequences were identical when viewed at a conscious binocular level, and differed only at the level of the masked sequential associations. CONCLUSIONS/SIGNIFICANCE These results demonstrate that unconscious processing can support perceptual learning of higher-order sequential associations through interocular integration of retinotopic-based codes stemming from monocular eye-of-origin information. Furthermore, unlike other forms of perceptual associative learning, visuospatial attention did not need to be directed to the locations of the target sequence. More generally, the results pose a challenge to neural models of learning to account for a previously unknown capacity of the human visual system to support the detection, learning and recognition of higher-order sequential associations under conditions where observers are unable to see the target sequence or perform responses that coincide with structure of the target sequence.
Collapse
Affiliation(s)
- Clive R Rosenthal
- Department of Clinical Neurology, University of Oxford, Oxford, England, United Kingdom.
| | | | | |
Collapse
|
147
|
Schmid MC, Mrowka SW, Turchi J, Saunders RC, Wilke M, Peters AJ, Ye FQ, Leopold DA. Blindsight depends on the lateral geniculate nucleus. Nature 2010; 466:373-7. [PMID: 20574422 PMCID: PMC2904843 DOI: 10.1038/nature09179] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 05/18/2010] [Indexed: 11/19/2022]
Abstract
Injury to the primary visual cortex (V1) leads to the loss of visual experience. Nonetheless, careful testing shows that certain visually guided behaviours can persist even in the absence of visual awareness. The neural circuits supporting this phenomenon, which is often termed blindsight, remain uncertain. Here we demonstrate that the thalamic lateral geniculate nucleus (LGN) has a causal role in V1-independent processing of visual information. By comparing functional magnetic resonance imaging (fMRI) and behavioural measures with and without temporary LGN inactivation, we assessed the contribution of the LGN to visual functions of macaque monkeys (Macaca mulatta) with chronic V1 lesions. Before LGN inactivation, high-contrast stimuli presented to the lesion-affected visual field (scotoma) produced significant V1-independent fMRI activation in the extrastriate cortical areas V2, V3, V4, V5/middle temporal (MT), fundus of the superior temporal sulcus (FST) and lateral intraparietal area (LIP) and the animals correctly located the stimuli in a detection task. However, following reversible inactivation of the LGN in the V1-lesioned hemisphere, fMRI responses and behavioural detection were abolished. These results demonstrate that direct LGN projections to the extrastriate cortex have a critical functional contribution to blindsight. They suggest a viable pathway to mediate fast detection during normal vision.
Collapse
Affiliation(s)
- Michael C Schmid
- Laboratory of Neuropsychology, National Institute of Mental Health (NIMH), 49 Convent Drive, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Alexander I, Cowey A. Edges, colour and awareness in blindsight. Conscious Cogn 2010; 19:520-33. [DOI: 10.1016/j.concog.2010.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/20/2010] [Accepted: 01/23/2010] [Indexed: 11/25/2022]
|