101
|
Dening TJ, Rao S, Thomas N, Prestidge CA. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems. AAPS JOURNAL 2015; 18:23-40. [PMID: 26354801 DOI: 10.1208/s12248-015-9824-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/23/2015] [Indexed: 12/20/2022]
Abstract
Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.
Collapse
Affiliation(s)
- Tahnee J Dening
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Shasha Rao
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Nicky Thomas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
102
|
Self-nanoemulsifying powders for improved oral delivery of poorly water-soluble drugs. Ther Deliv 2015; 6:899-901. [PMID: 26488495 DOI: 10.4155/tde.15.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
103
|
Fong SYK, Brandl M, Bauer-Brandl A. Phospholipid-based solid drug formulations for oral bioavailability enhancement: A meta-analysis. Eur J Pharm Sci 2015; 80:89-110. [PMID: 26296863 DOI: 10.1016/j.ejps.2015.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/02/2015] [Accepted: 08/13/2015] [Indexed: 12/24/2022]
Abstract
Low bioavailability nowadays often represents a challenge in oral dosage form development. Solid formulations composed of drug and phospholipid (PL), which, upon contact with water, eventually form multilamellar liposomes (i.e. 'proliposomes'), are an emerging approach to solve such issue. Regarded as an 'improved' version of liposomes concerning storage stability, the potential and versatility of a range of such formulations for oral drug delivery have been extensively discussed. However, a systematic and quantitative analysis of the studies that applied solid PL for oral bioavailability enhancement is currently lacking. Such analysis is necessary for providing an overview of the research progress and addressing the question on how promising this approach can be on bioavailability enhancement. The current review performed a systematic search of references in three evidence-based English databases, Medline, Embase, and SciFinder, from the year of 1985 up till March 2015. A total of 112 research articles and 82 patents that involved solid PL-based formulations were identified. The majority of such formulations was intended for oral drug delivery (55%) and was developed to address low bioavailability issues (49%). A final of 54 studies that applied such formulations for bioavailability enhancement of 43 different drugs with poor water solubility and/or permeability were identified. These proof-of-concept studies with in vitro (n=31) and/or animal (n=23) evidences have been systematically summarized. Meta-analyses were conducted to measure the overall enhancement power (percent increase compared to control group) of solid PL formulations on drugs' solubility, permeability and oral bioavailability, which were found to be 127.4% (95% CI [86.1, 168.7]), 59.6% (95% CI [30.1, 89.0]), and 18.5% (95% CI [10.1, 26.9]) respectively. Correlations between the enhancement factors and in silico physiochemical properties of drugs were also performed to check if such approach can be used to identify the best candidates for oral solid PL formulation. In addition to scientific literature, 13 solid PL formulation-related patents that addressed the issue of low oral bioavailability have been identified and summarized; whereas no clinical study was identified from the current search. By providing systematic information and meta-analysis on studies that applied the principle of 'proliposomes' for oral bioavailability enhancement, the current review should be insightful for formulation scientists who wish to adopt the PL based approach to overcome the solubility, permeability and bioavailability issues of orally delivered drugs.
Collapse
Affiliation(s)
- Sophia Yui Kau Fong
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Martin Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
104
|
Lopez FL, Ernest TB, Tuleu C, Gul MO. Formulation approaches to pediatric oral drug delivery: benefits and limitations of current platforms. Expert Opin Drug Deliv 2015; 12:1727-40. [PMID: 26165848 PMCID: PMC4673516 DOI: 10.1517/17425247.2015.1060218] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction: Most conventional drug delivery systems are not acceptable for pediatric patients as they differ in their developmental status and dosing requirements from other subsets of the population. Technology platforms are required to aid the development of age-appropriate medicines to maximize patient acceptability while maintaining safety, efficacy, accessibility and affordability. Areas covered: The current approaches and novel developments in the field of age-appropriate drug delivery for pediatric patients are critically discussed including patient-centric formulations, administration devices and packaging systems. Expert opinion: Despite the incentives provided by recent regulatory modifications and the efforts of formulation scientists, there is still a need for implementation of pharmaceutical technologies that enable the manufacture of licensed age-appropriate formulations. Harmonization of endeavors from regulators, industry and academia by sharing learning associated with data obtained from pediatric investigation plans, product development pathways and scientific projects would be the way forward to speed up bench-to-market age appropriate formulation development. A collaborative approach will benefit not only pediatrics, but other patient populations such as geriatrics would also benefit from an accelerated patient-centric approach to drug delivery.
Collapse
Affiliation(s)
- Felipe L Lopez
- a 1 University College London, School of Pharmacy, Department of Pharmaceutics , 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Terry B Ernest
- b 2 GlaxoSmithKline, Product Development , New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK
| | - Catherine Tuleu
- a 1 University College London, School of Pharmacy, Department of Pharmaceutics , 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Mine Orlu Gul
- a 1 University College London, School of Pharmacy, Department of Pharmaceutics , 29-39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
105
|
Kamboj S, Sharma R, Singh K, Rana V. Aprepitant loaded solid preconcentrated microemulsion for enhanced bioavailability: A comparison with micronized Aprepitant. Eur J Pharm Sci 2015; 78:90-102. [PMID: 26165621 DOI: 10.1016/j.ejps.2015.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 02/04/2023]
Abstract
Aprepitant (APT) is a lipophilic, poorly water soluble drug with moderate permeability characteristic. Therefore, we aimed to improve solubility as well as permeability that could possibly improve oral bioavailability of APT. For this purpose, Quality by design (QbD) approach employing simplex lattice mixture design was used to prepare solid preconcentrated microemulsion (S-PCM). Further, the software generated numerically optimized S-PCM formulations were developed by utilizing desirability function. The spectral attributes (powder X-ray diffraction, ATR-FTIR, and differential scanning calorimetry) of S-PCM formulations suggested that APT was present in amorphous form. The results of droplet size (150-180 nm), zeta potential (-13 to -15 mV), poly dispersity index (PDI) (0.211-0.238) and emulsification time (<1 min), of these S-PCM formulations (SP1, SP2 and SP3) suggested spherical shape morphology (Transmission electron microscopy) with thermodynamic stability. The comparison of in vitro/ex vivo behavior of S-PCM (SP1) with micronized and non-micronized formulations of APT suggested 2-fold and 5-fold enhancement in solubility and permeability, respectively. This was further evident from pharmacokinetic studies in rabbits that showed 1.5-fold enhancement in bioavailability of S-PCM with respect to micronized APT. Thus, it could be envisaged that development of S-PCM formulation of APT is the best alternative to micronization technology based APT formulations reported earlier.
Collapse
Affiliation(s)
- Sunil Kamboj
- Pharmaceutics Division, Dept. of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Radhika Sharma
- Pharmaceutics Division, Dept. of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Kuldeep Singh
- Pharmaceutics Division, Dept. of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Vikas Rana
- Pharmaceutics Division, Dept. of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
| |
Collapse
|
106
|
Čerpnjak K, Zvonar A, Vrečer F, Gašperlin M. Characterization of naproxen-loaded solid SMEDDSs prepared by spray drying: The effect of the polysaccharide carrier and naproxen concentration. Int J Pharm 2015; 485:215-28. [DOI: 10.1016/j.ijpharm.2015.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/01/2022]
|
107
|
Rao S, Tan A, Boyd BJ, Prestidge CA. Synergistic role of self-emulsifying lipids and nanostructured porous silica particles in optimizing the oral delivery of lovastatin. Nanomedicine (Lond) 2014; 9:2745-59. [DOI: 10.2217/nnm.14.37] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To investigate the role of self-emulsifying lipids and porous silica particles in enhancing supersaturated drug loading and biopharmaceutical performance of nanostructured silica–lipid hybrid (SLH) systems. Materials & methods: Two lovastatin (LOV)-SLHs were engineered from self-emulsifying lipid (Gelucire® 44/14; Gattefossé, Lyon, France) and Aerosil® 380 (SLH-A; Evonik Industries, Essen, Germany) or Syloid® 244FP silica (SLH-S; Grace Davison Discovery Sciences, Rowville, Australia). Results & discussion: The LOV-SLHs encapsulated LOV at 10% w/w, which is ≥3-fold higher than typical lipid formulations in the absence of porous silica. The LOV-SLHs retained self-emulsifying lipid-associated solubilization benefits and improved drug solubilization by twofold in simulated intestinal condition. SLH-S, with larger surface area (299 m2/g), was superior to SLH-A (184 m2/g) in optimizing oral bioavailability, suggesting a critical role of the silica geometry. Bioavailability of SLH-S was 2.8- and 1.3-fold higher than pure drug and drug suspension in Gelucire 44/14, respectively. Conclusion: In conclusion, SLHs profit from advantages associated with both self-emulsifying lipids and porous silica, and provide potentially improved therapy against coronary artery disease.
Collapse
Affiliation(s)
- Shasha Rao
- Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, Australia, 5095
| | - Angel Tan
- Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, Australia, 5095
| | - Ben J Boyd
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria, Australia, 3052
| | - Clive A Prestidge
- Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, Australia, 5095
| |
Collapse
|
108
|
Tan A, Colliat-Dangus P, Whitby CP, Prestidge CA. Controlling the enzymatic digestion of lipids using hybrid nanostructured materials. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15363-71. [PMID: 25116477 DOI: 10.1021/am5038577] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Solid nanoparticle-lipid hybrids have been engineered by using spray drying to assemble monodisperse hydrophilic silica nanoparticles and submicron lipid (triglyceride) emulsions together into composite microparticles, which have specific activity toward enzymes. The influence of silica particle size (100-1000 nm) and emulsifier type (anionic and cationic) on the three-dimensional structure of the composite particles was investigated. The nanostructure of the hybrid particles, which is controlled by the size of the voids between the closely packed silica particles, plays a critical role in lipase action and hence lipid digestion kinetics. Confining lipid droplets within the nanostructured silica aggregates led to 2- to 15-fold enhanced rate of lipolysis in comparison with dispersed coarse oil droplets. The composite particles were tailored to enhance, retain or sustain the lipolysis kinetics of submicron lipid emulsions. The presence of repulsive nanoparticle-droplet interactions favored aqueous redispersion and fast lipolysis of the hybrid composite materials, while attractive interactions hindered redispersion and delayed lipolysis of the confined lipid droplets. Such hybrid nanomaterials can be exploited to control the gastrointestinal enzymatic action and promisingly form the basis for the next generation of foods and medicines.
Collapse
Affiliation(s)
- Angel Tan
- Ian Wark Research Institute, University of South Australia , Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | | | | | | |
Collapse
|
109
|
Williams HD, Speybroeck MV, Augustijns P, Porter CJ. Lipid-Based Formulations Solidified Via Adsorption onto the Mesoporous Carrier Neusilin® US2: Effect of Drug Type and Formulation Composition on In Vitro Pharmaceutical Performance. J Pharm Sci 2014; 103:1734-46. [DOI: 10.1002/jps.23970] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/18/2014] [Accepted: 03/25/2013] [Indexed: 11/09/2022]
|
110
|
Beg S, Sandhu PS, Batra RS, Khurana RK, Singh B. QbD-based systematic development of novel optimized solid self-nanoemulsifying drug delivery systems (SNEDDS) of lovastatin with enhanced biopharmaceutical performance. Drug Deliv 2014; 22:765-84. [DOI: 10.3109/10717544.2014.900154] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
111
|
Nikolakakis I, Malamataris S. Self-emulsifying pellets: relations between kinetic parameters of drug release and emulsion reconstitution-influence of formulation variables. J Pharm Sci 2014; 103:1453-65. [PMID: 24596121 DOI: 10.1002/jps.23919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 01/30/2023]
Abstract
The effects of surfactant type and content on the kinetics of emulsion reconstitution and release of drugs differing in lipophilicity from self-emulsifying microcrystalline cellulose pellets were studied. Furosemide and propranolol were the drugs, medium-chain triglyceride was the oil, and Cremophors ELP, RH40, and RH60 were the surfactants. Pellets were prepared by extrusion/spheronization with emulsions (75% water and 25%, w/w, oil/surfactant/drug). Stability of the emulsions was evaluated from changes in the back-scattered light, and re-emulsification and drug release from light transmittance and UV spectroscopy, respectively. Emulsion stability increased because of the incorporation of the drugs. Re-emulsification depended only on the surfactant content and was expressed by a simple power equation (Ra2 > 0.945, Q(2) > 0.752). Drug release was expressed by two biexponential equations (Ra2 > 0.989, Q(2) > 0.699 and Ra2 > 0.947, Q(2) > 0.693) implying initial burst and terminal slow release phase and by the linear form (Lineweaver-Burke) of Michaelis-Menten equation (Ra2 > 0.726, Q(2) > 0.397). Relationships exist between the rate constants of the equations describing emulsion reconstitution and drug release, for propranolol compositions (R(2) = 0.915), and for compositions of both drugs with less hydrophilic ELP and RH40 (R(2) = 0.511), and also, among dissolution efficiency, drug solubility in oil/surfactant, and emulsion reconstitution ability, indicating the importance of drug solubilization in oil/surfactant and re-emulsification ability on drug release.
Collapse
Affiliation(s)
- Ioannis Nikolakakis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | | |
Collapse
|
112
|
Abstract
In recent years, CO2-based technologies have gained considerable interest in the pharmaceutical industry for their potential applications in drug formulation and drug delivery. The exploitation of peculiar properties of gases under supercritical conditions has been studied in the last 20 years with mixed results. Promising drug-delivery technologies, based on supercritical CO2, have mostly failed when facing challenges of industrial scaleability and economical viability. Nevertheless, a ‘second generation‘ of processes, based on CO2 around and below critical point has been developed, possibly offering technology-based solutions to some of the current issues of pharmaceutical development. In this review, we highlight the most recent advancements in this field, with a particular focus on the potential of CO2-based technologies in addressing critical issues in oral delivery, and briefly discuss the future perspectives of dense CO2-assisted processes as enabling technologies in drug delivery.
Collapse
|
113
|
Murillo-Cremaes N, Subra-Paternault P, Domingo C, Roig A. Preparation and study of naproxen in silica and lipid/polymer hybrid composites. RSC Adv 2014. [DOI: 10.1039/c3ra46947f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|