101
|
Evidence for Enhanced Exosome Production in Aromatase Inhibitor-Resistant Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21165841. [PMID: 32823947 PMCID: PMC7461508 DOI: 10.3390/ijms21165841] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 01/08/2023] Open
Abstract
Aromatase inhibitors (AIs) represent the standard anti-hormonal therapy for post-menopausal estrogen receptor-positive breast cancer, but their efficacy is limited by the emergence of AI resistance (AIR). Exosomes act as vehicles to engender cancer progression and drug resistance. The goal of this work was to study exosome contribution in AIR mechanisms, using estrogen-dependent MCF-7 breast cancer cells as models and MCF-7 LTED (Long-Term Estrogen Deprived) subline, modeling AIR. We found that exosome secretion was significantly increased in MCF-7 LTED cells compared to MCF-7 cells. MCF-7 LTED cells also exhibited a higher amount of exosomal RNA and proteins than MCF-7 cells. Proteomic analysis revealed significant alterations in the cellular proteome. Indeed, we showed an enrichment of proteins frequently identified in exosomes in MCF-7 LTED cells. The most up-regulated proteins in MCF-7 LTED cells were represented by Rab GTPases, important vesicle transport-regulators in cancer, that are significantly mapped in “small GTPase-mediated signal transduction”, “protein transport” and “vesicle-mediated transport” Gene Ontology categories. Expression of selected Rab GTPases was validated by immunoblotting. Collectively, we evidence, for the first time, that AIR breast cancer cells display an increased capability to release exosomes, which may be associated with an enhanced Rab GTPase expression. These data provide the rationale for further studies directed at clarifying exosome’s role on endocrine therapy, with the aim to offer relevant markers and druggable therapeutic targets for the management of hormone-resistant breast cancers.
Collapse
|
102
|
Risha Y, Minic Z, Ghobadloo SM, Berezovski MV. The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers. Sci Rep 2020; 10:13572. [PMID: 32782317 PMCID: PMC7419295 DOI: 10.1038/s41598-020-70393-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer cells release small extracellular vesicles, exosomes, that have been shown to contribute to various aspects of cancer development and progression. Differential analysis of exosomal proteomes from cancerous and non-tumorigenic breast cell lines can provide valuable information related to breast cancer progression and metastasis. Moreover, such a comparison can be explored to find potentially new protein biomarkers for early disease detection. In this study, exosomal proteomes of MDA-MB-231, a metastatic breast cancer cell line, and MCF-10A, a non-cancerous epithelial breast cell line, were identified by nano-liquid chromatography coupled to tandem mass spectrometry. We also tested three exosomes isolation methods (ExoQuick, Ultracentrifugation (UC), and Ultrafiltration–Ultracentrifugation) and detergents (n-dodecyl β-d-maltoside, Triton X-100, and Digitonin) for solubilization of exosomal proteins and enhanced detection by mass spectrometry. A total of 1,107 exosomal proteins were identified in both cell lines, 726 of which were unique to the MDA-MB-231 breast cancer cell line. Among them, 87 proteins were predicted to be relevant to breast cancer and 16 proteins to cancer metastasis. Three exosomal membrane/surface proteins, glucose transporter 1 (GLUT-1), glypican 1 (GPC-1), and disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), were identified as potential breast cancer biomarkers and validated with Western blotting and high-resolution flow cytometry. We demonstrated that exosomes are a rich source of breast cancer-related proteins and surface biomarkers that may be used for disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Yousef Risha
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Shahrokh M Ghobadloo
- Cellular Imaging and Cytometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada. .,John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada. .,Cellular Imaging and Cytometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
103
|
Walbrecq G, Margue C, Behrmann I, Kreis S. Distinct Cargos of Small Extracellular Vesicles Derived from Hypoxic Cells and Their Effect on Cancer Cells. Int J Mol Sci 2020; 21:ijms21145071. [PMID: 32709110 PMCID: PMC7404308 DOI: 10.3390/ijms21145071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common hallmark of solid tumors and is associated with aggressiveness, metastasis and poor outcome. Cancer cells under hypoxia undergo changes in metabolism and there is an intense crosstalk between cancer cells and cells from the tumor microenvironment. This crosstalk is facilitated by small extracellular vesicles (sEVs; diameter between 30 and 200 nm), including exosomes and microvesicles, which carry a cargo of proteins, mRNA, ncRNA and other biological molecules. Hypoxia is known to increase secretion of sEVs and has an impact on the composition of the cargo. This sEV-mediated crosstalk ultimately leads to various biological effects in the proximal tumor microenvironment but also at distant, future metastatic sites. In this review, we discuss the changes induced by hypoxia on sEV secretion and their cargo as well as their effects on the behavior and metabolism of cancer cells, the tumor microenvironment and metastatic events.
Collapse
|
104
|
Feng Y, Zhong M, Tang Y, Liu X, Liu Y, Wang L, Zhou H. The Role and Underlying Mechanism of Exosomal CA1 in Chemotherapy Resistance in Diffuse Large B Cell Lymphoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:452-463. [PMID: 32668392 PMCID: PMC7358223 DOI: 10.1016/j.omtn.2020.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
Chemotherapy resistance plays a major role in treatment failure of diffuse large B cell lymphoma (DLBCL). Exosomes are closely related to tumor drug resistance. Herein, the expression of exosomal proteins in DLBCL and their roles in chemotherapy resistance of DLBCL are explored. Tandem mass tag labeling proteomics was used to perform proteomic profiling in exosomes from DLBCL patients’ serum. The expression of carbonic anhydrase 1 (CA1) in parental, chemo-resistant DLBCL cells and DLBCL patient exosomes was detected. Proliferation of DLBCL following CA1 knockdown was investigated both in vitro and in vivo, along with the effects on nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways. We identified 54 differentially expressed proteins. We validated that the expression level of exosomal CA1 was higher in chemo-resistant DLBCL cells than in chemo-sensitive counterparts. Knockdown of CA1 inhibited the growth of DLBCL via inhibiting the activation of NF-κB and STAT3 signaling pathways both in vitro and in vivo. An increased expression level of exosomal CA1 was associated with poorer prognosis, and exosomal CA1 could be used as a biomarker to predict chemotherapeutic efficacy. Our study suggests that exosomal CA1 can promote chemotherapy resistance in DLBCL via the NF-κB and STAT3 pathways, and it can serve as a biomarker for DLBCL prognosis.
Collapse
Affiliation(s)
- Yuhua Feng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China
| | - Meizuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Youhong Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China
| | - Yiping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Leyuan Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Hui Zhou
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, Hunan, People's Republic of China.
| |
Collapse
|
105
|
Role of Exosomal miRNAs and the Tumor Microenvironment in Drug Resistance. Cells 2020; 9:cells9061450. [PMID: 32545155 PMCID: PMC7349227 DOI: 10.3390/cells9061450] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor microenvironment (TME) is composed of different cellular populations, such as stromal, immune, endothelial, and cancer stem cells. TME represents a key factor for tumor heterogeneity maintenance, tumor progression, and drug resistance. The transport of molecules via extracellular vesicles emerged as a key messenger in intercellular communication in the TME. Exosomes are small double-layered lipid extracellular vesicles that can carry a variety of molecules, including proteins, lipids, and nucleic acids. Exosomal miRNA released by cancer cells can mediate phenotypical changes in the cells of TME to promote tumor growth and therapy resistance, for example, fibroblast- and macrophages-induced differentiation. Cancer stem cells can transfer and enhance drug resistance in neighboring sensitive cancer cells by releasing exosomal miRNAs that target antiapoptotic and immune-suppressive pathways. Exosomes induce drug resistance by carrying ABC transporters, which export chemotherapeutic agents out of the recipient cells, thereby reducing the drug concentration to suboptimal levels. Exosome biogenesis inhibitors represent a promising adjunct therapeutic approach in cancer therapy to avoid the acquisition of a resistant phenotype. In conclusion, exosomal miRNAs play a crucial role in the TME to confer drug resistance and survivability to tumor cells, and we also highlight the need for further investigations in this promising field.
Collapse
|
106
|
Lepeltier E, Rijo P, Rizzolio F, Popovtzer R, Petrikaite V, Assaraf YG, Passirani C. Nanomedicine to target multidrug resistant tumors. Drug Resist Updat 2020; 52:100704. [PMID: 32512316 DOI: 10.1016/j.drup.2020.100704] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/21/2019] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Nanomedicine employs nanotechnologies to develop innovative applications, and more specifically nano-objects in the field of human health, through exploitation of the physical, chemical and biological properties of materials at the nanoscale. The use of nanovehicles capable of transporting and releasing the active therapeutic payload into target cells, particularly in the case of cancer or inflammatory diseases, can also enhance diagnosis. Therefore, nanomedicines improve the benefit/risk ratio of drugs by increasing their bioavailability, selectivity, and efficacy in the target tissue, while reducing the necessary doses and hence diminishing untoward toxicity to healthy tissues. Overcoming multidrug resistance (MDR) to antitumor agents is a central goal of cancer research and therapeutics, making it possible to treat these diseases more accurately and effectively. The adaptability of nanomedicines e.g. modulation of their components, surface functionalization, encapsulation of various active therapeutics as well as the possibility of combining several treatments using a single nanoparticle platform, are characteristics which are perfectly poised to address classical chemoresistance, a major obstacle towards curative cancer therapy. In this review, we discuss an assortment of nanomedicines along with those that should be developed in order to surmount cancer MDR; these include exosomes, natural compounds, lipid nanocapsules, prodrug self-assemblies, and gold nanoparticles.
Collapse
Affiliation(s)
- Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Patricia Rijo
- Research Center for Biosciences & Health Technologies (CBIOS), Lisboa, Portugal; iMed.ULisboa - Research Institute for Medicines, Lisboa, Portugal
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30123 Venezia, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Av. 13, LT-50161 Kaunas, Lithuania; Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickevičiaus 9, LT-44307 Kaunas, Lithuania
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Catherine Passirani
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France.
| |
Collapse
|
107
|
The Role of Extracellular Vesicles in the Hallmarks of Cancer and Drug Resistance. Cells 2020; 9:cells9051141. [PMID: 32384712 PMCID: PMC7290603 DOI: 10.3390/cells9051141] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular signaling and communication, allowing the intercellular exchange of proteins, lipids, and genetic material. Their recognized role in the maintenance of the physiological balance and homeostasis seems to be severely disturbed throughout the carcinogenesis process. Indeed, the modus operandi of cancer implies the highjack of the EV signaling network to support tumor progression in many (if not all) human tumor malignancies. We have reviewed the current evidence for the role of EVs in affecting cancer hallmark traits by: (i) promoting cell proliferation and escape from apoptosis, (ii) sustaining angiogenesis, (iii) contributing to cancer cell invasion and metastasis, (iv) reprogramming energy metabolism, (v) transferring mutations, and (vi) modulating the tumor microenvironment (TME) by evading immune response and promoting inflammation. Special emphasis was given to the role of EVs in the transfer of drug resistant traits and to the EV cargo responsible for this transfer, both between cancer cells or between the microenvironment and tumor cells. Finally, we reviewed evidence for the increased release of EVs by drug resistant cells. A timely and comprehensive understanding of how tumor EVs facilitate tumor initiation, progression, metastasis and drug resistance is instrumental for the development of innovative EV-based therapeutic approaches for cancer.
Collapse
|
108
|
Shi S, Huang X, Ma X, Zhu X, Zhang Q. Research of the mechanism on miRNA193 in exosomes promotes cisplatin resistance in esophageal cancer cells. PLoS One 2020; 15:e0225290. [PMID: 32369495 PMCID: PMC7199973 DOI: 10.1371/journal.pone.0225290] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose Chemotherapy resistance of esophageal cancer is a key factor affecting the postoperative treatment of esophageal cancer. Among the media that transmit signals between cells, the exosomes secreted by tumor cells mediate information transmission between tumor cells, which can make sensitive cells obtain resistance. Although some cellular exosomes play an important role in tumor’s acquired drug resistance, the related action mechanism is still not explored specifically. Methods To elucidate this process, we constructed a cisplatin-resistant esophageal cancer cell line, and proved that exosomes conferring cellular resistance in esophageal cancer can promote cisplatin resistance in sensitive cells. Through high-throughput sequencing analysis of the exosome and of cells after stimulation by exosomes, we determined that the miRNA193 in exosomes conferring cellular resistance played a key role in sensitive cells acquiring resistance to cisplatin. In vitro experiments showed that miRNA193 can regulate the cell cycle of esophageal cancer cells and inhibit apoptosis, so that sensitive cells can acquire resistance to cisplatin. An in vivo experiment proved that miRNA193 can promote tumor proliferation through the exosomes, and provide sensitive cells with slight resistance to cisplatin. Results Small RNA sequencing of exosomes showed that exosomes in drug-resistant cells have 189 up-regulated and 304 down-regulated miRNAs; transcriptome results showed that drug-sensitive cells treated with drug-resistant cellular exosomes have 3446 high-expression and 1709 low-expression genes; correlation analysis showed that drug-resistant cellular exosomes mainly affect the drug resistance of sensitive cells through paths such as cytokine–cytokine receptor interaction, and the VEGF and Jak-STAT signaling pathways; miRNA193, one of the high-expression miRNAs in drug-resistant cellular exosomes, can promote drug resistance by removing cisplatin’s inhibition of the cell cycle of sensitive cells. Conclusion Sensitive cells can become resistant to cisplatin through acquired drug-resistant cellular exosomes, and miRNA193 can make tumor cells acquire cisplatin resistance by regulating the cell cycle.
Collapse
Affiliation(s)
- Shifeng Shi
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- SanQuan Medical College, Xinxiang Medical University, Xinxiang, China
| | - Xin Huang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao Ma
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaoyan Zhu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- * E-mail: (XZ); (QZ)
| | - Qinxian Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- * E-mail: (XZ); (QZ)
| |
Collapse
|
109
|
Particulate mediators of the bystander effect linked to suicide and interferon-β transgene expression in melanoma cells. Gene Ther 2020; 28:38-55. [PMID: 32127652 DOI: 10.1038/s41434-020-0136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 11/08/2022]
Abstract
In the context of comparative oncology, melanoma cells derived from companion animal tumors are good models for optimizing and predicting their in vivo response to therapeutic strategies. Here, we report that human, canine, and feline melanoma cells driven to death by bleomycin, interferon-β gene, or herpes simplex virus thymidine kinase/ganciclovir suicide gene (SG) treatment significantly increased their internal granularity. This fact correlated with the release of a heterogeneous collection of nano- and micro-sized granules as revealed by transmission electron microscopy. While killing lipofected cells, the expressed transgenes and their derived products were incorporated into these granules that were isolated by differential centrifugation. These particulate factors (PFs) were able to transfer, in a dose- and time-dependent manner, appreciable levels of therapeutic genes, related proteins, and drugs. Thus, when recipient cells of SG-carrying PFs were exposed to ganciclovir, this prodrug was efficiently activated, eliminating them. These PFs kept the functionality of their cargo, even after being subjected to adverse conditions, such as the presence of DNase, freezing, or heating. Since our in vitro system did not include any of the immune mechanisms that could provide additional antitumor activity, the chemo-gene treatments amplified by these delivery bags of therapeutic agents offer a great clinical potential.
Collapse
|
110
|
Exosomes in triple negative breast cancer: Garbage disposals or Trojan horses? Cancer Lett 2020; 473:90-97. [DOI: 10.1016/j.canlet.2019.12.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 12/27/2019] [Indexed: 12/22/2022]
|
111
|
Skalska J, Oliveira FD, Figueira TN, Mello ÉO, Gomes VM, McNaughton-Smith G, Castanho MARB, Gaspar D. Plant defensin PvD 1 modulates the membrane composition of breast tumour-derived exosomes. NANOSCALE 2019; 11:23366-23381. [PMID: 31793603 DOI: 10.1039/c9nr07843f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the most important causes of failure in tumour treatment is the development of resistance to therapy. Cancer cells can develop the ability to lose sensitivity to anti-neoplastic drugs during reciprocal crosstalk between cells and their interaction with the tumour microenvironment (TME). Cell-to-cell communication regulates a cascade of interdependent events essential for disease development and progression and can be mediated by several signalling pathways. Exosome-mediated communication is one of the pathways regulating these events. Tumour-derived exosomes (TDE) are believed to have the ability to modulate TMEs and participate in multidrug resistance mechanisms. In this work, we studied the effect of the natural defensin from common bean, PvD1, on the formation of exosomes by breast cancer MCF-7 cells, mainly the modulatory effect it has on the level of CD63 and CD9 tetraspanins. Moreover, we followed the interaction of PvD1 with biological and model membranes of selected composition, by biophysical and imaging techniques. Overall, the results show that PvD1 induces a dual effect on MCF-7 derived exosomes: the peptide attenuates the recruitment of CD63 and CD9 to exosomes intracellularly and binds to the mature exosomes in the extracellular environment. This work uncovers the exosome-mediated anticancer action of PvD1, a potential nutraceutical agent.
Collapse
Affiliation(s)
- Julia Skalska
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Filipa D Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Tiago N Figueira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Érica O Mello
- Laboratório de Fisiologia e Bioquímica de Microrganismos do Centro de Biociências e Biotecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
| | - Valdirene M Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos do Centro de Biociências e Biotecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
| | - Grant McNaughton-Smith
- CEAMED - Centro Atlántico del Medicamento, S.A., San Cristobal de La Laguna, S/C Tenerife, Spain
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Diana Gaspar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
112
|
Whitehead CA, Kaye AH, Drummond KJ, Widodo SS, Mantamadiotis T, Vella LJ, Stylli SS. Extracellular vesicles and their role in glioblastoma. Crit Rev Clin Lab Sci 2019:1-26. [PMID: 31865806 DOI: 10.1080/10408363.2019.1700208] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Research on the role of extracellular vesicles (EVs) in disease pathogenesis has been rapidly growing over the last two decades. As EVs can mediate intercellular communication, they can ultimately facilitate both normal and pathological processes through the delivery of their bioactive cargo, which may include nucleic acids, proteins and lipids. EVs have emerged as important regulators of brain tumors, capable of transferring oncogenic proteins, receptors, and small RNAs that may support brain tumor progression, including in the most common type of brain cancer, glioma. Investigating the role of EVs in glioma is crucial, as the most malignant glioma, glioblastoma (GBM), is incurable with a dismal median survival of 12-15 months. EV research in GBM has primarily focused on circulating brain tumor-derived vesicles in biofluids, such as blood and cerebrospinal fluid (CSF), investigating their potential as diagnostic and prognostic biomarkers. Gaining a greater understanding of the role of EVs and their cargo in brain tumor progression may contribute to the discovery of novel diagnostics and therapeutics. In this review, we summarize the known and emerging functions of EVs in glioma biology and pathogenesis, as well as their emerging biomarker potential.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Andrew H Kaye
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Katharine J Drummond
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Australia
| | - Samuel S Widodo
- Department of Microbiology & Immunology, School of Biomedical Sciences, The University of Melbourne, Parkville, Australia
| | - Theo Mantamadiotis
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Microbiology & Immunology, School of Biomedical Sciences, The University of Melbourne, Parkville, Australia
| | - Laura J Vella
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Stanley S Stylli
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| |
Collapse
|
113
|
Wang B, Zhang Y, Ye M, Wu J, Ma L, Chen H. Cisplatin-resistant MDA-MB-231 Cell-derived Exosomes Increase the Resistance of Recipient Cells in an Exosomal miR-423-5p-dependent Manner. Curr Drug Metab 2019; 20:804-814. [PMID: 31424364 DOI: 10.2174/1389200220666190819151946] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Background:
Chemoresistance blunts the therapeutic effect of cisplatin (DDP) on Triple-Negative Breast
Cancer (TNBC). Researchers have not determined to date whether exosomes confer DDP resistance to other breast
cancer cells or whether exosomal transfer of miRNAs derived from DDP-resistant TNBC cells confer DDP resistance.
Objective:
The aim of this study was to investigate the role of exosomes in chemoresistance in breast cancer.
Methods:
MDA-MB-231 cells resistant to DDP (231/DDP) were established. Exosomes were isolated from 231/DDP
cells (DDP/EXO) and characterized by measuring the levels of protein markers, nanoparticle tracking analysis and
transmission electron microscopy. MDA-MB-231, MCF-7 and SKBR-3 cell lines were treated with the isolated
DDP/EXOs and cell proliferation and cytotoxicity to DDP were evaluated using MTT assays and apoptosis analyses.
Western blotting was used to examine P-glycoprotein (P-gp) expression. Additionally, a microarray was used to
analyse microRNA (miRNA) expression profiles in MDA-MB-231 and 231/DDP exosomes. The effects on miRNAs
were determined using RT-PCR. Exosomal miR-423-5p was extracted, and differential expression was verified. The
MTT cell viability assay, flow cytometry, and Transwell and immunofluorescence assays were performed to determine
if differential expression of miR-423-5p sensitized cells to DDP in vitro.
Results:
Under a transmission electron microscope, the isolated exosomes exhibited a round or oval shape with a
diameter ranging between 40 and 100 nm. DDP/EXOs labelled with PKH67 were taken up by MDA-MB-231 cells.
After an incubation with DDP/EXOs, the cell lines exhibited a higher IC50 value for cisplatin, P-gp expression, migration
and invasion capabilities and a lower apoptosis rate. Furthermore, 60 miRNAs from exosomes derived from
231/DDP cells were significantly up-regulated compared to exosomes from MDA-MB-231 cells. Notably, compared
to the corresponding sensitive exosomes, miR-370-3p, miR-423-5p and miR-373 were the most differentially expressed
miRNAs in DDP-resistant exosomes. We chose miR-423-5p, and up-regulation and down-regulation of
exosomal miR-423-5p expression significantly affected DDP resistance.
Conclusions:
Exosomes from DDP-resistant TNBC cells (231/DDP) altered the sensitivity of other breast cancer
cells to DDP in an exosomal miR-423-5p dependent manner. Our research helps to elucidate the mechanism of DDP
resistance in breast cancer.
Collapse
Affiliation(s)
- Bing Wang
- Department of Breast, Longhua Hospital Affiliated with Shanghai University of TCM, Shanghai 200032, China
| | - Yuzhu Zhang
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Meina Ye
- Department of Breast, Longhua Hospital Affiliated with Shanghai University of TCM, Shanghai 200032, China
| | - Jingjing Wu
- Department of Breast, Longhua Hospital Affiliated with Shanghai University of TCM, Shanghai 200032, China
| | - Lina Ma
- Department of Breast, Longhua Hospital Affiliated with Shanghai University of TCM, Shanghai 200032, China
| | - Hongfeng Chen
- Department of Breast, Longhua Hospital Affiliated with Shanghai University of TCM, Shanghai 200032, China
| |
Collapse
|
114
|
Luo X, Wei J, Yang FL, Pang XX, Shi F, Wei YX, Liao BY, Wang JL. Exosomal lncRNA HNF1A-AS1 affects cisplatin resistance in cervical cancer cells through regulating microRNA-34b/TUFT1 axis. Cancer Cell Int 2019; 19:323. [PMID: 31827397 PMCID: PMC6889431 DOI: 10.1186/s12935-019-1042-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Background There is growing evidence of the role of long non-coding RNAs (lncRNAs) in cervical cancer (CC). The objective was to discuss whether exosomal lncRNA HNF1A-AS1 impacted drug resistance in CC via binding to microRNA-34b (miR-34b) and regulating TUFT1 expression. Methods The expression of HNF1A-AS1 in normal cervical epithelial cells, cisplatin (DDP)-sensitive cell line (HeLa/S) and DDP-resistant cell line (HeLa/DDP) cells were detected. HeLa/S and HeLa/DDP cells were interfered with HNF1A-AS1 to determine IC50, proliferation, colony formation and apoptosis of CC cells. The exosomes were isolated and identified. Subcellular localization of HNF1A-AS1, expression of miR-34b and TUFT1 in receptor cells were also verified. The binding site between HNF1A-AS1 and miR-34b, together with miR-34b and TUFT1 were confirmed. Tumorigenic ability of cells in nude mice was also detected. Results HNF1A-AS1 was upregulated in DDP-resistant cell line HeLa/DDP. Silencing HNF1A-AS1 suppressed CC cell proliferation and promoted its apoptosis. HNF1A-AS1 was found to act as a competing endogenous RNA (ceRNA) of miR-34b to promote the expression of TUFT1. Exosomes shuttled HNF1A-AS1 promoted the proliferation and drug resistance of CC cells and inhibited their apoptosis by upregulating the expression of TUFT1 and downregulating miR-34b. Furthermore, suppressed exosomal HNF1A-AS1 in combination with DDP inhibited tumor growth in nude mice. Conclusion Our study provides evidence that CC-secreted exosomes carrying HNF1A-AS1 as a ceRNA of miR-34b to promote the expression of TUFT1, thereby promoting the DDP resistance in CC cells.
Collapse
Affiliation(s)
- Xiaoqiong Luo
- 1Center of Reproductive Medicine, Affiliated Hospital of Youjiang Medical College for Nationalities, Zhongshan Second Road 18th, Baise, 533000 Guangxi China
| | - Jingxi Wei
- 1Center of Reproductive Medicine, Affiliated Hospital of Youjiang Medical College for Nationalities, Zhongshan Second Road 18th, Baise, 533000 Guangxi China
| | - Feng-Lian Yang
- 2Youjiang Medical College for Nationalities, Baise, 533000 People's Republic of China
| | - Xiao-Xia Pang
- 2Youjiang Medical College for Nationalities, Baise, 533000 People's Republic of China
| | - Feng Shi
- 2Youjiang Medical College for Nationalities, Baise, 533000 People's Republic of China
| | - Yu-Xia Wei
- 1Center of Reproductive Medicine, Affiliated Hospital of Youjiang Medical College for Nationalities, Zhongshan Second Road 18th, Baise, 533000 Guangxi China
| | - Bi-Yun Liao
- 1Center of Reproductive Medicine, Affiliated Hospital of Youjiang Medical College for Nationalities, Zhongshan Second Road 18th, Baise, 533000 Guangxi China
| | - Jun-Li Wang
- 1Center of Reproductive Medicine, Affiliated Hospital of Youjiang Medical College for Nationalities, Zhongshan Second Road 18th, Baise, 533000 Guangxi China
| |
Collapse
|
115
|
Vasconcelos MH, Caires HR, Ābols A, Xavier CPR, Linē A. Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance. Drug Resist Updat 2019; 47:100647. [PMID: 31704541 DOI: 10.1016/j.drup.2019.100647] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022]
Abstract
Cancer-derived extracellular vesicles (EVs) have been detected in the bloodstream and other biofluids of cancer patients. They carry various tumor-derived molecules such as mutated DNA and RNA fragments, oncoproteins as well as miRNA and protein signatures associated with various phenotypes. The molecular cargo of EVs partially reflects the intracellular status of their cellular origin, however various sorting mechanisms lead to the enrichment or depletion of EVs in specific nucleic acids, proteins or lipids. It is becoming increasingly clear that cancer-derived EVs act in a paracrine and systemic manner to promote cancer progression by transferring aggressive phenotypic traits and drug-resistant phenotypes to other cancer cells, modulating the anti-tumor immune response, as well as contributing to remodeling the tumor microenvironment and formation of pre-metastatic niches. These findings have raised the idea that cancer-derived EVs may serve as analytes in liquid biopsies for real-time monitoring of tumor burden and drug resistance. In this review, we have summarized recent longitudinal clinical studies describing promising EV-associated biomarkers for cancer progression and tracking cancer evolution as well as pre-clinical and clinical evidence on the relevance of EVs for monitoring the emergence or progression of drug resistance. Furthermore, we outlined the state-of-the-art in the development and commercialization of EV-based biomarkers and discussed the scientific and technological challenges that need to be met in order to translate EV research into clinically applicable tools for precision medicine.
Collapse
Affiliation(s)
- M Helena Vasconcelos
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Hugo R Caires
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Artūrs Ābols
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Cristina P R Xavier
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Riga, Latvia; Faculty of Biology, University of Latvia, Riga, Latvia.
| |
Collapse
|
116
|
Andrade LNDS, Otake AH, Cardim SGB, da Silva FI, Ikoma Sakamoto MM, Furuya TK, Uno M, Pasini FS, Chammas R. Extracellular Vesicles Shedding Promotes Melanoma Growth in Response to Chemotherapy. Sci Rep 2019; 9:14482. [PMID: 31597943 PMCID: PMC6785560 DOI: 10.1038/s41598-019-50848-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/04/2019] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging as key players in intercellular communication. EVs can transfer biological macromolecules to recipient cells, modulating various physiological and pathological processes. It has been shown that tumor cells secrete large amounts of EVs that can be taken up by malignant and stromal cells, dictating tumor progression. In this study, we investigated whether EVs secreted by melanoma cells in response to chemotherapy modulate tumor response to alkylating drugs. Our findings showed that human and murine melanoma cells secrete more EVs after treatment with temozolomide and cisplatin. We observed that EVs shed by melanoma cells after temozolomide treatment modify macrophage phenotype by skewing macrophage activation towards the M2 phenotype through upregulation of M2-marker genes. Moreover, these EVs were able to favor melanoma re-growth in vivo, which was accompanied by an increase in Arginase 1 and IL10 gene expression levels by stromal cells and an increase in genes related to DNA repair, cell survival and stemness in tumor cells. Taken together, this study suggests that EVs shed by tumor cells in response to chemotherapy promote tumor repopulation and treatment failure through cellular reprogramming in melanoma cells.
Collapse
Affiliation(s)
- Luciana Nogueira de Sousa Andrade
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clinicas (HCFMUSP) Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, São Paulo, SP, CEP 01246-000, Brazil.
| | - Andréia Hanada Otake
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clinicas (HCFMUSP) Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, São Paulo, SP, CEP 01246-000, Brazil.
| | - Silvia Guedes Braga Cardim
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clinicas (HCFMUSP) Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, São Paulo, SP, CEP 01246-000, Brazil
| | - Felipe Ilelis da Silva
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clinicas (HCFMUSP) Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, São Paulo, SP, CEP 01246-000, Brazil
| | - Mariana Mari Ikoma Sakamoto
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clinicas (HCFMUSP) Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, São Paulo, SP, CEP 01246-000, Brazil
| | - Tatiane Katsue Furuya
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clinicas (HCFMUSP) Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, São Paulo, SP, CEP 01246-000, Brazil
| | - Miyuki Uno
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clinicas (HCFMUSP) Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, São Paulo, SP, CEP 01246-000, Brazil
| | - Fátima Solange Pasini
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clinicas (HCFMUSP) Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, São Paulo, SP, CEP 01246-000, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clinicas (HCFMUSP) Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, São Paulo, SP, CEP 01246-000, Brazil
| |
Collapse
|
117
|
Jiang Y, Xu C, Leung W, Lin M, Cai X, Guo H, Zhang J, Yang F. Role of Exosomes in Photodynamic Anticancer Therapy. Curr Med Chem 2019; 27:6815-6824. [PMID: 31533597 DOI: 10.2174/0929867326666190918122221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/05/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
Photodynamic Therapy (PDT) is a promising alternative treatment for malignancies based on photochemical reaction induced by Photosensitizers (PS) under light irradiation. Recent studies show that PDT caused the abundant release of exosomes from tumor tissues. It is well-known that exosomes as carriers play an important role in cell-cell communication through transporting many kinds of bioactive molecules (e.g. lipids, proteins, mRNA, miRNA and lncRNA). Therefore, to explore the role of exosomes in photodynamic anticancer therapy has been attracting significant attention. In the present paper, we will briefly introduce the basic principle of PDT and exosomes, and focus on discussing the role of exosomes in photodynamic anticancer therapy, to further enrich and boost the development of PDT.
Collapse
Affiliation(s)
- Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease,
School of Pharmaceutical Science & Fifth Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong 511436, China,Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease,
School of Pharmaceutical Science & Fifth Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong 511436, China
| | - Wingnang Leung
- Division of Chinese Medicine, School of Professional and Continuing Education, The University of Hong Kong, Hong Kong
| | - Mei Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease,
School of Pharmaceutical Science & Fifth Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong 511436, China
| | - Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease,
School of Pharmaceutical Science & Fifth Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong 511436, China
| | - Huanhuan Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease,
School of Pharmaceutical Science & Fifth Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong 511436, China
| | - Jiyong Zhang
- Shenzhen Maternity and Child Health Care Hospital, Shenzhen 518017, China
| | - Fanwen Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
118
|
Milman N, Ginini L, Gil Z. Exosomes and their role in tumorigenesis and anticancer drug resistance. Drug Resist Updat 2019; 45:1-12. [PMID: 31369918 DOI: 10.1016/j.drup.2019.07.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/25/2022]
Abstract
Exosomes are a class of extracellular vesicles ranging in size from 40 to 100 nm, which are secreted by both cancer cells and multiple stromal cells in the tumor microenvironment. Following their secretion, exosomes partake in endocrine, paracrine and autocrine signaling. Internalization of exosomes by tumor cells influences several cellular pathways which alter cancer cell physiology. Tumor-derived exosomes secreted by cancer or stromal cells can also confer anticancer drug-resistant traits upon cancer cells. These exosomes promote chemoresistance by transferring their cargo which includes nucleic acids, proteins, and metabolites to cancer cells or act as a decoy for immunotherapeutic targets. Depletion of exosomes can reverse some of the detrimental effects on tumor metabolism and restore drug sensitivity to chemotherapeutic treatment. Herein we discuss various approaches that have been developed to deplete exosomes for therapeutic purposes. The natural composition, low immunogenicity and cytotoxicity of exosomes, along with their ability to specifically target tumor cells, render them an appealing platform for drug delivery. The ability of exosomes to mediate autocrine and paracrine signaling in target cells, along with their natural structure and low immunogenicity render them an attractive vehicle for the delivery of anticancer drugs to tumors.
Collapse
Affiliation(s)
- Neta Milman
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, The Clinical Research Institute at Rambam Healthcare Campus, Technion Integrated Cancer Center, Rappaport Institute of Medicine and Research, Technion, Israel Institute of Technology, Haifa, Israel
| | - Lana Ginini
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, The Clinical Research Institute at Rambam Healthcare Campus, Technion Integrated Cancer Center, Rappaport Institute of Medicine and Research, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ziv Gil
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, The Clinical Research Institute at Rambam Healthcare Campus, Technion Integrated Cancer Center, Rappaport Institute of Medicine and Research, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
119
|
Groza M, Zimta AA, Irimie A, Achimas-Cadariu P, Cenariu D, Stanta G, Berindan-Neagoe I. Recent advancements in the study of breast cancer exosomes as mediators of intratumoral communication. J Cell Physiol 2019; 235:691-705. [PMID: 31328284 DOI: 10.1002/jcp.29096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer is a heterogeneous disease, with a morbidity rate of 27.8% and a mortality rate of 15% among women population worldwide. Understanding how this cancer develops and the mechanisms behind tumor progression and chemoresistance is of utmost importance. Exosomes mediate communication in a population of heterogeneous tumoral cells. They have a cargo composed of oncogenes and oncomiRs which change the transcriptomic scenario of their targeted cells and activate numerous tumor-promoting signaling pathways. Exosomes secreted by breast cancer cells lead to enhanced cell proliferation, replicative immortality, angiogenesis, invasion, migration, and chemoresistance. Studying exosomes from this perspective offers more in depth understanding of breast malignancy and may aid in the future development of early diagnostic, prognostic and therapeutic options. We present the latest findings in this area and offer practical solutions which may further stimulate the much-needed research of exosome in breast cancer.
Collapse
Affiliation(s)
- Monica Groza
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Patriciu Achimas-Cadariu
- 11th Department of Oncological Surgery and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Diana Cenariu
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Giorgio Stanta
- DSM, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, uliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| |
Collapse
|
120
|
Leptin Modulates Exosome Biogenesis in Breast Cancer Cells: An Additional Mechanism in Cell-to-Cell Communication. J Clin Med 2019; 8:jcm8071027. [PMID: 31336913 PMCID: PMC6678227 DOI: 10.3390/jcm8071027] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Exosomes—small membrane vesicles secreted by both normal and malignant cells upon fusion of endosomal multivesicular bodies (MVBs) with the plasma membrane—play an important role in cell-to-cell communication. During the last decade, several reports have highlighted the involvement of these nanovesicles in many aspects of breast cancer development and progression, but the extracellular signals governing their generation in breast cancer cells have not been completely unraveled. Here, we investigated the role of the obesity hormone leptin, a well-known adipokine implicated in mammary tumorigenesis, on the mechanisms regulating exosome biogenesis and release in both estrogen receptor α (ERα)—positive MCF-7 and triple-negative MDA-MB-231 breast cancer cells. We found that leptin treatment enhanced the number of MVBs in the cytoplasm of breast cancer cells and increased the amount of exosomes released in cell conditioned media. At molecular level, leptin increased the protein expression of Tsg101—a key component of the endosomal sorting complex required for transport I (ESCRT-I)—by a post-transcriptional mechanism involving its direct interaction with the chaperone protein Hsp90. Targeting leptin signaling, by a selective leptin receptor antagonist the peptide LDFI (Leu-Asp-Phe-Ile), abrogated leptin effects on Tsg101 expression and on exosome secretion in breast cancer cells. In conclusion, our findings, identifying for the first time leptin/leptin receptor/Hsp90 axis as an important regulator of exosome generation in mammary carcinoma cells, suggest that targeting this signaling pathway might represent a novel therapeutic strategy to impair exosome secretion and interrupt the dangerous cell-to-cell communication in breast cancer.
Collapse
|
121
|
Liang AL, Du SL, Zhang B, Zhang J, Ma X, Wu CY, Liu YJ. Screening miRNAs associated with resistance gemcitabine from exosomes in A549 lung cancer cells. Cancer Manag Res 2019; 11:6311-6321. [PMID: 31372037 PMCID: PMC6626902 DOI: 10.2147/cmar.s209149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose To establish a gemcitabine-resistant lung adenocarcinoma cell line, A549/G+, and to screen the differences of miRNA expression in exosomes from A549 and A549/G+ cells. Methods A549 cells were exposed in gemcitabine until they were resistant to gemcitabine, and extracted exosomes from A549 and A549/G+. The RNAs from exosomes were subjected to miRNA expression microarray experiments. Results After 39 weeks of continuous induction, we induced drug resistance in A549 cells. The resistance index was 6. Via GeneChip miRNA 4.0 analysis, there were 446 differential miRNAs between A549 and A549/G+. Target gene prediction and pathway analysis discovered the microRNAs in the intersections may participate in drug resistance. Conclusion These differential miRNAs help to do in-depth research to elucidate the mechanism of resistance to gemcitabine in non-small cell lung cancer.
Collapse
Affiliation(s)
- Ai-Ling Liang
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China
| | - Shen-Lin Du
- Department of Blood Transfusion, Dongguan Tung Wah Hospital, Dongguan, Guangdong 523210, People's Republic of China
| | - Bin Zhang
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China
| | - Jing Zhang
- The Clinical Laboratory of Shunde Hospital, Southern Medical University, Shunde 528300, People's Republic of China
| | - Xuan Ma
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China
| | - Cui-Yun Wu
- The Clinical Laboratory of Shunde Hospital, Southern Medical University, Shunde 528300, People's Republic of China
| | - Yong-Jun Liu
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
122
|
Zhao YJ, Xie L. Potential role of exosomes in cancer therapy. PRECISION RADIATION ONCOLOGY 2019. [DOI: 10.1002/pro6.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Ya jing Zhao
- School of Medicine and Life SciencesUniversity of Jinan, Shandong Academy of Medical Sciences Jinan China
- Department of Clinical LaboratoryShandong Cancer Hospital Affiliated to Shandong UniversityShandong Academy of Medical Sciences Jinan China
| | - Li Xie
- Department of Clinical LaboratoryShandong Cancer Hospital Affiliated to Shandong UniversityShandong Academy of Medical Sciences Jinan China
| |
Collapse
|
123
|
Li J, Tian T, Zhou X. The role of exosomal shuttle RNA (esRNA) in lymphoma. Crit Rev Oncol Hematol 2019; 137:27-34. [DOI: 10.1016/j.critrevonc.2019.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/24/2022] Open
|
124
|
Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II. Therapy resistance mediated by exosomes. Mol Cancer 2019; 18:58. [PMID: 30925921 PMCID: PMC6441190 DOI: 10.1186/s12943-019-0970-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Therapy resistance can arise within tumor cells because of genetic or phenotypic changes (intrinsic resistance), or it can be the result of an interaction with the tumor microenvironment (extrinsic resistance). Exosomes are membranous vesicles 40 to 100 nm in diameter constitutively released by almost all cell types, and mediate cell-to-cell communication by transferring mRNAs, miRNAs, DNAs and proteins causing extrinsic therapy resistance. They transfer therapy resistance by anti-apoptotic signalling, increased DNA-repair or delivering ABC transporters to drug sensitive cells. As functional mediators of tumor-stroma interaction and of epithelial to mesenchymal transition, exosomes also promote environment-mediated therapy resistance. Exosomes may be used in anticancer therapy exploiting their delivery function. They may effectively transfer anticancer drugs or RNAs in the context of gene therapy reducing immune stimulatory effects of these drugs and hydrophilic qualities facilitating crossing of cell membranes.
Collapse
Affiliation(s)
| | - József Dudás
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sergej Skvortsov
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstr. 35, A-6020, Innsbruck, Austria.,EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ute Ganswindt
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstr. 35, A-6020, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstr. 35, A-6020, Innsbruck, Austria. .,EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria.
| |
Collapse
|
125
|
Zhang M, Zang X, Wang M, Li Z, Qiao M, Hu H, Chen D. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: recent advances and challenges. J Mater Chem B 2019; 7:2421-2433. [PMID: 32255119 DOI: 10.1039/c9tb00170k] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent decades have witnessed the fast and impressive development of nanocarriers as a drug delivery system. Considering the safety, delivery efficiency and stability of nanocarriers, there are many obstacles in accomplishing successful clinical translation of these nanocarrier-based drug delivery systems. The gap has urged drug delivery scientists to develop innovative nanocarriers with high compatibility, stability and longer circulation time. Exosomes are nanometer-sized, lipid-bilayer-enclosed extracellular vesicles secreted by many types of cells. Exosomes serving as versatile drug vehicles have attracted increasing attention due to their inherent ability of shuttling proteins, lipids and genes among cells and their natural affinity to target cells. Attractive features of exosomes, such as nanoscopic size, low immunogenicity, high biocompatibility, encapsulation of various cargoes and the ability to overcome biological barriers, distinguish them from other nanocarriers. To date, exosome-based nanocarriers delivering small molecule drugs as well as bioactive macromolecules have been developed for the treatment of many prevalent and obstinate diseases including cancer, CNS disorders and some other degenerative diseases. Exosome-based nanocarriers have a huge prospect in overcoming many hindrances encountered in drug and gene delivery. This review highlights the advances as well as challenges of exosome-based nanocarriers as drug vehicles. Special focus has been placed on the advantages of exosomes in delivering various cargoes and in treating obstinate diseases, aiming to offer new insights for exploring exosomes in the field of drug delivery.
Collapse
Affiliation(s)
- Mengjun Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
126
|
Wang S, Wang J, Wei W, Ma G. Exosomes: The Indispensable Messenger in Tumor Pathogenesis and the Rising Star in Antitumor Applications. ACTA ACUST UNITED AC 2019; 3:e1900008. [PMID: 32627408 DOI: 10.1002/adbi.201900008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/20/2019] [Indexed: 12/27/2022]
Abstract
As natural secreted nanovesicles through the endolysosomal pathway, exosomes have attracted increasing attention over the past decades. An overwhelming number of studies have provided evidence for the intriguing roles that exosomes play in intercellular communication. They are widely involved in the transmission of biomolecule cargos between original cells and neighboring/distant cells in normal physiological processes. In addition, it has also been demonstrated that exosomes play vital roles in multiple biological pathways in the development of numerous diseases including cancer. Moreover, both natural and modified exosomes showed promising potential in serving as a versatile nanoplatform for cancer diagnosis and cancer therapy. This review aims to present a comprehensive and critical overview on the recent advances in exosome nanoscience and nanotechnology, ranging from their biogenesis, secretion, isolation, and biological function in tumor pathogenesis to their extensive antitumor applications.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianghua Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
127
|
Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G, Martínez MC. Extracellular Vesicles: Mechanisms in Human Health and Disease. Antioxid Redox Signal 2019; 30:813-856. [PMID: 29634347 DOI: 10.1089/ars.2017.7265] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Secreted extracellular vesicles (EVs) are now considered veritable entities for diagnosis, prognosis, and therapeutics. These structures are able to interact with target cells and modify their phenotype and function. Recent Advances: Since composition of EVs depends on the cell type of origin and the stimulation that leads to their release, the analysis of EV content remains an important input to understand the potential effects of EVs on target cells. CRITICAL ISSUES Here, we review recent data related to the mechanisms involved in the formation of EVs and the methods allowing specific EV isolation and identification. Also, we analyze the potential use of EVs as biomarkers in different pathologies such as diabetes, obesity, atherosclerosis, neurodegenerative diseases, and cancer. Besides, their role in these diseases is discussed. Finally, we consider EVs enriched in microRNA or drugs as potential therapeutic cargo able to deliver desirable information to target cells/tissues. FUTURE DIRECTIONS We underline the importance of the homogenization of the parameters of isolation of EVs and their characterization, which allow considering EVs as excellent biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Marine Malloci
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Liliana Perdomo
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Maëva Veerasamy
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Ramaroson Andriantsitohaina
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Gilles Simard
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - M Carmen Martínez
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| |
Collapse
|
128
|
Motevalli SM, Eltahan AS, Liu L, Magrini A, Rosato N, Guo W, Bottini M, Liang XJ. Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-018-0079-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
129
|
Alharbi M, Zuñiga F, Elfeky O, Guanzon D, Lai A, Rice GE, Perrin L, Hooper J, Salomon C. The potential role of miRNAs and exosomes in chemotherapy in ovarian cancer. Endocr Relat Cancer 2018; 25:R663-R685. [PMID: 30400025 DOI: 10.1530/erc-18-0019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Chemoresistance is one of the major obstacles in the treatment of cancer patients. It poses a fundamental challenge to the effectiveness of chemotherapy and is often linked to relapse in patients. Chemoresistant cells can be identified in different types of cancers; however, ovarian cancer has one of the highest rates of chemoresistance-related relapse (50% of patients within 5 years). Resistance in cells can either develop through prolonged cycles of treatment or through intrinsic pathways. Mechanistically, the problem of drug resistance is complex mainly because numerous factors are involved, such as overexpression of drug efflux pumps, drug inactivation, DNA repair mechanisms and alterations to and/or mutations in the drug target. Additionally, there is strong evidence that circulating miRNAs participate in the development of chemoresistance. Recently, miRNAs have been identified in exosomes, where they are encapsulated and hence protected from degradation. These miRNAs within exosomes (exo-miRNAs) can regulate the gene expression of target cells both locally and systemically. Exo-miRNAs play an important role in disease progression and can potentially facilitate chemoresistance in cancer cells. In addition, and from a diagnostic perspective, exo-miRNAs profiles may contribute to the development of predictive models to identify responder and non-responder chemotherapy. Such model may also be used for monitoring treatment response and disease progression. Exo-miRNAs may ultimately serve as both a predictive biomarker for cancer response to therapy and as a prognostic marker for the development of chemotherapy resistance. Therefore, this review examines the potential role of exo-miRNAs in chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
- Mona Alharbi
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Felipe Zuñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Omar Elfeky
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Gregory E Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
- Perinatology Research Branch, NICHD/NIH, Wayne State University, Detroit, Michigan, USA
| | - Lewis Perrin
- Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | - John Hooper
- Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| |
Collapse
|
130
|
Exosomes impact survival to radiation exposure in cell line models of nervous system cancer. Oncotarget 2018; 9:36083-36101. [PMID: 30546829 PMCID: PMC6281426 DOI: 10.18632/oncotarget.26300] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/21/2018] [Indexed: 12/24/2022] Open
Abstract
Radiation is utilized in the therapy of more than 50% of cancer patients. Unfortunately, many malignancies become resistant to radiation over time. We investigated the hypothesis that one method of a cancer cell's ability to survive radiation occurs through cellular communication via exosomes. Exosomes are cell-derived vesicles containing DNA, RNA, and protein. Three properties were analyzed: 1) exosome function, 2) exosome profile and 3) exosome uptake/blockade. To analyze exosome function, we show radiation-derived exosomes increased proliferation and enabled recipient cancer cells to survive radiation in vitro. Furthermore, radiation-derived exosomes increased tumor burden and decreased survival in an in vivo model. To address the mechanism underlying the alterations by exosomes in recipient cells, we obtained a profile of radiation-derived exosomes that showed expression changes favoring a resistant/proliferative profile. Radiation-derived exosomes contain elevated oncogenic miR-889, oncogenic mRNAs, and proteins of the proteasome pathway, Notch, Jak-STAT, and cell cycle pathways. Radiation-derived exosomes contain decreased levels of tumor-suppressive miR-516, miR-365, and multiple tumor-suppressive mRNAs. Ingenuity pathway analysis revealed the most represented networks included cell cycle, growth/survival. Upregulation of DNM2 correlated with increased exosome uptake. To analyze the property of exosome blockade, heparin and simvastatin were used to inhibit uptake of exosomes in recipient cells resulting in inhibited induction of proliferation and cellular survival. Because these agents have shown some success as cancer therapies, our data suggest their mechanism of action could be limiting exosome communication between cells. The results of our study identify a novel exosome-based mechanism that may underlie a cancer cell's ability to survive radiation.
Collapse
|
131
|
Nocera AL, Mueller SK, Stephan JR, Hing L, Seifert P, Han X, Lin DT, Amiji MM, Libermann T, Bleier BS. Exosome swarms eliminate airway pathogens and provide passive epithelial immunoprotection through nitric oxide. J Allergy Clin Immunol 2018; 143:1525-1535.e1. [PMID: 30442371 DOI: 10.1016/j.jaci.2018.08.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/27/2018] [Accepted: 08/26/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nasal mucosa-derived exosomes (NMDEs) harbor immunodefensive proteins and are capable of rapid interepithelial protein transfer. OBJECTIVES We sought to determine whether mucosal exposure to inhaled pathogens stimulates a defensive swarm of microbiocidal exosomes, which also donate their antimicrobial cargo to adjacent epithelial cells. METHODS We performed an institutional review board-approved study of healthy NMDE secretion after Toll-like receptor (TLR) 4 stimulation by LPS (12.5 μg/mL) in the presence of TLR4 inhibitors. Interepithelial transfer of exosomal nitric oxide (NO) synthase and nitric oxide was measured by using ELISAs and NO activity assays. Exosomal antimicrobial assays were performed with Pseudomonas aeruginosa. Proteomic analyses were performed by using SOMAscan. RESULTS In vivo and in vitro LPS exposure induced a 2-fold increase in NMDE secretion along with a 2-fold increase in exosomal inducible nitric oxide synthase expression and function through TLR4 and inhibitor of nuclear factor κB kinase activation. LPS stimulation increased exosomal microbiocidal activity against P aeruginosa by almost 2 orders of magnitude. LPS-stimulated exosomes induced a 4-fold increase in NO production within autologous epithelial cells with protein transfer within 5 minutes of contact. Pathway analysis of the NMDE proteome revealed 44 additional proteins associated with NO signaling and innate immune function. CONCLUSIONS We provide direct in vivo evidence for a novel exosome-mediated innate immunosurveillance and defense mechanism of the human upper airway. These findings have implications for lower airway innate immunity, delivery of airway therapeutics, and host microbiome regulation.
Collapse
Affiliation(s)
- Angela L Nocera
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass
| | - Sarina K Mueller
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass; Department of Otolaryngology/Head and Neck Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jules R Stephan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Mass
| | - Loretta Hing
- Department of Biomedical Engineering, Boston University, Boston, Mass
| | - Philip Seifert
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Mass
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, Mass
| | - Derrick T Lin
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Mass
| | - Towia Libermann
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass.
| |
Collapse
|
132
|
Zhang HD, Jiang LH, Hou JC, Zhong SL, Zhu LP, Wang DD, Zhou SY, Yang SJ, Wang JY, Zhang Q, Xu HZ, Zhao JH, Ji ZL, Tang JH. Exosome: a novel mediator in drug resistance of cancer cells. Epigenomics 2018; 10:1499-1509. [PMID: 30309258 DOI: 10.2217/epi-2017-0151] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exosomes are small membrane vesicles with a diameter of 40–100 nm, which are released into the intracellular environment. Exosomes could influence the genetic and epigenetic changes of receptor cells by promoting the horizontal transfer of various proteins or RNAs, especially miRNAs. Moreover, exosomes also play an important role in tumor microenvironment. Exosomes could promote the short- and long-distance exchanges of genetic information by acting as mediators of cell-to-cell communication. In addition, exosomes participate in drug resistance of tumor cells by genetic exchange between cells. It is reported that exosomes could be absorbed by recipient cells and transmit chemoresistance from drug-resistant tumor cells to sensitive ones. Then understanding the mechanisms of chemotherapy failure and controlling tumor progression effectively will be a major challenge for us. Therefore, in this review, we will briefly reveal the role of exosomes in drug resistance.
Collapse
Affiliation(s)
- He-da Zhang
- Department of General Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, PR China
| | - Lin-Hong Jiang
- Department of Oncology, Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Jun-Chen Hou
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Shan-Liang Zhong
- Center of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Ling-Ping Zhu
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Dan-Dan Wang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Si-Ying Zhou
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Su-Jin Yang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jin-Yan Wang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Qian Zhang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Han-Zi Xu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jian-Hua Zhao
- Center of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Zhen-Ling Ji
- Department of General Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, PR China
| | - Jin-Hai Tang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| |
Collapse
|
133
|
Pei L, Kong Y, Shao C, Yue X, Wang Z, Zhang N. Heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to pharmorubicin by promoting autophagy via PI3K/Akt pathway. J Cell Mol Med 2018; 22:5311-5321. [PMID: 30216645 PMCID: PMC6201364 DOI: 10.1111/jcmm.13800] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/30/2018] [Accepted: 06/23/2018] [Indexed: 12/25/2022] Open
Abstract
Background Concerns about breast cancer had become the most dangerous cancer to women over the world, more and more anti‐cancer agents are developed to treat this malignancy. Pharmorubicin is a cytotoxic drug, widely used in the treatment of breast cancer, but its role is limited because of chemoresistance produced by cells. This study focused on exploring the influence of autophagy on the resistance of pharmorubicin in breast cancer cells. Methods The cell survival of breast cancer cells was detected by MTT. The mRNA expression of heme oxygenase‐1 (HO‐1) was tested by qRT‐PCR. The protein expression of HO‐1, autophagic proteins (LC3‐I,LC3‐II and Beclin‐1), PI3K and Akt was detected by Western blot. Cell autophagy was examined by Cyto‐ID Autophagy Detection Kit. Results After being treated with pharmorubicin, the expression of HO‐1 and autophagy related proteins was significantly enhanced, but the cell survival ratio in the two cell lines decreased. After autophagy was inhibited, HO‐1 expression in two cells was down‐regulated. When pharmorubicin‐resistant cells were transfected with si‐HO‐1, the cell survival decreased and the protein expression of HO‐1, autophagic proteins (LC3‐II/LC3‐I and Beclin‐1) as well as autophagy were all down‐regulated, while in pharmorubicin‐resistant cells transfected with pcDNA3.1‐HO‐1, the results were reverse. When the PI3K or Akt was inhibited, PI3K, p‐Akt, HO‐1, autophagic proteins and autophagy were decreased remarkably. Conclusion It was proved that HO‐1 induction mediated chemoresistance of pharmorubicin in breast cancer cells by promoting autophagy via PI3K/Akt pathway.
Collapse
Affiliation(s)
- Lei Pei
- Department of General Surgery, The People's Hospital of Pingyi County, Pingyi, Shangdong, China
| | - Yirong Kong
- Department of the Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Changfeng Shao
- Department of Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiao Yue
- Department of General Surgery, The People's Hospital of Pingyi County, Pingyi, Shangdong, China
| | - Zongling Wang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Na Zhang
- Department of General Surgery, The People's Hospital of Pingyi County, Pingyi, Shangdong, China
| |
Collapse
|
134
|
The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance. Biochem J 2018; 475:2305-2328. [PMID: 30064989 DOI: 10.1042/bcj20170712] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/11/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022]
Abstract
Intercellular communications play a major role in tissue homeostasis. In pathologies such as cancer, cellular interactions within the tumor microenvironment (TME) contribute to tumor progression and resistance to therapy. Tunneling nanotubes (TNTs) are newly discovered long-range intercellular connections that allow the exchange between cells of various cargos, ranging from ions to whole organelles such as mitochondria. TNT-transferred mitochondria were shown to change the metabolism and functional properties of recipient cells as reported for both normal and cancer cells. Metabolic plasticity is now considered a hallmark of cancer as it notably plays a pivotal role in drug resistance. The acquisition of cancer drug resistance was also associated to TNT-mediated mitochondria transfer, a finding that relates to the role of mitochondria as a hub for many metabolic pathways. In this review, we first give a brief overview of the various mechanisms of drug resistance and of the cellular communication means at play in the TME, with a special focus on the recently discovered TNTs. We further describe recent studies highlighting the role of the TNT-transferred mitochondria in acquired cancer cell drug resistance. We also present how changes in metabolic pathways, including glycolysis, pentose phosphate and lipid metabolism, are linked to cancer cell resistance to therapy. Finally, we provide examples of novel therapeutic strategies targeting mitochondria and cell metabolism as a way to circumvent cancer cell drug resistance.
Collapse
|
135
|
Mrowczynski OD, Zacharia BE, Connor JR. Exosomes and their implications in central nervous system tumor biology. Prog Neurobiol 2018; 172:71-83. [PMID: 30003942 DOI: 10.1016/j.pneurobio.2018.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 05/04/2018] [Accepted: 06/30/2018] [Indexed: 01/08/2023]
Abstract
Exosomes are 20-100 nm cellular derived vesicles that upon discovery, were thought to be a form of cellular recycling of intracellular contents. More recently, these vesicles are under investigation for their purported significant roles in intercellular communication in both healthy and diseased states. Herein, we focus on the secretion of exosomes associated with glioblastoma, as most exosome studies on brain tumors have been performed in this tumor type. However, we included exosomes secreted from other forms of brain tumors for comparison as available. Exosomes contain intracellular content that can be transferred to other cells in the tumor or to cells of the immune system and endothelial cells. These recipient cells may subsequently take on oncogenic properties, including therapeutic resistance, cancer progression, and angiogenesis. Genetic components (DNA, RNA and miRNA) of the cell of origin may be included in the secreted exosomes. The presence of genetic material in the exosomes could serve as a biomarker for mutations in tumors, potentially leading to novel treatment strategies. In the last decade, exosomes have been identified as having a major impact on multiple aspects of medicine and tumor biology, and appear to be primed for a critical position in cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Oliver D Mrowczynski
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Brad E Zacharia
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - James R Connor
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
136
|
Oushy S, Hellwinkel JE, Wang M, Nguyen GJ, Gunaydin D, Harland TA, Anchordoquy TJ, Graner MW. Glioblastoma multiforme-derived extracellular vesicles drive normal astrocytes towards a tumour-enhancing phenotype. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0477. [PMID: 29158308 DOI: 10.1098/rstb.2016.0477] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a devastating tumour with abysmal prognoses. We desperately need novel approaches to understand GBM biology and therapeutic vulnerabilities. Extracellular vesicles (EVs) are membrane-enclosed nanospheres released locally and systemically by all cells, including tumours, with tremendous potential for intercellular communication. Tumour EVs manipulate their local environments as well as distal targets; EVs may be a mechanism for tumourigenesis in the recurrent GBM setting. We hypothesized that GBM EVs drive molecular changes in normal human astrocytes (NHAs), yielding phenotypically tumour-promoting, or even tumourigenic, entities. We incubated NHAs with GBM EVs and examined the astrocytes for changes in cell migration, cytokine release and tumour cell growth promotion via the conditioned media. We measured alterations in intracellular signalling and transformation capacity (astrocyte growth in soft agar). GBM EV-treated NHAs displayed increased migratory capacity, along with enhanced cytokine production which promoted tumour cell growth. GBM EV-treated NHAs developed tumour-like signalling patterns and exhibited colony formation in soft agar, reminiscent of tumour cells themselves. GBM EVs modify the local environment to benefit the tumour itself, co-opting neighbouring astrocytes to promote tumour growth, and perhaps even driving astrocytes to a tumourigenic phenotype. Such biological activities could have profound impacts in the recurrent GBM setting.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'.
Collapse
Affiliation(s)
- Soliman Oushy
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin E Hellwinkel
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary Wang
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ger J Nguyen
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dicle Gunaydin
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tessa A Harland
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas J Anchordoquy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
137
|
Samuel P, Mulcahy LA, Furlong F, McCarthy HO, Brooks SA, Fabbri M, Pink RC, Carter DRF. Cisplatin induces the release of extracellular vesicles from ovarian cancer cells that can induce invasiveness and drug resistance in bystander cells. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0065. [PMID: 29158318 DOI: 10.1098/rstb.2017.0065] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer has a poor overall survival that is partly caused by resistance to drugs such as cisplatin. Resistance can be acquired as a result of changes to the tumour or due to altered interactions within the tumour microenvironment. Extracellular vesicles (EVs), small lipid-bound vesicles that are loaded with macromolecular cargo and released by cells, are emerging as mediators of communication in the tumour microenvironment. We previously showed that EVs mediate the bystander effect, a phenomenon in which stressed cells can communicate with neighbouring naive cells leading to various effects including DNA damage; however, the role of EVs released following cisplatin treatment has not been tested. Here we show that treatment of cells with cisplatin led to the release of EVs that could induce invasion and increased resistance when taken up by bystander cells. This coincided with changes in p38 and JNK signalling, suggesting that these pathways may be involved in mediating the effects. We also show that EV uptake inhibitors could prevent this EV-mediated adaptive response and thus sensitize cells in vitro to the effects of cisplatin. Our results suggest that preventing pro-tumourigenic EV cross-talk during chemotherapy is a potential therapeutic target for improving outcome in ovarian cancer patients.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'.
Collapse
Affiliation(s)
- Priya Samuel
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Laura Ann Mulcahy
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Fiona Furlong
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Susan Ann Brooks
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Muller Fabbri
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Departments of Pediatrics and Molecular Microbiology & Immunology, University of Southern California-Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA 90027, USA
| | - Ryan Charles Pink
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - David Raul Francisco Carter
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| |
Collapse
|
138
|
Grau Ribes A, De Decker Y, Gérard C, Rongy L. Modelling the propagation of a dynamical signature in gene expression mediated by the transport of extracellular microRNAs. MOLECULAR BIOSYSTEMS 2018; 13:2379-2391. [PMID: 28953276 DOI: 10.1039/c7mb00509a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extracellular microRNAs (miRNAs) carried by exosomes can play a key role in cell-to-cell communication. Deregulation of miRNA expression and exosome secretion have been related to pathological conditions such as cancer. While it is known that circulating miRNAs can alter gene expression in recipient cells, it remains unclear how significant the dynamical impact of these extracellular miRNAs is. To shed light on this issue, we propose a model for the spatio-temporal evolution of the protein expression in a cell tissue altered by abnormal miRNA expression in a donor cell. This results in a nonhomogeneous cellular response in the tissue, which we quantify by studying the range of action of the donor cell on the surrounding cells. Key model parameters that control the range of action are identified. Based on a model for a heterogeneous cell population, we show that the dynamics of gene expression in the tissue is robust to random changes of the parameter values. Furthermore, we study the propagation of gene expression oscillations in a tissue induced by extracellular miRNAs. In the donor cell, the miRNA inhibits its own transcription which can give rise to local oscillations in gene expression. The resulting oscillations of the concentration of extracellular miRNA induce oscillations of the protein concentration in recipient cells. We analyse the nonmonotonic spatial evolution of the oscillation amplitude of the protein concentration in the tissue which may have implications for the propagation of oscillations in biological rhythms such as the circadian clock.
Collapse
Affiliation(s)
- Alexis Grau Ribes
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | | | | | | |
Collapse
|
139
|
Tumor-derived exosomes promote tumor self-seeding in hepatocellular carcinoma by transferring miRNA-25-5p to enhance cell motility. Oncogene 2018; 37:4964-4978. [PMID: 29786077 DOI: 10.1038/s41388-018-0309-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 02/18/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
Tumor self-seeding occurs when circulating malignant cells reinfiltrate the original tumor. The process may breed more aggressive tumor cells, which may contribute to cancer progression. In this study, we observed tumor self-seeding in mouse xenograft models of hepatocellular carcinoma (HCC) for the first time. We confirmed that circulating tumor cell uptake of tumor-derived exosomes, which are increasingly recognized as key instigators of cancer progression by facilitating cell-cell communication, promoted tumor self-seeding by enhancing the invasive and migration capability of recipient HCC cells. Horizontal transfer of exosomal microRNA-25-5p to anoikis-resistant HCC cells significantly enhanced their migratory and invasive abilities, whereas inhibiting microRNA-25-5p alleviated these effects. Our experiments delineate an exosome-based novel pathway employed by functional microRNA from the original tumor cells that can influence the biological fate of circulating tumor cells.
Collapse
|
140
|
Shen J, Zhu X, Fei J, Shi P, Yu S, Zhou J. Advances of exosome in the development of ovarian cancer and its diagnostic and therapeutic prospect. Onco Targets Ther 2018; 11:2831-2841. [PMID: 29844681 PMCID: PMC5961474 DOI: 10.2147/ott.s159829] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is the leading cause of female gynecological cancer mortality. Most patients with ovarian cancer are diagnosed with advanced stage because of lack of early symptoms, physical signs, and sensitive tumor biomarkers. The standard treatment includes cytoreductive surgery and platinum-based chemotherapy (usually platinum combined with paclitaxel). Despite that postoperative adjuvant chemotherapy prolongs survival time, most patients go through relapse within 6–12 months after the treatment. Thus, elucidating the molecular mechanism in cancer development is essential to promote early diagnosis and novel treatments. The role of exosome has been highlighted in multiple research fields in recent years. Exosome has been described as nano-sized vesicle secreted by multiple mammalian cell types, carrying cargos like proteins, miRNAs, mRNAs, and lipids. It participates in the formation of tumor microenvironment and the development of tumorigenesis and drug resistance in ovarian cancer. Meanwhile, it may also play a pivotal role in diagnosis, efficacy evaluation, and prognosis. Besides, studies show that exosome and its processed products have promising value in ovarian cancer treatment. The aim of the current review is to describe the characteristics of exosome in ovarian cancer, especially focusing on its role in immune modulation and drug resistance, hoping to provide new information on its implications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiaoqing Zhu
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jing Fei
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Pengyao Shi
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shuqian Yu
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
141
|
Lynce F, Saleh M, Shajahan-Haq A, Gallagher C, Dilawari A, Hahn O, Abu-Khalaf M, Cai L, Pohlmann P, Mohebtash M, Kamugisha L, Isaacs C. PALINA: A phase II safety study of palbociclib in combination with letrozole or fulvestrant in African American women with hormone receptor positive HER2 negative advanced breast cancer. Contemp Clin Trials Commun 2018; 10:190-192. [PMID: 30009277 PMCID: PMC6042467 DOI: 10.1016/j.conctc.2018.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/10/2018] [Accepted: 05/04/2018] [Indexed: 11/20/2022] Open
Abstract
Palbociclib has been shown to be a highly effective therapy in hormone receptor positive metastatic breast cancer when used in combination with letrozole or fulvestrant. Grade 3/4 neutropenia is a common side effect although febrile neutropenia is relatively uncommon. Insufficient data exist to describe the hematological safety of palbociclib in African American women (AAW) known to have a high incidence of benign ethnic neutropenia (BEN). PALOMA 1, 2 and 3, the initial phase II/III studies that led to the U.S. Food and Drug Administration (FDA) approval of palbociclib in metastatic breast cancer, only included participants with baseline absolute neutrophil count (ANC) of 1500/mm3 or higher. African American women (AAW) were underrepresented in the PALOMA trials and this may be partially explained by strict requirements for minimal ANC ≥1500/mm3. The ANC of 1500/mm3 for initiation of treatment in those with BEN has been previously challenged. In this study, we propose to lower the ANC cutoff for enrollment to 1000/mm3. PALINA (NCT02692755) is a phase II, single arm, multicenter clinical trial that will enroll 35 patients. The primary endpoint is to assess the proportion of patients who complete therapy without the development of febrile neutropenia or treatment discontinuation due to neutropenia. The secondary endpoints include number of patients who required dose delays or dose reductions in palbociclib attributed to neutropenia, rate of grade 3/4 neutropenia, clinical benefit rate at 24 weeks, the association between metabolite and exosomal signature with disease response and the association between baseline ANC prior to cancer diagnosis and the Duffy Null polymorphism (SNP rs2814778) with hematological safety. PALINA will provide important information about the hematologic safety of palbociclib in AAW with advanced breast cancer.
Collapse
Affiliation(s)
- Filipa Lynce
- MedStar Georgetown University Hospital, Lombardi Comprehensive Cancer Center, USA
| | | | | | | | - Asma Dilawari
- MedStar Georgetown University Hospital, Lombardi Comprehensive Cancer Center, USA
| | | | | | - Ling Cai
- Georgetown University, Lombardi Comprehensive Cancer Center, USA
| | - Paula Pohlmann
- MedStar Georgetown University Hospital, Lombardi Comprehensive Cancer Center, USA
| | | | | | - Claudine Isaacs
- Georgetown University, Lombardi Comprehensive Cancer Center, USA
| |
Collapse
|
142
|
Jing C, Cao H, Qin X, Yu S, Wu J, Wang Z, Ma R, Feng J. Exosome-mediated gefitinib resistance in lung cancer HCC827 cells via delivery of miR-21. Oncol Lett 2018; 15:9811-9817. [PMID: 29928355 DOI: 10.3892/ol.2018.8604] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 10/26/2017] [Indexed: 11/05/2022] Open
Abstract
Acquired resistance to gefitinib remains a major challenge in cancer treatment. In the present study, the effect of exosomes on the transmission of gefitinib resistance from gefitinib-resistant HCC827 lung cancer cells (H827R) to their gefitinib-sensitive counterparts and the potential underlying mechanisms by which this occurs was investigated. Exosomes were obtained from the cell supernatant using ultracentrifugation and the ExoQuick-TC exosome precipitation solution. Drug resistance was assessed by flow cytometry, apoptosis assays and cell counting kit-8 assays. The expression of microRNA (miR)-21 was analyzed by reverse transcription-quantitative polymerase chain reaction. Exosomes released by H827R cells (R/exo) may decrease the sensitivity of the human NSCLC HCC827 cell line to gefitinib. The results indicated that miR-21 expression was increased in R/exo and R/exo-treated H827S cells. However, miR-21 inhibition abrogated exosome-mediated drug resistance. Phosphorylated-protein kinase B (p-Akt), which is downstream of miR-21, was downregulated following gefitinib treatment; however, R/exo pretreatment elevated p-Akt levels and promoted the activation of Akt. By contrast, miR-21 inhibition reduced p-Akt expression. Therefore, the induction of miR-21 via exosomes and the activation of Akt may be mechanisms by which exosomes mediate the transfer of drug resistance.
Collapse
Affiliation(s)
- Changwen Jing
- Clinical Cancer Research Center, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Haixia Cao
- Clinical Cancer Research Center, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaobing Qin
- The Fourth Clinical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Shaorong Yu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jianzhong Wu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhuo Wang
- Clinical Cancer Research Center, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Rong Ma
- Clinical Cancer Research Center, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jifeng Feng
- Department of Chemotherapy, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
143
|
Jia Y, Chen Y, Wang Q, Jayasinghe U, Luo X, Wei Q, Wang J, Xiong H, Chen C, Xu B, Hu W, Wang L, Zhao W, Zhou J. Exosome: emerging biomarker in breast cancer. Oncotarget 2018; 8:41717-41733. [PMID: 28402944 PMCID: PMC5522217 DOI: 10.18632/oncotarget.16684] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023] Open
Abstract
Exosomes are nano-sized membrane vesicles released by a variety of cell types, and are thought to play important roles in intercellular communications. In breast cancer, through horizontal transfer of various bioactive molecules, such as proteins and mRNAs, exosomes are emerging as local and systemic cell-to-cell mediators of oncogenic information and play an important role on cancer progression. This review outlines the current knowledge and concepts concerning the exosomes involvement in breast cancer pathogenesis (including tumor initiation, invasion and metastasis, angiogenesis, immune system modulation and tumor microenvironment) and cancer therapy resistance. Moreover, the potential use of exosomes as promising diagnostic and therapeutic biomarkers in breast cancer are also discussed.
Collapse
Affiliation(s)
- Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qinchuan Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | | | - Xiao Luo
- Department of Radiology, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qun Wei
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hanchu Xiong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bin Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenxian Hu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenhe Zhao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
144
|
Giusti I, Di Francesco M, D'Ascenzo S, Palmerini MG, Macchiarelli G, Carta G, Dolo V. Ovarian cancer-derived extracellular vesicles affect normal human fibroblast behavior. Cancer Biol Ther 2018; 19:722-734. [PMID: 29580188 DOI: 10.1080/15384047.2018.1451286] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It has become clear that non-tumor cells in the microenvironment, especially fibroblasts, actively participate in tumor progression. Fibroblasts conditioned by tumor cells become "activated" and, as such, are identified as CAFs (cancer-associated fibroblasts). These CAFs remodel the tumor stroma to make it more favourable for cancer progression. The aim of this work was to verify whether EVs (extracellular vesicles - whose role as mediators of information between tumor and stromal cells is well known) released from human ovarian cancer cells were able to activate fibroblasts. EVs isolated from SKOV3 (more aggressive) and CABA I (less aggressive) cells were administered to fibroblasts. The consequent activation was supported by morphological and molecular changes in treated fibroblasts; XTT assays, zymographies, wound healing tests and invasion assays also highlighted higher proliferation, motility, invasiveness and enzyme expression. The secretome of these "activated" fibroblasts was, in turn, able to modulate the responses (proliferation, motility and invasion) of fibroblasts, and of tumor and endothelial cells. These findings support the idea that ovarian cancer cells can modulate fibroblast behaviour through the release of EVs, activating them to a CAFs-like state; the latter are able, in turn, to stimulate the surrounding cells. EVs from SKOV3 rather than from CABA I seem to be more efficient in some processes.
Collapse
Affiliation(s)
- Ilaria Giusti
- a Department of Life, Health and Environmental Sciences , University of L'Aquila , Via Vetoio, Coppito 2, L'Aquila , Italy
| | - Marianna Di Francesco
- a Department of Life, Health and Environmental Sciences , University of L'Aquila , Via Vetoio, Coppito 2, L'Aquila , Italy
| | - Sandra D'Ascenzo
- a Department of Life, Health and Environmental Sciences , University of L'Aquila , Via Vetoio, Coppito 2, L'Aquila , Italy
| | - Maria Grazia Palmerini
- a Department of Life, Health and Environmental Sciences , University of L'Aquila , Via Vetoio, Coppito 2, L'Aquila , Italy
| | - Guido Macchiarelli
- a Department of Life, Health and Environmental Sciences , University of L'Aquila , Via Vetoio, Coppito 2, L'Aquila , Italy
| | - Gaspare Carta
- a Department of Life, Health and Environmental Sciences , University of L'Aquila , Via Vetoio, Coppito 2, L'Aquila , Italy
| | - Vincenza Dolo
- a Department of Life, Health and Environmental Sciences , University of L'Aquila , Via Vetoio, Coppito 2, L'Aquila , Italy
| |
Collapse
|
145
|
Peng J, Wang W, Hua S, Liu L. Roles of Extracellular Vesicles in Metastatic Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2018; 12:1178223418767666. [PMID: 29881285 PMCID: PMC5987895 DOI: 10.1177/1178223418767666] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/27/2018] [Indexed: 01/29/2023]
Abstract
Cells can secrete extracellular vesicles (EVs) to communicate with neighboring or
distant cells by EVs which are composed of a lipid bilayer containing
transmembrane proteins and enclosing cytosolic proteins, lipids, and nucleic
acids. Breast Cancer is the most frequently diagnosed malignancy with more than
1 million new cases each year and ranks the leading cause of cancer mortality in
women worldwide. In this review, we will discuss recent progresses of the roles
and mechanisms of cancer-derived EVs in metastatic breast cancer, with a special
attention on tumor microenvironment construction, progression, and
chemo/radiotherapy responses. This review also covers EV roles as biomarker and
therapeutic target in clinical application.
Collapse
Affiliation(s)
- Junya Peng
- Department of Center Lab, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wenqian Wang
- School of Medicine, Tsinghua University, Beijing, China
| | - Surong Hua
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Lulu Liu
- Department of Center Lab, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| |
Collapse
|
146
|
The multifaceted role of exosomes in cancer progression: diagnostic and therapeutic implications [corrected]. Cell Oncol (Dordr) 2018; 41:223-252. [PMID: 29667069 DOI: 10.1007/s13402-018-0378-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent advances in cancer biology have highlighted the relevance of exosomes and nanovesicles as carriers of genetic and biological messages between cancer cells and their immediate and/or distant environments. It has been found that these molecular cues may play significant roles in cancer progression and metastasis. Cancer cells secrete exosomes containing diverse molecules that can be transferred to recipient cells and/or vice versa to induce a plethora of biological processes, including angiogenesis, metastasis formation, therapeutic resistance, epithelial-mesenchymal transition and epigenetic/stemness (re)programming. While exosomes interact with cells within the tumour microenvironment to promote tumour growth, these vesicles can also facilitate the process of distant metastasis by mediating the formation of pre-metastatic niches. Next to their tumour promoting effects, exosomes have been found to serve as potential tools for cancer diagnosis and therapy. The ease of isolating exosomes and their content from different body fluids has led to the identification of diagnostic and prognostic biomarker signatures, as well as to predictive biomarker signatures for therapeutic responses. Exosomes can also be used as cargos to deliver therapeutic anti-cancer drugs, and they can be engineered to serve as vaccines for immunotherapy. Additionally, it has been found that inhibition of exosome secretion, and thus the transfer of oncogenic molecules, holds promise for inhibiting tumour growth. Here we provide recent information on the diverse roles of exosomes in various cellular and systemic processes governing cancer progression, and discuss novel strategies to halt this progression using exosome-based targeted therapies and methods to inhibit exosome secretion and the transfer of pro-tumorigenic molecules. CONCLUSIONS This review highlights the important role of exosomes in cancer progression and its implications for (non-invasive) diagnostics and the development of novel therapeutic strategies, as well as its current and future applications in clinical trials.
Collapse
|
147
|
Qin X, Yu S, Xu X, Shen B, Feng J. Comparative analysis of microRNA expression profiles between A549, A549/DDP and their respective exosomes. Oncotarget 2018; 8:42125-42135. [PMID: 28178672 PMCID: PMC5522054 DOI: 10.18632/oncotarget.15009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/09/2017] [Indexed: 12/30/2022] Open
Abstract
Exosomes were reported to transport bioactive molecules and influence the biology behavior of recipient cells. In order to study the role of exosomal microRNAs in the mechanism of cisplatin resistance to lung cancer cells, we analyzed the expression profiles of microRNAs in A549, A549/DDP cells and their exosomes by microarray. The results showed that a certain proportion of microRNAs were co-expressed in the cells and exosomes. Linear regression analysis showed that the expression of microRNAs in A549 and A549/DDP cells were strongly correlated with those in their respective exosomes. The expression level of 5 microRNAs (miR-197-5p, miR-4443, miR-642a-3p, miR-27b-3p and miR-100-5p) with the most differential expression were verified by qRT-PCR. The results were consistent with those of the microarray. Target gene prediction and pathway analysis discovered that the microRNAs in the intersections may participate in drug resistance. And the prediction of their association with diseases found that most of these microRNAs was associated with lung cancer. We could draw a preliminary conclusion that microRNAs in exosomes may be involved in the drug resistance of lung cancer cells to cisplatin.
Collapse
Affiliation(s)
- Xiaobing Qin
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China.,Department of Oncology, Xuzhou First People's Hospital, Xuzhou, Jiangsu Province, China
| | - Shaorong Yu
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| | - Xiaoyue Xu
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| | - Bo Shen
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| | - Jifeng Feng
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| |
Collapse
|
148
|
Tan C, Hu W, He Y, Zhang Y, Zhang G, Xu Y, Tang J. Cytokine-mediated therapeutic resistance in breast cancer. Cytokine 2018; 108:151-159. [PMID: 29609137 DOI: 10.1016/j.cyto.2018.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022]
Abstract
Therapeutic resistance leading to tumor relapse is a major challenge in breast cancer (BCa) treatment. Numerous factors involved in multiple mechanisms promote the development of tumor chemo/radio-resistance. Cytokines/chemokines are important inflammatory factors and highly related to tumorigenesis, metastasis and tumors responses to treatment. A large number of studies have demonstrated that the network of cytokines activates multiple cell signaling pathways to promote tumor cell survival, proliferation, invasion, and migration. Particularly in BCa, cytokines-enhanced the epithelial-mesenchymal transition (EMT) process plays a pivotal role in the progression of metastatic phenotypes and resistance to the traditional chemo/radio-therapy. Virtually, therapeutic resistance is not entirely determined by tumor cell intrinsic characteristics but also dependent upon synchronized effects by numerous of local microenvironmental factors. Emerging evidence highlighted that exosomes secreted from various types of cells promote intercellular communication by transferring bioactive molecules including miRNAs and cytokines, suggesting that exosomes are essential for sustentation of tumor progression and therapeutic resistance within the tumor microenvironment. In this review, we discuss the mechanisms by which cytokines promote therapeutic resistance of BCa and suggest a potential approach for improving BCa therapeutics by inhibition of exosome function.
Collapse
Affiliation(s)
- Chunli Tan
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China; Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China
| | - Weizi Hu
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China; Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China
| | - Yunjie He
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China
| | - Guangqin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yong Xu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, PR China.
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China.
| |
Collapse
|
149
|
Can hi-jacking hypoxia inhibit extracellular vesicles in cancer? Drug Discov Today 2018; 23:1267-1273. [PMID: 29577970 DOI: 10.1016/j.drudis.2018.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/15/2018] [Accepted: 03/14/2018] [Indexed: 12/11/2022]
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) are key players in undesirable cell-cell communication in cancer. However, the release of EVs is not unique to cancer cells; normal cells release EVs to perform physiological roles. Thus, selective inhibition of EV release from cancer cells is desirable. Hypoxia contributes to tumour development and aggressiveness. EV quantities and thus undesirable communications are substantially increased in hypoxia. Targeting hypoxia could selectively inhibit EV release from tumour cells without disturbing physiologically relevant EVs. The unfavourable association between hypoxia and EV release is evident in multiple tumour types; therefore, targeting hypoxia could have a broad therapeutic benefit.
Collapse
|
150
|
Hu W, Tan C, He Y, Zhang G, Xu Y, Tang J. Functional miRNAs in breast cancer drug resistance. Onco Targets Ther 2018; 11:1529-1541. [PMID: 29593419 PMCID: PMC5865556 DOI: 10.2147/ott.s152462] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Owing to improved early surveillance and advanced therapy strategies, the current death rate due to breast cancer has decreased; nevertheless, drug resistance and relapse remain obstacles on the path to successful systematic treatment. Multiple mechanisms responsible for drug resistance have been elucidated, and miRNAs seem to play a major part in almost every aspect of cancer progression, including tumorigenesis, metastasis, and drug resistance. In recent years, exosomes have emerged as novel modes of intercellular signaling vehicles, initiating cell–cell communication through their fusion with target cell membranes, delivering functional molecules including miRNAs and proteins. This review particularly focuses on enumerating functional miRNAs involved in breast cancer drug resistance as well as their targets and related mechanisms. Subsequently, we discuss the prospects and challenges of miRNA function in drug resistance and highlight valuable approaches for the investigation of the role of exosomal miRNAs in breast cancer progression and drug resistance.
Collapse
Affiliation(s)
- Weizi Hu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University.,Nanjing Medical University Affiliated Cancer Hospital
| | - Chunli Tan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University.,Nanjing Medical University Affiliated Cancer Hospital
| | - Yunjie He
- The First Clinical School of Nanjing Medical University
| | - Guangqin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University
| | - Yong Xu
- Nanjing Medical University Affiliated Cancer Hospital.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|