101
|
de Visser SP, Tan LS. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation? J Am Chem Soc 2008; 130:12961-74. [PMID: 18774806 DOI: 10.1021/ja8010995] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present here results of a series of density functional theory (DFT) studies on enzyme active site models of nitric oxide synthase (NOS) and address the key steps in the catalytic cycle whereby the substrate (L-arginine) is hydroxylated to N(omega)-hydroxo-arginine. It has been proposed that the mechanism follows a cytochrome P450-type catalytic cycle; however, our calculations find an alternative low energy pathway whereby the bound L-arginine substrate has two important functions in the catalytic cycle, namely first as a proton donor and later as the substrate in the reaction mechanism. Thus, the DFT studies show that the oxo-iron active species (compound I) cannot abstract a proton and neither a hydrogen atom from protonated L-arginine due to the strength of the N-H bonds of the substrate. However, the hydroxylation of neutral arginine by compound I and its one electron reduced form (compound II) requires much lower barriers and is highly exothermic. Detailed analysis of proton transfer mechanisms shows that the basicity of the dioxo dianion and the hydroperoxo-iron (compound 0) intermediates in the catalytic cycle are larger than that of arginine, which makes it likely that protonated arginine donates one of the two protons needed during the first catalytic cycle of NOS. Therefore, DFT predicts that in NOS enzymes arginine binds to the active site in its protonated form, but is deprotonated during the oxygen activation process in the catalytic cycle by either the dioxo dianion species or compound 0. As a result of the low ionization potential of neutral arginine, the actual hydroxylation reaction starts with an initial electron transfer from the substrate to compound I to create compound II followed by a concerted hydrogen abstraction/radical rebound from the substrate. These studies indicate that compound II is the actual oxidant in NOS enzymes that performs the hydroxylation reaction of arginine, which is in sharp contrast with the cytochromes P450 where compound II was shown to be a sluggish oxidant. This is the first example of an enzyme where compound II is able to participate in the reaction mechanism. Moreover, arginine hydroxylation by NOS enzymes is catalyzed in a significantly different way from the cytochromes P450 although the active sites of the two enzyme classes are very similar in structure. Detailed studies of environmental effects on the reaction mechanism show that environmental perturbations as appear in the protein have little effect and do not change the energies of the reaction. Finally, a valence bond curve crossing model has been set up to explain the obtained reaction mechanisms for the hydrogen abstraction processes in P450 and NOS enzymes.
Collapse
Affiliation(s)
- Sam P de Visser
- Manchester Interdisciplinary Biocenter and the School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom.
| | | |
Collapse
|
102
|
Chiavarino B, Crestoni ME, Fornarini S, Rovira C. Unravelling the intrinsic features of NO binding to iron(II)- and iron(III)-hemes. Inorg Chem 2008; 47:7792-801. [PMID: 18681420 DOI: 10.1021/ic800953w] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrospray ionization of appropriate precursors is used to deliver [Fe (III)-heme] (+) and [Fe (II)-hemeH] (+) ions as naked species in the gas phase where their ion chemistry has been examined by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. In the naked, four-coordinate [Fe (II)-hemeH] (+) and [Fe (III)-heme] (+) ions, the intrinsic reactivity of iron(II)- and iron(III)-hemes is revealed free from any influence due to axial ligand, counterion, or solvent effects. Ligand (L) addition and ligand transfer equilibria with a series of selected neutrals are attained when [Fe (II)-hemeH] (+), corresponding to protonated Fe (II)-heme, is allowed to react in the FT-ICR cell. A Heme Cation Basicity (HCB) ladder for the various ligands toward [Fe (II)-hemeH] (+), corresponding to -Delta G degrees for the process [Fe (II)-hemeH] (+) + L --> [Fe (II)-hemeH(L)] (+) and named HCB (II), can thus be established. The so-obtained HCB (II) values are compared with the corresponding HCB (III) values for [Fe (III)-heme] (+). In spite of pronounced differences displayed by various ligands, NO shows a quite similar HCB of about 67 kJ mol (-1) at 300 K toward both ions, estimated to correspond to a binding energy of 124 kJ mol (-1). Density Functional Theory (DFT) computations confirm the experimental results, yielding very similar values of NO binding energies to [Fe (II)-hemeH] (+) and [Fe (III)-heme] (+), equal to 140 and 144 kJ mol (-1), respectively. The kinetic study of the NO association reaction supports the equilibrium HCB data and reveals that the two species share very close rate constant values both for the forward and for the reverse reaction. These gas phase results diverge markedly from the kinetics and thermodynamic behavior of NO binding to iron(II)- and iron(III)-heme proteins and model complexes in solution. The requisite of either a very labile or a vacant coordination site on iron for a facile addition of NO to occur, suggested to explain the bias for typically five-coordinate iron(II) species in solution, is fully supported by the present work.
Collapse
Affiliation(s)
- Barbara Chiavarino
- Dipartimento di Chimica e Tecnologia del Farmaco, Universita di Roma "La Sapienza", P.le A. Moro 5, I-00185 Roma, Italy
| | | | | | | |
Collapse
|
103
|
Effect of covalent links on the structure, spectra, and redox properties of myeloperoxidase – A density functional study. J Inorg Biochem 2008; 102:1549-57. [DOI: 10.1016/j.jinorgbio.2008.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 11/19/2022]
|
104
|
Rydberg P, Ryde U, Olsen L. Sulfoxide, Sulfur, and Nitrogen Oxidation and Dealkylation by Cytochrome P450. J Chem Theory Comput 2008; 4:1369-77. [DOI: 10.1021/ct800101v] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrik Rydberg
- Department of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark, and the Department of Theoretical Chemistry, Lund University, P.O.B. 124, SE-22100 Lund, Sweden
| | - Ulf Ryde
- Department of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark, and the Department of Theoretical Chemistry, Lund University, P.O.B. 124, SE-22100 Lund, Sweden
| | - Lars Olsen
- Department of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark, and the Department of Theoretical Chemistry, Lund University, P.O.B. 124, SE-22100 Lund, Sweden
| |
Collapse
|
105
|
Behera S, Raj CR. Electrochemistry of surface wired redox protein: Axial ligation and control of redox potential. J Electroanal Chem (Lausanne) 2008. [DOI: 10.1016/j.jelechem.2008.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
106
|
Charkin OP, Makarov AV, Klimenko NM. Theoretical study of first-row transition metal porphyrins and their carbonyl complexes. RUSS J INORG CHEM+ 2008. [DOI: 10.1134/s0036023608050100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
107
|
Sicking W, Korth HG, de Groot H, Sustmann R. On the functional role of a water molecule in clade 3 catalases: a proposal for the mechanism by which NADPH prevents the formation of compound II. J Am Chem Soc 2008; 130:7345-56. [PMID: 18479132 DOI: 10.1021/ja077787e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
X-ray structures of the 13 different monofunctional heme catalases published to date were scrutinized in order to gain insight in the mechanism by which NADPH in Clade 3 catalases may protect the reactive ferryloxo intermediate Compound I (Cpd I; por (*+)Fe (IV)O) against deactivation to the catalytically inactive intermediate Compound II (Cpd II; porFe (IV)O). Striking similarities in the molecular network of the protein subunits encompassing the heme center and the surface-bound NADPH were found for all of the Clade 3 catalases. Unique features in this region are the presence of a water molecule (W1) adjacent to the 4-vinyl group of heme and a serine residue or a second water molecule hydrogen-bonded to both W1 and the carbonyl group of a threonine-proline linkage, with the proline in van der Waals contact with the dihydronicotinamide group of NADPH. A mechanism is proposed in which a hydroxyl anion released from W1 undergoes reversible nucleophilic addition to the terminal carbon of the 4-vinyl group of Cpd I, thereby producing a neutral porphyrin pi-radical ferryloxo (HO-por (*)Fe (IV)O) species of reduced reactivity. This structure is suggested to be the elusive Cpd II' intermediate proposed in previous studies. An accompanying proton-shifting process along the hydrogen-bonded network is believed to facilitate the NADPH-mediated reduction of Cpd I to ferricatalase and to serve as a funnel for electron transfer from NADPH to the heme center to restore the catalase Fe (III) resting state. The proposed reaction paths were fully supported as chemically reasonable and energetically feasible by means of density functional theory calculations at the (U)B3LYP/6-31G* level. A particularly attractive feature of the present mechanism is that the previously discussed formation of protein-derived radicals is avoided.
Collapse
Affiliation(s)
- Willi Sicking
- Institut für Organische Chemie, Universität Duisburg-Essen, 45117 Essen, Germany
| | | | | | | |
Collapse
|
108
|
Davydov R, Osborne RL, Kim SH, Dawson JH, Hoffman BM. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes. Biochemistry 2008; 47:5147-55. [PMID: 18407661 DOI: 10.1021/bi702514d] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nature of the [Fe(IV)-O] center in hemoprotein Compounds II has recently received considerable attention, as several experimental and theoretical investigations have suggested that this group is not necessarily the traditionally assumed ferryl ion, [Fe(IV)=O]2+, but can be the protonated ferryl, [Fe(IV)-OH]3+. We show here that cryoreduction of the EPR-silent Compound II by gamma-irradiation at 77 K produces Fe(III) species retaining the structure of the precursor [Fe(IV)=O]2+ or [Fe(IV)-OH]3+, and that the properties of the cryogenerated species provide a report on structural features and the protonation state of the parent Compound II when studied by EPR and 1H and 14N ENDOR spectroscopies. To give the broadest view of the properties of Compounds II we have carried out such measurements on cryoreduced Compounds II of HRP, Mb, DHP and CPO and on CCP Compound ES. EPR and ENDOR spectra of cryoreduced HRP II, CPO II and CCP ES are characteristic of low-spin hydroxy-Fe(III) heme species. In contrast, cryoreduced "globins", Mb II, Hb II, and DHP II, show EPR spectra having lower rhombicity. In addition the cryogenerated ferric "globin" species display strongly coupled exchangeable (1)H ENDOR signals, with A max approximately 20 MHz and a iso approximately 14 MHz, both substantially greater than for hydroxide/water ligand protons. Upon annealing at T > 180 K the cryoreduced globin compounds II relax to the low-spin hydroxy-ferric form with a solvent kinetic isotope effect, KIE > 6. The results presented here together with published resonance Raman and Mossbauer data suggest that the high-valent iron center of globin and HRP compounds II, as well as of CCP ES, is [Fe(IV)=O]2+, and that its cryoreduction produces [Fe(III)-O]+. Instead, as proposed by Green and co-workers, CPO II contains [Fe(IV)-OH]3+ which forms [Fe(III)-OH]2+ upon radiolysis. The [Fe(III)-O]+ generated by cryoreduction of HRP II and CCP ES protonate at 77 K, presumably because the heme is linked to a distal-pocket hydrogen bonding/proton-delivery network through an H-bond to the "oxide" ligand. The data also indicate that Mb and HRP compounds II exist as two major conformational substates.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Tech K148, Evanston, Illinois 60208-3113, USA
| | | | | | | | | |
Collapse
|
109
|
Heimdal J, Rydberg P, Ryde U. Protonation of the Proximal Histidine Ligand in Heme Peroxidases. J Phys Chem B 2008; 112:2501-10. [PMID: 18251539 DOI: 10.1021/jp710038s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jimmy Heimdal
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Patrik Rydberg
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
110
|
Jamaat PR, Safari N, Ghiasi M, Naghavi SSAD, Zahedi M. Noninnocent effect of axial ligand on the heme degradation process: a theoretical approach to hydrolysis pathway of verdoheme to biliverdin. J Biol Inorg Chem 2007; 13:121-32. [DOI: 10.1007/s00775-007-0308-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 09/21/2007] [Indexed: 11/24/2022]
|
111
|
Hemozoin: oil versus water. Parasitol Int 2007; 57:89-96. [PMID: 18373972 DOI: 10.1016/j.parint.2007.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 09/26/2007] [Accepted: 09/28/2007] [Indexed: 11/23/2022]
Abstract
Because the quinolines inhibit heme crystallization within the malaria parasite much work has focused on mechanism of formation and inhibition of hemozoin. Here we review the recent evidence for heme crystallization within lipids in diverse parasites and the new implications of a lipid site of crystallization for drug targeting. Within leukocytes hemozoin can generate toxic radical lipid metabolites, which may alter immune function or reduce deformability of uninfected erythrocytes.
Collapse
|
112
|
Rutkowska-Zbik D, Witko M. From activation of dioxygen to formation of high-valent oxo species: Ab initio DFT studies. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.molcata.2007.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
113
|
Maréchal JD, Maseras F, Lledós A, Mouawad L, Perahia D. A DFT study on the relative affinity for oxygen of the alpha and beta subunits of hemoglobin. J Comput Chem 2007; 27:1446-53. [PMID: 16807972 DOI: 10.1002/jcc.20427] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DFT calculations are carried out on computational models of the active center of the alpha and beta subunits of hemoglobin in both its oxygenated (R) and deoxygenated (T) states. The computational models are defined by the full heme group, including all porphyrin substituents, and the four amino acids closer to it. The role of the protein environment is introduced by freezing the position of the alpha carbon atom of each of the four amino acids to the positions they have in the available PDB structures. Oxygen affinity is then evaluated by computing the energy difference between the optimized structures of the oxygenated and deoxygenated forms of each model. The results indicate a higher affinity of the alpha subunits over the beta ones. Analysis of the computed structures points out to the strength of the hydrogen bond between the distal histidine and the oxygen molecule as a key factor in discriminating the different systems.
Collapse
Affiliation(s)
- Jean-Didier Maréchal
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Bât. 430, 94105 Orsay Cedex, France
| | | | | | | | | |
Collapse
|
114
|
Rydberg P, Olsen L, Norrby PO, Ryde U. General Transition-State Force Field for Cytochrome P450 Hydroxylation. J Chem Theory Comput 2007; 3:1765-73. [DOI: 10.1021/ct700110f] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrik Rydberg
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden, Biostructural Research Group, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark, and Department of Chemistry, Göteborg University, Kemigården 4, SE-412 96 Göteborg, Sweden
| | - Lars Olsen
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden, Biostructural Research Group, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark, and Department of Chemistry, Göteborg University, Kemigården 4, SE-412 96 Göteborg, Sweden
| | - Per-Ola Norrby
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden, Biostructural Research Group, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark, and Department of Chemistry, Göteborg University, Kemigården 4, SE-412 96 Göteborg, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden, Biostructural Research Group, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark, and Department of Chemistry, Göteborg University, Kemigården 4, SE-412 96 Göteborg, Sweden
| |
Collapse
|
115
|
Altun A, Thiel W. Combined quantum mechanical/molecular mechanical study on the pentacoordinated ferric and ferrous cytochrome P450cam complexes. J Phys Chem B 2007; 109:1268-80. [PMID: 16851091 DOI: 10.1021/jp0459108] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pentacoordinated ferric and ferrous cytochrome P450(cam) complexes have been investigated by combined quantum mechanical/molecular mechanical (QM/MM) calculations in the presence of a protein/solvent environment and by QM calculations on the isolated QM regions with use of density functional theory. The B3LYP functional has been found more reliable than the BLYP and BHLYP functionals for estimating the relative state energies. The B3LYP/CHARMM calculations with an all-electron basis set for iron give high-spin ground states for the title complexes, in agreement with experiment. The comparison of the B3LYP/CHARMM results of the entire protein system with the B3LYP calculations on the naked QM regions shows that the amount of stabilization by the protein environment is largest for the intermediate-spin states, followed by the high-spin states of the complexes. The calculation of Mössbauer parameters in the presence of the enzyme environment confirms the double occupation of the d(xz) orbital in the quintet spin state of the ferrous complex, consistent with the computed QM/MM energies in the enzyme environment, while the d(x)2(-)(y)2 orbital is doubly occupied in the gas-phase quintet state.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | |
Collapse
|
116
|
Derat E, Shaik S. The Poulos-Kraut mechanism of Compound I formation in horseradish peroxidase: a QM/MM study. J Phys Chem B 2007; 110:10526-33. [PMID: 16722763 DOI: 10.1021/jp055412e] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
QM/MM calculations are used to elucidate the Poulos-Kraut (Poulos, T. L.; Kraut, J. J. Biol. Chem. 1980, 255, 8199-8205) mechanism of O-O bond activation and Compound I (Cpd I) formation in HRP, in conditions corresponding to neutral to basic pH. Attempts to generate Compound I directly from the Fe(H2O2) complex by migrating the proton from the proximal oxygen to the distal one (1,2- proton shift) result in high barriers. The lowest energy mechanism was found to involve initial deprotonation of ferric hydrogen peroxide complex (involving spin crossover from the quartet to the doublet state) by His42 to form ferric-hydroperoxide (Cpd 0). Subsequently, the distal OH group of Cpd 0 is pulled by Arg38 and reprotonated by His42(H+) to form Cpd I and a water molecule that bridges the two residues. The structures of the intermediate and the transition state reveal the manner by which the Arg-His residues promote cooperatively the electronic reorganization that is required to attend the heterolytic O-O cleavage.
Collapse
Affiliation(s)
- Etienne Derat
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | | |
Collapse
|
117
|
Sicking W, Korth HG, Jansen G, de Groot H, Sustmann R. Hydrogen Peroxide Decomposition by a Non-Heme Iron(III) Catalase Mimic: A DFT Study. Chemistry 2007; 13:4230-45. [PMID: 17323385 DOI: 10.1002/chem.200601209] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Non-heme iron(III) complexes of 14-membered tetraaza macrocycles have previously been found to catalytically decompose hydrogen peroxide to water and molecular oxygen, like the native enzyme catalase. Here the mechanism of this reaction is theoretically investigated by DFT calculations at the (U)B3LYP/6-31G* level, with focus on the reactivity of the possible spin states of the FeIII complexes. The computations suggest that H2O2 decomposition follows a homolytic route with intermediate formation of an iron(IV) oxo radical cation species (L.+FeIV==O) that resembles Compound I of natural iron porphyrin systems. Along the whole catalytic cycle, no significant energetic differences were found for the reaction proceeding on the doublet (S=1/2) or on the quartet (S=3/2) hypersurface, with the single exception of the rate-determining O--O bond cleavage of the first associated hydrogen peroxide molecule, for which reaction via the doublet state is preferred. The sextet (S=5/2) state of the FeIII complexes appears to be unreactive in catalase-like reactions.
Collapse
Affiliation(s)
- Willi Sicking
- Institut für Organische Chemie, Universität Duisburg-Essen, Campus Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | | | | | | | | |
Collapse
|
118
|
Cho KB, Moreau Y, Kumar D, Rock DA, Jones JP, Shaik S. Formation of the Active Species of Cytochrome P450 by Using Iodosylbenzene: A Case for Spin-Selective Reactivity. Chemistry 2007; 13:4103-15. [PMID: 17367100 DOI: 10.1002/chem.200601704] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The generation of the active species for the enzyme cytochrome P450 by using the highly versatile oxygen surrogate iodosylbenzene (PhIO) often produces different results compared with the native route, in which the active species is generated through O(2) uptake and reduction by NADPH. One of these differences that is addressed here is the deuterium kinetic isotope effect (KIE) jump observed during N-dealkylation of N,N-dimethylaniline (DMA) by P450, when the reaction conditions change from the native to the PhIO route. The paper presents a theoretical analysis targeted to elucidate the mechanism of the reaction of PhIO with heme, to form the high-valent iron-oxo species Compound I (Cpd I), and define the origins of the KIE jump in the reaction of Cpd I with DMA. It is concluded that the likely origin of the KIE jump is the spin-selective chemistry of the enzyme cytochrome P450 under different preparation procedures. In the native route, the reaction proceeds via the doublet spin state of Cpd I and leads to a low KIE value. PhIO, however, diverts the reaction to the quartet spin state of Cpd I, which leads to the observed high KIE values. The KIE jump is reproduced here experimentally for the dealkylation of N,N-dimethyl-4-(methylthio)aniline, by using intra-molecular KIE measurements that avoid kinetic complexities. The effect of PhIO is compared with N,N-dimethylaniline-N-oxide (DMAO), which acts both as the oxygen donor and the substrate and leads to the same KIE values as the native route.
Collapse
Affiliation(s)
- Kyung-Bin Cho
- Department of Organic Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University, 91904 Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
119
|
Groenhof AR, Ehlers AW, Lammertsma K. Proton assisted oxygen-oxygen bond splitting in cytochrome p450. J Am Chem Soc 2007; 129:6204-9. [PMID: 17441718 DOI: 10.1021/ja0685654] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton assisted O-O bond splitting of cytochromes' P450 hydroperoxo Compound 0 has been investigated by density functional theory, showing a barrier for the slightly endothermic formation of the iron-oxo Compound I. The barrier and the endothermicity increase with decreasing acidity of the distal proton source. Protonation of the proximal iron heme ligand favors the O-O bond scission and provides an important regulatory component in the catalytic cycle. The Compound 0 --> I conversion is slightly exothermic for the peroxidase and catalase models. Implications of the energetic relationship between the two reactive intermediates are discussed in terms of possible oxidative pathways.
Collapse
Affiliation(s)
- André R Groenhof
- Vrije Universiteit, FEW, Department of Chemistry, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
120
|
Rutkowska-Zbik D, Tokarz-Sobieraj R, Witko M. Quantum Chemical Description of Oxygen Activation Process on Co, Mn, and Mo Porphyrins. J Chem Theory Comput 2007; 3:914-20. [DOI: 10.1021/ct600365g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Rutkowska-Zbik
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - R. Tokarz-Sobieraj
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - M. Witko
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| |
Collapse
|
121
|
Ascenzi P, Fasano M. Abacavir modulates peroxynitrite-mediated oxidation of ferrous nitrosylated human serum heme–albumin. Biochem Biophys Res Commun 2007; 353:469-74. [PMID: 17188651 DOI: 10.1016/j.bbrc.2006.12.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
Human serum albumin (SA) is best known for its extraordinary ligand-binding capacity. Here, kinetics of peroxynitrite-mediated oxidation of SA-heme(II)-NO is reported. Peroxynitrite reacts with SA-heme(II)-NO leading to SA-heme(III) and ()NO by way of the transient SA-heme(III)-NO species. Abacavir facilitates peroxynitrite-mediated oxidation of SA-heme(II)-NO, in the absence and presence of CO2. Values of the second order rate constant for peroxynitrite-mediated oxidation of SA-heme(II)-NO are (6.5+/-0.9) x 10(3) M(-1) s(-1) in the absence of CO2 and abacavir, (1.3+/-0.2) x 10(5) M(-1) s(-1) in the presence of CO2, (2.2+/-0.2) x 10(4) M(-1) s(-1) in the presence of abacavir, and (3.6+/-0.3) x 10(5) M(-1) s(-1) in the presence of both CO2 and abacavir. The value of the first-order rate constant for *NO dissociation from the SA-heme(III)-NO complex (=(1.8+/-0.3) x 10(-1) s(-1)) is CO2- and abacavir-independent, representing the rate-limiting step. Present data represent the first evidence for the allosteric modulation of SA-heme reactivity by heterotropic interaction(s).
Collapse
Affiliation(s)
- Paolo Ascenzi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | | |
Collapse
|
122
|
Horner O, Mouesca JM, Solari PL, Orio M, Oddou JL, Bonville P, Jouve HM. Spectroscopic description of an unusual protonated ferryl species in the catalase from Proteus mirabilis and density functional theory calculations on related models. Consequences for the ferryl protonation state in catalase, peroxidase and chloroperoxidase. J Biol Inorg Chem 2007; 12:509-25. [PMID: 17237942 DOI: 10.1007/s00775-006-0203-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 12/21/2006] [Indexed: 11/24/2022]
Abstract
The catalase from Proteus mirabilis peroxide-resistant bacteria is one of the most efficient heme-containing catalases. It forms a relatively stable compound II. We were able to prepare samples of compound II from P. mirabilis catalase enriched in (57)Fe and to study them by spectroscopic methods. Two different forms of compound II, namely, low-pH compound II (LpH II) and high-pH compound II (HpH II), have been characterized by Mössbauer, extended X-ray absorption fine structure (EXAFS) and UV-vis absorption spectroscopies. The proportions of the two forms are pH-dependent and the pH conversion between HpH II and LpH II is irreversible. Considering (1) the Mössbauer parameters evaluated for four related models by density functional theory methods, (2) the existence of two different Fe-O(ferryl) bond lengths (1.80 and 1.66 A) compatible with our EXAFS data and (3) the pH dependence of the alpha band to beta band intensity ratio in the absorption spectra, we attribute the LpH II compound to a protonated ferryl Fe(IV)-OH complex (Fe-O approximately 1.80 A), whereas the HpH II compound corresponds to the classic ferryl Fe(IV)=O complex (Fe=O approximately 1.66 A). The large quadrupole splitting value of LpH II (measured 2.29 mm s(-1) vs. computed 2.15 mm s(-1)) compared with that of HpH II (measured 1.47 mm s(-1) vs. computed 1.46 mm s(-1)) reflects the protonation of the ferryl group. The relevancy and involvement of such (Fe(IV)=O/Fe(IV)-OH) species in the reactivity of catalase, peroxidase and chloroperoxidase are discussed.
Collapse
Affiliation(s)
- O Horner
- Laboratoire de Physicochimie des Métaux en Biologie, UMR CEA/CNRS/Université Joseph Fourier 5155, CEA/Grenoble, 38054, Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
123
|
Hocking RK, Wasinger EC, Yan YL, Degroot FMF, Walker FA, Hodgson KO, Hedman B, Solomon EI. Fe L-edge X-ray absorption spectroscopy of low-spin heme relative to non-heme Fe complexes: delocalization of Fe d-electrons into the porphyrin ligand. J Am Chem Soc 2007; 129:113-25. [PMID: 17199290 PMCID: PMC2890250 DOI: 10.1021/ja065627h] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemes (iron porphyrins) are involved in a range of functions in biology, including electron transfer, small-molecule binding and transport, and O2 activation. The delocalization of the Fe d-electrons into the porphyrin ring and its effect on the redox chemistry and reactivity of these systems has been difficult to study by optical spectroscopies due to the dominant porphyrin pi-->pi(*) transitions, which obscure the metal center. Recently, we have developed a methodology that allows for the interpretation of the multiplet structure of Fe L-edges in terms of differential orbital covalency (i.e., differences in mixing of the d-orbitals with ligand orbitals) using a valence bond configuration interaction (VBCI) model. Applied to low-spin heme systems, this methodology allows experimental determination of the delocalization of the Fe d-electrons into the porphyrin (P) ring in terms of both P-->Fe sigma and pi-donation and Fe-->P pi back-bonding. We find that pi-donation to Fe(III) is much larger than pi back-bonding from Fe(II), indicating that a hole superexchange pathway dominates electron transfer. The implications of the results are also discussed in terms of the differences between heme and non-heme oxygen activation chemistry.
Collapse
Affiliation(s)
- Rosalie K Hocking
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Strickland N, Harvey JN. Spin-Forbidden Ligand Binding to the Ferrous−Heme Group: Ab Initio and DFT Studies. J Phys Chem B 2007; 111:841-52. [PMID: 17249828 DOI: 10.1021/jp064091j] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The potential energy surfaces (PESs) and associated energy barriers that characterize the spin-forbidden recombination reactions of the gas-phase ferrous deoxy-heme group with CO, NO, and H2O ligands have been calculated using density functional theory (DFT). The bond energy for binding of O2 has also been calculated. Extensive large basis set CCSD(T) calculations on two small models of the heme group have been used to calibrate the accuracy of different DFT functionals for treating these systems. Pure functionals are shown to overestimate the stability of the low-spin forms of the deoxy-heme model, and to overestimate the binding energy of H2O and CO, whereas hybrid functionals such as B3PW91 and B3LYP yield accurate results. Accordingly, the latter functionals have been used to explore the PESs for binding. CO binding is found to involve a significant barrier of ca. 3 kcal mol-1 due to the need to change from the deoxy-heme quintet ground state to the bound singlet state. Binding of water does not involve a barrier, but the resulting bond is weak and may be further weakened in the protein environment, which should explain why water binding is not usually observed in heme proteins such as myoglobin. NO binding involves a low barrier, which is consistent with observed rapid geminate recombination. The calculated bond energies are in good agreement with previous reported values and in fair agreement with experiment for CO and O2. The value for NO is significantly lower than the experimentally derived bond energy, suggesting that B3LYP is less accurate in this case.
Collapse
Affiliation(s)
- Nikki Strickland
- Centre for Computational Chemistry and School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | |
Collapse
|
125
|
Abstract
Density functional calculations are performed to investigate the protonation state of the compound II intermediate (Cpd II) of the catalase reaction cycle. Several scenarios are considered, depending on the protonation state of the active center (heme) and the catalytic His residue. Only the form with a protonated Fe==O unit (i.e. Fe--OH) is in agreement with the recent high-resolution crystal structure, while the traditional description of Cpd II as an oxoferryl species corresponds to a configuration slightly higher in energy. The computed Fe--O stretch frequency is in agreement with the available experimental data. Molecular dynamics simulations show that the pocket water remains in the region between the His61 and Asn133 catalytic residues, but it occasionally tries to escape towards the main channel in a concerted motion with the Asn133 residue. A possible role for this residue in the process of ligand entry/escape from the binding pocket is proposed.
Collapse
Affiliation(s)
- Carme Rovira
- Centre de Recerca en Química Teòrica, Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain.
| |
Collapse
|
126
|
de Visser SP. What External Perturbations Influence the Electronic Properties of Catalase Compound I? Inorg Chem 2006; 45:9551-7. [PMID: 17083257 DOI: 10.1021/ic061019r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have performed density functional theory calculations on an active-site model of catalase compound I and studied the responses of the catalytic center to external perturbations. Thus, in the gas phase, compound I has close-lying doublet and quartet spin states with three unpaired electrons: two residing in pi(FeO) orbitals and the third on the heme. The addition of a dielectric constant to the model changes the doublet-quartet energy ordering but keeps the same electronic configuration. By contrast, the addition of an external electric field along one of the principal axes of the system can change the doublet-quartet energy splitting by as much as 6 kcal mol(-1) in favor of either the quartet or the doublet spin state. This sensitivity is much stronger than the effect obtained for iron heme models with thiolate or imidazole axial ligands. Moreover, an external electric field is able to change the electronic system from a heme-based radical [Fe=O(Por*+)OTyr-] to a tyrosinate radical [Fe=O(Por)OTyr*]. This again shows that oxo-iron heme systems are chameleonic species that are influenced by external perturbations and change their character and catalytic properties depending on the local environment.
Collapse
Affiliation(s)
- Sam P de Visser
- Manchester Interdisciplinary Biocenter and the School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
127
|
Derat E, Shaik S. An Efficient Proton-Coupled Electron-Transfer Process during Oxidation of Ferulic Acid by Horseradish Peroxidase: Coming Full Cycle. J Am Chem Soc 2006; 128:13940-9. [PMID: 17044722 DOI: 10.1021/ja065058d] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Quantum mechanics/molecular mechanics calculations were utilized to study the process of oxidation of a native substrate (ferulic acid) by the active species of horseradish peroxidase (Dunford, H. B. Heme Peroxidases; Wiley-VCH: New York, 1999), Compound I and Compound II, and the manner by which the enzyme returns to its resting state. The results match experimental findings and reveal additional novel features. The calculations demonstrate that both oxidation processes are initiated by a proton-coupled electron-transfer (PCET) step, in which the active species of the enzyme participate only as electron-transfer partners, while the entire proton-transfer event is being relayed from the substrate to and from the His42 residue by a water molecule (W402). The reason for the observed (Henriksen, A; Smith, A. T.; Gajhede, M. J. Biol. Chem. 1999, 274, 35005-35011) similar reactivities of Compound I and Compound II toward ferulic acid is that the reactive isomer of Compound II is the, hitherto unobserved, Por(*)(+)Fe(III)OH isomer that resembles Compound I. The PCET mechanism reveals that His42 and W402 are crucial moieties and they determine the function of the HRP enzyme and account for its ability to perform substrate oxidation (Poulos, T. L. Peroxidases and Cytochrome P450. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 4, pp 189). In view of the results, the possibility of manipulating substrate oxidation by magnetic fields is an intriguing possibility.
Collapse
Affiliation(s)
- Etienne Derat
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | | |
Collapse
|
128
|
Capece L, Marti MA, Crespo A, Doctorovich F, Estrin DA. Heme Protein Oxygen Affinity Regulation Exerted by Proximal Effects. J Am Chem Soc 2006; 128:12455-61. [PMID: 16984195 DOI: 10.1021/ja0620033] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heme proteins are found in all living organisms and are capable of performing a wide variety of tasks, requiring in many cases the binding of diatomic ligands, namely, O(2), CO, and/or NO. Therefore, subtle regulation of these diatomic ligands' affinity is one of the key issues for determining a heme protein's function. This regulation is achieved through direct H-bond interactions between the bound ligand and the protein, and by subtle tuning of the intrinsic heme group reactivity. In this work, we present an investigation of the proximal regulation of oxygen affinity in Fe(II) histidine coordinated heme proteins by means of computer simulation. Density functional theory calculations on heme model systems are used to analyze three proximal effects: charge donation, rotational position, and distance to the heme porphyrin plane of the proximal histidine. In addition, hybrid quantum-classical (QM-MM) calculations were performed in two representative proteins: myoglobin and leghemoglobin. Our results show that all three effects are capable of tuning the Fe-O(2) bond strength in a cooperative way, consistently with the experimental data on oxygen affinity. The proximal effects described herein could operate in a large variety of O(2)-binding heme proteins-in combination with distal effects-and are essential to understand the factors determining a heme protein's O(2) affinity.
Collapse
Affiliation(s)
- Luciana Capece
- Departamento de Química Inorganica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
129
|
Abstract
We have studied the reaction mechanism for the insertion of Mg2+ and Fe2+ into a porphyrin ring with density functional calculations with large basis set and including solvation, zero-point and thermal effects. We have followed the reaction from the outer-sphere complex, in which the metal is coordinated with six water molecules and the porphyrin is doubly protonated, until the metal ion is inserted into the deprotonated porphyrin ring with only one water ligand remaining. This reaction involves the stepwise displacement of five water molecules and the removal of two protons from the porphyrin ring. In addition, a step seems to be necessary in which a porphyrin pyrrolenine nitrogen atom changes its interaction from a hydrogen bond to a metal-bound solvent molecule to a direct coordination to the metal ion. If the protons are taken up by a neutral imidazole molecule, the deprotonation reactions are exothermic with minimal barriers. However, with a water molecule as an acceptor, they are endothermic. The ligand exchange reactions were approximately thermoneutral (+/-20 kJ mol(-1), with one exception) with barriers of up to 72 kJ mol(-1) for Mg and 51 kJ mol(-1) for Fe. For Mg, the highest barrier was found for the formation of the first bond to the porphyrin ring. For Fe, a higher barrier was found for the formation of the second bond to the porphyrin ring, but this barrier is probably lower in solution. No evidence was found for an initial pre-equilibrium between a planar and a distorted porphyrin ring. Instead, the porphyrin becomes more and more distorted as the number of metal-porphyrin bonds increase (by up to 191 kJ mol(-1)). This strain is released when the porphyrin becomes deprotonated and the metal moves into the ring plane. Implications of these findings for the chelatase enzymes are discussed.
Collapse
Affiliation(s)
- Yong Shen
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00 Lund, Sweden
| | | |
Collapse
|
130
|
Derat E, Shaik S. Two-State Reactivity, Electromerism, Tautomerism, and “Surprise” Isomers in the Formation of Compound II of the Enzyme Horseradish Peroxidase from the Principal Species, Compound I. J Am Chem Soc 2006; 128:8185-98. [PMID: 16787083 DOI: 10.1021/ja0600734] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
QM and QM/MM calculations on Compound II, the enigmatic species in the catalytic cycle of the horseradish peroxidase enzyme, reveal six low-lying isomers. The principal isomer is the triplet oxo-ferryl form (PorFe(IV)=O) that yields the hydroxo-ferryl isomer (PorFe(IV)-OH+). These are the only forms observed in experimental studies. Theory shows, however, that these are the least stable isomers of Compound II. The two most stable forms are the singlet and triplet states of the Por+*Fe(III)-OH electromer. In addition, theory reveals species never considered in heme enzymes: the singlet and triplet states of the Por+*Fe(III)-OH2 electromer. The computational results reproduce the experimental features of the known isomers and enable us to draw relationships and make predictions regarding the missing ones. For example, while the "surprise" species, singlet and triplet Por+*Fe(III)-OH2, have never been considered in heme chemistry, the calculated Fe-O bond lengths indicate that these isomers may have, in fact, been observed in one of the two opposing EXAFS studies reported previously. Furthermore, these ferric-aqua complexes could be responsible for the reported 18O exchange with bulk water. It is clear, therefore, that the role of Compound II in the HRP cycle is considerably more multi-faceted than has been revealed so far. Our suggested multi-state reactivity scheme provides a paradigm for Compound II species. The calculated Mössbauer parameters may be helpful toward eventual characterization of these missing isomers of Compound II.
Collapse
Affiliation(s)
- Etienne Derat
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | | |
Collapse
|
131
|
Qin J, Perera R, Lovelace LL, Dawson JH, Lebioda L. Structures of thiolate- and carboxylate-ligated ferric H93G myoglobin: models for cytochrome P450 and for oxyanion-bound heme proteins. Biochemistry 2006; 45:3170-7. [PMID: 16519512 PMCID: PMC2556877 DOI: 10.1021/bi052171s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crystal structures of the ferric H93G myoglobin (Mb) cavity mutant containing either an anionic proximal thiolate sulfur donor or a carboxylate oxygen donor ligand are reported at 1.7 and 1.4 A resolution, respectively. The crystal structure and magnetic circular dichroism spectra of the H93G Mb beta-mercaptoethanol (BME) thiolate adduct reveal a high-spin, five-coordinate complex. Furthermore, the bound BME appears to have an intramolecular hydrogen bond involving the alcohol proton and the ligated thiolate sulfur, mimicking one of the three proximal N-H...S hydrogen bonds in cytochrome P450. The Fe is displaced from the porphyrin plane by 0.5 A and forms a 2.41 A Fe-S bond. The Fe(3+)-S-C angle is 111 degrees , indicative of a covalent Fe-S bond with sp(3)-hybridized sulfur. Therefore, the H93G Mb.BME complex provides an excellent protein-derived structural model for high-spin ferric P450. In particular, the Fe-S bond in high-spin ferric P450-CAM has essentially the same geometry despite the constraints imposed by covalent linkage of the cysteine to the protein backbone. This suggests that evolution led to the geometric optimization of the proximal Fe-S(cysteinate) bond in P450. The crystal structure and spectral properties of the H93G Mb acetate adduct reveal a high-spin, six-coordinate complex with proximal acetate and distal water axial ligands. The distal His-64 forms a hydrogen bond with the bound water. The Fe-acetate bonding geometry is inconsistent with an electron pair along the Fe-O bond as the Fe-O-C angle is 152 degrees and the Fe is far from the plane of the acetate. Thus, the Fe-O bonding is ionic. The H93G Mb cavity mutant has already been shown to be a versatile model system for the study of ligand binding to heme proteins; this investigation affords the first structural evidence that nonimidazole exogenous ligands bind in the proximal ligation site.
Collapse
Affiliation(s)
- Jie Qin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | |
Collapse
|
132
|
Horner O, Oddou JL, Mouesca JM, Jouve HM. Mössbauer identification of a protonated ferryl species in catalase from Proteus mirabilis: Density functional calculations on related models. J Inorg Biochem 2006; 100:477-9. [PMID: 16442627 DOI: 10.1016/j.jinorgbio.2005.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 12/13/2005] [Indexed: 11/30/2022]
Abstract
The Proteus mirabilis catalase is one of the most efficient heme-containing catalase and forms a relatively stable compound II. Samples of compound II were prepared from PMC enriched in (57)Fe. For the first time, two different forms of compound II, namely low pH compound II (LpH II) (43%) and high pH compound II (HpH II) (25%), have been characterized by Mössbauer spectroscopy at pH 8.3. The ratio LpH II/HpH II increases irreversibly with decreasing pH. The large quadrupole splitting value of LpH II (DeltaE(Q)=2.29 (2) mm/s, with delta(/Fe)=0.03 (2) mm/s), compared to that of HpH II (DeltaE(Q)=1.47 (2) mm/s, with delta(/Fe)=0.07 (2) mm/s), reflects the protonation of the ferryl group. Quadrupole splitting values of 1.46 and 2.15mm/s have been computed by DFT for optimized models of the ferryl compound II (model 1) and the protonated ferryl compound II (model 2), respectively, starting from the Fe(IV)O model initially published by Rovira and Fita [C. Rovira, I. Fita, J. Phys. Chem. B 107 (2003) 5300-5305]. Therefore, we attribute the LpH II compound to a protonated ferryl Fe(IV)-OH complex, whereas the HpH II compound corresponds to the classical ferryl Fe(IV)O complex.
Collapse
Affiliation(s)
- O Horner
- Laboratoire de Physicochimie des Métaux en Biologie, UMR 5155, CEA/Grenoble, 38054 Grenoble cedex 9, France
| | | | | | | |
Collapse
|
133
|
Kamachi T, Kouno T, Nam W, Yoshizawa K. How axial ligands control the reactivity of high-valent iron(IV)–oxo porphyrin π-cation radicals in alkane hydroxylation: A computational study. J Inorg Biochem 2006; 100:751-4. [PMID: 16516298 DOI: 10.1016/j.jinorgbio.2006.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 01/04/2006] [Indexed: 11/25/2022]
Abstract
The push effect of anionic axial ligands of high-valent iron(IV)-oxo porphyrin pi-cation radicals, (Porp)(+.)Fe(IV)(O)(X) (X=OH(-), AcO(-), Cl(-), and CF(3)SO(3)(-)), in alkane hydroxylation is investigated by B3LYP DFT calculations. The electron-donating ability of anionic axial ligands influences the activation energy for the alkane hydroxylation by the iron(IV)-oxo intermediates and the Fe-O bond distance of the iron-oxo species in transition state.
Collapse
Affiliation(s)
- Takashi Kamachi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
134
|
Hersleth HP, Ryde U, Rydberg P, Görbitz CH, Andersson KK. Structures of the high-valent metal-ion haem–oxygen intermediates in peroxidases, oxygenases and catalases. J Inorg Biochem 2006; 100:460-76. [PMID: 16510192 DOI: 10.1016/j.jinorgbio.2006.01.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/09/2006] [Accepted: 01/09/2006] [Indexed: 11/22/2022]
Abstract
Peroxidases, oxygenases and catalases have similar high-valent metal-ion intermediates in their respective reaction cycles. In this review, haem-based examples will be discussed. The intermediates of the haem-containing enzymes have been extensively studied for many years by different spectroscopic methods like UV-Vis, EPR (electron paramagnetic resonance), resonance Raman, Mössbauer and MCD (magnetic circular dichroism). The first crystal structure of one of these high-valent intermediates was on cytochrome c peroxidase in 1987. Since then, structures have appeared for catalases in 1996, 2002, 2003, putatively for cytochrome P450 in 2000, for myoglobin in 2002, for horseradish peroxidase in 2002 and for cytochrome c peroxidase again in 1994 and 2003. This review will focus on the most recent structural investigations for the different intermediates of these proteins. The structures of these intermediates will also be viewed in light of quantum mechanical (QM) calculations on haem models. In particular quantum refinement, which is a combination of QM calculations and crystallography, will be discussed. Only small structural changes accompany the generation of these intermediates. The crystal structures show that the compound I state, with a so called pi-cation radical on the haem group, has a relatively short iron-oxygen bond (1.67-1.76A) in agreement with a double-bond character, while the compound II state or the compound I state with a radical on an amino acid residue have a relatively long iron-oxygen bond (1.86-1.92A) in agreement with a single-bond character where the oxygen-atom is protonated.
Collapse
Affiliation(s)
- Hans-Petter Hersleth
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | | | | | | | | |
Collapse
|
135
|
Terner J, Palaniappan V, Gold A, Weiss R, Fitzgerald MM, Sullivan AM, Hosten CM. Resonance Raman spectroscopy of oxoiron(IV) porphyrin π-cation radical and oxoiron(IV) hemes in peroxidase intermediates. J Inorg Biochem 2006; 100:480-501. [PMID: 16513173 DOI: 10.1016/j.jinorgbio.2006.01.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 01/04/2006] [Indexed: 11/15/2022]
Abstract
The catalytic cycle intermediates of heme peroxidases, known as compounds I and II, have been of long standing interest as models for intermediates of heme proteins, such as the terminal oxidases and cytochrome P450 enzymes, and for non-heme iron enzymes as well. Reports of resonance Raman signals for compound I intermediates of the oxo-iron(IV) porphyrin pi-cation radical type have been sometimes contradictory due to complications arising from photolability, causing compound I signals to appear similar to those of compound II or other forms. However, studies of synthetic systems indicated that protein based compound I intermediates of the oxoiron(IV) porphyrin pi-cation radical type should exhibit vibrational signatures that are different from the non-radical forms. The compound I intermediates of horseradish peroxidase (HRP), and chloroperoxidase (CPO) from Caldariomyces fumago do in fact exhibit unique and characteristic vibrational spectra. The nature of the putative oxoiron(IV) bond in peroxidase intermediates has been under discussion in the recent literature, with suggestions that the Fe(IV)O unit might be better described as Fe(IV)-OH. The generally low Fe(IV)O stretching frequencies observed for proteins have been difficult to mimic in synthetic ferryl porphyrins via electron donation from trans axial ligands alone. Resonance Raman studies of iron-oxygen vibrations within protein species that are sensitive to pH, deuteration, and solvent oxygen exchange, indicate that hydrogen bonding to the oxoiron(IV) group within the protein environment contributes to substantial lowering of Fe(IV)O frequencies relative to those of synthetic model compounds.
Collapse
Affiliation(s)
- James Terner
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| | | | | | | | | | | | | |
Collapse
|
136
|
Neese F. Theoretical spectroscopy of model-nonheme [Fe(IV)OL5]2+ complexes in their lowest triplet and quintet states using multireference ab initio and density functional theory methods. J Inorg Biochem 2006; 100:716-26. [PMID: 16504299 DOI: 10.1016/j.jinorgbio.2006.01.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/13/2006] [Accepted: 01/16/2006] [Indexed: 10/25/2022]
Abstract
The structure, energies and spectroscopic properties of a simple [FeO(NH(3))(5)](2+) model with ground states (3)A(2g) and (5)A(1g) (in approximate C(4v) symmetry) have been studied in some detail using density functional (DFT) and simplified correlated multireference ab initio methods. The results reveal similarities as well as some pronounced differences in the properties of the molecule in the two alternative spin states.
Collapse
Affiliation(s)
- Frank Neese
- Max-Planck Institute for Bioinorganic Chemistry, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
137
|
Wang Y, Wang H, Wang Y, Yang C, Yang L, Han K. Theoretical Study of the Mechanism of Acetaldehyde Hydroxylation by Compound I of CYP2E1. J Phys Chem B 2006; 110:6154-9. [PMID: 16553429 DOI: 10.1021/jp060033m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent experimental studies revealed that cytochrome P450 2E1 (CYP2E1) could metabolize not only ethanol but also its primary product, acetaldehyde, accompanying the well-known acetaldehyde dehydrogenases (ALDH) in the metabolism of acetaldehyde. Mechanistic aspects of acetaldehyde hydroxylation by Compound I model active species of CYP2E1 were investigated by means of B3LYP DFT calculations in the present paper. Our study results demonstrate that acetaldehyde hydroxylation by CYP2E1 is in accord with the effectively concerted mechanisms both on the high quartet spin state (HS) and on the low doublet spin state (LS). The rate-limiting step is H-abstraction, and the activation energy is about 11.7 approximately 14.0 kcal/mol on the quartet (doublet) reaction route, which is about one-half to one-third of that needed by methane hydroxylation. The phenomenon that the HS and LS reaction routes are both effectively concerted was shown for the first time to occur in trans-2-phenyl-iso-propylcyclopropane hydroxylation by Kumar et al. (see Figure 7 in the paper of Kumar, D.; de Visser, S. P.; Sharma, P. K.; Cohen, S.; Shaik, S. J. Am. Chem. Soc. 2004, 126, 1907) and was confirmed in our work of acetaldehyde hydroxylation by cytochrome P450. Theoretical exploration of the HS O-rebound barrier degradation is also presented in the present paper on the basis of Shaik's valence bond (VB) model.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | | | | | | | | | | |
Collapse
|
138
|
Choe YK, Nagase S. Effect of the axial cysteine ligand on the electronic structure and reactivity of high-valent iron(IV) oxo-porphyrins (Compound I): A theoretical study. J Comput Chem 2005; 26:1600-11. [PMID: 16155883 DOI: 10.1002/jcc.20302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of axial ligands on the reactivity of high-valent iron(IV) oxo-porphyrins (Compound I) was investigated using the B3LYP hybrid density functional method. We studied alkane hydroxylation using four models: Compound I with thiolate, imidazole, phenolate, and chloride anions as axial ligands. The first three ligands were employed as models for cysteinate, histidine, and tyrosinate, respectively. Our calculations show that anionic ligands and neutral ligands favor different electronic states for stationary points in the reaction coordinate, and the calculated energy barrier and energy of several reaction intermediates show similar values. A remarkable effect of axial ligands was found in the final product release step. Our calculations show that the thiolate ligand weakens a bond between heme and an alcohol. In contrast, the imidazole ligand significantly increases the interaction between heme and an alcohol, which causes the catalytic cycle to be less efficient.
Collapse
Affiliation(s)
- Yoong-Kee Choe
- Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, Center-2, Umezono 1-1-1, Tsukuba 305-8578, Japan.
| | | |
Collapse
|
139
|
Interplay between iron complexes, nitric oxide and sulfur ligands: Structure, (photo)reactivity and biological importance. Coord Chem Rev 2005. [DOI: 10.1016/j.ccr.2005.03.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
140
|
Derat E, Cohen S, Shaik S, Altun A, Thiel W. Principal Active Species of Horseradish Peroxidase, Compound I: A Hybrid Quantum Mechanical/Molecular Mechanical Study. J Am Chem Soc 2005; 127:13611-21. [PMID: 16190726 DOI: 10.1021/ja0534046] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The active species, Compound I, of horseradish peroxidase (HRP) has been investigated by quantum mechanical/molecular mechanical (QM/MM) calculations using 10 different QM regions. In accord with experimental data, the lowest doublet and quartet states are found to be virtually degenerate, with two unpaired electrons on the FeO moiety and one localized on the porphyrin in an a(2u)-dominant orbital with a minor, but nonnegligible, a(1u) component. The proximal ligand appears to be imidazole rather than imidazolate. The hydrogen-bonding network around the FeO moiety (i.e., Arg38 and His42) has significant influence on the axial bonds and the spin density distribution in the FeO moiety. Including this network in the QM region was found to be essential for reproducing the experimental Mössbauer parameters. The protein environment shapes most of the subtle features of Compound I of HRP.
Collapse
Affiliation(s)
- Etienne Derat
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
141
|
|
142
|
Denisov IG, Makris TM, Sligar SG, Schlichting I. Structure and Chemistry of Cytochrome P450. Chem Rev 2005; 105:2253-77. [PMID: 15941214 DOI: 10.1021/cr0307143] [Citation(s) in RCA: 1530] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, 61801, USA
| | | | | | | |
Collapse
|
143
|
Schöneboom JC, Neese F, Thiel W. Toward Identification of the Compound I Reactive Intermediate in Cytochrome P450 Chemistry: A QM/MM Study of Its EPR and Mössbauer Parameters. J Am Chem Soc 2005; 127:5840-53. [PMID: 15839682 DOI: 10.1021/ja0424732] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Quantum mechanical/molecular mechanical (QM/MM) methods have been used in conjunction with density functional theory (DFT) and correlated ab initio methods to predict the electron paramagnetic resonance (EPR) and Mossbauer (MB) properties of Compound I in P450(cam). For calibration purposes, a small Fe(IV)-oxo complex [Fe(O)(NH(3))(4)(H(2)O)](2+) was studied. The (3)A(2) and (5)A(1) states (in C(4)(v)() symmetry) are found to be within 0.1-0.2 eV. The large zero-field splitting (ZFS) of the (FeO)(2+) unit in the (3)A(2) state arises from spin-orbit coupling with the low-lying quintet and singlet states. The intrinsic g-anisotropy is very small. The spectroscopic properties of the model complex [Fe(O)(TMC)(CH(3)CN)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) are well reproduced by theory. In the model complexes [Fe(O)(TMP)(X)](+) (TMP = tetramesitylporphyrin, X = nothing or H(2)O) the computations again account for the observed spectroscopic properties and predict that the coupling of the (5)A(1) state of the (FeO)(2+) unit to the porphyrin radical leads to a low-lying sextet/quartet manifold approximately 12 kcal/mol above the quartet ground state. The calculations on cytochrome P450(cam), with and without the simulation of the protein environment by point charges, predict a small antiferromagnetic coupling (J approximately -13 to -16 cm(-)(1); H(HDvV) = - 2JS(A)S(B)) and a large ZFS > 15 cm(-)(1) (with E/D approximately 1/3) which will compete with the exchange coupling. This leads to three Kramers doublets of mixed multiplicity which are all populated at room temperature and may therefore contribute to the observed reactivity. The MB and ligand hyperfine couplings ((14)N, (1)H) are fairly sensitive to the protein environment which controls the spin density distribution between the porphyrin ring and the axial cysteinate ligand.
Collapse
Affiliation(s)
- Jan C Schöneboom
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
144
|
Groenhof AR, Swart M, Ehlers AW, Lammertsma K. Electronic Ground States of Iron Porphyrin and of the First Species in the Catalytic Reaction Cycle of Cytochrome P450s. J Phys Chem A 2005; 109:3411-7. [PMID: 16833677 DOI: 10.1021/jp0441442] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electronic structures of iron(II) and iron(III) porphyrins are studied with density functional theory (DFT) using the GGA exchange functional OPTX in combination with the correlation functional PBE (OPBE) and with the correlation functional Perdew (OPerdew) together with a triple zeta-type basis set. These functionals, known for accurately predicting the spin ground state of iron complexes, are evaluated against other functionals for their performance in calculating relative energies for the various electronic states of both the iron porphyrins. The calculated energy orderings are triplet < quintet < singlet for the iron(II) porphyrin and quartet < sextet < doublet for the iron(III) porphyrin cation. Complexation by a thiolate ion (SH-) changes the preferred ground state for both species to high spin. This thiolate complex is used as a mimic for the cytochrome P450s active site to model the first step of the catalytic cycle of this enzyme. This first step is believed to concern the removal of an axial oxygen donating ligand from the hexacoordinated aqua-thiolate-porphyrin-iron(III) resting state. The DFT results suggest that this is not a free water molecule, because of its repulsive nature, but that it has instead hydroxy anion character. These calculations are in line with the experimentally observed change in the spin state from low to high spin upon this removal of the axial hydroxo ligand by binding of the substrate in the heme pocket of cytochrome P450.
Collapse
Affiliation(s)
- André R Groenhof
- Department of Chemistry, Vrije Universiteit, FEW, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
145
|
Shaik S, Kumar D, de Visser SP, Altun A, Thiel W. Theoretical Perspective on the Structure and Mechanism of Cytochrome P450 Enzymes. Chem Rev 2005; 105:2279-328. [PMID: 15941215 DOI: 10.1021/cr030722j] [Citation(s) in RCA: 964] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sason Shaik
- Department of Organic Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
146
|
Ryabova ES, Rydberg P, Kolberg M, Harbitz E, Barra AL, Ryde U, Andersson KK, Nordlander E. A comparative reactivity study of microperoxidases based on hemin, mesohemin and deuterohemin. J Inorg Biochem 2005; 99:852-63. [PMID: 15708807 DOI: 10.1016/j.jinorgbio.2004.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 12/22/2004] [Accepted: 12/24/2004] [Indexed: 11/28/2022]
Abstract
Three microperoxidases--hemin-6(7)-gly-gly-his methyl ester (HGGH), mesohemin-6(7)-gly-gly-his methyl ester (MGGH) and deuterohemin-6(7)-gly-gly-his methyl ester (DGGH)--have been prepared as models for heme-containing peroxidases by condensation of glycyl-glycyl-L-histidine methyl ester with the propionic side chains of hemin, mesohemin and deuterohemin, respectively. The three microperoxidases differ in two substituents, R, of the protoporphyrin IX framework (HGGH: R=vinyl, MGGH: R=ethyl, DGGH: R=H). X-band and high field EPR spectra show that the microperoxidases exhibit spectroscopic properties similar to those of metmyoglobin, i.e. a high spin ferric S=5/2 signal at g(perpendicular)=6 and g parallel)=2 and an estimated D value of 7.5+/-1cm(-1). The catalytic activities of the microperoxidases towards K4[Fe(CN)6], L-tyrosine methyl ester and 2,2'-azino(bis(3-ethylbenzothiazoline-6-sulfonic acid)) (ABTS) have been investigated. It was found that all three microperoxidases exhibit peroxidase activity and that the reactions follow the generally accepted peroxidase reaction scheme [Biochem. J. 145 (1975) 93-103] with the exception that the initial formation of a Compound I analogue is the rate-limiting step for the whole process. The general activity trend was found to be MGGH approximately DGGH>HGGH. For each microperoxidase, DFT calculations (B3LYP) were made on the reactions of compounds 0, I and II with H+, e- and H+ + e-, respectively, in order to probe the possible relationship between the nature of the 2- and 4-substituents of the hemin and the observed reactivity. The computational modeling indicates that the relative energy differences are very small; solvation and electrostatic effects may be factors that decide the relative activities of the microperoxidases.
Collapse
Affiliation(s)
- Ekaterina S Ryabova
- Inorganic Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Kumar D, de Visser SP, Sharma PK, Derat E, Shaik S. The intrinsic axial ligand effect on propene oxidation by horseradish peroxidase versus cytochrome P450 enzymes. J Biol Inorg Chem 2005; 10:181-9. [PMID: 15723206 DOI: 10.1007/s00775-004-0622-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 12/20/2004] [Indexed: 11/25/2022]
Abstract
The axial ligand effect on reactivity of heme enzymes is explored by means of density functional theoretical calculations of the oxidation reactions of propene by a model compound I species of horseradish peroxidase (HRP). The results are assessed vis-a-vis those of cytochrome P450 compound I. It is shown that the two enzymatic species perform C=C epoxidation and C-H hydroxylation in a multistate reactivity scenario with Fe(III) and Fe(IV) electromeric situations and two different spin states, doublet and quartet. However, while the HRP species preferentially keeps the iron in a low oxidation state (Fe(III)), the cytochrome P450 species prefers the higher oxidation state (Fe(IV)). It is found that HRP compound I has somewhat lower barriers than those obtained by the cytochrome P450 species. Furthermore, in agreement with experimental observations and studies on model systems, HRP prefers C=C epoxidation, whereas cytochrome P450 prefers C-H hydroxylation. Thus, had the compound I species of HRP been by itself, it would have been an epoxidizing agent, and at least as reactive as cytochrome P450. In the enzyme, HRP is much less reactive than cytochrome P450, presumably because HRP reactivity is limited by the access of the substrate to compound I.
Collapse
Affiliation(s)
- Devesh Kumar
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
148
|
Vatsis KP, Peng HM, Coon MJ. Abolition of oxygenase function, retention of NADPH oxidase activity, and emergence of peroxidase activity upon replacement of the axial cysteine-436 ligand by histidine in cytochrome P450 2B4. Arch Biochem Biophys 2005; 434:128-38. [PMID: 15629116 DOI: 10.1016/j.abb.2004.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/14/2004] [Indexed: 11/22/2022]
Abstract
A fundamental aspect of cytochrome P450 function is the role of the strictly conserved axial cysteine ligand, replacement of which by histidine has invariably resulted in mammalian and bacterial preparations devoid of heme. Isolation of the His-436 variant of NH2-truncated P450 2B4 partly as the holoenzyme was achieved in the present study by mutagenesis of the I-helix Ala-298 residue to Glu and subsequent conversion of the axial Cys-436 to His. The expressed A298E/C436H double mutant, cloned with a hexahistidine tag, had a molecular mass equivalent to that of the primary structure of His-tagged truncated 2B4 and the sum of the two mutated residues, and contained a heme group which, when released on HPLC, showed a retention time and spectrum identical to those of iron protoporphyrin IX. The absolute spectra of A298E/C436H indicate a change in heme coordination structure from low- to high-spin, and, as expected for a His-ligated hemeprotein, the Soret maximum of the ferrous CO complex is at 422 nm. The double mutant has no oxygenase activity with representative substrates known to undergo transformation by the oxene [(FeO)3+] or peroxo activated oxygen species, but catalyzes significant H2O2 formation that is NADPH- and time-dependent, and directly proportional to the concentration of A298E/C436H in the presence of saturating reductase. Moreover, the catalytic efficiency of A298E/C436H in the H2O2-supported peroxidation of pyrogallol is more than two orders of magnitude greater than that of wild-type 2B4 or the A298E variant. The results unambiguously demonstrate that the proximal thiolate ligand is essential for substrate oxygenation by P450.
Collapse
Affiliation(s)
- Kostas P Vatsis
- Department of Biological Chemistry, Medical School, The University of Michigan, Ann Arbor, MI 48109-0606, USA.
| | | | | |
Collapse
|
149
|
Bathelt CM, Mulholland AJ, Harvey JN. QM/MM studies of the electronic structure of the compound I intermediate in cytochrome c peroxidase and ascorbate peroxidase. Dalton Trans 2005:3470-6. [PMID: 16234927 DOI: 10.1039/b505407a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX) both involve reactive haem oxoferryl intermediates known as 'compound I' species. These two enzymes also have a very similar structure, especially in the vicinity of the haem group. Despite this similarity, the electronic structure of compound I in the two enzymes is known to be very different. Compound I intermediates have three unpaired electrons, two of which are always situated on the Fe-O core, whilst the third is located in a porphyrin orbital in APX and many other compound I species. In CcP, however, this third unpaired electron is positioned on a tryptophan residue lying close to the haem ring. The same residue is present in the same position in APX, yet it is not oxidized in that case. We report QM/MM calculations, using accurate B3LYP density functional theory for the QM region, on the active intermediate for both enzymes. We reproduce the observed difference in electronic structure, and show that it arises as a result of subtle electrostatic effects which affect the ionization potential of both the tryptophan and porphyrin groups. The computed structures of both enzymes do not involve deprotonation of the tryptophan group, or protonation of the oxoferryl oxygen.
Collapse
Affiliation(s)
- Christine M Bathelt
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol, UK BS8 1TS
| | | | | |
Collapse
|
150
|
Di Costanzo L, Geremia S, Randaccio L, Nastri F, Maglio O, Lombardi A, Pavone V. Miniaturized heme proteins: crystal structure of Co(III)-mimochrome IV. J Biol Inorg Chem 2004; 9:1017-27. [PMID: 15551102 DOI: 10.1007/s00775-004-0600-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 09/13/2004] [Indexed: 11/28/2022]
Abstract
Protein design provides an attractive approach to test the essential features required for folding and function. Previously, we described the design and structural characterization in solution of mimochromes, a series of miniaturized metalloproteins, patterned after the F-helix of the hemoglobin beta-chain. Mimochromes consist of two medium-sized helical peptides, covalently linked to the deuteroporphyrin. CD and NMR characterization of the prototype, mimochrome I, revealed that the overall structure conforms well to the design. However, formation of Delta and Lambda diastereomers was observed. To overcome the problem of diastereomer formation, we re-designed mimochrome I, by engineering intramolecular, interchain interactions. The resulting model was mimochrome IV: the solution structural characterization showed the presence of the Lambda isomer as a unique form. To examine the extent to which the stereochemical stability and uniqueness of mimochrome IV was retained in the solid state, the crystal structure of Co(III)-mimochrome IV was solved by X-ray diffraction, and compared to the solution structure of the same derivative. Co(III)-mimochrome IV structures, both in solution and in the solid state, are characterized by the following common features: a bis-His axial coordination, a Lambda configuration around the metal ion, and a predominant helical conformation of the peptide chains. However, in the crystal structure, intrachain Glu1-Arg9 ion pairs are preferred over the designed, and experimentally found in solution, interchain interactions. This ion pairing switch may be related to strong packing interactions.
Collapse
Affiliation(s)
- Luigi Di Costanzo
- Centre of Excellence in Biocrystallography, Department of Chemical Science, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|