101
|
Approaching multiplet splitting in X-ray photoelectron spectra by density functional theory methods: NO and O2 molecules as examples. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
102
|
Henthorn J, Arias RJ, Koroidov S, Kroll T, Sokaras D, Bergmann U, Rees DC, DeBeer S. Localized Electronic Structure of Nitrogenase FeMoco Revealed by Selenium K-Edge High Resolution X-ray Absorption Spectroscopy. J Am Chem Soc 2019; 141:13676-13688. [PMID: 31356071 PMCID: PMC6716209 DOI: 10.1021/jacs.9b06988] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 11/28/2022]
Abstract
The size and complexity of Mo-dependent nitrogenase, a multicomponent enzyme capable of reducing dinitrogen to ammonia, have made a detailed understanding of the FeMo cofactor (FeMoco) active site electronic structure an ongoing challenge. Selective substitution of sulfur by selenium in FeMoco affords a unique probe wherein local Fe-Se interactions can be directly interrogated via high-energy resolution fluorescence detected X-ray absorption spectroscopic (HERFD XAS) and extended X-ray absorption fine structure (EXAFS) studies. These studies reveal a significant asymmetry in the electronic distribution of the FeMoco, suggesting a more localized electronic structure picture than is typically assumed for iron-sulfur clusters. Supported by experimental small molecule model data in combination with time dependent density functional theory (TDDFT) calculations, the HERFD XAS data is consistent with an assignment of Fe2/Fe6 as an antiferromagnetically coupled diferric pair. HERFD XAS and EXAFS have also been applied to Se-substituted CO-inhibited MoFe protein, demonstrating the ability of these methods to reveal electronic and structural changes that occur upon substrate binding. These results emphasize the utility of Se HERFD XAS and EXAFS for selectively probing the local electronic and geometric structure of FeMoco.
Collapse
Affiliation(s)
- Justin
T. Henthorn
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der
Ruhr, Germany
| | - Renee J. Arias
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Sergey Koroidov
- PULSE
Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas Kroll
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Uwe Bergmann
- PULSE
Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Douglas C. Rees
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
- Howard
Hughes Medical Institute, California Institute
of Technology, Pasadena, California 91125, United States
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der
Ruhr, Germany
| |
Collapse
|
103
|
Ye M, Thompson NB, Brown AC, Suess DLM. A Synthetic Model of Enzymatic [Fe 4S 4]-Alkyl Intermediates. J Am Chem Soc 2019; 141:13330-13335. [PMID: 31373801 PMCID: PMC6748666 DOI: 10.1021/jacs.9b06975] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Although
alkyl complexes of [Fe4S4] clusters
have been invoked as intermediates in a number of enzymatic reactions,
obtaining a detailed understanding of their reactivity patterns and
electronic structures has been difficult owing to their transient
nature. To address this challenge, we herein report the synthesis
and characterization of a 3:1 site-differentiated [Fe4S4]2+–alkyl cluster. Whereas [Fe4S4]2+ clusters typically exhibit pairwise delocalized
electronic structures in which each Fe has a formal valence of 2.5+,
Mössbauer spectroscopic and computational studies suggest that
the highly electron-releasing alkyl group partially localizes the
charge distribution within the cubane, an effect that has not been
previously observed in tetrahedrally coordinated [Fe4S4] clusters.
Collapse
Affiliation(s)
- Mengshan Ye
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Niklas B Thompson
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Alexandra C Brown
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Daniel L M Suess
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
104
|
Teyar B, Boucenina S, Belkhiri L, Le Guennic B, Boucekkine A, Mazzanti M. Theoretical Investigation of the Electronic Structure and Magnetic Properties of Oxo-Bridged Uranyl(V) Dinuclear and Trinuclear Complexes. Inorg Chem 2019; 58:10097-10110. [PMID: 31287673 DOI: 10.1021/acs.inorgchem.9b01237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The uranyl(V) complexes [UO2(dbm)2K(18C6)]2 (dbm = dibenzoylmethanate) and [UO2(L)]3(L = 2-(4-tolyl)-1,3-bis(quinolyl)malondiiminate), exhibiting diamond-shaped U2O2 and triangular-shaped U3O3 cores respectively with 5f1-5f1 and 5f1-5f1-5f1 configurations, have been investigated using relativistic density functional theory (DFT). The bond order and QTAIM analyses reveal that the covalent contribution to the bonding within the oxo cores is slightly more important for U3O3 than for U2O2, in line with the shorter U-O distances existing in the trinuclear complex in comparison to those in the binuclear complex. Using the broken symmetry (BS) approach combined with the B3LYP functional for the calculation of the magnetic exchange coupling constants (J) between the magnetic centers, the antiferromagnetic (AF) character of these complexes was confirmed, the estimated J values being respectively equal to -24.1 and -7.2 cm-1 for the dioxo and trioxo species. It was found that the magnetic exchange is more sensitive to small variations of the core geometry of the dioxo species in comparison to the trioxo species. Although the robust AF exchange coupling within the UxOx cores is generally maintained when small variations of the UOU angle are applied, a weak ferromagnetic character appears in the dioxo species when this angle is higher than 114°, its value for the actual structure being equal to 105.9°. The electronic factors driving the magnetic coupling are discussed.
Collapse
Affiliation(s)
- Billel Teyar
- Faculté des Sciences Exactes , Université des Frères Mentouri , Laboratoire de Physique Mathématique et Subatomique LPMS, 25017 Constantine , Algeria.,Université Ziane Achour de Djelfa , 17000 Djelfa , Algeria
| | - Seddik Boucenina
- Faculté des Sciences Exactes , Université des Frères Mentouri , Laboratoire de Physique Mathématique et Subatomique LPMS, 25017 Constantine , Algeria
| | - Lotfi Belkhiri
- Faculté des Sciences Exactes , Université des Frères Mentouri , Laboratoire de Physique Mathématique et Subatomique LPMS, 25017 Constantine , Algeria
| | | | | | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
105
|
Hakey BM, Darmon JM, Akhmedov NG, Petersen JL, Milsmann C. Reactivity of Pyridine Dipyrrolide Iron(II) Complexes with Organic Azides: C–H Amination and Iron Tetrazene Formation. Inorg Chem 2019; 58:11028-11042. [PMID: 31364852 DOI: 10.1021/acs.inorgchem.9b01560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Brett M. Hakey
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Jonathan M. Darmon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Novruz G. Akhmedov
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| |
Collapse
|
106
|
Mandal S, Majumder S, Mohanta S. Syntheses, Crystal Structures and Experimental/Theoretical Magnetic Properties of Two Butterfly Ni
II
2
Y
III
2
Compounds. ChemistrySelect 2019. [DOI: 10.1002/slct.201902302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuvankar Mandal
- Department of ChemistryInorganic Chemistry SectionUniversity of Calcutta 92 A. P. C Road Kolkata 700 009 India
| | - Samit Majumder
- Department of ChemistryBhairab Ganguly College,2 Feeder Road,Belghoria, Kolkata West Bengal 700056 India
| | - Sasankasekhar Mohanta
- Department of ChemistryInorganic Chemistry SectionUniversity of Calcutta 92 A. P. C Road Kolkata 700 009 India
| |
Collapse
|
107
|
Structural Analysis of a Nitrogenase Iron Protein from Methanosarcina acetivorans: Implications for CO 2 Capture by a Surface-Exposed [Fe 4S 4] Cluster. mBio 2019; 10:mBio.01497-19. [PMID: 31289188 PMCID: PMC6747716 DOI: 10.1128/mbio.01497-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This work reports the crystal structure of a previously uncharacterized Fe protein from a methanogenic organism, which provides important insights into the structural properties of the less-characterized, yet highly interesting archaeal nitrogenase enzymes. Moreover, the structure-derived implications for CO2 capture by a surface-exposed [Fe4S4] cluster point to the possibility of developing novel strategies for CO2 sequestration while providing the initial insights into the unique mechanism of FeS-based CO2 activation. Nitrogenase iron (Fe) proteins reduce CO2 to CO and/or hydrocarbons under ambient conditions. Here, we report a 2.4-Å crystal structure of the Fe protein from Methanosarcina acetivorans (MaNifH), which is generated in the presence of a reductant, dithionite, and an alternative CO2 source, bicarbonate. Structural analysis of this methanogen Fe protein species suggests that CO2 is possibly captured in an unactivated, linear conformation near the [Fe4S4] cluster of MaNifH by a conserved arginine (Arg) pair in a concerted and, possibly, asymmetric manner. Density functional theory calculations and mutational analyses provide further support for the capture of CO2 on MaNifH while suggesting a possible role of Arg in the initial coordination of CO2 via hydrogen bonding and electrostatic interactions. These results provide a useful framework for further mechanistic investigations of CO2 activation by a surface-exposed [Fe4S4] cluster, which may facilitate future development of FeS catalysts for ambient conversion of CO2 into valuable chemical commodities.
Collapse
|
108
|
Perić M, Kyne SH, Gruden M, Rodić M, Jeremić D, Stanković DM, Brčeski I. Synthesis, structural and DFT analysis of a binuclear nickel(II) complex with the 1,4-bis[2-[2-(diphenylphosphino)benzylidene]]phthalazinylhydrazone ligand. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
109
|
Hagras MA, Stuchebrukhov AA. Concerted Two-Electron Reduction of Ubiquinone in Respiratory Complex I. J Phys Chem B 2019; 123:5265-5273. [DOI: 10.1021/acs.jpcb.9b04082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Muhammad A. Hagras
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Alexei A. Stuchebrukhov
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
110
|
Kennedy CR, Zhong H, Macaulay RL, Chirik PJ. Regio- and Diastereoselective Iron-Catalyzed [4+4]-Cycloaddition of 1,3-Dienes. J Am Chem Soc 2019; 141:8557-8573. [PMID: 31060353 DOI: 10.1021/jacs.9b02443] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A family of single-component iron precatalysts for the [4+4]-cyclodimerization and intermolecular cross-[4+4]-cycloaddition of monosubstituted 1,3-dienes is described. Cyclooctadiene products were obtained with high regioselectivity, and catalyst-controlled access to either cis- or trans-diastereomers was achieved using 4-substituted diene substrates. Reactions conducted either with single-component precatalysts or with iron dihalide complexes activated in situ proved compatible with common organic functional groups and were applied on multigram scale (up to >100 g). Catalytically relevant, S = 1 iron complexes bearing 2-(imino)pyridine ligands, (RPI)FeL2 (RPI = [2-(2,6-R2-C6H3-N═CMe)-C5H4N] where R = iPr or Me, L2 = bis-olefin), were characterized by single-crystal X-ray diffraction, Mößbauer spectroscopy, magnetic measurements, and DFT calculations. The structural and spectroscopic parameters are consistent with an electronic structure description comprised of a high spin iron(I) center ( SFe = 3/2) engaged in antiferromagnetically coupling with a ligand radical anion ( SPI = -1/2). Mechanistic studies conducted with these single-component precatalysts, including kinetic analyses, 12C/13C isotope effect measurements, and in situ Mößbauer spectroscopy, support a mechanism involving oxidative cyclization of two dienes that determines regio- and diastereoselectivity. Topographic steric maps derived from crystallographic data provided insights into the basis for the catalyst control through stereoselective oxidative cyclization and subsequent, stereospecific allyl-isomerization and C-C bond-forming reductive elimination.
Collapse
Affiliation(s)
- C Rose Kennedy
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Hongyu Zhong
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Rachel L Macaulay
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Paul J Chirik
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
111
|
Ghassemi Tabrizi S, Arbuznikov AV, Kaupp M. Hubbard Trimer with Spin-Orbit Coupling: Hartree-Fock Solutions, (Non)Collinearity, and Anisotropic Spin Hamiltonian. J Phys Chem A 2019; 123:2361-2378. [PMID: 30726085 DOI: 10.1021/acs.jpca.8b11959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present unrestricted and generalized Hartree-Fock solutions (UHF and GHF, respectively) for the single-band Hubbard model of an equilateral triangle. Spin-orbit coupling (SOC) is treated self-consistently, and HF stability and properties of different spin structures are studied in detail. The GHF solution switches from noncollinear to collinear when crossing a high-symmetry point in parameter space (spanned by the amplitudes of spin-conserving and spin-dependent hopping, i.e., kinetic energy and SOC, respectively). The collinear GHF solution represents a simple example to disprove the notion that a collinear vector spin density in a Slater determinant necessarily entails a defined spin projection. Spin Hamiltonian parameters for the anisotropic interaction between three spin-1/2 centers are extracted from HF energies and subsequently compared to exact results from effective Hamiltonian theory. This provides an unambiguous benchmark for interpreting broken-symmetry mean-field solutions in terms of spin configurations and puts this semiclassical approach (frequently applied in broken-symmetry density functional theory) on a firmer basis.
Collapse
Affiliation(s)
- Shadan Ghassemi Tabrizi
- Technische Universität Berlin , Institut für Chemie, Theoretische Chemie , Sekr. C7, Strasse des 17. Juni 135 , 10623 Berlin , Germany
| | - Alexei V Arbuznikov
- Technische Universität Berlin , Institut für Chemie, Theoretische Chemie , Sekr. C7, Strasse des 17. Juni 135 , 10623 Berlin , Germany
| | - Martin Kaupp
- Technische Universität Berlin , Institut für Chemie, Theoretische Chemie , Sekr. C7, Strasse des 17. Juni 135 , 10623 Berlin , Germany
| |
Collapse
|
112
|
Wenke BB, Spatzal T, Rees DC. Site-Specific Oxidation State Assignments of the Iron Atoms in the [4Fe:4S] 2+/1+/0 States of the Nitrogenase Fe-Protein. Angew Chem Int Ed Engl 2019; 58:3894-3897. [PMID: 30698901 PMCID: PMC6519357 DOI: 10.1002/anie.201813966] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 12/05/2022]
Abstract
The nitrogenase iron protein (Fe-protein) contains an unusual [4Fe:4S] iron-sulphur cluster that is stable in three oxidation states: 2+, 1+, and 0. Here, we use spatially resolved anomalous dispersion (SpReAD) refinement to determine oxidation assignments for the individual irons for each state. Additionally, we report the 1.13-Å resolution structure for the ADP bound Fe-protein, the highest resolution Fe-protein structure presently determined. In the dithionite-reduced [4Fe:4S]1+ state, our analysis identifies a solvent exposed, delocalized Fe2.5+ pair and a buried Fe2+ pair. We propose that ATP binding by the Fe-protein promotes an internal redox rearrangement such that the solvent-exposed Fe pair becomes reduced, thereby facilitating electron transfer to the nitrogenase molybdenum iron-protein. In the [4Fe:4S]0 and [4Fe:4S]2+ states, the SpReAD analysis supports oxidation states assignments for all irons in these clusters of Fe2+ and valence delocalized Fe2.5+ , respectively.
Collapse
Affiliation(s)
- Belinda B. Wenke
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| | - Thomas Spatzal
- Howard Hughes Medical InstituteCalifornia Institute of TechnologyPasadenaCA91125USA
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| | - Douglas C. Rees
- Howard Hughes Medical InstituteCalifornia Institute of TechnologyPasadenaCA91125USA
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| |
Collapse
|
113
|
Isobe H, Shoji M, Suzuki T, Shen JR, Yamaguchi K. Spin, Valence, and Structural Isomerism in the S 3 State of the Oxygen-Evolving Complex of Photosystem II as a Manifestation of Multimetallic Cooperativity. J Chem Theory Comput 2019; 15:2375-2391. [PMID: 30855953 DOI: 10.1021/acs.jctc.8b01055] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photosynthetic water oxidation is catalyzed by a Mn4CaO5-cluster in photosystem II through an S-state cycle. Understanding the roles of heterogeneity in each S-state, as identified recently by the EPR spectroscopy, is very important to gain a complete description of the catalytic mechanism. We performed herein hybrid DFT calculations within the broken-symmetry formalism and associated analyses of Heisenberg spin models to study the electronic and spin structures of various isomeric structural motifs (hydroxo-oxo, oxyl-oxo, peroxo, and superoxo species) in the S3 state. Our extensive study reveals several factors that affect the spin ground state: (1) (formal) Mn oxidation state; (2) metal-ligand covalency; (3) coordination geometry; and (4) structural change of the Mn cluster induced by alternations in Mn···Mn distances. Some combination of these effects could selectively stabilize/destabilize some spin states. We found that the high spin state ( Stotal = 6) of the oxyl-oxo species can be causative for catalytic function, which manifests through mixing of the metal-ligand character in magnetic orbitals at relatively short O5···O6 distances (<2.0 Å) and long MnA···O5 distances (>2.0 Å). These results will serve as a basis to conceptually identify and rationalize the physicochemical synergisms that can be evoked by the unique "distorted chair" topology of the cluster through cooperative Jahn-Teller effects on multimetallic centers.
Collapse
Affiliation(s)
- Hiroshi Isobe
- Research Institute for Interdisciplinary Science , Okayama University , Okayama 700-8530 , Japan
| | - Mitsuo Shoji
- Center for Computational Science , University of Tsukuba , Tsukuba , Ibaraki 305-8577 , Japan
| | - Takayoshi Suzuki
- Research Institute for Interdisciplinary Science , Okayama University , Okayama 700-8530 , Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science , Okayama University , Okayama 700-8530 , Japan
| | - Kizashi Yamaguchi
- Institute for NanoScience Design , Osaka University , Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|
114
|
Rummelt SM, Zhong H, Léonard NG, Semproni SP, Chirik PJ. Oxidative Addition of Dihydrogen, Boron Compounds, and Aryl Halides to a Cobalt(I) Cation Supported by a Strong-Field Pincer Ligand. Organometallics 2019; 38:1081-1090. [PMID: 30962670 DOI: 10.1021/acs.organomet.8b00870] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cationic cobalt(I) dinitrogen complexes with a strong-field tridentate pincer ligand were prepared and the oxidative addition of polar and non-polar bonds was studied. Addition of H2 to [(iPrPNP)Co(N2)]+ (iPrPNP = 2,6-bis((diisopropylphosphaneyl)methyl)pyridine) in THF-d8 resulted in rapid oxidative addition and formation of the cis-Co(III) dihydride complex, cis-[(iPrPNP)Co(H)2L]+ where L = THF or N2. The addition of H2 was reversible as evidenced by the dynamics observed by variable temperature 1H NMR spectroscopy and the regeneration of [(iPrPNP)Co(N2)]+ upon exposure to dinitrogen. In contrast, addition of HBPin, (Pin = pinacolato) B2Pin2 and aryl halides resulted in the formation of net one-electron oxidation products: cationic Co(II)-boryl and Co(II)-halide/aryl complexes, respectively. All products were structurally characterized by X-ray crystallography and the electronic structures were determined by a combination of magnetic moment measurements, EPR spectroscopy and DFT calculations. Monitoring the addition of HBPin to [(iPrPNP)Co(N2)]+ provided evidence for a transient Co(III) oxidative addition product that likely undergoes comproportionation with the cobalt(I) starting material to generate the observed Co(II) products.
Collapse
Affiliation(s)
- Stephan M Rummelt
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hongyu Zhong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Nadia G Léonard
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Scott P Semproni
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
115
|
Abstract
Over the past 25 years, magnetic actinide complexes have been the object of considerable attention, not only at the experimental level, but also at the theoretical one. Such systems are of great interest, owing to the well-known larger spin–orbit coupling for actinide ions, and could exhibit slow relaxation of the magnetization, arising from a large anisotropy barrier, and magnetic hysteresis of purely molecular origin below a given blocking temperature. Furthermore, more diffuse 5f orbitals than lanthanide 4f ones (more covalency) could lead to stronger magnetic super-exchange. On the other hand, the extraordinary experimental challenges of actinide complexes chemistry, because of their rarity and toxicity, afford computational chemistry a particularly valuable role. However, for such a purpose, the use of a multiconfigurational post-Hartree-Fock approach is required, but such an approach is computationally demanding for polymetallic systems—notably for actinide ones—and usually simplified models are considered instead of the actual systems. Thus, Density Functional Theory (DFT) appears as an alternative tool to compute magnetic exchange coupling and to explore the electronic structure and magnetic properties of actinide-containing molecules, especially when the considered systems are very large. In this paper, relevant achievements regarding DFT investigations of the magnetic properties of actinide complexes are surveyed, with particular emphasis on some representative examples that illustrate the subject, including actinides in Single Molecular Magnets (SMMs) and systems featuring metal-metal super-exchange coupling interactions. Examples are drawn from studies that are either entirely computational or are combined experimental/computational investigations in which the latter play a significant role.
Collapse
|
116
|
Wenke BB, Spatzal T, Rees DC. Site‐Specific Oxidation State Assignments of the Iron Atoms in the [4Fe:4S]
2+/1+/0
States of the Nitrogenase Fe‐Protein. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Belinda B. Wenke
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Thomas Spatzal
- Howard Hughes Medical InstituteCalifornia Institute of Technology Pasadena CA 91125 USA
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Douglas C. Rees
- Howard Hughes Medical InstituteCalifornia Institute of Technology Pasadena CA 91125 USA
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
117
|
Larson PJ, Wekesa FS, Singh A, Smith CR, Rajput A, McGovern GP, Unruh DK, Cozzolino AF, Findlater M. Synthesis, characterization, electrochemical properties and theoretical calculations of (BIAN) iron complexes. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
118
|
Joannou MV, Darmon JM, Bezdek MJ, Chirik PJ. Exploring C(sp3)–C(sp3) reductive elimination from an isolable iron metallacycle. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
119
|
Semenov NA, Radiush EA, Chulanova EA, Slawin AMZ, Woollins JD, Kadilenko EM, Bagryanskaya IY, Irtegova IG, Bogomyakov AS, Shundrin LA, Gritsan NP, Zibarev AV. Design, synthesis and isolation of a new 1,2,5-selenadiazolidyl and structural and magnetic characterization of its alkali-metal salts. NEW J CHEM 2019. [DOI: 10.1039/c9nj04069b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new electron acceptor is synthesized and reduced into its radical-anion isolated in the form of two salts with different structures and magnetic properties.
Collapse
|
120
|
Tupolova YP, Shcherbakov IN, Popov LD, Lebedev VE, Tkachev VV, Zakharov KV, Vasiliev AN, Korchagin DV, Palii AV, Aldoshin SM. Field-induced single-ion magnet behaviour of a hexacoordinated Co(ii) complex with easy-axis-type magnetic anisotropy. Dalton Trans 2019; 48:6960-6970. [DOI: 10.1039/c9dt00770a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study presents the novel hexacoordinated Co(ii) mononuclear complex with SIM behavior.
Collapse
Affiliation(s)
- Yulia P. Tupolova
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- Russia
| | | | - Leonid D. Popov
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- Russia
| | | | - Valery V. Tkachev
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences
- Moscow Region
- Russia
| | | | - Alexander N. Vasiliev
- Physics Faculty
- M.V. Lomonosov Moscow State University
- Moscow 119991
- Russia
- National University of Science and Technology “MISiS”
| | - Denis V. Korchagin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences
- Moscow Region
- Russia
| | - Andrei V. Palii
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences
- Moscow Region
- Russia
- Institute of Applied Physics
- Chisinau
| | - Sergey M. Aldoshin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences
- Moscow Region
- Russia
| |
Collapse
|
121
|
Shcherbakov IN, Levchenkov SI, Popov LD, Tupolova YP, Morozov AN, Raspopova EA, Lyubchenko SN. On the Influence of the Nature of Non-Bridging Donor Atoms on the Structure and Magnetic Properties of Binuclear Cu(II) Complexes with Heterocyclic Azomethine Ligands. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619010074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
122
|
Abstract
Metalloproteins are challenging objects if we want to investigate their chemical reactivity with theoretical approaches such as density functional theory (DFT). The complexity of these biomolecules often requires us to find a compromise between accuracy and feasibility, one that is tailored to the questions we set out to answer. In this chapter, we discuss computational approaches to studying chemical reactions in metalloproteins and how to utilize the information hidden in homologous proteins.
Collapse
Affiliation(s)
- Martin T Stiebritz
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
123
|
|
124
|
Xie W, Jiang W, Gao Y, Wang J, Wang Z. Binding for endohedral-metallofullerene superatoms induced by magnetic coupling. Chem Commun (Camb) 2018; 54:13383-13386. [PMID: 30421751 DOI: 10.1039/c8cc08200f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To design new materials based on artificial superatoms, clarifying their involved interaction is particularly important. In this study, we discuss first-principle calculations to show that the interaction between endohedral metallofullerenes (EMFs) of U@C28 can lead to different chemical and physical adsorption structures. Especially, these structures are derived from different magnetic coupling resonances, and they can transform by changing the distance between U@C28 superatoms. These findings will promote the future development for bottom-up assembling of new functional materials and even devices.
Collapse
Affiliation(s)
- Weiyu Xie
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | | | | | | | | |
Collapse
|
125
|
McGuire J, Miras HN, Donahue JP, Richards E, Sproules S. Ligand Radicals as Modular Organic Electron Spin Qubits. Chemistry 2018; 24:17598-17605. [PMID: 30291646 DOI: 10.1002/chem.201804165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 01/08/2023]
Abstract
The intrinsic redox activity of the dithiolene ligand is presented here as the novel spin host in the design of a prototype molecular electron spin qubit, where the traditional roles of the metal and ligand components in coordination complexes are inverted. A series of paramagnetic bis(dithiolene) complexes with group 10 metals-nickel, palladium, platinum-provides a backdrop to investigate the spin dynamics of the organic ligand radical using pulsed EPR spectroscopy. The temperature dependence of the phase memory time (TM ) is shown to be dependent on the identity of the diamagnetic metal ion, with the short times recorded for platinum a consequence of a diminishing spin-lattice (T1 ) relaxation time driven by spin-orbit coupling. The utility of the radical ligand spin center is confirmed when it delivers one of the longest phase memory times ever recorded for a molecular two-qubit prototype.
Collapse
Affiliation(s)
- Jake McGuire
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Haralampos N Miras
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - James P Donahue
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana, 70118, USA
| | - Emma Richards
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
126
|
Chatterjee M, Ghosh P, Hazari AS, Lahiri GK. Probing electronic structures of redox-active ruthenium-quinonoids appended with polycyclic aromatic hydrocarbon (PAH) backbone. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
127
|
Mandal S, Majumder S, Mondal S, Mohanta S. Synthesis, Crystal Structures and Magnetic Properties of Two Heterobridged µ‐Phenoxo‐µ
1,1
‐Azide/Isocyanate Dinickel(II) Compounds: Experimental and Theoretical Exploration. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuvankar Mandal
- Department of Chemistry Inorganic Chemistry Section University of Calcutta 92 A. P. C Road 700009 Kolkata India
| | - Samit Majumder
- Department of Chemistry Bhairab Ganguly College 2, Feeder Road 700056 Belghoria, Kolkata West Bengal India
| | - Suraj Mondal
- Department of Chemistry Inorganic Chemistry Section University of Calcutta 92 A. P. C Road 700009 Kolkata India
| | - Sasankasekhar Mohanta
- Department of Chemistry Inorganic Chemistry Section University of Calcutta 92 A. P. C Road 700009 Kolkata India
| |
Collapse
|
128
|
Hsieh YC, Wu CF, Chen YT, Fang CT, Wang CS, Li CH, Chen LY, Cheng MJ, Chueh CC, Chou PT, Wu YT. 5,14-Diaryldiindeno[2,1-f:1′,2′-j]picene: A New Stable [7]Helicene with a Partial Biradical Character. J Am Chem Soc 2018; 140:14357-14366. [DOI: 10.1021/jacs.8b08840] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ya-Chu Hsieh
- Department of Chemistry, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Cheng-Feng Wu
- Department of Chemistry, National Cheng Kung University, 70101 Tainan, Taiwan
| | | | - Chia-Te Fang
- Department of Chemistry, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Chi-Shin Wang
- Department of Chemistry, National Cheng Kung University, 70101 Tainan, Taiwan
| | | | - Liang-Yu Chen
- Department of Chemistry, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, 70101 Tainan, Taiwan
| | | | | | - Yao-Ting Wu
- Department of Chemistry, National Cheng Kung University, 70101 Tainan, Taiwan
| |
Collapse
|
129
|
Influence of non-bridging donor atoms on the value of exchange interaction in binuclear CuII complexes with bis-hydrazones based on 2,6-diformylphenol. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2197-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
130
|
Yin S, Bernstein ER. Fe-V sulfur clusters studied through photoelectron spectroscopy and density functional theory. Phys Chem Chem Phys 2018; 20:22610-22622. [PMID: 30123901 DOI: 10.1039/c8cp03157f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron-vanadium sulfur cluster anions are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by density functional theory (DFT) calculations. The structural properties, relative energies of different structural isomers, and the calculated first vertical detachment energies (VDEs) of different structural isomers for cluster anions FeVS1-3- and FemVnSm+n- (m + n = 3, 4; m > 0, n > 0) are investigated at a BPW91/TZVP theory level. The experimental first VDEs for these Fe-V sulfur clusters are reported. The most probable ground state structures and spin multiplicities for these clusters are tentatively assigned by comparing their theoretical and experiment first VDE values. For FeVS1-3- clusters, their first VDEs are generally observed to increase with the number of sulfur atoms from 1.45 eV to 2.86 eV. The NBO/HOMOs of the ground state of FeVS1-3- clusters are localized in a p orbital on a S atom; the partial charge distribution on the NBO/HOMO localized site of each cluster anion is responsible for the trend of their first VDEs. A less negative localized charge distribution is correlated with a higher first VDE. Structure and steric effect differences for FemVnSm+n- (m + n = 3, m > 0, n > 0) clusters are suggested to be responsible for their different first VDEs and properties. Two types of structural isomers are identified for FemVnSm+n- (m + n = 4, m > 0, n > 0) clusters: a tower structure isomer and a cubic structure isomer. The first VDEs for tower like isomers are generally higher than those for cubic like isomers of FemVnSm+n- (m + n = 4, m > 0, n > 0) clusters. Their first VDEs are can be understood through: (1) NBO/HOMO distributions, (2) structures (steric effects), and (3) partial charge numbers on the NBO/HOMO's localized sites. EBEs for excited state transitions for all Fe-V sulfur clusters are calculated employing OVGF and TDDFT approaches at the TZVP level. The OVGF approach for these Fe/V/S cluster anions is better for the higher transition energies than the TDDTF approach. The experimental and theoretical results for these Fe/V/S cluster anions are compared with their related pure iron sulfur cluster anions. Properties of the NBO/HOMO are essential for understanding and estimating the different first VDEs for Fe/V/S, and comparing them to those of the pure Fe/S cluster anions.
Collapse
Affiliation(s)
- Shi Yin
- Department of Chemistry, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
131
|
Kurniawan I, Kawaguchi K, Shoji M, Matsui T, Shigeta Y, Nagao H. A Theoretical Study on Redox Potential and p Kaof [2Fe-2S] Cluster Model from Iron-Sulfur Proteins. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Isman Kurniawan
- Division of Mathematical and Physical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- School of Computing, Telkom University, Terusan Buah Batu, Bandung, 40257 Indonesia
| | - Kazutomo Kawaguchi
- Division of Mathematical and Physical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Matsui
- College of Chemistry, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hidemi Nagao
- Division of Mathematical and Physical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
132
|
Chatterjee M, Mondal S, Ghosh P, Kaim W, Lahiri GK. Mononuclear and Dinuclear Ruthenium Complexes of cis- and trans-Thioindigo: Geometrical and Electronic Structure Analyses. Inorg Chem 2018; 57:12187-12194. [DOI: 10.1021/acs.inorgchem.8b01829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Madhumita Chatterjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudipta Mondal
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
| | - Prabir Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Wolfgang Kaim
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
133
|
The cytochrome b6f complex: DFT modeling of the first step of plastoquinol oxidation by the iron-sulfur protein. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
134
|
Dong Z, Janka O, Kösters J, Schmidtmann M, Müller T. A Dimeric η 1 ,η 5 -Germole Dianion Bridged Titanium(III) Complex with a Multicenter Ti-Ge-Ge-Ti Bond. Angew Chem Int Ed Engl 2018; 57:8634-8638. [PMID: 29733486 DOI: 10.1002/anie.201804447] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Indexed: 11/07/2022]
Abstract
Dimeric germole dianion bridged TiIII and ZrIV complexes have been synthesized. In these complexes, the germole dianion adopts a formal η1 ,η5 coordination to the two metal centers. The bonding situation in these bridged dimers is dominated by a covalent Ge-Ge interaction that results, for example, in a strong antiferromagnetic coupling of the d1 Ti centers.
Collapse
Affiliation(s)
- Zhaowen Dong
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Oliver Janka
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, 48149, Münster, Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, 48149, Münster, Germany
| | - Marc Schmidtmann
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Thomas Müller
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| |
Collapse
|
135
|
Dong Z, Janka O, Kösters J, Schmidtmann M, Müller T. A Dimeric η
1
,η
5
‐Germole Dianion Bridged Titanium(III) Complex with a Multicenter Ti−Ge−Ge−Ti Bond. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhaowen Dong
- Institut für Chemie Carl von Ossietzky Universität Oldenburg Carl von Ossietzky-Str. 9–11 26129 Oldenburg Germany
| | - Oliver Janka
- Institut für Chemie Carl von Ossietzky Universität Oldenburg Carl von Ossietzky-Str. 9–11 26129 Oldenburg Germany
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Marc Schmidtmann
- Institut für Chemie Carl von Ossietzky Universität Oldenburg Carl von Ossietzky-Str. 9–11 26129 Oldenburg Germany
| | - Thomas Müller
- Institut für Chemie Carl von Ossietzky Universität Oldenburg Carl von Ossietzky-Str. 9–11 26129 Oldenburg Germany
| |
Collapse
|
136
|
Van Kuiken BE, Hahn AW, Nayyar B, Schiewer CE, Lee SC, Meyer F, Weyhermüller T, Nicolaou A, Cui YT, Miyawaki J, Harada Y, DeBeer S. Electronic Spectra of Iron–Sulfur Complexes Measured by 2p3d RIXS Spectroscopy. Inorg Chem 2018; 57:7355-7361. [DOI: 10.1021/acs.inorgchem.8b01010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Benjamin E. Van Kuiken
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Anselm W. Hahn
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Brahamjot Nayyar
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Christine E. Schiewer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Sonny C. Lee
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | | | - Yi-Tao Cui
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Jun Miyawaki
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Yoshihisa Harada
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
137
|
|
138
|
Bonyhady SJ, DeRosha DE, Vela J, Vinyard DJ, Cowley RE, Mercado BQ, Brennessel WW, Holland PL. Iron and Cobalt Diazoalkane Complexes Supported by β-Diketiminate Ligands: A Synthetic, Spectroscopic, and Computational Investigation. Inorg Chem 2018; 57:5959-5972. [DOI: 10.1021/acs.inorgchem.8b00468] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Simon J. Bonyhady
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Daniel E. DeRosha
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Javier Vela
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - David J. Vinyard
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Ryan E. Cowley
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - William W. Brennessel
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
139
|
Ouilia S, Beghidja C, Beghidja A, Belkhiri L, Rabu P. Synthesis, crystal structure, magnetic properties and DFT calculations of new dihydroxo-bridged binuclear chromium(III) based on monodentate mixed ligand. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
140
|
Streuff J, Himmel D, Younas SL. Understanding titanium-catalysed radical-radical reactions: a DFT study unravels the complex kinetics of ketone-nitrile couplings. Dalton Trans 2018; 47:5072-5082. [PMID: 29561012 DOI: 10.1039/c8dt00643a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The computational investigation of a titanium-catalysed reductive radical-radical coupling is reported. The results match the conclusions from an earlier experimental study and enable a further interpretation of the previously observed complex reaction kinetics. Furthermore, the interplay between neutral and cationic reaction pathways in titanium(iii)-catalysed reactions is investigated for the first time. The results show that hydrochloride additives and reaction byproducts play an important role in the respective equilibria. A full reaction profile is assembled and the computed activation barrier is found to be in reasonable agreement with the experiment. The conclusions are of fundamental importance to the field of low-valent titanium catalysis and the understanding of related catalytic radical-radical coupling reactions.
Collapse
Affiliation(s)
- Jan Streuff
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Daniel Himmel
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Sara L Younas
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| |
Collapse
|
141
|
Wodyński A, Kaupp M. Noncollinear Two-Component Quasirelativistic Description of Spin Interactions in Exchange-Coupled Systems. Mapping Generalized Broken-Symmetry States to Effective Spin Hamiltonians. J Chem Theory Comput 2018; 14:1267-1276. [PMID: 29376389 DOI: 10.1021/acs.jctc.7b01067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We provide a consistent mapping of noncollinear two-component quasirelativistic DFT energies with appropriate orientations of localized spinor quantization axes for multinuclear exchange-coupled transition-metal complexes onto an uncoupled anisotropic effective spin Hamiltonian. This provides access to the full exchange interaction tensor between the centers of spin-coupled systems in a consistent way. The proposed methodology may be best viewed as a generalized broken-symmetry density functional theory approach (gBS-DFT). While the calculations provided are limited to trinuclear systems ([M3O(OOCH)6(H2O)3]+, where M = Cr(III), Mn(III), Fe(III)) with C3 symmetry, the method provides a general framework that is extendable to arbitrary systems. It offers an alternative to previous approaches to single-ion zero-field splittings, and it provides access to the less often examined antisymmetric Dzyaloshinskii-Moriya exchange interaction. Spin-orbit coupling is included self-consistently. This will be of particular importance for complexes involving 4d or 5d transition metal centers or possibly also for f-block elements, where a perturbational treatment of spin-orbit coupling may not be valid anymore. While a comparison with experimental data was indirect due to simplifications in the chosen model structures, the agreement obtained indicates the essential soundness of the presented approach.
Collapse
Affiliation(s)
- Artur Wodyński
- Institut für Chemie, Theoretische Chemie/Quantenchemie , Technische Universität Berlin , Sekr. C7, Straße des 17. Juni 135 , D-10623 Berlin , Germany.,National Centre for Nuclear Research , Andrzeja Sołtana 7 , 05-400 Otwock-Świerk , Poland
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie , Technische Universität Berlin , Sekr. C7, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| |
Collapse
|
142
|
Nicolaou M, Papanikolaou MG, Tsipis AC, Kabanos TA, Keramidas AD, Sproules S, Miras HN. Design and Assembly of Covalently Functionalised Polyoxofluorovanadate Molecular Hybrids. Chemistry 2018; 24:3836-3845. [PMID: 29319211 DOI: 10.1002/chem.201705730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 11/11/2022]
Abstract
Mixed-valent polyoxometalate (POM) clusters are one of the most interesting host species, showing a wide range of structural features and properties. The facile preparation and functionalisation of a mixed-valent polyoxofluorovanadates is reported, where two electrons are trapped to antipodal sites of the clusters. The first members of this family of clusters with the general formula, [VV12 VIV2 O16 (μ-O)10 (μ3 -O)10 (μ3 -F)2 (L)2 ]6- , where L: py=pyridine (1); pyr=pyrazine (2); im=imidazole (3), are unique organic-inorganic hybrids with the addition of a N-donor ligand at either end of the polyoxofluorovanadate. The composition and connectivity of 1-3 were characterised by single-crystal X-ray diffraction and electrospray ionisation mass spectrometry. Electron paramagnetic resonance spectroscopy revealed that the two well-separated VIV ions in each cluster are fully uncoupled with J=0, giving a degenerate singlet-triplet ground state. This attenuation of the exchange interaction is probed with density functional theoretical calculations that reveal that the inclusion of the fluoride ion in the cluster produces a bond pathway biased toward destructive interference between competing ferromagnetic and antiferromagnetic interactions. These robust molecular materials are the ideal combination of desirable electronic properties, with an organic handle with which they can be integrated into spintronic circuitry for molecular devices.
Collapse
Affiliation(s)
- Maria Nicolaou
- Department of Chemistry, University of Cyprus, 2109, Nicosia, Cyprus
| | - Michael G Papanikolaou
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Athanassios C Tsipis
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Themistoklis A Kabanos
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | | | - Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Haralampos N Miras
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
143
|
Dong G, Cao L, Ryde U. Insight into the reaction mechanism of lipoyl synthase: a QM/MM study. J Biol Inorg Chem 2018; 23:221-229. [PMID: 29204715 PMCID: PMC5816104 DOI: 10.1007/s00775-017-1522-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/28/2017] [Indexed: 11/26/2022]
Abstract
Lipoyl synthase (LipA) catalyses the final step of the biosynthesis of the lipoyl cofactor by insertion of two sulfur atoms at the C6 and C8 atoms of the protein-bound octanoyl substrate. In this reaction, two [4Fe4S] clusters and two molecules of S-adenosyl-L-methionine are used. One of the two FeS clusters is responsible for the generation of a powerful oxidant, the 5'-deoxyadenosyl radical (5'-dA•). The other (the auxiliary cluster) is the source of both sulfur atoms that are inserted into the substrate. In this paper, the spin state of the FeS clusters and the reaction mechanism is investigated by the combined quantum mechanical and molecular mechanics approach. The calculations show that the ground state of the two FeS clusters, both in the [4Fe4S]2+ oxidation state, is a singlet state with antiferromagnetically coupled high-spin Fe ions and that there is quite a large variation of the energies of the various broken-symmetry states, up to 40 kJ/mol. For the two S-insertion reactions, the highest energy barrier is found for the hydrogen-atom abstraction from the octanoyl substrate by 5'-dA•. The formation of 5'-dA• is very facile for LipA, with an energy barrier of 6 kJ/mol for the first S-insertion reaction and without any barrier for the second S-insertion reaction. In addition, the first S ion attack on the C6 radical of octanoyl was found to take place directly by the transfer of the H6 from the substrate to 5'-dA•, whereas for the second S-insertion reaction, a C8 radical intermediate was formed with a rate-limiting barrier of 71 kJ/mol.
Collapse
Affiliation(s)
- Geng Dong
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
| | - Lili Cao
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| |
Collapse
|
144
|
Hirshfeld-based atomic population analysis of the B, N doping effect in zigzag graphene nanoribbons: $$\pi$$π electron density as requirement to follow the B, N doping guidelines. Theor Chem Acc 2018. [DOI: 10.1007/s00214-017-2189-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
145
|
Stüble P, Peschke S, Johrendt D, Röhr C. Na7[Fe2S6], Na2[FeS2] and Na2[FeSe2]: New ‘reduced’ sodium chalcogenido ferrates. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2017.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
146
|
Gowda AS, Petersen JL, Milsmann C. Redox Chemistry of Bis(pyrrolyl)pyridine Chromium and Molybdenum Complexes: An Experimental and Density Functional Theoretical Study. Inorg Chem 2018; 57:1919-1934. [PMID: 29376653 DOI: 10.1021/acs.inorgchem.7b02809] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anitha S. Gowda
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
147
|
Zhao P, Bu Y. Remarkable Differences in Spin Couplings for Various Self-Paired Dimers of Ring-Expansion-Radicalized Uracil: A Basis for the Design of Magnetically Anisotropic Assemblies. Chemphyschem 2018; 19:208-219. [PMID: 29165931 DOI: 10.1002/cphc.201701068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Indexed: 11/09/2022]
Abstract
The spin-coupling properties of a series of radicalized uracil (rU) dimer diradicals with different H-bonding modes is examined. Each rU has four double H-bonding sites [the amide units: two at the Watson-Crick face (upper site WC1 and lower site WC2 ), a Hoogsteen site (HO), and a minor-groove site (MI)], and ten homogeneous dimers (rU-rU) can self-pair with well-defined diradical characters and comparable stability to the native U dimers. More interestingly, all these dimers exhibit distinctly different spin-coupling characters (ferromagnetic (FM) versus antiferromagnetic (AFM) and large- versus small-magnitude spin couplings), indicative of remarkable magnetic-coupling anisotropy of rU. This observation originates from the fusion of a cyclopentadienyl radical to U, which leads to uneven spin-density distribution. In rU, the fused five-membered radical ring can spin-polarize to the edge in the minor groove, and thus dimerization of rU leads to different H-bonded structures with remarkably different magnetic couplings. The calculated larger magnetic coupling constants J are 1003.7 and 540.2 cm-1 for the WC2 -HO and MI-HO H-bonding modes between rU, which exhibit considerably large FM couplings, the MI-MI, WC1 -WC2 and WC2 -WC2 modes show moderate FM couplings (J=0.4-77 cm-1 ), and the other modes exhibit moderate or weak AFM couplings. These observations indicate that the HO and MI sites are favorable spin-coupling sites. In addition, the H-bond lengths and electronic structures of the H-bonding sites, proton transfer, and extra H-bonding interaction with the surroundings can also affect the magnetic couplings of the base pairs. Clearly, the unique magnetic coupling anisotropy of rU provides a promising application basis for the design and assembly of bio-inspired anisotropically magnetic membranes and even magnetism-tunable building blocks for novel magnetic nanoscale devices.
Collapse
Affiliation(s)
- Peiwen Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| |
Collapse
|
148
|
Majumder M, Goswami T, Misra A. Multifunctional Magnetic Materials of Organic Origin for Biomedical Applications: A Theoretical Study. ChemistrySelect 2018. [DOI: 10.1002/slct.201702530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manoj Majumder
- Department of ChemistryUniversity of North Bengal Darjeeling 734013, West Bengal India
| | - Tamal Goswami
- Department of ChemistryUniversity of North Bengal Darjeeling 734013, West Bengal India
| | - Anirban Misra
- Department of ChemistryUniversity of North Bengal Darjeeling 734013, West Bengal India
| |
Collapse
|
149
|
Bilyj JK, Riley MJ, Bernhardt PV. Isomerism and reactivity of nickel(ii) acetylacetonate bis(thiosemicarbazone) complexes. Dalton Trans 2018; 47:2018-2030. [DOI: 10.1039/c7dt04337f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The formation of asymmetric and symmetric nickel(ii) bis-thiosemicarbazone complexes has been investigated by NMR and UV-Vis spectroscopy which shed new light on the complexation mechanism and reactivity of these unusual isomers.
Collapse
Affiliation(s)
- Jessica K. Bilyj
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane
- Australia
| | - Mark J. Riley
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane
- Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane
- Australia
| |
Collapse
|
150
|
Das M, Craig GA, Escudero D, Murrie M, Frontera A, Ray D. A family of [Cu2], [Cu4] and [Cu5] aggregates: alteration of reaction conditions, ancillary bridges and capping anions. NEW J CHEM 2018. [DOI: 10.1039/c8nj02131g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enforced coordination by NO3−, ClO4− and CF3COO− groups resulted in the formation of [Cu2] (1), [Cu4] (2) and [Cu5] (3) complexes using H5L1.
Collapse
Affiliation(s)
- Manisha Das
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721 302
- India
| | - Gavin A. Craig
- School of Chemistry
- University of Glasgow
- Glasgow G12 8QQ
- UK
| | - Daniel Escudero
- CEISAM UMR CNRS 6230
- Université de Nantes
- 44322 Cedex 3 Nantes
- France
| | - Mark Murrie
- School of Chemistry
- University of Glasgow
- Glasgow G12 8QQ
- UK
| | - Antonio Frontera
- Department of Chemistry
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Debashis Ray
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721 302
- India
| |
Collapse
|