101
|
de Jong RM, Tebeje SK, Meerstein‐Kessel L, Tadesse FG, Jore MM, Stone W, Bousema T. Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites. Immunol Rev 2020; 293:190-215. [PMID: 31840844 PMCID: PMC6973022 DOI: 10.1111/imr.12828] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
The efficient spread of malaria from infected humans to mosquitoes is a major challenge for malaria elimination initiatives. Gametocytes are the only Plasmodium life stage infectious to mosquitoes. Here, we summarize evidence for naturally acquired anti-gametocyte immunity and the current state of transmission blocking vaccines (TBV). Although gametocytes are intra-erythrocytic when present in infected humans, developing Plasmodium falciparum gametocytes may express proteins on the surface of red blood cells that elicit immune responses in naturally exposed individuals. This immune response may reduce the burden of circulating gametocytes. For both P. falciparum and Plasmodium vivax, there is a solid evidence that antibodies against antigens present on the gametocyte surface, when co-ingested with gametocytes, can influence transmission to mosquitoes. Transmission reducing immunity, reducing the burden of infection in mosquitoes, is a well-acknowledged but poorly quantified phenomenon that forms the basis for the development of TBV. Transmission enhancing immunity, increasing the likelihood or intensity of transmission to mosquitoes, is more speculative in nature but is convincingly demonstrated for P. vivax. With the increased interest in malaria elimination, TBV and monoclonal antibodies have moved to the center stage of malaria vaccine development. Methodologies to prioritize and evaluate products are urgently needed.
Collapse
MESH Headings
- Antibodies, Blocking/immunology
- Antibodies, Protozoan/immunology
- Host-Parasite Interactions/immunology
- Humans
- Immunity
- Immunomodulation
- Life Cycle Stages
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/prevention & control
- Malaria, Vivax/transmission
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/immunology
- Plasmodium vivax/growth & development
- Plasmodium vivax/immunology
Collapse
Affiliation(s)
- Roos M. de Jong
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Lisette Meerstein‐Kessel
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Centre for Molecular and Biomolecular InformaticsRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Fitsum G. Tadesse
- Armauer Hansen Research InstituteAddis AbabaEthiopia
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Matthijs M. Jore
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Will Stone
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| | - Teun Bousema
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
102
|
Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci 2020; 109:74-103. [PMID: 31173761 PMCID: PMC6891151 DOI: 10.1016/j.xphs.2019.05.031] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Antibody-based proteins have become an important class of biologic therapeutics, due in large part to the stability, specificity, and adaptability of the antibody framework. Indeed, antibodies not only have the inherent ability to bind both antigens and endogenous immune receptors but also have proven extremely amenable to protein engineering. Thus, several derivatives of the monoclonal antibody format, including bispecific antibodies, antibody-drug conjugates, and antibody fragments, have demonstrated efficacy for treating human disease, particularly in the fields of immunology and oncology. Reviewed here are considerations for the design of antibody-based therapeutics, including immunological context, therapeutic mechanisms, and engineering strategies. First, characteristics of antibodies are introduced, with emphasis on structural domains, functionally important receptors, isotypic and allotypic differences, and modifications such as glycosylation. Then, aspects of therapeutic antibody design are discussed, including identification of antigen-specific variable regions, choice of expression system, use of multispecific formats, and design of antibody derivatives based on fragmentation, oligomerization, or conjugation to other functional moieties. Finally, strategies to enhance antibody function through protein engineering are reviewed while highlighting the impact of fundamental biophysical properties on protein developability.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
103
|
Simplified monomeric VHH-Fc antibodies provide new opportunities for passive immunization. Curr Opin Biotechnol 2019; 61:96-101. [PMID: 31810049 DOI: 10.1016/j.copbio.2019.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022]
Abstract
Simplified monomeric monoclonal antibodies consisting of a single-domain VHH, derived from camelid heavy-chain only antibodies, fused with the Fc domain of either IgG (VHH-IgG) or IgA (VHH-IgA) antibodies, are promising therapeutic proteins. These simplified single-gene encoded antibodies are much easier to manufacture and can be produced in plants and in yeast for bulk applications. These merits enable novel passive immunization applications, such as in-feed oral delivery of VHH-IgAs, which have successfully provided protection against a gastrointestinal infection in the piglet model.
Collapse
|
104
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
105
|
Castelli MS, McGonigle P, Hornby PJ. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect 2019; 7:e00535. [PMID: 31859459 PMCID: PMC6923804 DOI: 10.1002/prp2.535] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022] Open
Abstract
Monoclonal antibodies (mAbs) have emerged as a major class of therapeutic agents on the market. To date, approximately 80 mAbs have been granted marketing approval. In 2018, 12 new mAbs were approved by the FDA, representing 20% of the total number of approved drugs. The majority of mAb therapeutics are for oncological and immunological/infectious diseases, but these are expanding into other disease areas. Over 100 monoclonal antibodies are in development, and their unique features ensure that these will remain a part of the therapeutic pipeline. Thus, the therapeutic value and the elucidation of their pharmacological properties supporting clinical development of these large molecules are unquestioned. However, their utilization as pharmacological tools in academic laboratories has lagged behind their small molecule counterparts. Early therapeutic mAbs targeted soluble cytokines, but now that mAbs also target membrane-bound receptors and have increased circulating half-life, their pharmacology is more complex. The principles of pharmacology have enabled the development of high affinity, potent and selective small molecule therapeutics with reduced off-target effects and drug-drug interactions. This review will discuss how the same basic principles can be applied to mAbs, with some important differences. Monoclonal antibodies have several benefits, such as fewer off-target adverse effects, fewer drug-drug interactions, higher specificity, and potentially increased efficacy through targeted therapy. Modifications to decrease the immunogenicity and increase the efficacy are described, with examples of optimizing their pharmacokinetic properties and enabling oral bioavailability. Increased awareness of these advances may help to increase their use in exploratory research and further understand and characterize their pharmacological properties.
Collapse
Affiliation(s)
- María Sofía Castelli
- Department of Physiology and PharmacologyCollege of MedicineDrexel UniversityPhiladelphiaPAUSA
| | - Paul McGonigle
- Department of Physiology and PharmacologyCollege of MedicineDrexel UniversityPhiladelphiaPAUSA
| | - Pamela J. Hornby
- Department of Physiology and PharmacologyCollege of MedicineDrexel UniversityPhiladelphiaPAUSA
- Cardiovascular & Metabolic Disease DiscoveryJanssen R&DLLCSpring HousePAUSA
| |
Collapse
|
106
|
Application of multiplexed pharmacokinetic immunoassay to quantify in vivo drug forms and coadministered biologics. Bioanalysis 2019; 11:2251-2268. [DOI: 10.4155/bio-2019-0147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Meso Scale Discovery U-PLEX® provides an opportunity to develop multiplexed pharmacokinetic (PK) immunoassays. Two case studies demonstrate the utility of multiplexed PK methods. Materials & methods: Development of PK ligand-binding assays quantify of nonclinical plasma concentrations of a biotherapeutic that has degraded due to in vivo biotransformation, and clinical serum concentrations from two biotherapeutics spiked into a single sample. Results: Data from multiplexed U-PLEX PK methods are comparable to results from single-readout streptavidin Meso Scale Discovery gold PK methods. Multiplex measurement of a nonclinical study showed acceptable performance for accuracy, precision and dilutional linearity while a clinical study additionally passed selectivity, specificity and stability. Conclusion: Regulated, validation-ready multiplex PK methods for both nonclinical and clinical studies allow opportunities for high-throughput bioanalysis.
Collapse
|
107
|
Sjuts H, Schreuder H, Engel CK, Bussemer T, Gokarn Y. Matching pH values for antibody stabilization and crystallization suggest rationale for accelerated development of biotherapeutic drugs. Drug Dev Res 2019; 81:329-337. [PMID: 31758731 DOI: 10.1002/ddr.21624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/11/2022]
Abstract
Monoclonal antibodies (mAbs) are currently leading products in the global biopharmaceutical market. Multiple mAbs are in clinical development and novel biotherapeutic protein scaffolds, based on the canonical immunoglobulin G (IgG) fold, are emerging as treatment options for various medical conditions. However, fast approvals for biotherapeutics are challenging to achieve, because of difficult scientific development procedures and complex regulatory processes. Selecting molecular entities with superior physicochemical properties that proceed into clinical trials and the identification of stable formulations are crucial developability aspects. It is widely accepted that the solution pH has critical influences on both the protein's colloidal stability and its crystallization behavior. Furthermore, proteins usually crystallize best at solution conditions that enable high protein solubility, purity, stability, and monodispersity. Therefore, we hypothesize that the solution pH value is a central parameter that is linking together protein formulation, protein crystallization, and thermal protein stability. In order to experimentally test this hypothesis, we have investigated the effect of the solution pH on the thermal stabilities and crystallizabilities for three different mAbs. Combining biophysical measurements with high throughput protein (HTP) crystallization trials we observed a correlation in the buffer pH values for eminent mAb stability and successful crystallization. Specifically, differential scanning fluorimetry (DSF) was used to determine pH values that exert highest thermal mAb stabilities and additionally led to the identification of unfolding temperatures of individual mAb domains. Independently performed crystallization trials with the same mAbs resulted in their successful crystallization at pH values that displayed highest thermal stabilities. In summary, the presented results suggest a strategy how protein crystallization could be used as a screening method for the development of biotherapeutic protein formulations with improved in vitro stabilities.
Collapse
Affiliation(s)
- Hanno Sjuts
- Biologics Research, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Herman Schreuder
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Christian K Engel
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Till Bussemer
- Biologics Development, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Yatin Gokarn
- Biologics Development, Sanofi US Services Inc., Framingham, Massachusetts, US
| |
Collapse
|
108
|
Lee CH, Kang TH, Godon O, Watanabe M, Delidakis G, Gillis CM, Sterlin D, Hardy D, Cogné M, Macdonald LE, Murphy AJ, Tu N, Lee J, McDaniel JR, Makowski E, Tessier PM, Meyer AS, Bruhns P, Georgiou G. An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence. Nat Commun 2019; 10:5031. [PMID: 31695028 PMCID: PMC6834678 DOI: 10.1038/s41467-019-13108-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
The pharmacokinetic properties of antibodies are largely dictated by the pH-dependent binding of the IgG fragment crystallizable (Fc) domain to the human neonatal Fc receptor (hFcRn). Engineered Fc domains that confer a longer circulation half-life by virtue of more favorable pH-dependent binding to hFcRn are of great therapeutic interest. Here we developed a pH Toggle switch Fc variant containing the L309D/Q311H/N434S (DHS) substitutions, which exhibits markedly improved pharmacokinetics relative to both native IgG1 and widely used half-life extension variants, both in conventional hFcRn transgenic mice and in new knock-in mouse strains. engineered specifically to recapitulate all the key processes relevant to human antibody persistence in circulation, namely: (i) physiological expression of hFcRn, (ii) the impact of hFcγRs on antibody clearance and (iii) the role of competing endogenous IgG. DHS-IgG retains intact effector functions, which are important for the clearance of target pathogenic cells and also has favorable developability.
Collapse
Affiliation(s)
- Chang-Han Lee
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Tae Hyun Kang
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Applied Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ophélie Godon
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France
| | - Makiko Watanabe
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - George Delidakis
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Caitlin M Gillis
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France
| | - Delphine Sterlin
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France
| | - David Hardy
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | | | | | | | - Naxin Tu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jonathan R McDaniel
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Emily Makowski
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Peter M Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aaron S Meyer
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Pierre Bruhns
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France.
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
- Department of Molecular Bioscience, University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
109
|
Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody–Drug Conjugates: A Comprehensive Review. Mol Cancer Res 2019; 18:3-19. [DOI: 10.1158/1541-7786.mcr-19-0582] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/22/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
|
110
|
Ahmat Amin MKB, Shimizu A, Ogita H. The Pivotal Roles of the Epithelial Membrane Protein Family in Cancer Invasiveness and Metastasis. Cancers (Basel) 2019; 11:E1620. [PMID: 31652725 PMCID: PMC6893843 DOI: 10.3390/cancers11111620] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
The members of the family of epithelial membrane proteins (EMPs), EMP1, EMP2, and EMP3, possess four putative transmembrane domain structures and are composed of approximately 160 amino acid residues. EMPs are encoded by the growth arrest-specific 3 (GAS3)/peripheral myelin protein 22 kDa (PMP22) gene family. The GAS3/PMP22 family members play roles in cell migration, growth, and differentiation. Evidence indicates an association of these molecules with cancer progression and metastasis. Each EMP has pro- and anti-metastatic functions that are likely involved in the complex mechanisms of cancer progression. We have recently demonstrated that the upregulation of EMP1 expression facilitates cancer cell migration and invasion through the activation of a small GTPase, Rac1. The inoculation of prostate cancer cells overexpressing EMP1 into nude mice leads to metastasis to the lymph nodes and lungs, indicating that EMP1 contributes to metastasis. Pro-metastatic properties of EMP2 and EMP3 have also been proposed. Thus, targeting EMPs may provide new insights into their clinical utility. Here, we highlight the important aspects of EMPs in cancer biology, particularly invasiveness and metastasis, and describe recent therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Khusni B Ahmat Amin
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
- Translational Research Unit, Department of International Collaborative Research, Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan.
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
| |
Collapse
|
111
|
Sádio F, Stadlmayr G, Stadlbauer K, Gräf M, Scharrer A, Rüker F, Wozniak-Knopp G. Stabilization of soluble high-affinity T-cell receptor with de novo disulfide bonds. FEBS Lett 2019; 594:477-490. [PMID: 31552676 PMCID: PMC7027902 DOI: 10.1002/1873-3468.13616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Soluble T‐cell receptors (TCRs) have recently gained visibility as target‐recognition units of anticancer immunotherapeutic agents. Here, we improved the thermal stability of the well‐expressed high‐affinity A6 TCR by introducing pairs of cysteines in the invariable parts of the α‐ and β‐chain. A mutant with a novel intradomain disulfide bond in each chain also tested superior to the wild‐type in the accelerated stability assay. Binding of the mutant to the soluble cognate peptide (cp)–MHC and to the peptide‐loaded T2 cell line was equal to the wild‐type A6 TCR. The same stabilization motif worked efficiently in TCRs with different specificities, such as DMF5 and 1G4. Altogether, the biophysical properties of the soluble TCR molecule could be improved, without affecting its expression level and antigen‐binding specificity.
Collapse
Affiliation(s)
- Flávio Sádio
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Gerhard Stadlmayr
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Katharina Stadlbauer
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Maximilian Gräf
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Agnes Scharrer
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Florian Rüker
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Gordana Wozniak-Knopp
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
112
|
He Q, Liu Z, Liu Z, Lai Y, Zhou X, Weng J. TCR-like antibodies in cancer immunotherapy. J Hematol Oncol 2019; 12:99. [PMID: 31521180 PMCID: PMC6744646 DOI: 10.1186/s13045-019-0788-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy has been regarded as the most significant scientific breakthrough of 2013, and antibody therapy is at the core of this breakthrough. Despite significant success achieved in recent years, it is still difficult to target intracellular antigens of tumor cells with traditional antibodies, and novel therapeutic strategies are needed. T cell receptor (TCR)-like antibodies comprise a novel family of antibodies that can recognize peptide/MHC complexes on tumor cell surfaces. TCR-like antibodies can execute specific and significant anti-tumor immunity through several distinct molecular mechanisms, and the success of this type of antibody therapy in melanoma, leukemia, and breast, colon, and prostate tumor models has excited researchers in the immunotherapy field. Here, we summarize the generation strategy, function, and molecular mechanisms of TCR-like antibodies described in publications, focusing on the most significant discoveries.
Collapse
Affiliation(s)
- Qinghua He
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Zhaoyu Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Zhihua Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Yuxiong Lai
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xinke Zhou
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Jinsheng Weng
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1414 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
113
|
Ollier R, Wassmann P, Monney T, Ries Fecourt C, Gn S, C A V, Ayoub D, Stutz C, Gudi GS, Blein S. Single-step Protein A and Protein G avidity purification methods to support bispecific antibody discovery and development. MAbs 2019; 11:1464-1478. [PMID: 31462177 PMCID: PMC6816383 DOI: 10.1080/19420862.2019.1660564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Heavy chain (Hc) heterodimers represent a majority of bispecific antibodies (bsAbs) under clinical development. Although recent technologies achieve high levels of Hc heterodimerization (HD), traces of homodimer contaminants are often present, and as a consequence robust purification techniques for generating highly pure heterodimers in a single step are needed. Here, we describe two different purification methods that exploit differences in Protein A (PA) or Protein G (PG) avidity between homo- and heterodimers. Differential elution between species was enabled by removing PA or PG binding in one of the Hcs of the bsAb. The PA method allowed the avidity purification of heterodimers based on the VH3 subclass, which naturally binds PA and interferes with separation, by using a combination of IgG3 Fc and a single amino acid change in VH3, N82aS. The PG method relied on a combination of three mutations that completely disrupts PG binding, M428G/N434A in IgG1 Fc and K213V in IgG1 CH1. Both methods achieved a high level of heterodimer purity as single-step techniques without Hc HD (93–98%). Since PA and PG have overlapping binding sites with the neonatal Fc receptor (FcRn), we investigated the effects of our engineering both in vitro and in vivo. Mild to moderate differences in FcRn binding and Fc thermal stability were observed, but these did not significantly change the serum half-lives of engineered control antibodies and heterodimers. The methods are conceptually compatible with various Hc HD platforms such as BEAT® (Bispecific Engagement by Antibodies based on the T cell receptor), in which the PA method has already been successfully implemented.
Collapse
Affiliation(s)
- Romain Ollier
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Paul Wassmann
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Thierry Monney
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Christelle Ries Fecourt
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Sunitha Gn
- Department of Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Centre , Navi Mumbai , India
| | - Vinu C A
- Department of Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Centre , Navi Mumbai , India
| | - Daniel Ayoub
- Department of Formulation and Analytical Development, Glenmark Pharmaceuticals SA , La Chaux-de-Fonds , Switzerland
| | - Cian Stutz
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Girish S Gudi
- Department of Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Inc ., Paramus , NJ , USA
| | - Stanislas Blein
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| |
Collapse
|
114
|
Laustsen AH. How can monoclonal antibodies be harnessed against neglected tropical diseases and other infectious diseases? Expert Opin Drug Discov 2019; 14:1103-1112. [PMID: 31364421 DOI: 10.1080/17460441.2019.1646723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Monoclonal antibody-based therapies now represent the single-largest class of molecules undergoing clinical investigation. Although a handful of different monoclonal antibodies have been clinically approved for bacterial and viral indications, including rabies, therapies based on monoclonal antibodies are yet to fully enter the fields of neglected tropical diseases and other infectious diseases. Areas covered: This review presents the current state-of-the-art in the development and use of monoclonal antibodies against neglected tropical diseases and other infectious diseases, including viral, bacterial, and parasitic infections, as well as envenomings by animal bites and stings. Additionally, a short section on mushroom poisonings is included. Key challenges for developing antibody-based therapeutics are discussed for each of these fields. Expert opinion: Neglected tropical diseases and other infectious diseases represent a golden opportunity for academics and technology developers for advancing our scientific capabilities within the understanding and design of antibody cross-reactivity, use of oligoclonal antibody mixtures for multi-target neutralization, novel immunization methodologies, targeting of evasive pathogens, and development of fundamentally novel therapeutic mechanisms of action. Furthermore, a huge humanitarian and societal impact is to gain by exploiting antibody technologies for the development of biotherapies against diseases, for which current treatment options are suboptimal or non-existent.
Collapse
Affiliation(s)
- Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark , Kongens Lyngby , Denmark
| |
Collapse
|
115
|
Cao M, De Mel N, Jiao Y, Howard J, Parthemore C, Korman S, Thompson C, Wendeler M, Liu D. Site-specific antibody-drug conjugate heterogeneity characterization and heterogeneity root cause analysis. MAbs 2019; 11:1064-1076. [PMID: 31198090 PMCID: PMC6748582 DOI: 10.1080/19420862.2019.1624127] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Site-specific antibody-drug conjugates (ADCs) are designed to overcome the heterogeneity observed with first-generation ADCs that use random conjugation to surface-exposed lysine residues or conjugation to interchain disulfide bonds. Despite significantly enhanced homogeneity, however, the production of site-specific ADCs yields some process-related species heterogeneity, including stereoisomers, unconjugated antibody, underconjugated species, and overconjugated species. An elevated level of size variants, such as heavy chain-light chain species (half ADC), heavy chain-heavy chain-light chain species, and light chain species, is also observed with the final site-specific ADC product. To understand the root cause of heterogeneity generated during the ADC conjugation process, we designed time-course studies for each conjugation step, including reduction, oxidation, conjugation, and quenching. We developed both non-reduced peptide map and LabChip-based capillary electrophoresis sodium dodecyl sulfate methods for time-course sample analysis. On the basis of our time-course data, the half ADC and unconjugated antibody were generated during oxidation as a result of alternative disulfide bond arrangements. During oxidation, two hinge cysteines formed an intra-chain disulfide bond in the half ADC, and three inter-chain hinge disulfide bonds were formed in the unconjugated antibody. Time-course data also showed that the elevated level of size variants, especially heavy chain-heavy chain-light chain species and light chain species, resulted from the quenching step, where the quenching reagent engaged in a disulfide bond exchange reaction with the ADC and broke the disulfide bonds connecting the heavy chain and light chain. Underconjugated and overconjugated species arose from the equilibrium established during the conjugation reaction.
Collapse
Affiliation(s)
- Mingyan Cao
- a Department of Analytical Sciences, MedImmune , Gaithersburg , MD , USA
| | - Niluka De Mel
- a Department of Analytical Sciences, MedImmune , Gaithersburg , MD , USA
| | - Yang Jiao
- a Department of Analytical Sciences, MedImmune , Gaithersburg , MD , USA
| | - James Howard
- b Department of Purification Process Sciences, MedImmune , Gaithersburg , MD , USA
| | - Conner Parthemore
- a Department of Analytical Sciences, MedImmune , Gaithersburg , MD , USA
| | - Samuel Korman
- a Department of Analytical Sciences, MedImmune , Gaithersburg , MD , USA
| | - Christopher Thompson
- b Department of Purification Process Sciences, MedImmune , Gaithersburg , MD , USA
| | - Michaela Wendeler
- b Department of Purification Process Sciences, MedImmune , Gaithersburg , MD , USA
| | - Dengfeng Liu
- a Department of Analytical Sciences, MedImmune , Gaithersburg , MD , USA
| |
Collapse
|
116
|
Novotny J, Ostatna V, Foret F. Electrochemical Analysis of Glycoprotein Samples Prepared on a Pneumatically‐controlled Microfluidic Device. ELECTROANAL 2019. [DOI: 10.1002/elan.201900275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jakub Novotny
- Institute of Analytical Chemistry of the Czech Academy of Sciences Veveří 967/97 602 00 Brno Czech Republic
- Department of Biological and Biochemical Sciences, Faculty of Chemical TechnologyUniversity of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Veronika Ostatna
- Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 612 65 Brno Czech Republic
| | - Frantisek Foret
- Institute of Analytical Chemistry of the Czech Academy of Sciences Veveří 967/97 602 00 Brno Czech Republic
- CEITEC – Central European Institute of TechnologyMasaryk University Kamenice 753/5 625 00 Brno Czech Republic
| |
Collapse
|
117
|
Abstract
The enhanced understanding of immunology experienced over the last 4 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies that will hopefully expand the veterinary oncology treatment toolkit over time.
Collapse
|
118
|
Sifniotis V, Cruz E, Eroglu B, Kayser V. Current Advancements in Addressing Key Challenges of Therapeutic Antibody Design, Manufacture, and Formulation. Antibodies (Basel) 2019; 8:E36. [PMID: 31544842 PMCID: PMC6640721 DOI: 10.3390/antib8020036] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Therapeutic antibody technology heavily dominates the biologics market and continues to present as a significant industrial interest in developing novel and improved antibody treatment strategies. Many noteworthy advancements in the last decades have propelled the success of antibody development; however, there are still opportunities for improvement. In considering such interest to develop antibody therapies, this review summarizes the array of challenges and considerations faced in the design, manufacture, and formulation of therapeutic antibodies, such as stability, bioavailability and immunological engagement. We discuss the advancement of technologies that address these challenges, highlighting key antibody engineered formats that have been adapted. Furthermore, we examine the implication of novel formulation technologies such as nanocarrier delivery systems for the potential to formulate for pulmonary delivery. Finally, we comprehensively discuss developments in computational approaches for the strategic design of antibodies with modulated functions.
Collapse
Affiliation(s)
- Vicki Sifniotis
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Esteban Cruz
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Barbaros Eroglu
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Veysel Kayser
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
119
|
Bartels L, de Jong G, Gillissen MA, Yasuda E, Kattler V, Bru C, Fatmawati C, van Hal-van Veen SE, Cercel MG, Moiset G, Bakker AQ, van Helden PM, Villaudy J, Hazenberg MD, Spits H, Wagner K. A Chemo-enzymatically Linked Bispecific Antibody Retargets T Cells to a Sialylated Epitope on CD43 in Acute Myeloid Leukemia. Cancer Res 2019; 79:3372-3382. [PMID: 31064847 DOI: 10.1158/0008-5472.can-18-0189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/16/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) is a high-risk disease with a poor prognosis, particularly in elderly patients. Because current AML treatment relies primarily on untargeted therapies with severe side effects that limit patient eligibility, identification of novel therapeutic AML targets is highly desired. We recently described AT1413, an antibody produced by donor B cells of a patient with AML cured after allogeneic hematopoietic stem cell transplantation. AT1413 binds CD43s, a unique sialylated epitope on CD43, which is weakly expressed on normal myeloid cells and overexpressed on AML cells. Because of its selectivity for AML cells, we considered CD43s as a target for a bispecific T-cell-engaging antibody (bTCE) and generated a bTCE by coupling AT1413 to two T-cell-targeting fragments using chemo-enzymatic linkage. In vitro, AT1413 bTCE efficiently induced T-cell-mediated cytotoxicity toward different AML cell lines and patient-derived AML blasts, whereas endothelial cells with low binding capacity for AT1413 remained unaffected. In the presence of AML cells, AT1413 bTCE induced upregulation of T-cell activation markers, cytokine release, and T-cell proliferation. AT1413 bTCE was also effective in vivo. Mice either coinjected with human peripheral blood mononuclear cells or engrafted with human hematopoietic stem cells [human immune system (HIS) mice] were inoculated with an AML cell line or patient-derived primary AML blasts. AT1413 bTCE treatment strongly inhibited tumor growth and, in HIS mice, had minimal effects on normal human hematopoietic cells. Taken together, our results indicate that CD43s is a promising target for T-cell-engaging antibodies and that AT1413 holds therapeutic potential in a bTCE-format. SIGNIFICANCE: These findings offer preclinical evidence for the therapeutic potential of a bTCE antibody that targets a sialylated epitope on CD43 in AML.
Collapse
Affiliation(s)
- Lina Bartels
- AIMM Therapeutics, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Greta de Jong
- AIMM Therapeutics, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Amsterdam, the Netherlands.,Department of Hematology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| | - Marijn A Gillissen
- AIMM Therapeutics, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Amsterdam, the Netherlands.,Department of Hematology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| | | | | | - Camille Bru
- AIMM Therapeutics, Amsterdam, the Netherlands
| | | | | | | | - Gemma Moiset
- AIMM Therapeutics, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Amsterdam, the Netherlands.,Department of Hematology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| | | | | | | | - Mette D Hazenberg
- Department of Experimental Immunology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Amsterdam, the Netherlands.,Department of Hematology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| | - Hergen Spits
- AIMM Therapeutics, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Koen Wagner
- AIMM Therapeutics, Amsterdam, the Netherlands.
| |
Collapse
|
120
|
Mao Y, Zhang L, Kleinberg A, Xia Q, Daly TJ, Li N. Fast protein sequencing of monoclonal antibody by real-time digestion on emitter during nanoelectrospray. MAbs 2019; 11:767-778. [PMID: 30919719 PMCID: PMC6601538 DOI: 10.1080/19420862.2019.1599633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Growth in the pharmaceutical industry has led to an increasing demand for rapid characterization of therapeutic monoclonal antibodies. The current methods for antibody sequence confirmation (e.g., N-terminal Edman sequencing and traditional peptide mapping methods) are not sufficient; thus, we developed a fast method for sequencing recombinant monoclonal antibodies using a novel digestion-on-emitter technology. Using this method, a monoclonal antibody can be denatured, reduced, digested, and sequenced in less than an hour. High throughput and satisfactory protein sequence coverage were achieved by using a non-specific protease from Aspergillus saitoi, protease XIII, to digest the denatured and reduced monoclonal antibody on an electrospray emitter, while electrospray high voltage was applied to the digestion mixture through the emitter. Tandem mass spectrometry data was acquired over the course of enzyme digestion, generating similar information compared to standard peptide mapping experiments in much less time. We demonstrated that this fast protein sequencing method provided sufficient sequence information for bovine serum albumin and two commercially available monoclonal antibodies, mouse IgG1 MOPC21 and humanized IgG1 NISTmAb. For two monoclonal antibodies, we obtained sequence coverage of 90.5–95.1% for the heavy chains and 98.6–99.1% for the light chains. We found that on-emitter digestion by protease XIII generated peptides of various lengths during the digestion process, which was critical for achieving sufficient sequence coverage. Moreover, we discovered that the enzyme-to-substrate ratio was an important parameter that affects protein sequence coverage. Due to its highly automatable and efficient design, our method offers a major advantage over N-terminal Edman sequencing and traditional peptide mapping methods in the identification of protein sequence, and is capable of meeting an ever-increasing demand for monoclonal antibody sequence confirmation in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Yuan Mao
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Lichao Zhang
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Andrew Kleinberg
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Qiangwei Xia
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Thomas J Daly
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Ning Li
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| |
Collapse
|
121
|
Gjetting T, Gad M, Fröhlich C, Lindsted T, Melander MC, Bhatia VK, Grandal MM, Dietrich N, Uhlenbrock F, Galler GR, Strandh M, Lantto J, Bouquin T, Horak ID, Kragh M, Pedersen MW, Koefoed K. Sym021, a promising anti-PD1 clinical candidate antibody derived from a new chicken antibody discovery platform. MAbs 2019; 11:666-680. [PMID: 31046547 PMCID: PMC6601539 DOI: 10.1080/19420862.2019.1596514] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Discovery of therapeutic antibodies is a field of intense development, where immunization of rodents remains a major source of antibody candidates. However, high orthologue protein sequence homology between human and rodent species disfavors generation of antibodies against functionally conserved binding epitopes. Chickens are phylogenetically distant from mammals. Since chickens generate antibodies from a restricted set of germline genes, the possibility of adapting the Symplex antibody discovery platform to chicken immunoglobulin genes and combining it with high-throughput humanization of antibody frameworks by “mass complementarity-determining region grafting” was explored. Hence, wild type chickens were immunized with an immune checkpoint inhibitor programmed cell death 1 (PD1) antigen, and a repertoire of 144 antibodies was generated. The PD1 antibody repertoire was successfully humanized, and we found that most humanized antibodies retained affinity largely similar to that of the parental chicken antibodies. The lead antibody Sym021 blocked PD-L1 and PD-L2 ligand binding, resulting in elevated T-cell cytokine production in vitro. Detailed epitope mapping showed that the epitope recognized by Sym021 was unique compared to the clinically approved PD1 antibodies pembrolizumab and nivolumab. Moreover, Sym021 bound human PD1 with a stronger affinity (30 pM) compared to nivolumab and pembrolizumab, while also cross-reacting with cynomolgus and mouse PD1. This enabled direct testing of Sym021 in the syngeneic mouse in vivo cancer models and evaluation of preclinical toxicology in cynomolgus monkeys. Preclinical in vivo evaluation in various murine and human tumor models demonstrated a pronounced anti-tumor effect of Sym021, supporting its current evaluation in a Phase 1 clinical trial. Abbreviations: ADCC, antibody-dependent cellular cytotoxicity; CD, cluster of differentiation; CDC, complement-dependent cytotoxicity; CDR, complementarity determining region; DC, dendritic cell; ELISA, enzyme-linked immunosorbent assay; FACS, fluorescence activated cell sorting; FR, framework region; GM-CSF, granulocyte-macrophage colony-stimulating factor; HRP, horseradish peroxidase; IgG, immunoglobulin G; IL, interleukin; IFN, interferon; mAb, monoclonal antibody; MLR, mixed lymphocyte reaction; NK, natural killer; PBMC, peripheral blood mono-nuclear cell; PD1, programmed cell death 1; PDL1, programmed cell death ligand 1; RT-PCR, reverse transcription polymerase chain reaction; SEB, Staphylococcus Enterotoxin B; SPR, surface Plasmon Resonance; VL, variable part of light chain; VH, variable part of heavy chain
Collapse
Affiliation(s)
- Torben Gjetting
- a Antibody Discovery, Antibody Discovery , Ballerup , Denmark
| | - Monika Gad
- b Cancer Biology and Immunology, Symphogen A/S , Ballerup , Denmark
| | | | - Trine Lindsted
- b Cancer Biology and Immunology, Symphogen A/S , Ballerup , Denmark
| | | | - Vikram K Bhatia
- a Antibody Discovery, Antibody Discovery , Ballerup , Denmark
| | | | | | | | | | - Magnus Strandh
- a Antibody Discovery, Antibody Discovery , Ballerup , Denmark
| | - Johan Lantto
- d Global Research and Development, Symphogen A/S , Ballerup , Denmark
| | - Thomas Bouquin
- a Antibody Discovery, Antibody Discovery , Ballerup , Denmark
| | - Ivan D Horak
- d Global Research and Development, Symphogen A/S , Ballerup , Denmark
| | - Michael Kragh
- c Antibody Pharmacology, Symphogen A/S , Ballerup , Denmark
| | | | - Klaus Koefoed
- a Antibody Discovery, Antibody Discovery , Ballerup , Denmark
| |
Collapse
|
122
|
Modifications of recombinant monoclonal antibodies in vivo. Biologicals 2019; 59:1-5. [DOI: 10.1016/j.biologicals.2019.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 12/07/2018] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
|
123
|
Dudek S, Weißmüller S, Anzaghe M, Miller L, Sterr S, Hoffmann K, Hengel H, Waibler Z. Human Fcγ receptors compete for TGN1412 binding that determines the antibody's effector function. Eur J Immunol 2019; 49:1117-1126. [PMID: 31002172 DOI: 10.1002/eji.201847924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/21/2019] [Accepted: 04/09/2019] [Indexed: 11/07/2022]
Abstract
The first-in-human clinical trial of the CD28-specific monoclonal antibody (mAb) TGN1412 resulted in a life-threatening cytokine release syndrome. Although TGN1412 was designed as IgG4, known for weak Fc:Fcγ receptor (FcγR) interactions, these interactions contributed to TGN1412-induced T-cell activation. Using cell lines (TFs) expressing human FcγRI, -IIa, -IIb, or -III, we show that TGN1412 and TGN1412 as IgG1 and IgG2 are bound by FcγRs as it can be deduced from literature. However, upon coculture of TGN1412-decorated T cells with TFs or human primary blood cells, we observed that binding capacities by FcγRs do not correlate with the strength of the mediated effector function. FcγRIIa and FcγRIIb, showing no or very minor binding to TGN1412, mediated strongest T cell proliferation, while high-affinity FcγRI, exhibiting strong TGN1412 binding, mediated hardly any T-cell proliferation. These findings are of biological relevance because we show that FcγRI binds TGN1412, thus prevents binding to FcγRIIa or FcγRIIb, and consequently disables T-cell proliferation. In line with this, FcγRI- FcγRII+ but not FcγRI+ FcγRII+ monocytes mediate TGN1412-induced T-cell proliferation. Collectively, by using TGN1412 as example, our results indicate that binding of monomeric IgG subclasses does not predict the FcγR-mediated effector function, which has major implications for the design of therapeutic mAbs.
Collapse
Affiliation(s)
- Simone Dudek
- Product Testing of Immunological Biopharmaceuticals, Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Sabrina Weißmüller
- Product Testing of Immunological Biopharmaceuticals, Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Martina Anzaghe
- Product Testing of Immunological Biopharmaceuticals, Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Lilija Miller
- Product Testing of Immunological Biopharmaceuticals, Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Sarah Sterr
- Product Testing of Immunological Biopharmaceuticals, Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Katja Hoffmann
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Zoe Waibler
- Product Testing of Immunological Biopharmaceuticals, Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
124
|
Sacchetti B, Botticelli A, Pierelli L, Nuti M, Alimandi M. CAR-T with License to Kill Solid Tumors in Search of a Winning Strategy. Int J Mol Sci 2019; 20:E1903. [PMID: 30999624 PMCID: PMC6514830 DOI: 10.3390/ijms20081903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023] Open
Abstract
Artificial receptors designed for adoptive immune therapies need to absolve dual functions: antigen recognition and abilities to trigger the lytic machinery of reprogrammed effector T lymphocytes. In this way, CAR-T cells deliver their cytotoxic hit to cancer cells expressing targeted tumor antigens, bypassing the limitation of HLA-restricted antigen recognition. Expanding technologies have proposed a wide repertoire of soluble and cellular "immunological weapons" to kill tumor cells; they include monoclonal antibodies recognizing tumor associated antigens on tumor cells and immune cell checkpoint inhibition receptors expressed on tumor specific T cells. Moreover, a wide range of formidable chimeric antigen receptors diversely conceived to sustain quality, strength and duration of signals delivered by engineered T cells have been designed to specifically target tumor cells while minimize off-target toxicities. The latter immunological weapons have shown distinct efficacy and outstanding palmarès in curing leukemia, but limited and durable effects for solid tumors. General experience with checkpoint inhibitors and CAR-T cell immunotherapy has identified a series of variables, weaknesses and strengths, influencing the clinical outcome of the oncologic illness. These aspects will be shortly outlined with the intent of identifying the still "missing strategy" to combat epithelial cancers.
Collapse
Affiliation(s)
| | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Luca Pierelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Marianna Nuti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Maurizio Alimandi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
125
|
Darowski D, Kobold S, Jost C, Klein C. Combining the best of two worlds: highly flexible chimeric antigen receptor adaptor molecules (CAR-adaptors) for the recruitment of chimeric antigen receptor T cells. MAbs 2019; 11:621-631. [PMID: 30892136 PMCID: PMC6601549 DOI: 10.1080/19420862.2019.1596511] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T cells have a proven efficacy for the treatment of refractory hematological B cell malignancies. While often accompanied by side effects, CAR-T technology is getting more mature and will become an important treatment option for various tumor indications. In this review, we summarize emerging approaches that aim to further evolve CAR-T cell therapy based on combinations of so-called universal or modular CAR-(modCAR-)T cells, and their respective adaptor molecules (CAR-adaptors), which mediate the crosslinking between target and effector cells. The activity of such modCAR-T cells is entirely dependent on binding of the respective CAR-adaptor to both a tumor antigen and to the CAR-expressing T cell. Contrary to conventional CAR-T cells, where the immunological synapse is established by direct interaction of CAR and membrane-bound target, modCAR-T cells provide a highly flexible and customizable development of the CAR-T cell concept and offer an additional possibility to control T cell activity.
Collapse
Affiliation(s)
- Diana Darowski
- a Roche Pharmaceutical Research & Early Development , Roche Innovation Center Zurich , Schlieren , Switzerland
| | - Sebastian Kobold
- b Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV , Klinikum der Universität München, LMU, Member of the German Center for Lung Research (DZL) , Munich , Germany
| | - Christian Jost
- a Roche Pharmaceutical Research & Early Development , Roche Innovation Center Zurich , Schlieren , Switzerland
| | - Christian Klein
- a Roche Pharmaceutical Research & Early Development , Roche Innovation Center Zurich , Schlieren , Switzerland
| |
Collapse
|
126
|
Kaleli NE, Karadag M, Kalyoncu S. Phage display derived therapeutic antibodies have enriched aliphatic content: Insights for developability issues. Proteins 2019; 87:607-618. [DOI: 10.1002/prot.25685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Nazlı Eda Kaleli
- Izmir Biomedicine and Genome Center Izmir Turkey
- Izmir Biomedicine and Genome Institute, Dokuz Eylül University Izmir Turkey
| | - Murat Karadag
- Izmir Biomedicine and Genome Center Izmir Turkey
- Izmir Biomedicine and Genome Institute, Dokuz Eylül University Izmir Turkey
| | | |
Collapse
|
127
|
Abstract
Receptors recognizing the Fc-part of immunoglobulins (FcR) are important in the engagement of phagocytes with opsonized micro-organisms, but they also play a major role in the pathogenesis of chronic inflammatory diseases. Different FcRs are specifically recognizing and binding the different classes of immunoglobulins, transmitting different signals into the cell. The function of IgG (FcγR's) and IgA (FcαR) recognizing receptors is controlled by cellular signals evoked by activation of heterologous receptors in a process generally referred to as inside-out control. This concept is clearly described for the regulation of integrin receptors. Inside-out control can be achieved at different levels by modulation of: (i) receptor affinity, (ii) receptor avidity/valency, (iii) interaction with signaling chains, (iv) interaction with other receptors and (v) localization in functionally different membrane domains. The inside-out control of FcRs is an interesting target for novel therapy by therapeutical antibodies as it can potentiate or decrease the functionality of the response to the antibodies depending on the mechanisms of the diseases they are applied for.
Collapse
Affiliation(s)
- Leo Koenderman
- Department of Respiratory Medicine and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
128
|
Molecular-level Antibody Repertoire Profiling and Engineering: Implications for Developing Next-generation Diagnostics, Therapeutics, and Vaccines. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0050-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
129
|
Zamay GS, Kolovskaya OS, Ivanchenko TI, Zamay TN, Veprintsev DV, Grigorieva VL, Garanzha II, Krat AV, Glazyrin YE, Gargaun A, Lapin IN, Svetlichnyi VA, Berezovski MV, Kichkailo AS. Development of DNA Aptamers to Native EpCAM for Isolation of Lung Circulating Tumor Cells from Human Blood. Cancers (Basel) 2019; 11:cancers11030351. [PMID: 30871104 PMCID: PMC6468627 DOI: 10.3390/cancers11030351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/05/2023] Open
Abstract
We selected DNA aptamers to the epithelial cell adhesion molecule (EpCAM) expressed on primary lung cancer cells isolated from the tumors of patients with non-small cell lung cancer using competitive displacement of aptamers from EpCAM by a corresponding antibody. The resulting aptamers clones showed good nanomolar affinity to EpCAM-positive lung cancer cells. Confocal microscopy imaging and spectral profiling of lung cancer tissues confirmed the same protein target for the aptamers and anti-EpCAM antibodies. Furthermore, the resulted aptamers were successfully applied for isolation and detection of circulating tumor cells in clinical samples of peripheral blood of lung cancer patients.
Collapse
Affiliation(s)
- Galina S Zamay
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Krasnoyarsk 660036, Russia.
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
| | - Olga S Kolovskaya
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Krasnoyarsk 660036, Russia.
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
| | - Tatiana I Ivanchenko
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Krasnoyarsk 660036, Russia.
| | - Tatiana N Zamay
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Krasnoyarsk 660036, Russia.
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
| | - Dmitry V Veprintsev
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Krasnoyarsk 660036, Russia.
| | - Valentina L Grigorieva
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
| | - Irina I Garanzha
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
| | - Alexey V Krat
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
- Krasnoyarsk Regional Clinical Cancer Center named after A.I. Kryzhanovsky, Krasnoyarsk 660133, Russia.
| | - Yury E Glazyrin
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Krasnoyarsk 660036, Russia.
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
| | - Ana Gargaun
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Ivan N Lapin
- Laboratory of Advanced Materials and Technology, Siberian Physical-Technical Institute of Tomsk State University, Tomsk 634050, Russia.
| | - Valery A Svetlichnyi
- Laboratory of Advanced Materials and Technology, Siberian Physical-Technical Institute of Tomsk State University, Tomsk 634050, Russia.
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Anna S Kichkailo
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Krasnoyarsk 660036, Russia.
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
| |
Collapse
|
130
|
In-depth site-specific O-Glycosylation analysis of therapeutic Fc-fusion protein by electron-transfer/higher-energy collisional dissociation mass spectrometry. Biologicals 2019; 58:35-43. [DOI: 10.1016/j.biologicals.2019.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 11/22/2022] Open
|
131
|
Lázár-Molnár E, Delgado JC. Implications of Monoclonal Antibody Therapeutics Use for Clinical Laboratory Testing. Clin Chem 2019; 65:393-405. [DOI: 10.1373/clinchem.2016.266973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
Abstract
Abstract
BACKGROUND
Monoclonal antibody therapeutics (MATs) represent a rapidly expanding class of biological drugs used to treat a variety of diseases. The widespread use of MATs increasingly affects clinical laboratory medicine.
CONTENT
This review provides an overview of MATs currently approved for clinical use in the US, starting from basic biology of antibodies to the engineering, pharmacokinetic and pharmacodynamic properties, nomenclature, and production of MATs. Immunogenicity and the production of antidrug antibodies (ADAs) play a major role in loss of therapeutic response and the development of treatment failure to certain MATs. Laboratory-based monitoring for MATs and detection of ADAs represent emerging needs for optimizing the use of MATs to achieve the best outcomes at affordable cost. In addition, the increased use of MATs affects clinical laboratory testing by interference of MATs with clinical laboratory tests across different areas of laboratory medicine, including histocompatibility, blood bank, and monoclonal protein testing.
SUMMARY
The number of MATs is rapidly growing each year to address previously unmet clinical needs. Laboratory monitoring of MATs and detecting ADAs represent expanding areas of laboratory testing. Test-based strategies allow for treatment optimization at the level of the individual patient, thus providing a personalized medicine approach. In addition, clinical laboratories must be aware that the increasing use of MATs affects laboratory testing and be ready to implement methods to eliminate or mitigate interference with clinical tests.
Collapse
Affiliation(s)
- Eszter Lázár-Molnár
- ARUP Laboratories, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Julio C Delgado
- ARUP Laboratories, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
132
|
Bioanalytical challenges and unique considerations to support pharmacokinetic characterization of bispecific biotherapeutics. Bioanalysis 2019; 11:427-435. [DOI: 10.4155/bio-2018-0146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Compared with conventional (monospecific) therapeutics, bispecific protein therapeutics present unique challenges for pharmacokinetic (PK) characterization – namely, the characterization of multiple functional domains as well as the consideration of biotransformation or interference by the formation of antitherapeutic antibodies against each functional domain. PK characterization is essential to the success of the overall drug development plan and for molecules with multiple binding domains; multiple bioanalytical methods may be needed to answer critical questions for each phase of drug development. The number of bispecific protein therapeutics entering drug development continues to increase, and therefore, a bioanalytical strategy for the PK characterization of bispecific molecules and study of their in vivo structure–function relationship is needed. This review presents case studies and a regulatory perspective.
Collapse
|
133
|
Valadon P, Pérez-Tapia SM, Nelson RS, Guzmán-Bringas OU, Arrieta-Oliva HI, Gómez-Castellano KM, Pohl MA, Almagro JC. ALTHEA Gold Libraries™: antibody libraries for therapeutic antibody discovery. MAbs 2019; 11:516-531. [PMID: 30663541 PMCID: PMC6512909 DOI: 10.1080/19420862.2019.1571879] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We describe here the design, construction and validation of ALTHEA Gold Libraries™. These single-chain variable fragment (scFv), semisynthetic libraries are built on synthetic human well-known IGHV and IGKV germline genes combined with natural human complementarity-determining region (CDR)-H3/JH (H3J) fragments. One IGHV gene provided a universal VH scaffold and was paired with two IGKV scaffolds to furnish different topographies for binding distinct epitopes. The scaffolds were diversified at positions identified as in contact with antigens in the known antigen-antibody complex structures. The diversification regime consisted of high-usage amino acids found at those positions in human antibody sequences. Functionality, stability and diversity of the libraries were improved throughout a three-step construction process. In a first step, fully synthetic primary libraries were generated by combining the diversified scaffolds with a set of synthetic neutral H3J germline gene fragments. The second step consisted of selecting the primary libraries for enhanced thermostability based on the natural capacity of Protein A to bind the universal VH scaffold. In the third and final step, the resultant stable synthetic antibody fragments were combined with natural H3J fragments obtained from peripheral blood mononuclear cells of a large pool of 200 donors. Validation of ALTHEA Gold Libraries™ with seven targets yielded specific antibodies in all the cases. Further characterization of the isolated antibodies indicated KD values as human IgG1 molecules in the single-digit and sub-nM range. The thermal stability (Tm) of all the antigen-binding fragments was 75°C–80°C, demonstrating that ALTHEA Gold Libraries™ are a valuable source of specific, high affinity and highly stable antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mary Ann Pohl
- c Tri-Institutional Therapeutics Discovery Institute , New York , NY , USA
| | | |
Collapse
|
134
|
Hober S, Lindbo S, Nilvebrant J. Bispecific applications of non-immunoglobulin scaffold binders. Methods 2019; 154:143-152. [DOI: 10.1016/j.ymeth.2018.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
|
135
|
Xu Y, Salazar GT, Zhang N, An Z. T-cell receptor mimic (TCRm) antibody therapeutics against intracellular proteins. Antib Ther 2019; 2:22-32. [PMID: 33928218 PMCID: PMC7990144 DOI: 10.1093/abt/tbz001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
T-cell receptor mimic (TCRm) antibodies combine the capacity of a T cell to target intracellular antigens with other capacities unique to antibodies. Neoantigens are abnormal proteins that arise as a consequence of somatic mutations. Technological advances promote the development of neoantigen-targeting therapies including TCRm antibody therapies. This review summarizes key characteristics of TCRm antibodies, in particular those targeting neoantigens, and further introduces discussion of obstacles that must be overcome to advance TCRm therapeutics.
Collapse
Affiliation(s)
- Yixiang Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Georgina To'a Salazar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
136
|
Keeping pace with the increasing demand for high quality drug candidates in pharmaceutical research: Development of a new two-step preparative tandem high performance chromatographic system for the purification of antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1104:18-28. [DOI: 10.1016/j.jchromb.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 11/30/2022]
|
137
|
Kučan Brlić P, Lenac Roviš T, Cinamon G, Tsukerman P, Mandelboim O, Jonjić S. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol 2019; 16:40-52. [PMID: 30275538 PMCID: PMC6318332 DOI: 10.1038/s41423-018-0168-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
Poliovirus receptor (PVR, CD155) has recently been gaining scientific interest as a therapeutic target in the field of tumor immunology due to its prominent endogenous and immune functions. In contrast to healthy tissues, PVR is expressed at high levels in several human malignancies and seems to have protumorigenic and therapeutically attractive properties that are currently being investigated in the field of recombinant oncolytic virotherapy. More intriguingly, PVR participates in a considerable number of immunoregulatory functions through its interactions with activating and inhibitory immune cell receptors. These functions are often modified in the tumor microenvironment, contributing to tumor immunosuppression. Indeed, increasing evidence supports the rationale for developing strategies targeting these interactions, either in terms of checkpoint therapy (i.e., targeting inhibitory receptors) or in adoptive cell therapy, which targets PVR as a tumor marker.
Collapse
Affiliation(s)
- Paola Kučan Brlić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia.
| | - Tihana Lenac Roviš
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia
| | - Guy Cinamon
- Nectin Therapeutics Ltd., Hi-Tech Campus Givat Ram, POB 39135, 91390, Jerusalem, Israel
| | - Pini Tsukerman
- Nectin Therapeutics Ltd., Hi-Tech Campus Givat Ram, POB 39135, 91390, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, IMRIC, The Hebrew University Medical School, Jerusalem, Israel
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia.
| |
Collapse
|
138
|
Rios A, Salazar GT, Zhang N, An Z. The 2018 Nobel Prize in Medicine for breakthroughs in targeting immune checkpoint inhibitors: a brief perspective. Antib Ther 2019; 2:40-43. [PMID: 33928220 PMCID: PMC7990146 DOI: 10.1093/abt/tbz003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Adan Rios
- Division of Oncology, Department of Internal Medicine
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Georgina To'a Salazar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
139
|
Mayrhofer P, Kunert R. Nomenclature of humanized mAbs: Early concepts, current challenges and future perspectives. Hum Antibodies 2019; 27:37-51. [PMID: 30103312 PMCID: PMC6294595 DOI: 10.3233/hab-180347] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nomenclature of monoclonal antibodies traditionally followed a strict scheme indicating target and species information. Because of the rapid advances in this field, emphasized by approval of four humanized and six human antibodies in 2017, the International Nonproprietary Name of new antibodies was updated profoundly by removing the species substem completely. In this review we give an overview about what developments led to the preference of the scientific community towards human-like antibodies. We summarize the major updates in naming schemes that tried to classify antibodies according to their humanization technique or to the final primary sequence and how this led to the erroneous perception to indicate expected immunogenicity. Following the new 2017 nomenclature update, there will not be any information available about the species origin in the names of new antibodies, which emphasizes the need for providing additional supplemental information to the scientific community and develop tools to accurately estimate and control the safety of new monoclonal antibody molecules.
Collapse
Affiliation(s)
- Patrick Mayrhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Renate Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| |
Collapse
|
140
|
Kara E, Dupuy L, Bouillon C, Casteret S, Maurel MC. Modulation of Gonadotropins Activity by Antibodies. Front Endocrinol (Lausanne) 2019; 10:15. [PMID: 30833928 PMCID: PMC6387920 DOI: 10.3389/fendo.2019.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
Gonadotropins are essential for reproduction control in humans as well as in animals. They are widely used all over the world for ovarian stimulation in women, spermatogenesis stimulation in men, and ovulation induction and superovulation in animals. Despite the availability of many different preparations, all are made of the native hormones. Having different ligands with a wide activity range for a given receptor helps better understand its molecular and cellular signaling mechanisms as well as its physiological functions, and thus helps the development of more specific and adapted medicines. One way to control the gonadotropins' activity could be the use of modulating antibodies. Antibodies are powerful tools that were largely used to decipher gonadotropins' actions and they have shown their utility as therapeutics in several other indications such as cancer. In this review, we summarize the inhibitory and potentiating antibodies to gonadotropins, and their potential therapeutic applications.
Collapse
Affiliation(s)
| | | | - Céline Bouillon
- Igyxos SA, Nouzilly, France
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours, France
- Biologie Intégrative de l'Ovaire, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | | | | |
Collapse
|
141
|
Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 2018; 11:239-264. [PMID: 30543482 DOI: 10.1080/19420862.2018.1553476] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing attention has been paid to developability assessment with the understanding that thorough evaluation of monoclonal antibody lead candidates at an early stage can avoid delays during late-stage development. The concept of developability is based on the knowledge gained from the successful development of approximately 80 marketed antibody and Fc-fusion protein drug products and from the lessons learned from many failed development programs over the last three decades. Here, we reviewed antibody quality attributes that are critical to development and traditional and state-of-the-art analytical methods to monitor those attributes. Based on our collective experiences, a practical workflow is proposed as a best practice for developability assessment including in silico evaluation, extended characterization and forced degradation using appropriate analytical methods that allow characterization with limited material consumption and fast turnaround time.
Collapse
Affiliation(s)
- Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | - Dongdong Wang
- b Analytical Department , Bioanalytix, Inc ., Cambridge , MA , USA
| | - Bruce Mason
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tony Rossomando
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Ning Li
- d Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Dingjiang Liu
- e Formulation Development , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Jason K Cheung
- f Pharmaceutical Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Wei Xu
- g Analytical Method Development , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Smita Raghava
- h Sterile Formulation Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Amit Katiyar
- i Analytical Development , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Christine Nowak
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tao Xiang
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Diane D Dong
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Joanne Sun
- k Product development , Innovent Biologics , Suzhou Industrial Park , China
| | - Alain Beck
- l Analytical chemistry , NBEs, Center d'immunologie Pierre Fabre , St Julien-en-Genevois Cedex , France
| | - Hongcheng Liu
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| |
Collapse
|
142
|
Kovaltsuk A, Krawczyk K, Kelm S, Snowden J, Deane CM. Filtering Next-Generation Sequencing of the Ig Gene Repertoire Data Using Antibody Structural Information. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3694-3704. [PMID: 30397033 PMCID: PMC6485405 DOI: 10.4049/jimmunol.1800669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/02/2018] [Indexed: 01/29/2023]
Abstract
Next-generation sequencing of the Ig gene repertoire (Ig-seq) produces large volumes of information at the nucleotide sequence level. Such data have improved our understanding of immune systems across numerous species and have already been successfully applied in vaccine development and drug discovery. However, the high-throughput nature of Ig-seq means that it is afflicted by high error rates. This has led to the development of error-correction approaches. Computational error-correction methods use sequence information alone, primarily designating sequences as likely to be correct if they are observed frequently. In this work, we describe an orthogonal method for filtering Ig-seq data, which considers the structural viability of each sequence. A typical natural Ab structure requires the presence of a disulfide bridge within each of its variable chains to maintain the fold. Our Ab Sequence Selector (ABOSS) uses the presence/absence of this bridge as a way of both identifying structurally viable sequences and estimating the sequencing error rate. On simulated Ig-seq datasets, ABOSS is able to identify more than 99% of structurally viable sequences. Applying our method to six independent Ig-seq datasets (one mouse and five human), we show that our error calculations are in line with previous experimental and computational error estimates. We also show how ABOSS is able to identify structurally impossible sequences missed by other error-correction methods.
Collapse
Affiliation(s)
- Aleksandr Kovaltsuk
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | - Konrad Krawczyk
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | | | | | - Charlotte M Deane
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| |
Collapse
|
143
|
Fu R, Carroll L, Yahioglu G, Aboagye EO, Miller PW. Antibody Fragment and Affibody ImmunoPET Imaging Agents: Radiolabelling Strategies and Applications. ChemMedChem 2018; 13:2466-2478. [PMID: 30246488 PMCID: PMC6587488 DOI: 10.1002/cmdc.201800624] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 12/12/2022]
Abstract
Antibodies have long been recognised as potent vectors for carrying diagnostic medical radionuclides, contrast agents and optical probes to diseased tissue for imaging. The area of ImmunoPET combines the use of positron emission tomography (PET) imaging with antibodies to improve the diagnosis, staging and monitoring of diseases. Recent developments in antibody engineering and PET radiochemistry have led to a new wave of experimental ImmunoPET imaging agents that are based on a range of antibody fragments and affibodies. In contrast to full antibodies, engineered affibody proteins and antibody fragments such as minibodies, diabodies, single-chain variable region fragments (scFvs), and nanobodies are much smaller but retain the essential specificities and affinities of full antibodies in addition to more desirable pharmacokinetics for imaging. Herein, recent key developments in the PET radiolabelling strategies of antibody fragments and related affibody molecules are highlighted, along with the main PET imaging applications of overexpressed antigen-associated tumours and immune cells.
Collapse
Affiliation(s)
- Ruisi Fu
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Laurence Carroll
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Gokhan Yahioglu
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
- Antikor Biopharma Ltd.StevenageSG1 2FXUK
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Philip W. Miller
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
| |
Collapse
|
144
|
D’Atri V, Nováková L, Fekete S, Stoll D, Lauber M, Beck A, Guillarme D. Orthogonal Middle-up Approaches for Characterization of the Glycan Heterogeneity of Etanercept by Hydrophilic Interaction Chromatography Coupled to High-Resolution Mass Spectrometry. Anal Chem 2018; 91:873-880. [DOI: 10.1021/acs.analchem.8b03584] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Valentina D’Atri
- Section of Pharmaceutical Sciences, School of Pharmacy Geneva−Lausanne, University of Geneva, Centre Médical Universitaire, Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Szabolcs Fekete
- Section of Pharmaceutical Sciences, School of Pharmacy Geneva−Lausanne, University of Geneva, Centre Médical Universitaire, Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Dwight Stoll
- Department of Chemistry, Gustavus Adolphus College, St. Peter, Minnesota 56082, United States
| | - Matthew Lauber
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497 Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- Section of Pharmaceutical Sciences, School of Pharmacy Geneva−Lausanne, University of Geneva, Centre Médical Universitaire, Rue Michel Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
145
|
"Magic Bullets" at the center stage of immune therapy: a special issue on therapeutic antibodies. Protein Cell 2018; 9:1-2. [PMID: 29139027 PMCID: PMC5777979 DOI: 10.1007/s13238-017-0488-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
146
|
Mahajan S, Vita R, Shackelford D, Lane J, Schulten V, Zarebski L, Jespersen MC, Marcatili P, Nielsen M, Sette A, Peters B. Epitope Specific Antibodies and T Cell Receptors in the Immune Epitope Database. Front Immunol 2018; 9:2688. [PMID: 30515166 PMCID: PMC6255941 DOI: 10.3389/fimmu.2018.02688] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
The Immune Epitope Database (IEDB) is a free public resource which catalogs experiments characterizing immune epitopes. To accommodate data from next generation repertoire sequencing experiments, we recently updated how we capture and query epitope specific antibodies and T cell receptors. Specifically, we are now storing partial receptor sequences sufficient to determine CDRs and VDJ gene usage which are commonly identified by repertoire sequencing. For previously captured full length receptor sequencing data, we have calculated the corresponding CDR sequences and gene usage information using IMGT numbering and VDJ gene nomenclature format. To integrate information from receptors defined at different levels of resolution, we grouped receptors based on their host species, receptor type and CDR3 sequence. As of August 2018, we have cataloged sequence information for more than 22,510 receptors in 18,292 receptor groups, shown to bind to more than 2,241 distinct epitopes. These data are accessible as full exports and through a new dedicated query interface. The later combines the new ability to search by receptor characteristics with previously existing capability to search by epitope characteristics such as the infectious agent the epitope is derived from, or the kind of immune response involved in its recognition. We expect that this comprehensive capture of epitope specific immune receptor information will provide new insights into receptor-epitope interactions, and facilitate the development of novel tools that help in the analysis of receptor repertoire data.
Collapse
Affiliation(s)
- Swapnil Mahajan
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Randi Vita
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Deborah Shackelford
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Jerome Lane
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Veronique Schulten
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Laura Zarebski
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Martin Closter Jespersen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Paolo Marcatili
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| | - Bjoern Peters
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
147
|
Santos MLD, Quintilio W, Manieri TM, Tsuruta LR, Moro AM. Advances and challenges in therapeutic monoclonal antibodies drug development. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000001007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | - Ana Maria Moro
- Butantan Institute, Brazil; National Institute for Science and Technology, Brazil
| |
Collapse
|
148
|
Sankar K, Hoi KH, Yin Y, Ramachandran P, Andersen N, Hilderbrand A, McDonald P, Spiess C, Zhang Q. Prediction of methionine oxidation risk in monoclonal antibodies using a machine learning method. MAbs 2018; 10:1281-1290. [PMID: 30252602 PMCID: PMC6284603 DOI: 10.1080/19420862.2018.1518887] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become a major class of protein therapeutics that target a spectrum of diseases ranging from cancers to infectious diseases. Similar to any protein molecule, mAbs are susceptible to chemical modifications during the manufacturing process, long-term storage, and in vivo circulation that can impair their potency. One such modification is the oxidation of methionine residues. Chemical modifications that occur in the complementarity-determining regions (CDRs) of mAbs can lead to the abrogation of antigen binding and reduce the drug's potency and efficacy. Thus, it is highly desirable to identify and eliminate any chemically unstable residues in the CDRs during the therapeutic antibody discovery process. To provide increased throughput over experimental methods, we extracted features from the mAbs' sequences, structures, and dynamics, used random forests to identify important features and develop a quantitative and highly predictive in silico methionine oxidation model.
Collapse
Affiliation(s)
- Kannan Sankar
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Kam Hon Hoi
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| | - Yizhou Yin
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
- Institute for Bioscience and Biotechnology Research, Biological Sciences Graduate Program, University of Maryland, Rockville, MD, USA
| | - Prasanna Ramachandran
- Department of Analytical Development and Quality Control, Genentech, South San Francisco, CA, USA
| | - Nisana Andersen
- Department of Analytical Development and Quality Control, Genentech, South San Francisco, CA, USA
| | - Amy Hilderbrand
- Department of Analytical Development and Quality Control, Genentech, South San Francisco, CA, USA
| | - Paul McDonald
- Department of Purification Development and Bioprocess Development, Genentech, South San Francisco, CA, USA
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Qing Zhang
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| |
Collapse
|
149
|
Boosting half-life and effector functions of therapeutic antibodies by Fc-engineering: An interaction-function review. Int J Biol Macromol 2018; 119:306-311. [DOI: 10.1016/j.ijbiomac.2018.07.141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 12/20/2022]
|
150
|
Ehkirch A, Goyon A, Hernandez-Alba O, Rouviere F, D’Atri V, Dreyfus C, Haeuw JF, Diemer H, Beck A, Heinisch S, Guillarme D, Cianferani S. A Novel Online Four-Dimensional SEC×SEC-IM×MS Methodology for Characterization of Monoclonal Antibody Size Variants. Anal Chem 2018; 90:13929-13937. [DOI: 10.1021/acs.analchem.8b03333] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Alexandre Goyon
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel-Servet, 1, 1211 Geneva 4, Switzerland
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Florent Rouviere
- Université de Lyon, Institut des Sciences Analytiques, CNRS, UMR5280, Université de Lyon, ENS, 69100 Villeurbanne, France
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel-Servet, 1, 1211 Geneva 4, Switzerland
| | - Cyrille Dreyfus
- IRPF−Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Jean-François Haeuw
- IRPF−Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Alain Beck
- IRPF−Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Sabine Heinisch
- Université de Lyon, Institut des Sciences Analytiques, CNRS, UMR5280, Université de Lyon, ENS, 69100 Villeurbanne, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel-Servet, 1, 1211 Geneva 4, Switzerland
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| |
Collapse
|