101
|
Liu S, Chen X, Chen R, Wang J, Zhu G, Jiang J, Wang H, Duan S, Huang J. Diagnostic role of Wnt pathway gene promoter methylation in non small cell lung cancer. Oncotarget 2018; 8:36354-36367. [PMID: 28422739 PMCID: PMC5482660 DOI: 10.18632/oncotarget.16754] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Wnt signal pathway genes are known to be involved with cancer development. Here we tested the hypothesis whether DNA methylation of genes part of the Wnt signaling pathway could help the diagnosis of non-small cell lung cancer (NSCLC). The methylation levels of SFRP1, SFRP2, WIF1 and PRKCB in 111 NSCLC patients were evaluated by quantitative methylation-specific PCR (qMSP). Promoter methylation levels of four candidate genes were significantly higher in tumor tissues compared with the adjacent tissues. SFRP1, SFRP2 and PRKCB genes were all shown to be good predictors of NSCLC risk (SFRP1: AUC = 0.711; SFRP2: AUC = 0.631; PRKCB: AUC = 0.650). The combined analysis showed that the methylation status of the four genes had a sensitivity of 70.3% and a specificity of 73.9% in the prediction of NSCLC risk for study cohort. A higher diagnostic value with an AUC of 0.945 (95% CI: 0.923–0.967, sensitivity: 90.6%, specificity: 93.0%) was found in TCGA cohort. In addition, SFRP1 and SFRP2 hypermethylation events were specific to male patients. Further TCGA data mining analysis suggested that SFRP1_cg15839448, SFRP2_cg05774801, and WIF1_cg21383810 were inversely associated with the host gene expression. Moreover, GEO database analysis showed that 5′-Aza-deoxycytidine was able to upregulate gene expression in several lung cancer cell lines. Subsequent dual-luciferase reporter assay showed a crucial regulatory function of PRKCB promoter. In summary, our study showed that a panel of Wnt signal pathway genes (SFRP1, SFRP2, WIF1 and PRKCB) had the potential as methylation biomarkers in the diagnosis of NSCLC.
Collapse
Affiliation(s)
- Shunlin Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaoying Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ruhua Chen
- Department of Respiratory Medicine, Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, China
| | - Jinzhi Wang
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215007, China
| | - Guoliang Zhu
- Department of Pathology, Huzhou First People's Hospital, Huzhou, Zhejiang 313000, China
| | - Jianzhong Jiang
- Department of Geriatrics, Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, China
| | - Hongwei Wang
- Realgen Biotechnology Co., Ltd. Zhangjiang High Technology Park, Shanghai 201203, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
102
|
Abstract
microRNAs (miRs) are targets for genomic aberrations and emerging treatments against cancer. It has been demonstrated that targeting miR-569 may potentially benefit patients with ovarian or breast cancer. However, the exact roles of miR-569 remain unclear in human lung cancer cells. Using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), it was demonstrated that miR-569 expression was consistently decreased in lung cancer cells. As well as cell proliferation and migration inhibition, apoptosis and cell arrest at the G1 phase were induced following reversion of miR-569 expression in lung cancer cells. The present study demonstrated that miR-569 was able to downregulate FOS and high mobility group A2 mRNA and protein expression using RT-qPCR and western blot analysis. The observed role of miRNA-569 in lung cancer cells in the present study suggested that it may be a novel and promising therapeutic target, and a novel biomarker for detecting lung cancer.
Collapse
Affiliation(s)
- Yi Ping Zheng
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| | - Linxia Wu
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| | - Jie Gao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| | - Yanfu Wang
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
103
|
Gao L, Cheng D, Yang J, Wu R, Li W, Kong AN. Sulforaphane epigenetically demethylates the CpG sites of the miR-9-3 promoter and reactivates miR-9-3 expression in human lung cancer A549 cells. J Nutr Biochem 2018. [PMID: 29525530 DOI: 10.1016/j.jnutbio.2018.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increasing evidence suggests that epigenetic aberrations contribute to the development and progression of cancers such as lung cancer. The promoter region of miR-9-3 was recently found to be hypermethylated in lung cancer, resulting in down-regulation of miR-9-3 and poor patient prognosis. Sulforaphane (SFN), a natural compound that is obtained from cruciferous vegetables, has potent anticancer activities. In this study, we aimed to investigate the effect of SFN on restoring the miR-9-3 level in lung cancer A549 cells through epigenetic regulation. DNA methylation of the miR-9-3 promoter was examined using bisulfite genomic sequencing and methylated DNA immunoprecipitation analysis. The expression levels of miR-9-3 and several epigenetic modifying enzymes were measured using quantitative real-time polymerase chain reaction and Western blotting, respectively. The transcriptional activity of the miR-9-3 promoter was evaluated by patch methylation, and histone modifications were analyzed using chromatin immunoprecipitation (ChIP) assays. We found that CpG methylation was reduced in the miR-9-3 promoter and that miR-9-3 expression was increased after 5 days of treatment with SFN. In vitro methylation analysis showed that the methylated recombinant construct exhibited lower luciferase reporter activity than the unmethylated counterpart. ChIP assays revealed that SFN treatment increased H3K4me1 enrichment at the miR-9-3 promoter. Furthermore, SFN treatment attenuated enzymatic DNMT activity and DNMT3a, HDAC1, HDAC3, HDAC6 and CDH1 protein expression. Taken together, these findings indicate that SFN may exert its chemopreventive effects partly through epigenetic demethylation and restoration of miR-9-3.
Collapse
Affiliation(s)
- Linbo Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David Cheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jie Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wenji Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
104
|
Lai Q, Wang H, Li A, Xu Y, Tang L, Chen Q, Zhang C, Gao Y, Song J, Du Z. Decitibine improve the efficiency of anti-PD-1 therapy via activating the response to IFN/PD-L1 signal of lung cancer cells. Oncogene 2018; 37:2302-2312. [DOI: 10.1038/s41388-018-0125-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/27/2017] [Accepted: 12/16/2017] [Indexed: 12/25/2022]
|
105
|
Molina-Pinelo S, Salinas A, Moreno-Mata N, Ferrer I, Suarez R, Andrés-León E, Rodríguez-Paredes M, Gutekunst J, Jantus-Lewintre E, Camps C, Carnero A, Paz-Ares L. Impact of DLK1-DIO3 imprinted cluster hypomethylation in smoker patients with lung cancer. Oncotarget 2018; 9:4395-4410. [PMID: 29435111 PMCID: PMC5796982 DOI: 10.18632/oncotarget.10611] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
DNA methylation is important for gene expression and genome stability, and its disruption is thought to play a key role in the initiation and progression of cancer and other diseases. The DLK1-DIO3 cluster has been shown to be imprinted in humans, and some of its components are relevant to diverse pathological processes. The purpose of this study was to assess the methylation patterns of the DLK1-DIO3 cluster in patients with lung cancer to study its relevance in the pathogenesis of this disease. We found a characteristic methylation pattern of this cluster in smoking associated lung cancer, as compared to normal lung tissue. This methylation profile is not patent however in lung cancer of never smokers nor in lung tissue of COPD patients. We found 3 deregulated protein-coding genes at this locus: one was hypermethylated (DIO3) and two were hypomethylated (DLK1 and RTL1). Statistically significant differences were also detected in two different families of SNORDs, two miRNA clusters and four lncRNAs (MEG3, MEG8, MEG9 and LINC00524). These findings were validated using data from the cancer genome atlas (TCGA) database. We have then showed an inverse correlation between DNA methylation and expression levels in 5 randomly selected genes. Several targets of miRNAs included in the DLK1-DIO3 cluster have been experimentally verified as tumor suppressors. All of these results suggest that the dysmethylation of the imprinted DLK1-DIO3 cluster could have a relevant role in the pathogenesis of lung cancer in current and former smokers and may be used for diagnostic and/or therapeutic purposes.
Collapse
Affiliation(s)
- Sonia Molina-Pinelo
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
- Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- CIBER de Cáncer, Madrid, Spain
| | - Ana Salinas
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
| | - Nicolás Moreno-Mata
- Thoracic Surgery Department, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Irene Ferrer
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
- Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- CIBER de Cáncer, Madrid, Spain
| | - Rocío Suarez
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
- Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- CIBER de Cáncer, Madrid, Spain
| | - Eduardo Andrés-León
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
| | - Manuel Rodríguez-Paredes
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
- University Tumor Center Düsseldorf, University of Düsseldorf, Düsseldorf, Germany
| | - Julian Gutekunst
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario de Valencia, Valencia, Spain
- Department of Biotechnology, Universitat Politècnica de Valencia, Valencia, Spain
| | - Carlos Camps
- Department of Medicine, University of Valencia, Valencia, Spain
- Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
- CIBER de Cáncer, Madrid, Spain
| | - Luis Paz-Ares
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
- Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- CIBER de Cáncer, Madrid, Spain
| |
Collapse
|
106
|
Han L, Xu G, Xu C, Liu B, Liu D. Potential prognostic biomarkers identified by DNA methylation profiling analysis for patients with lung adenocarcinoma. Oncol Lett 2018; 15:3552-3557. [PMID: 29467875 PMCID: PMC5796271 DOI: 10.3892/ol.2018.7790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022] Open
Abstract
Lung adenocarcinoma is frequently occurring type of lung cancer with high metastatic risk. We performed a DNA methylation profiling analysis to identify possible prognostic markers involved in lung adenocarcinoma. DNA methylation profiling data (GSE66386) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially methylated genes were identified using a limma package. GO enrichment analysis was performed to identify vital functions related to differential gene methylation, and pathway analysis was performed to assess the associations between different proteins with regard to regulation of cell function and metabolism. The screening results showed a total of 112,662 differentially methylated genes in lung adenocarcinoma patients compared with those of the normal controls. These CpGs were involved in 16,705 genes. The skeletal system development (P=9.46E-27) and embryonic organ morphogenesis (P=8.67E-24) were found to be involved in lung adenocarcinoma. The cancer (P=3.64E-07), Rap1 signaling (P=9.21E-05) and calcium signaling (P=9.21E-05) pathways constituted the important pathways associated with lung adenocarcinoma. In conclusion, methylated PTPRF, HOXD3, HOXD13 and CACNA1A are potential markers and may be utilized for the diagnosis and therapy of lung adenocarcinoma.
Collapse
Affiliation(s)
- Liankui Han
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guizhou 550002, P.R. China
| | - Gang Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Chuan Xu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guizhou 550002, P.R. China
| | - Bo Liu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guizhou 550002, P.R. China
| | - Di Liu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guizhou 550002, P.R. China
| |
Collapse
|
107
|
Han F, Sun LP, Liu S, Xu Q, Liang QY, Zhang Z, Cao HC, Yu J, Fan DM, Nie YZ, Wu KC, Yuan Y. Promoter methylation of RNF180 is associated with H.pylori infection and serves as a marker for gastric cancer and atrophic gastritis. Oncotarget 2017; 7:24800-9. [PMID: 27050149 PMCID: PMC5029743 DOI: 10.18632/oncotarget.8523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 03/06/2016] [Indexed: 12/23/2022] Open
Abstract
Promoter methylation (PM) of RING-finger protein (RNF) 180 affects gastric cancer (GC) prognosis, but its association with risk of GC or atrophic gastritis (AG) is unclear. We investigated relationships between RNF180 PM and GC or AG, and the effects of Helicobactor pylori (H.pylori) infection on RNF180 PM. This study included 513 subjects (159 with GC, 186 with AG, and 168 healthy controls [CON]) for RNF180 PM analysis, and another 55 GC patients for RNF180 gene expression analysis. Methylation was quantified using average methylation rates (AMR), methylated CpG site counts (MSC) and hypermethylated CpG site counts (HSC). RNF180 promoter AMR and MSC increased with disease severity. Optimal cut-offs were GC + AG: AMR > 0.153, MSC > 4 or HSC > 1; GC: AMR > 0.316, MSC > 15 and HSC > 6. Hypermethylation at 5 CpG sites differed significantly between GC/AG and CON groups, and was more common in GC patients than AG and CON groups for 2 other CpG sites. The expression of RNF180 mRNA levels in tumor were significantly lower than those in non-tumor, with the same as in hypermethylation than hypomethylation group. H.pylori infection increased methylation in normal tissue or mild gastritis, and increased hypermethylation risk at 3 CpG sites in AG. In conclusion, higher AMR, MSC and HSC levels could identify AG + GC or GC. Some RNF180 promoter CpG sites could identify precancerous or early-stage GC. H.pylori affects RNF180 PM in normal tissue or mild gastritis, and increases hypermethylation in 3 CpG sites in AG.
Collapse
Affiliation(s)
- Fang Han
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, Liaoning, China
| | - Li-Ping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, Liaoning, China
| | - Shuang Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, Liaoning, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, Liaoning, China
| | - Qiao-Yi Liang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Zhe Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Hai-Chao Cao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Dai-Ming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Yong-Zhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Kai-Chun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, Liaoning, China
| |
Collapse
|
108
|
Gamerith G, Rainer J, Huber JM, Hackl H, Trajanoski Z, Koeck S, Lorenz E, Kern J, Kofler R, Kelm JM, Zwierzina H, Amann A. 3D-cultivation of NSCLC cell lines induce gene expression alterations of key cancer-associated pathways and mimic in-vivo conditions. Oncotarget 2017; 8:112647-112661. [PMID: 29348853 PMCID: PMC5762538 DOI: 10.18632/oncotarget.22636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
This work evaluated gene expression differences between a hanging-drop 3D NSCLC model and 2D cell cultures and their in-vivo relevance by comparison to patient-derived data from The Cancer Genome Atlas. Gene expression of 2D and 3D cultures for Colo699 and A549 were assessed using Affymetrix HuGene 1.0 ST gene chips. Biostatistical analyses tested for reproducibility, comparability and significant differences in gene expression profiles between cell lines, experiments and culture methods. The analyses revealed a high interassay correlation within specific culture systems proving a high validity. 979 genes were altered in A549 and 1106 in Colo699 cells due to 3D cultivation. The overlap of changed genes between the cell lines was small (149), but the involved pathways in the reactome and GO- analyses showed a high overlap with DNA methylation, cell cycle, SIRT1, PKN1 pathway, DNA repair and oxidative stress as well known cancer-associated representatives. Additional specific GSEA-analyses revealed changes in immunologic and endothelial cell proliferation pathways, whereas hypoxic, EMT and angiogenic pathways were downregulated. Gene enrichment analyses showed 3D-induced gene up-regulations in the cell lines 38 to be represented in in-vivo samples of NSCLC patients using data of The Cancer Genome Atlas. Thus, our 3D NSCLC model might provide a tool for early drug development and investigation of microenvironment-associated mechanisms. However, this work also highlights the need for further individualization and model adaption to address remaining challenges.
Collapse
Affiliation(s)
- Gabriele Gamerith
- Medical University of Innsbruck, Department of Internal Medicine V, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| | - Johannes Rainer
- Medical University of Innsbruck, Biocenter, Division of Molecular Pathophysiology, 6020 Innsbruck, Austria.,European Academy of Bolzano/Bozen (EURAC), Center for Biomedicine, 39100 Bolzano, Italy
| | - Julia M Huber
- Medical University of Innsbruck, Department of Internal Medicine V, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria.,Oncotyrol, Innsbruck, 6020 Innsbruck, Austria
| | - Hubert Hackl
- Medical University of Innsbruck, Biocenter, Division of Bioinformatics, 6020 Innsbruck, Austria
| | - Zlatko Trajanoski
- Medical University of Innsbruck, Biocenter, Division of Bioinformatics, 6020 Innsbruck, Austria
| | - Stefan Koeck
- Medical University of Innsbruck, Department of Internal Medicine V, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| | - Edith Lorenz
- Medical University of Innsbruck, Department of Internal Medicine V, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| | - Johann Kern
- Oncotyrol, Innsbruck, 6020 Innsbruck, Austria
| | - Reinhard Kofler
- Medical University of Innsbruck, Biocenter, Division of Molecular Pathophysiology, 6020 Innsbruck, Austria
| | | | - Heinz Zwierzina
- Medical University of Innsbruck, Department of Internal Medicine V, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| | - Arno Amann
- Medical University of Innsbruck, Department of Internal Medicine V, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| |
Collapse
|
109
|
Non-invasive approaches for lung cancer diagnosis. Indian J Thorac Cardiovasc Surg 2017. [DOI: 10.1007/s12055-017-0600-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
110
|
Xie M, Wu X, Zhang J, Zhang J, Li X. Ski regulates Smads and TAZ signaling to suppress lung cancer progression. Mol Carcinog 2017; 56:2178-2189. [PMID: 28398634 DOI: 10.1002/mc.22661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 03/28/2017] [Accepted: 04/08/2017] [Indexed: 12/11/2022]
Abstract
Ski, the transforming protein of the avian Sloan-Kettering retrovirus, displays both pro- and anti-oncogenic activities in human cancer. The mechanisms underlying these conflicting observations have not been fully understood. Herein, we investigated the mechanism underlying the tumor suppressor activity of Ski. To investigate the effect of Ski re-activation on TGF-β and Hippo/TAZ pathway, we measured its effect on the endogenous Smad target genes (PAI-1 and P15INK4B ) and TAZ target gene CTGF. The results revealed that Ski exerted its inhibitory activity in TGF-β1/Smad signaling pathway. Ski inhibited TAZ by increasing their phosphorylation by Lats2 and did not alter the localization of TAZ. Ski inhibited lung cancer growth and invasion. Ski methylation correlated with decreased mRNA expression in human lung cancer cell lines. Thus, Ski inhibited the function of TGF-β and TAZ through multiple mechanisms in human lung cancer.
Collapse
Affiliation(s)
- Mian Xie
- China State Key Laboratory of Respiratory Disease and Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojun Wu
- State Key Laboratory of Oncology in Southern China, Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jinjun Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiexia Zhang
- China State Key Laboratory of Respiratory Disease and Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangxiang Li
- China State Key Laboratory of Respiratory Disease and Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
111
|
Roche J, Gemmill RM, Drabkin HA. Epigenetic Regulation of the Epithelial to Mesenchymal Transition in Lung Cancer. Cancers (Basel) 2017; 9:cancers9070072. [PMID: 28672805 PMCID: PMC5532608 DOI: 10.3390/cancers9070072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/17/2017] [Accepted: 06/17/2017] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. It is an aggressive and devastating cancer because of metastasis triggered by enhanced migration and invasion, and resistance to cytotoxic chemotherapy. The epithelial to mesenchymal transition (EMT) is a fundamental developmental process that is reactivated in wound healing and a variety of diseases including cancer where it promotes migration/invasion and metastasis, resistance to treatment, and generation and maintenance of cancer stem cells. The induction of EMT is associated with reprogramming of the epigenome. This review focuses on major mechanisms of epigenetic regulation mainly in lung cancer with recent data on EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit ), the catalytic subunit of the PRC2 (Polycomb Group PcG), that behaves as an oncogene in lung cancer associated with gene repression, non-coding RNAs and the epitranscriptome.
Collapse
Affiliation(s)
- Joëlle Roche
- Laboratoire Ecologie et Biologie des Interactions, Equipe SEVE, Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers, France.
| | - Robert M Gemmill
- Division of Hematology-Oncology, Medical University of South Carolina, 39 Sabin St., MSC 635, Charleston, SC 29425, USA.
| | - Harry A Drabkin
- Division of Hematology-Oncology, Medical University of South Carolina, 39 Sabin St., MSC 635, Charleston, SC 29425, USA.
| |
Collapse
|
112
|
The transformation of the nuclear nanoarchitecture in human field carcinogenesis. Future Sci OA 2017; 3:FSO206. [PMID: 28884003 PMCID: PMC5583697 DOI: 10.4155/fsoa-2017-0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/07/2017] [Indexed: 12/23/2022] Open
Abstract
Morphological alterations of the nuclear texture are a hallmark of carcinogenesis. At later stages of disease, these changes are well characterized and detectable by light microscopy. Evidence suggests that similar albeit nanoscopic alterations develop at the predysplastic stages of carcinogenesis. Using the novel optical technique partial wave spectroscopic microscopy, we identified profound changes in the nanoscale chromatin topology in microscopically normal tissue as a common event in the field carcinogenesis of many cancers. In particular, higher-order chromatin structure at supranucleosomal length scales (20-200 nm) becomes exceedingly heterogeneous, a measure we quantify using the disorder strength (Ld ) of the spatial arrangement of chromatin density. Here, we review partial wave spectroscopic nanocytology clinical studies and the technology's promise as an early cancer screening technology.
Collapse
|
113
|
Liu C, Lv D, Li M, Zhang X, Sun G, Bai Y, Chang D. Hypermethylation of miRNA-589 promoter leads to upregulation of HDAC5 which promotes malignancy in non-small cell lung cancer. Int J Oncol 2017; 50:2079-2090. [DOI: 10.3892/ijo.2017.3967] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/20/2017] [Indexed: 11/06/2022] Open
|
114
|
Methylation analysis of SHOX2 and RASSF1A in bronchoalveolar lavage fluid for early lung cancer diagnosis. Ann Diagn Pathol 2017; 27:57-61. [PMID: 28325362 DOI: 10.1016/j.anndiagpath.2017.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/28/2016] [Accepted: 01/20/2017] [Indexed: 12/20/2022]
|
115
|
Mehta A, Cordero J, Dobersch S, Romero-Olmedo AJ, Savai R, Bodner J, Chao CM, Fink L, Guzmán-Díaz E, Singh I, Dobreva G, Rapp UR, Günther S, Ilinskaya ON, Bellusci S, Dammann RH, Braun T, Seeger W, Gattenlöhner S, Tresch A, Günther A, Barreto G. Non-invasive lung cancer diagnosis by detection of GATA6 and NKX2-1 isoforms in exhaled breath condensate. EMBO Mol Med 2016; 8:1380-1389. [PMID: 27821429 PMCID: PMC5167131 DOI: 10.15252/emmm.201606382] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer‐related deaths worldwide. Early LC diagnosis is crucial to reduce the high case fatality rate of this disease. In this case–control study, we developed an accurate LC diagnosis test using retrospectively collected formalin‐fixed paraffin‐embedded (FFPE) human lung tissues and prospectively collected exhaled breath condensates (EBCs). Following international guidelines for diagnostic methods with clinical application, reproducible standard operating procedures (SOP) were established for every step comprising our LC diagnosis method. We analyzed the expression of distinct mRNAs expressed from GATA6 and NKX2‐1, key regulators of lung development. The Em/Ad expression ratios of GATA6 and NKX2‐1 detected in EBCs were combined using linear kernel support vector machines (SVM) into the LC score, which can be used for LC detection. LC score‐based diagnosis achieved a high performance in an independent validation cohort. We propose our method as a non‐invasive, accurate, and low‐price option to complement the success of computed tomography imaging (CT) and chest X‐ray (CXR) for LC diagnosis.
Collapse
Affiliation(s)
- Aditi Mehta
- LOEWE Research Group Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Julio Cordero
- LOEWE Research Group Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stephanie Dobersch
- LOEWE Research Group Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Addi J Romero-Olmedo
- LOEWE Research Group Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Facultad de Ciencias Químicas, Universidad Autonoma "Benito Juarez" de Oaxaca, Oaxaca, Mexico
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Pulmonary and Critical Care Medicine, Department of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Johannes Bodner
- Section Thoracic Surgery, Justus Liebig University, Giessen, Germany
| | - Cho-Ming Chao
- Chair for Lung Matrix Remodeling, Excellence Cluster Cardio Pulmonary System, Justus Liebig University, Giessen, Germany
| | - Ludger Fink
- Institute of Pathology and Cytology, UEGP, Wetzlar, Germany
| | | | - Indrabahadur Singh
- LOEWE Research Group Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Gergana Dobreva
- Emmy Noether Research Group Origin of Cardiac Cell Lineages, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ulf R Rapp
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Olga N Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Saverio Bellusci
- Chair for Lung Matrix Remodeling, Excellence Cluster Cardio Pulmonary System, Justus Liebig University, Giessen, Germany.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | | | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Pulmonary and Critical Care Medicine, Department of Internal Medicine, Justus Liebig University, Giessen, Germany
| | | | - Achim Tresch
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,University of Cologne, Cologne, Germany
| | - Andreas Günther
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Justus Liebig University, Giessen, Germany.,Agaplesion Lung Clinic Waldhof Elgershausen, Greifenstein, Germany
| | - Guillermo Barreto
- LOEWE Research Group Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany .,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| |
Collapse
|
116
|
Zhang Y, Elgizouli M, Schöttker B, Holleczek B, Nieters A, Brenner H. Smoking-associated DNA methylation markers predict lung cancer incidence. Clin Epigenetics 2016; 8:127. [PMID: 27924164 PMCID: PMC5123284 DOI: 10.1186/s13148-016-0292-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022] Open
Abstract
Background Newly established blood DNA methylation markers that are strongly associated with smoking might open new avenues for lung cancer (LC) screening. We aimed to assess the performance of the top hits from previous epigenome-wide association studies in prediction of LC incidence. In a prospective nested case-control study, DNA methylation at AHRR (cg05575921), 6p21.33 (cg06126421), and F2RL3 (cg03636183) were measured by pyrosequencing in baseline whole blood samples of 143 incident LC cases identified during 11 years of follow-up and 457 age- and sex-matched controls without diagnosis of LC until the end of follow-up. The individual and joint associations of the 3 markers with LC risk were estimated by logistic regression, adjusted for potential confounders including smoking status and cigarette pack-years. The predictive performance was evaluated for both the individual markers and their combinations derived from multiple algorithms. Results Pronounced demethylation of all 3 markers was observed at baseline among cases compared to controls. Risk of developing LC increased with decreasing DNA methylation levels, with adjusted ORs (95% CI) of 15.86 (4.18–60.17), 8.12 (2.69–4.48), and 10.55 (3.44–32.31), respectively, for participants in the lowest quartile of AHRR, 6p21.33, and F2RL3 compared to participants in the highest 2 quartiles of each site among controls. The individual 3 markers exhibited similar accuracy in predicting LC incidence, with AUCs ranging from 0.79 to 0.81. Combination of the 3 markers did not improve the predictive performance (AUC = 0.80). The individual markers or their combination outperformed self-reported smoking exposure particularly in light smokers. No variation in risk prediction was identified with respect to age, follow-up time, and histological subtypes. Conclusions AHRR, 6p21.33, and F2RL3 methylation in blood DNA are predictive for LC development, which might be useful for identification of risk groups for further specific screening, such as CT examination. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0292-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Magdeldin Elgizouli
- Center for Chronic Immunodeficiency (CCI), Research Group Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Alexandra Nieters
- Center for Chronic Immunodeficiency (CCI), Research Group Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
117
|
Abstract
Lung cancer continues to attract special attention since the real number of lung cancer mortality and incidence in 2014 was definitely higher than those estimated numbers according to the report from World Health Organization. The present special issue highly focuses on advanced discovery and development of lung cancer and metastasis and discusses about potential opportunities and challenges to be faced. The present issue explores clinical applications of cancer immunotherapies, gene therapies, radiotherapies, or target-oriented therapies. A new and novel methodology can be used to identify differential interactions of driver genes, cancer-predictive genes, subtype-specific genes, or disease-exclusive genes or gene pairs from imbalanced or heterogeneous datasets. We also demonstrate the importance of lung cancer-specific gene mutations, epigenetics, gene sequencing, heterogeneity, or biomarker discovery. Clinical bioinformatics is emphasized as a critical tool and merging science. Novel therapies are designed and expected on basis of oncogenic molecular aberrations in lung cancer.
Collapse
Affiliation(s)
- Xiangdong Wang
- Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Biomedical Research Center, Shanghai, China,
| | | |
Collapse
|
118
|
Azzawi H, Hou J, Xiang Y, Alanni R. Lung cancer prediction from microarray data by gene expression programming. IET Syst Biol 2016; 10:168-178. [PMID: 27762231 PMCID: PMC8687242 DOI: 10.1049/iet-syb.2015.0082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 01/20/2023] Open
Abstract
Lung cancer is a leading cause of cancer-related death worldwide. The early diagnosis of cancer has demonstrated to be greatly helpful for curing the disease effectively. Microarray technology provides a promising approach of exploiting gene profiles for cancer diagnosis. In this study, the authors propose a gene expression programming (GEP)-based model to predict lung cancer from microarray data. The authors use two gene selection methods to extract the significant lung cancer related genes, and accordingly propose different GEP-based prediction models. Prediction performance evaluations and comparisons between the authors' GEP models and three representative machine learning methods, support vector machine, multi-layer perceptron and radial basis function neural network, were conducted thoroughly on real microarray lung cancer datasets. Reliability was assessed by the cross-data set validation. The experimental results show that the GEP model using fewer feature genes outperformed other models in terms of accuracy, sensitivity, specificity and area under the receiver operating characteristic curve. It is concluded that GEP model is a better solution to lung cancer prediction problems.
Collapse
Affiliation(s)
- Hasseeb Azzawi
- School of Information Technology, Deakin University, Victoria, Australia.
| | - Jingyu Hou
- School of Information Technology, Deakin University, Victoria, Australia
| | - Yong Xiang
- School of Information Technology, Deakin University, Victoria, Australia
| | - Russul Alanni
- School of Information Technology, Deakin University, Victoria, Australia
| |
Collapse
|
119
|
Taguchi YH, Iwadate M, Umeyama H. SFRP1 is a possible candidate for epigenetic therapy in non-small cell lung cancer. BMC Med Genomics 2016; 9 Suppl 1:28. [PMID: 27534621 PMCID: PMC4989892 DOI: 10.1186/s12920-016-0196-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) remains a lethal disease despite many proposed treatments. Recent studies have indicated that epigenetic therapy, which targets epigenetic effects, might be a new therapeutic methodology for NSCLC. However, it is not clear which objects (e.g., genes) this treatment specifically targets. Secreted frizzled-related proteins (SFRPs) are promising candidates for epigenetic therapy in many cancers, but there have been no reports of SFRPs targeted by epigenetic therapy for NSCLC. Methods This study performed a meta-analysis of reprogrammed NSCLC cell lines instead of the direct examination of epigenetic therapy treatment to identify epigenetic therapy targets. In addition, mRNA expression/promoter methylation profiles were processed by recently proposed principal component analysis based unsupervised feature extraction and categorical regression analysis based feature extraction. Results The Wnt/β-catenin signalling pathway was extensively enriched among 32 genes identified by feature extraction. Among the genes identified, SFRP1 was specifically indicated to target β-catenin, and thus might be targeted by epigenetic therapy in NSCLC cell lines. A histone deacetylase inhibitor might reactivate SFRP1 based upon the re-analysis of a public domain data set. Numerical computation validated the binding of SFRP1 to WNT1 to suppress Wnt signalling pathway activation in NSCLC. Conclusions The meta-analysis of reprogrammed NSCLC cell lines identified SFRP1 as a promising target of epigenetic therapy for NSCLC. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0196-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Y-H Taguchi
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, 112-8551, Tokyo, Japan.
| | - Mitsuo Iwadate
- Department of Biological Science, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, 112-8551, Tokyo, Japan
| | - Hideaki Umeyama
- Department of Biological Science, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, 112-8551, Tokyo, Japan
| |
Collapse
|
120
|
Xie K, Liang C, Li Q, Yan C, Wang C, Gu Y, Zhu M, Du F, Wang H, Dai J, Liu X, Jin G, Shen H, Ma H, Hu Z. Role of ATG10 expression quantitative trait loci in non-small cell lung cancer survival. Int J Cancer 2016; 139:1564-73. [PMID: 27225307 DOI: 10.1002/ijc.30205] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
Abstract
The aim of this article was to evaluate whether genetic variants in autophagy-related genes affect the overall survival (OS) of non-small cell lung cancer (NSCLC) patients. We analyzed 14 single nucleotide polymorphisms (SNPs) in core autophagy-related genes for OS in 1,001 NSCLC patients. Three promising SNPs in ATG10 were subsequently annotated by the expression quantitative trait loci (eQTL) and methylation quantitative trait loci (meQTL) analyses based on Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) datasets. We observed that the variants of rs10514231, rs1864182 and rs1864183 were associated with poor lung cancer survival (HR = 1.33, 95% CI = 1.07-1.65; HR = 1.43, 95% CI = 1.13-1.81; HR = 1.38, 95% CI = 1.14-1.68, respectively) and positively correlated with ATG10 expression (all p < 0.05) from GTEx and TCGA datasets. The elevated expression of ATG10 may predict shorter survival time in lung cancer patients in TCGA dataset (HR = 2.10, 95% CI = 1.33-3.29). Moreover, the variants of rs10514231 and rs1864182 were associated with the increased methylation levels of cg17942617 (meQTL), which in turn contributed to the elevated ATG10 expression and decreased survival time. Further functional assays revealed that ATG10 facilitated lung cancer cell proliferation and migration. Our findings suggest that eQTL/meQTL variations of ATG10 could influence lung cancer survival through regulating ATG10 expression.
Collapse
Affiliation(s)
- Kaipeng Xie
- Department of Epidemiology, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Liang
- Department of Epidemiology, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qin Li
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Epidemiology, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yayun Gu
- Department of Epidemiology, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fangzhi Du
- Department of Epidemiology, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Epidemiology, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiao'an Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
121
|
Ansari J, Shackelford RE, El-Osta H. Epigenetics in non-small cell lung cancer: from basics to therapeutics. Transl Lung Cancer Res 2016; 5:155-71. [PMID: 27186511 DOI: 10.21037/tlcr.2016.02.02] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer remains the number one cause of cancer-related deaths worldwide with 221,200 estimated new cases and 158,040 estimated deaths in 2015. Approximately 80% of cases are non-small cell lung cancer (NSCLC). The diagnosis is usually made at an advanced stage where the prognosis is poor and therapeutic options are limited. The evolution of lung cancer is a multistep process involving genetic, epigenetic, and environmental factor interactions that result in the dysregulation of key oncogenes and tumor suppressor genes, culminating in activation of cancer-related signaling pathways. The past decade has witnessed the discovery of multiple molecular aberrations that drive lung cancer growth, among which are epidermal growth factor receptor (EGFR) mutations and translocations involving the anaplastic lymphoma kinase (ALK) gene. This has translated into therapeutic agent developments that target these molecular alterations. The absence of targetable mutations in 50% of NSCLC cases and targeted therapy resistance development underscores the importance for developing alternative therapeutic strategies for treating lung cancer. Among these strategies, pharmacologic modulation of the epigenome has been used to treat lung cancer. Epigenetics approaches may circumvent the problem of tumor heterogeneity by affecting the expression of multiple tumor suppression genes (TSGs), halting tumor growth and survival. Moreover, it may be effective for tumors that are not driven by currently recognized druggable mutations. This review summarizes the molecular pathology of lung cancer epigenetic aberrations and discusses current efforts to target the epigenome with different pharmacological approaches. Our main focus will be on hypomethylating agents, histone deacetylase (HDAC) inhibitors, microRNA modulations, and the role of novel epigenetic biomarkers. Last, we will address the challenges that face this old-new strategy in treating lung cancer.
Collapse
Affiliation(s)
- Junaid Ansari
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| | - Rodney E Shackelford
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| | - Hazem El-Osta
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
122
|
Ilinskaya ON, Singh I, Dudkina E, Ulyanova V, Kayumov A, Barreto G. Direct inhibition of oncogenic KRAS by Bacillus pumilus ribonuclease (binase). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1559-67. [PMID: 27066977 DOI: 10.1016/j.bbamcr.2016.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/18/2022]
Abstract
RAS proteins function as molecular switches that transmit signals from cell surface receptors into specific cellular responses via activation of defined signaling pathways (Fang, 2015). Aberrant constitutive RAS activation occurs with high incidence in different types of cancer (Bos, 1989). Thus, inhibition of RAS-mediated signaling is extremely important for therapeutic approaches against cancer. Here we showed that the ribonuclease (RNase) binase, directly interacts with endogenous KRAS. Further, molecular structure models suggested an inhibitory nature of binase-RAS interaction involving regions of RAS that are important for different aspects of its function. Consistent with these models, phosphorylation analysis of effectors of RAS-mediated signaling revealed that binase inhibits the MAPK/ERK signaling pathway. Interestingly, RAS activation assays using a non-hydrolysable GTP analog (GTPγS) demonstrated that binase interferes with the exchange of GDP by GTP. Furthermore, we showed that binase reduced the interaction of RAS with the guanine nucleotide exchange factor (GEF), SOS1. Our data support a model in which binase-KRAS interaction interferes with the function of GEFs and stabilizes the inactive GDP-bound conformation of RAS thereby inhibiting MAPK/ERK signaling. This model plausibly explains the previously reported, antitumor-effect of binase specific towards RAS-transformed cells and suggests the development of anticancer therapies based on this ribonuclease.
Collapse
Affiliation(s)
- Olga N Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga-Region) University, Kremlevskaya str. 18, 420008, Kazan, Russia
| | - Indrabahadur Singh
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstr. 1, 61231 Bad Nauheim, Germany
| | - Elena Dudkina
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga-Region) University, Kremlevskaya str. 18, 420008, Kazan, Russia.
| | - Vera Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga-Region) University, Kremlevskaya str. 18, 420008, Kazan, Russia
| | - Airat Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga-Region) University, Kremlevskaya str. 18, 420008, Kazan, Russia
| | - Guillermo Barreto
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga-Region) University, Kremlevskaya str. 18, 420008, Kazan, Russia; LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstr. 1, 61231 Bad Nauheim, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Germany; German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Germany.
| |
Collapse
|
123
|
Yen CY, Huang HW, Shu CW, Hou MF, Yuan SSF, Wang HR, Chang YT, Farooqi AA, Tang JY, Chang HW. DNA methylation, histone acetylation and methylation of epigenetic modifications as a therapeutic approach for cancers. Cancer Lett 2016; 373:185-92. [DOI: 10.1016/j.canlet.2016.01.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/23/2015] [Accepted: 01/18/2016] [Indexed: 02/09/2023]
|
124
|
Epigenetic Profiling of H3K4Me3 Reveals Herbal Medicine Jinfukang-Induced Epigenetic Alteration Is Involved in Anti-Lung Cancer Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7276161. [PMID: 27087825 PMCID: PMC4818803 DOI: 10.1155/2016/7276161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 11/17/2022]
Abstract
Traditional Chinese medicine Jinfukang (JFK) has been clinically used for treating lung cancer. To examine whether epigenetic modifications are involved in its anticancer activity, we performed a global profiling analysis of H3K4Me3, an epigenomic marker associated with active gene expression, in JFK-treated lung cancer cells. We identified 11,670 genes with significantly altered status of H3K4Me3 modification following JFK treatment (P < 0.05). Gene Ontology analysis indicates that these genes are involved in tumor-related pathways, including pathway in cancer, basal cell carcinoma, apoptosis, induction of programmed cell death, regulation of transcription (DNA-templated), intracellular signal transduction, and regulation of peptidase activity. In particular, we found that the levels of H3K4Me3 at the promoters of SUSD2, CCND2, BCL2A1, and TMEM158 are significantly altered in A549, NCI-H1975, NCI-H1650, and NCI-H2228 cells, when treated with JFK. Collectively, these findings provide the first evidence that the anticancer activity of JFK involves modulation of histone modification at many cancer-related gene loci.
Collapse
|
125
|
Wang W, Wang J, Li Z, Zhu M, Zhang Z, Wang Y, Jing H. Promoter hypermethylation of PTPL1, PTPN6, DAPK, p16 and 5-azacitidine inhibits growth in DLBCL. Oncol Rep 2015; 35:139-46. [PMID: 26498513 DOI: 10.3892/or.2015.4347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/18/2015] [Indexed: 11/05/2022] Open
Abstract
Aberrant hypermethylation of CpG islands of tumor suppressor is one of the mechanisms for epigenetic loss of gene function. In the present study, the methylation status of the promoter regions of protein tyrosine phosphatase (PTPN) 6, DAPK, and p16 were studied using methylation-specific polymerase chain reaction (MSP) in 26 diffuse large B cell lymphoma (DLBCL) lymphomas. In OCI-LY1 cell line, gene methylation status, expression of PTPL1 and its reactivation by DNA demethylation was determined by PCR and on the protein level by western blotting. ELISA-like reaction was used to detect global DNA methylation measurement. Induction of apoptosis by 5-azacitidine was analyzed by Annexin V/PI staining and flow cytometry. Our results show that hypermethylation of the PTPN6 gene promoter region was found in 15.4% (4/26), the DAPK gene promoter region in 30.8% (8/26), the p16 gene promoter region in 7.7% (2/26). Notably, we identified that PTPL1 was hypermethylated and transcriptionally silenced in OCI-LY1 cell line. The expression of PTPL1 was re-inducible by 5-azacytidine. 5-azacytidine also inhibits the proliferation and decreases the global methylation level of the OCI-LY1 cell line. We can conclude from our study that a higher prevalence of methylation of PTPL1, PTPN6, DAPK and p16 occur in DLBCL. Our data also highlights 5-azacytidine as a potential therapeutic candidate for DLBCL. Further studies are required to substantiate the role of methylation of PTPL1, PTPN6, DAPK and p16 as a marker in diffuse large B cell lymphoma.
Collapse
Affiliation(s)
- Wenming Wang
- Department of Hematology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jing Wang
- Department of Hematology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Mingxia Zhu
- Department of Hematology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Zhe Zhang
- Department of Urology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yanfang Wang
- Department of Hematology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Hongmei Jing
- Department of Hematology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|