101
|
Sutherland CJ, Esser KA, Elsom VL, Gordon ML, Hardeman EC. Identification of a program of contractile protein gene expression initiated upon skeletal muscle differentiation. Dev Dyn 1993; 196:25-36. [PMID: 8334297 DOI: 10.1002/aja.1001960104] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The functional diversity of skeletal muscle is largely determined by the combinations of contractile protein isoforms that are expressed in different fibers. Just how the developmental expression of this large array of genes is regulated to give functional phenotypes is thus of great interest. In the present study, we performed a comprehensive analysis of contractile protein isoform mRNA profiles in skeletal muscle systems representing each generation of fiber formed: primary, secondary, and regenerating fibers. We find that in each system examined there is a common pattern of isoform gene expression during early differentiation for 5 of the 6 gene families we have investigated: myosin light chain (MLC)1, MLC2, tropomyosin, troponin (Tn)C, and TnI. We suggest that the common isoform patterns observed together represent a genetic program of skeletal muscle differentiation that is independent of the mature fiber phenotype and is found in all newly formed myotubes. Within each of these contractile protein gene families the program is independent of the isoforms of myosin heavy chain (MHC) expressed. The maintenance of such a program may reflect a specific requirement of the initial differentiation process.
Collapse
Affiliation(s)
- C J Sutherland
- Muscle Development Unit, Children's Medical Research Institute, Wentworthville, N.S.W., Australia
| | | | | | | | | |
Collapse
|
102
|
Pin CL, Merrifield PA. Embryonic and fetal rat myoblasts express different phenotypes following differentiation in vitro. DEVELOPMENTAL GENETICS 1993; 14:356-68. [PMID: 8293577 DOI: 10.1002/dvg.1020140505] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myosin heavy chain (MHC) is encoded by a multigene family containing members which are expressed in developmental and fiber type-specific patterns. In developing rats, primary (1 degree) and secondary (2 degrees) myotubes can be distinguished by difference in MHC expression: 1 degree myotubes coexpress embryonic and slow MHC, while 2 degrees myotubes initially express only embryonic MHC. We have used monoclonal antibodies which recognize the embryonic, slow, neonatal, and adult fast IIB/IIX MHCs to examine MHC accumulation in myoblasts obtained from hindlimbs of embryonic day (ED) 14 and ED 20 Sprague-Dawley rats during differentiation in vitro. Embryonic myoblasts (ED 14), which develop into 1 degree myotubes in vivo, differentiate as myocytes or small myotubes (i.e., 1-4 nuclei) which express both embryonic and slow MHC. They do not accumulate detectable levels of neonatal or adult fast IIB/IIX MHC. Fetal myoblasts, which develop into secondary myotubes in vivo, fuse to form large myotubes (i.e., 10-50 nuclei) and express predominantly embryonic MHC at 3 days in culture. These myotubes accumulate neonatal and adult fast IIB/IIX isoforms of MHC and eventually contract spontaneously. In contrast to embryonic myotubes, they do not accumulate slow MHC. Our results demonstrate that embryonic and fetal rat myoblasts express different phenotypes in vitro and suggest that they represent distinct myoblast lineages similar to those previously described in chickens and mice. These two lineages may be responsible for the generation of distinct populations of 1 degree and 2 degrees myotubes in vivo.
Collapse
Affiliation(s)
- C L Pin
- Department of Anatomy, University of Western Ontario, London, Canada
| | | |
Collapse
|
103
|
Abstract
For many years the mechanisms by which skeletal muscles in higher vertebrates come to be composed of diverse fiber types distributed in distinctive patterns has interested cell and developmental biologists. The fiber composition of skeletal muscles varies from class to class and from muscle to muscle within the vertebrates. The developmental basis for these events is the subject of this review. Because an individual multinucleate vertebrate skeletal muscle fiber is formed by the fusion of many individual myoblasts, more attention, in recent times, has been directed toward the origins and differences among myoblasts, and more emphasis has been placed on the lineal relationship of myoblasts to fibers. This is a review of studies related to the concepts of myogenic cell lineage in higher vertebrate development with emphases on some of the most challenging problems of myogenesis including the embryonic origins of myogenic precursor cells, the mechanisms of fiber type diversity and patterning, the distinctions among myoblasts during myogenesis, and the current hypotheses of how a variety of factors, intrinsic and extrinsic to the myoblast, determine the definitive phenotype of a muscle fiber.
Collapse
Affiliation(s)
- F E Stockdale
- Stanford University School of Medicine, California 94305-5306
| |
Collapse
|
104
|
Page S, Miller JB, DiMario JX, Hager EJ, Moser A, Stockdale FE. Developmentally regulated expression of three slow isoforms of myosin heavy chain: diversity among the first fibers to form in avian muscle. Dev Biol 1992; 154:118-28. [PMID: 1426621 DOI: 10.1016/0012-1606(92)90053-j] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
At least three slow myosin heavy chain (MHC) isoforms were expressed in skeletal muscles of the developing chicken hindlimb, and differential expression of these slow MHC isoforms produced distinct fiber types from the outset of skeletal muscle myogenesis. Immunohistochemistry with isoform-specific monoclonal antibodies demonstrated differences in MHC content among the fibers of the dorsal and ventral premuscle masses and distinctions among fibers before splitting of the premuscle masses into individual muscles (Hamburger and Hamilton Stage 25). Immunoblot analyses by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of myosin extracted from the hindlimb demonstrated the presence throughout development of different mobility classes of MHCs with epitopes associated with slow MHC isoforms. Immunopeptide mapping showed that one of the MHCs expressed in the embryonic limb was the same slow MHC isoform, slow MHC1 (SMHC1), that is expressed in adult slow muscles. SMHC1 was expressed in the dorsal and ventral premuscle masses, embryonic, fetal, and some neonatal and adult hindlimb muscles. In the embryo and fetus SMHC1 was expressed in future fast, as well as future slow muscles, whereas in the adult only the slow muscles retained expression of SMHC1. Those embryonic muscles destined in the adult to contain slow fibers or mixed fast/slow fibers not only expressed SMHC1, but also an additional slow MHC not previously described, designated as slow MHC3 (SMHC3). Slow MHC3 was shown by immunopeptide mapping to contain a slow MHC epitope (reactive with mAb S58) and to be structurally similar to a MHC expressed in the atria of the adult chicken heart. SMHC3 was designated as a slow MHC isoform because (i) it was expressed only in those muscles destined to be of the slow type in the adult, (ii) it was expressed only in primary fibers of muscles that subsequently are of the slow type, and (iii) it had an epitope demonstrated to be present on other slow, but not fast, isoforms of avian MHC. This study demonstrates that a difference in phenotype between fibers is established very early in the chicken embryo and is based on the fiber type-specific expression of three slow MHC isoforms.
Collapse
Affiliation(s)
- S Page
- Stanford University School of Medicine, California 94305-5306
| | | | | | | | | | | |
Collapse
|
105
|
Duxson MJ. The relationship of nerve to myoblasts and newly-formed secondary myotubes in the fourth lumbrical muscle of the rat foetus. JOURNAL OF NEUROCYTOLOGY 1992; 21:574-88. [PMID: 1506877 DOI: 10.1007/bf01187118] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The formation of normal numbers of skeletal muscle fibres depends on functional innervation of the muscle before and during the period of secondary myotube formation, but little has been known about the physical relationship between nerve terminals and the myoblasts and secondary myotubes over the critical period. This paper reports the results of a serial-section electron microscopic study of the IVth lumbrical muscle of the rat hindlimb, studied on embryonic day 20 (E20), a time when all secondary myotubes are less than 24 h old, and new ones are rapidly forming. Most myoblasts lying within the endplate region of the muscle received some direct neural contact; in almost all cases, the contact originated from an extension of a differentiated nerve terminal present at the endplate of an adjacent primary myotube. At six of 15 neural contact sites on myoblasts, primitive synaptic specialization was present. The newly-formed secondary myotubes were also directly, although sparsely, innervated in nine of ten instances. One secondary myotube was never seen to be innervated, despite extensive serial tracing. Nerve terminals passing to secondary myotubes were also principally derived from the innervation zone of the earlier-formed primary myotubes. Primary myotubes were profusely innervated by multiple axons. The results suggest that most nerve terminals are initially accommodated on the primary generation of myotubes, but progressively transfer to pre-fusion myoblasts or to secondary myotubes as these appear. In general, very young secondary myotubes are innervated by only a single axon, rather than being polyneuronally innervated. The existence of some secondary myotubes which lack any direct innervation suggests that intimate nerve contact may not be obligatory for formation of new secondary myotubes.
Collapse
Affiliation(s)
- M J Duxson
- Centre for Neuroscience, University of Otago Medical School, Dunedin, New Zealand
| |
Collapse
|
106
|
Keller A, Ott MO, Lamandé N, Lucas M, Gros F, Buckingham M, Lazar M. Activation of the gene encoding the glycolytic enzyme beta-enolase during early myogenesis precedes an increased expression during fetal muscle development. Mech Dev 1992; 38:41-54. [PMID: 1525038 DOI: 10.1016/0925-4773(92)90037-k] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We define the spatial and temporal patterns of expression of the gene encoding the glycolytic enzyme, beta-enolase, during mouse ontogenesis. Transcripts were detected by in situ hybridization using 35S labelled cRNA probes. The beta-enolase gene is expressed only in striated muscles. It is first detected in the embryo, in the cardiac tube and in newly formed myotomes. In the muscle masses of the limb, beta gene expression occurs at a low level in primary fibers, and subsequently greatly increases at a time which corresponds to the onset of innervation and secondary fiber formation. Later in development, it becomes undetectable in slow-twitch fibers. Our results demonstrate the multistep regulation of the beta-enolase gene. The regulation of this muscle-specific gene in somites is discussed in terms of the myogenic sequences of the MyoD family shown to be present when it is activated.
Collapse
Affiliation(s)
- A Keller
- Laboratoire de Biochimie Cellulaire, CNRS URA 1115, Collège de France, Paris
| | | | | | | | | | | | | |
Collapse
|
107
|
Dhoot GK. Neural regulation of differentiation of rat skeletal muscle cell types. HISTOCHEMISTRY 1992; 97:479-86. [PMID: 1429008 DOI: 10.1007/bf00316067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Three monoclonal antibodies (LM5, F2 and F39) to the fast class of myosin heavy chain (MHC) were used to study the effect of denervation on the differentiation of muscle cell types in some rat skeletal muscles. Antibody LM5 in immunocytochemical investigations did not stain any myotubes during early fetal development but presumptive fast muscle cells started to stain during later fetal development. Unlike antibody LM5, antibodies F2 and F39 stained all myotubes during fetal development. The suppression of fast myosin heavy chains recognised in presumptive slow muscle cells was observed within 1-2 days after birth with antibody F39 but not until 10-14 days after birth with antibody F2. The emergence of subsets of fast muscle fibre types in rat extensor digitorum longus (EDL) and tibialis anteri (TA) detectable by F39 and F2 antibodies was not observed until 2-3 weeks after birth. Denervation of developing muscles led to marked changes in the expression of myosins identified by these antibodies.
Collapse
Affiliation(s)
- G K Dhoot
- Department of Basic Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
108
|
Affiliation(s)
- J B Miller
- Neuromuscular Laboratory, Massachusetts General Hospital, Charlestown 02129
| |
Collapse
|
109
|
Abstract
Muscle fibers specialized for fast or slow contraction are arrayed in characteristic patterns within developing limbs. Clones of myoblasts analyzed in vitro express fast and slow myosin isoforms typical of the muscle from which they derive. As a result, it has been suggested that distinct myoblast lineages generate and maintain muscle fiber pattern. We tested this hypothesis in vivo by using a retrovirus to label myoblasts genetically so that the fate of individual clones could be monitored. Both myoblast clones labeled in muscle in situ and clones labeled in tissue culture and then injected into various muscles contribute progeny to all fiber types encountered. Thus, extrinsic signals override the intrinsic commitment of myoblast nuclei to particular programs of gene expression. We conclude that in postnatal development, pattern is not dictated by myoblast lineage.
Collapse
Affiliation(s)
- S M Hughes
- Department of Pharmacology, Stanford University School of Medicine, California 94305-5332
| | | |
Collapse
|
110
|
Hughes DS, Schade RR, Ontell M. Ablation of the fetal mouse spinal cord: the effect on soleus muscle cytoarchitecture. Dev Dyn 1992; 193:164-74. [PMID: 1581604 DOI: 10.1002/aja.1001930208] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A technique is described whereby it is possible to surgically ablate the lumbosacral spinal cord of a developing mouse fetus without interfering with fetal viability. The lumbosacral spinal cords of 14-day in utero, 129ReJ mice were ablated with a Cooper Nd-YAG laser, and the fetuses, enclosed in their membranes and attached to the uterus by their placentae, were allowed to develop in the abdominal cavity of the dam. The cytoarchitecture and the temporal pattern of organogenesis of aneural soleus muscles were studied in spaced, serial, transverse, ultrathin sections of muscles of 16- and 18-day gestation and newborn (20-day gestation) mice. At the time of surgery, the soleus muscle was a discrete mass consisting of primary myotubes and a pleomorphic population of mononucleated cells. Axon bundles and blood vessels were found at the muscle's periphery, but had not penetrated throughout the muscle mass. The organogenesis of the aneural muscle was remarkably similar to that of the innervated soleus muscle (Ontell et al., Am J Anat 181:267-278, 1988). In the aneural muscle, as in the innervated muscle, significant numbers of secondary myotubes formed all along the lengths of primary myotubes. Moreover, the time course of myotube formation, the dynamics of cluster formation and cluster dispersal, and the ultrastructural appearance of the myotubes mimicked that observed in innervated muscle. The frequency of necrotic myotubes was no greater in the aneural muscle than in the innervated soleus muscle. Myotube maturation was similar in aneural and innervated soleus muscles until 18 days gestation. However, at birth, aneural myotubes appeared to be slightly less mature than innervated myotubes. Thus, the major morphogenic phenomena that characterize the development of the soleus muscle appear to be independent of innervation.
Collapse
Affiliation(s)
- D S Hughes
- Department of Neurobiology, University of Pittsburgh, School of Medicine, Pennsylvania 15261
| | | | | |
Collapse
|
111
|
Abstract
The pattern of organogenesis of the aneural soleus muscle of the 129ReJ mouse [rendered aneural by laser ablation of the lumbosacral spinal cord at 14 days in utero (during the period of primary myotube formation, but prior to the formation of secondary myotubes)] was evaluated quantitatively with spaced, serial ultrathin sections and computer-assisted morphometric analysis. Aneural muscles from 16- and 18-day gestation and newborn mice were analyzed to determine age-related changes in a number of parameters including: muscles' maximal girths, numbers of myotubes, myotube diameter distributions, and cluster frequency. Data were compared with a similar study of the organogenesis of the normal soleus muscle (Ontell et al: Am J Anat 181:279-288, 1988). Basic patterns of morphogenesis of the soleus muscle were unchanged by spinal cord ablation, and differences in development between the aneural and innervated muscles were quantitative rather than qualitative. At birth, the aneural muscle contained approximately 76% of the myotubes found in the innervated muscle (approximately 840 myotubes in the innervated muscle and approximately 640 in the aneural muscle). Evidence is presented consistent with the hypothesis that primary myotube formation is reduced by approximately 32% in the aneural muscles and that while extensive secondary myotube formation occurs (approximately 78% of the myotube present at birth in these muscles are secondary myotubes), there is a significant reduction in the number of secondary myotubes in aneural muscles. It is suggested that the reduced numbers of secondary myotubes may be related to the reduction in the number of primary myotubes, which are known to act as scaffolds for secondary myotube formation. The time course of secondary myotube formation and of cluster formation and cluster dispersal and the number of cells per cluster are similar in age-matched, innervated and aneural muscles. The absence of innervation has little effect on myotube growth until birth, when comparison of the myotube diameter distributions reveals a slight alteration in myotube diameter distributions of aneural as compared with innervated muscles.
Collapse
Affiliation(s)
- D S Hughes
- Department of Neurobiology, University of Pittsburgh, School of Medicine, PA 15261
| | | |
Collapse
|
112
|
Stromer MH. Immunocytochemical localization of proteins in striated muscle. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 142:61-144. [PMID: 1487396 DOI: 10.1016/s0074-7696(08)62075-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M H Stromer
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
113
|
Smith TH, Miller JB. Distinct myogenic programs of embryonic and fetal mouse muscle cells: expression of the perinatal myosin heavy chain isoform in vitro. Dev Biol 1992; 149:16-26. [PMID: 1728586 DOI: 10.1016/0012-1606(92)90260-n] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early embryonic and late fetal mouse myogenic cells showed distinct patterns of perinatal myosin heavy chain (MHC) isoform expression upon differentiation in vitro. In cultures of somite or limb muscle cells isolated from Day 9 to Day 12 embryos, differentiated cells that expressed perinatal MHC were rare and perinatal MHC was not detectable by immunoblotting. In cultures of limb muscle cells isolated from Day 13 to Day 18 fetuses, in contrast, the perinatal MHC isoform was easily detected and was expressed in a substantial percentage of myocytes and myotubes. Analyses of clonally derived muscle colonies and cytosine arabinoside-treated fetal muscle cell cultures suggested that different fetal muscle cell nuclei initiated perinatal MHC expression at different times. In both embryonic and fetal cell cultures, the embryonic MHC isoform was expressed by all differentiated cells examined. A small number of myotubes in fetal muscle cell cultures showed a mosaic distribution of MHC isoform accumulation in which the perinatal MHC isoform accumulated in a restricted region of the myotube near particular nuclei, whereas the embryonic MHC isoform accumulated throughout the myotube. Thus, the myogenic program of fetal, but not embryonic, mouse myogenic cells includes expression of the perinatal MHC isoform upon differentiation in culture.
Collapse
Affiliation(s)
- T H Smith
- Day Neuromuscular Laboratory, Massachusetts General Hospital, Charlestown 02129
| | | |
Collapse
|
114
|
Mascarello F, Rowlerson AM. Myosin isoform transitions during development of extra-ocular and masticatory muscles in the fetal rat. ANATOMY AND EMBRYOLOGY 1992; 185:143-53. [PMID: 1531587 DOI: 10.1007/bf00185915] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The late fetal development of rat extra-ocular and masticatory muscles was examined by myosin immunohistochemistry. The pattern of slow and neonatal myosin isoform expression in primary and secondary myotubes in these muscles was generally similar to that seen by others in limb muscles. We observed a consistent difference between the Sprague-Dawley and Wistar rats in the degree of maturity reached by all muscles studied at a particular age. In both strains, extra-ocular muscles were also about one day in advance of the masticatory muscles. Thus, secondary myotubes were first seen at E17 in Wistar extraocular muscles, at E18 in Sprague-Dawley extra-ocular muscles and Wistar masticatory muscles, and at E19 in Sprague-Dawley masticatory muscles. There was a strikingly early and complete type differentiation of primary myotubes in extraocular muscles, and tonic myosin first appeared before birth in presumptive extrafusal tonic fibres in the orbital layer of the oculorotatory muscles. Throughout the late fetal period, retractor bulbi was composed of fast myotubes only, but these myotubes were not arranged in classical clusters. In the masticatory muscles at E17/E18 some slow primary myotubes started to express tonic myosin, and these presumptive spindle bag2 fibres were located only in regions of the muscles known to contain spindles in the adult. Presumptive bag1 fibres appeared about a day later (initially without tonic myosin), and in the region of the spindle cluster in anterior deep masseter extrafusal secondary myotube production appeared to be suppressed.
Collapse
Affiliation(s)
- F Mascarello
- Istituto di Anatomia degli Animali Domestici con Istologia ed Embriologia, Università di Milano, Italy
| | | |
Collapse
|
115
|
Kucera J, Walro JM. Aggregation of myonuclei and the spread of slow-tonic myosin immunoreactivity in developing muscle spindles. HISTOCHEMISTRY 1991; 96:381-9. [PMID: 1836207 DOI: 10.1007/bf00315994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pattern of regional expression of a slow-tonic myosin heavy chain (MHC) isoform was studied in developing rat soleus intrafusal muscle fibers. Binding of the slow-tonic antibody (ATO) began at the equator of prenatal intrafusal fibers where sensory nerve endings are located, and spread into the polar regions of nuclear bag2 and bag1 fibers but not nuclear chain fibers during ontogeny. The onset of the ATO reactivity coincided with the appearance of equatorial clusters of myonuclei (nuclear bag formations) in bag1 and bag2 fibers. Moreover, the intensity of the ATO reaction was strongest in the region of equatorial myonuclei and decreased with increasing distance from the equator of bag1 and bag2 fibers at all stages of prenatal and postnatal development. The polar expansion of ATO reactivity continued throughout the postnatal development of bag1 fibers, but ceased shortly after birth in bag2 fiber coincident with innervation by motor axons. Thus, afferents that innervate the equator might induce the slow-tonic MHC isoform in bag2 and bag1 fibers by regulating the myosin gene expression by equatorial myonuclei, and efferents or twitch contractile activity might inhibit the spread of the slow-tonic MHC isoform into the poles of bag2 but not bag1 fibers. Absence of ATO binding in chain fibers suggests that chain myotubes may not be as susceptible to the effect of afferents as are myotubes that develop into bag2 and bag1 fibers. The different patterns of slow-tonic MHC expression in the three types of intrafusal fiber may therefore result from the interaction of three elements: sensory neurons, motor neurons, and intrafusal myotubes.
Collapse
Affiliation(s)
- J Kucera
- Department of Neurology, School of Medicine, Boston University, MA 02118
| | | |
Collapse
|
116
|
Barbet JP, Thornell LE, Butler-Browne GS. Immunocytochemical characterisation of two generations of fibers during the development of the human quadriceps muscle. Mech Dev 1991; 35:3-11. [PMID: 1954149 DOI: 10.1016/0925-4773(91)90036-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have carried out a comprehensive study of the formation of muscle fibers in the human quadriceps in a large series of well dated human foetuses and children. Our results demonstrate that a first generation of muscle fibers forms between 8-10 weeks. These fibers all express slow twitch myosin heavy chain (MHC) in addition to embryonic and foetal MHCs, vimentin and desmin. Between 10-11 weeks, a subpopulation of these fibers express slow tonic MHC, being the first primordia of muscle spindles. Extrafusal fibers of a second generation form progressively and asynchronously around the primary fibers between 10-18 weeks, giving the muscle a very heterogeneous aspect due to different degrees of organization of their proteins. By 20 weeks, these second generation fibers become homogeneous and thereafter undergo a process of maturation and differentiation when they eliminate vimentin, embryonic and foetal MHCs to express either slow twitch or fast MHC. The differentiation of these second generation fibers into slow and fast depends upon different factors, such as motor innervation or level of thyroid hormone. Around the intrafusal first generation fibers, additional subsequent generations of fibers are also progressively formed. Some differ from the extrafusal second generation fibers by expressing slow tonic MHC, others by continuous expression of foetal MHC. The differentiation of intrafusal fibers is probably under the influence of both sensory and motor innervation.
Collapse
Affiliation(s)
- J P Barbet
- Laboratoire de Pathologie Pédiatrique, Hôpital Saint Vincent de Paul, Paris, France
| | | | | |
Collapse
|
117
|
Sutherland CJ, Elsom VL, Gordon ML, Dunwoodie SL, Hardeman EC. Coordination of skeletal muscle gene expression occurs late in mammalian development. Dev Biol 1991; 146:167-78. [PMID: 2060700 DOI: 10.1016/0012-1606(91)90457-e] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The acquisition of specialized skeletal muscle fiber phenotypes during development is investigated by systematic measurement of the accumulation of 21 contractile protein mRNAs during hindlimb development in the rat and the human. During early myotube formation in both species there is no coordination of expression of either fast or slow contractile protein isoform genes, but rather some slow, some fast, and some cardiac isoforms are expressed. Some isoforms are not detected at all in early myotubes. From Embryonic Day 19 in the rat, and after 14 weeks in the human, a strong bias toward fast isoform expression is evident for all gene families examined. This results in the establishment of a coordinated fast isoform phenotype at birth in the rat, and by 24 weeks in the human fetus. Unexpectedly, during secondary myotube formation in the rat we observe sudden rises and falls in contractile protein gene output. We interpret these fluctuations in terms of periods of myoblast proliferation followed by synchronized fusion into myotubes. The data presented indicate that each contractile protein gene has its own determinants of mRNA accumulation and that the different myoblast populations which contribute to the developing limb are not intrinsically programmed to produce particular coordinated phenotypes with respect to the non-myosin heavy chain contractile proteins.
Collapse
Affiliation(s)
- C J Sutherland
- Muscle Development Unit, Children's Medical Research Foundation, Camperdown, N.S.W., Australia
| | | | | | | | | |
Collapse
|
118
|
Kaufman SJ, George-Weinstein M, Foster RF. In vitro development of precursor cells in the myogenic lineage. Dev Biol 1991; 146:228-38. [PMID: 2060703 DOI: 10.1016/0012-1606(91)90462-c] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Expression of the muscle-specific integral membrane protein H36 and the intermediate filament protein desmin, detected by immunofluorescence, was used to identify cells at distinct stages in the skeletal myogenic lineage. These proteins were coordinately expressed in cultures of rat hindlimb myoblasts from 17- and 19-day fetuses and newborn pups, and in satellite cells from juveniles. Both H36+ and desmin+ cells were present in cultures from 13.5- and 15-day embryonic hindlimbs, but desmin expression was more prevalent: H36-/desmin+ myoblasts predominate during this early stage of development. H36 was not detected in Day 12 embryo hindlimb bud cells in vivo nor in cultures soon after plating. Initially, only 1% of the Day 12 limb bud cells expressed desmin. When these cells were serially passaged every 3-4 days, cells with all three possible myogenic phenotypes developed: that is, H36+/desmin-, H36+/desmin+, and H36-/desmin+ cells. There was a progressive increase in the frequency of H36+ cells, with 75% of cells positive by passage 6 (Day 27 in vitro). The maximum frequency of cells that expressed desmin occurred in passage 5 (Day 23 in vitro). These results demonstrate that precursors to the cells that express H36 and desmin are present in the 12-day embryo hindlimb bud and that the transition from H36-/desmin- precursors to cells with a myogenic phenotype can occur in vitro. MyoD1 and myogenin were not detected in these cells, suggesting that the initial expression of H36 and desmin in the myogenic lineage may precede and/or is independent of these regulatory proteins. The conversion of precursor cells in the 12-day limb bud to a more advanced stage of development serves to define additional cells in the myogenic lineage. The ability to monitor in vitro these stages of development affords the opportunity to study how they are regulated.
Collapse
Affiliation(s)
- S J Kaufman
- Department of Cell and Structural Biology, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
119
|
Leferovich JM, Rubinstein NA, Kelly AM. Expression of slow and fast myosin heavy chains in overload muscles of the developing rat. J Muscle Res Cell Motil 1991; 12:247-53. [PMID: 1874967 DOI: 10.1007/bf01745114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study examines the developmental accumulation of slow myosin heavy chain in the extensor digitorum longus, soleus and plantaris muscles of rats after early post-natal imposition of mechanical overload by removal of synergistic muscles. The proportions of slow and fast myosin heavy chain were measured in each muscle by ELISA. Fibres expressing slow myosin were examined immunocytochemically using a monoclonal antibody specific for slow MHC. Between 30 and 60 days of age, MHC increases by 15% (p less than 0.001) in the soleus and by 27% (p less than 0.001) in the plantaris of normally developing, unoperated animals. The effect of overload on the soleus and plantaris is to accelerate the rate of increase in slow MHC accumulation so that levels are respectively 16 and 39% higher than controls by 30 days of age (p less than 0.001). By 60 days, the control soleus and plantaris attain levels of slow MHC roughly equivalent to their overloaded counterparts. In overloaded plantaris the increase in levels of slow myosin does not occur at the expense of fast myosin expression. In the EDL there is a normal developmentally regulated decrease in slow MHC accumulation, reflected by a 40% decrease in levels of slow MHC (p less than 0.0001) and a 50% decrease in the number of slow fibres (p less than 0.001), between 30 days and 20 weeks of age. This elimination of slow myosin accumulation in the EDL is unimpeded by chronic overload. Thus, muscles react to mechanical overload in a tissue specific manner.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J M Leferovich
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
120
|
Kucera J, Walro JM. Slow-tonic MHC expression in paralyzed hindlimbs of fetal rats. HISTOCHEMISTRY 1991; 96:51-7. [PMID: 1834619 DOI: 10.1007/bf00266761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Whether nerve activity and active contraction of myotubes are essential for the assembly and initial differentiation of muscle spindles was investigated by paralyzing fetal rats with tetrodotoxin (TTX) from embryonic day 16 (E16) to E21, prior to and during the period when spindles typically form. TTX-treated soleus muscles were examined by light and electron microscopy for the presence of spindles and expression of myosin heavy chain (MHC) isoforms by the intrafusal fibers. Treatment with TTX did not inhibit the formation of a spindle capsule or the expression of a slow-tonic MHC isoform characteristic of intrafusal fibers, but did retard development of spindles. Spindles of TTX-treated E21 muscles usually consisted of one intrafusal fiber (bag2) only rather than two fibers (bag1 and bag2) typically present in untreated (control) E21 spindles. Intrafusal fibers of TTX-treated spindles also had only one sensory region supplied by multiple afferents, and were devoid of motor innervation. These features are characteristic of spindles in normal E18-E19 muscles. Thus, nerve and/or muscle activity is not essential for the assembly of muscle spindles, formation of a spindle capsule, and transformation of undifferentiated myotubes into the intrafusal fibers containing spindle-specific myosin isoforms. However, activity may promote the maturation of intrafusal bundles, as well as the maturation of afferent and efferent nerve supplies to intrafusal fibers.
Collapse
Affiliation(s)
- J Kucera
- Department of Neurology, School of Medicine, Boston University, MA 02118
| | | |
Collapse
|
121
|
Fredette BJ, Landmesser LT. A reevaluation of the role of innervation in primary and secondary myogenesis in developing chick muscle. Dev Biol 1991; 143:19-35. [PMID: 1824627 DOI: 10.1016/0012-1606(91)90051-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The neural dependence of primary and secondary myogenesis and its relation to fiber-type differentiation was immunocytochemically investigated in chicken limb muscles. In a previous study, we demonstrated that a novel combination of slow myosin and fast Ca2(+)-ATPase antibodies differentially stained mutually exclusive populations of myotubes, which in the slow region of the iliofibularis allowed us to visualize primary and secondary myotubes and to quantify their development. When these antibodies were used to stain myotubes in muscles that were either chronically paralyzed by d-tubocurarine or denervated, we were surprised to observe by both LM and EM analysis that secondary myotubes formed in both cases, in contrast to the widely held tenet that nerve activity is necessary for secondary myogenesis. Also, an unexpected decrease in the number of primary myotubes occurred before the onset of secondary myotube formation. Although the total quantity of myotubes formed was drastically reduced by curare treatment or denervation, the ratio of fast to slow myotubes increased normally between st 34 and 39 1/2. Paralysis by curare did produce a striking increase in the size of individual myotube clusters, indicating that blocking nerve activity either increases adhesion between myotubes or prevents a normal decrease in adhesion during development which may be necessary for myofiber separation from clusters. Our findings indicate that both slow primary and fast secondary myotube populations are composed of nerve-dependent and independent individuals and that the relative quantities of fast and slow myotubes are regulated independent of innervation.
Collapse
Affiliation(s)
- B J Fredette
- Department of Physiology and Neurobiology, University of Connecticut, Storrs 06269
| | | |
Collapse
|
122
|
Fredette BJ, Landmesser LT. Relationship of primary and secondary myogenesis to fiber type development in embryonic chick muscle. Dev Biol 1991; 143:1-18. [PMID: 1824626 DOI: 10.1016/0012-1606(91)90050-d] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The formation of fast and slow myotubes was investigated in embryonic chick muscle during primary and secondary myogenesis by immunocytochemistry for myosin heavy chain and Ca2(+)-ATPase. When antibodies to fast or slow isoforms of these two molecules were used to visualize myotubes in the posterior iliotibialis and iliofibularis muscles, one of the isoforms was observed in all primary and secondary myotubes until very late in development. In the case of myosin, the fast antibody stained virtually all myotubes until after stage 40, when fast myosin expression was lost in the slow myotubes of the iliofibularis. In the case of Ca2(+)-ATPase, the slow antibody also stained all myotubes until after stage 40, when staining was lost in secondary myotubes and in the fast primary myotubes of the posterior iliotibialis and the fast region of the iliofibularis. In contrast, the antibodies against slow muscle myosin heavy chain and fast muscle Ca2(+)-ATPase stained mutually exclusive populations of myotubes at all developmental stages investigated. During primary myogenesis, fast Ca2(+)-ATPase staining was restricted to the primary myotubes of the posterior iliotibialis and the fast region of the iliofibularis, whereas slow myosin heavy chain staining was confined to all of the primary myotubes of the slow region of the iliofibularis. During secondary myogenesis, the fast Ca2(+)-ATPase antibody stained nearly all secondary myotubes, while primaries in the slow region of the iliofibularis remained negative. Thus, in the slow region of the iliofibularis muscle, these two antibodies could be used in combination to distinguish primary and secondary myotubes. EM analysis of staining with the fast Ca2(+)-ATPase antibody confirmed that it recognizes only secondary myotubes in this region. This study establishes that antibodies to slow myosin heavy chain and fast Ca2(+)-ATPase are suitable markers for selective labeling of primary and secondary myotubes in the iliofibularis; these markers are used in the following article to describe and quantify the effects that chronic blockade of neuromuscular activity or denervation has on these populations of myotubes.
Collapse
Affiliation(s)
- B J Fredette
- Department of Physiology and Neurobiology, University of Connecticut, Storrs 06269
| | | |
Collapse
|
123
|
Soussi-Yanicostas N, Chevallay M, Laurent-Winter C, Tomé FM, Fardeau M, Butler-Browne GS. Distinct contractile protein profile in congenital myotonic dystrophy and X-linked myotubular myopathy. Neuromuscul Disord 1991; 1:103-11. [PMID: 1822780 DOI: 10.1016/0960-8966(91)90057-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The contractile proteins present in muscle biopsies taken from infants suffering either from congenital myotonic dystrophy or X-linked myotubular myopathy were compared using biochemical and immunocytochemical techniques. Two-dimensional gel analysis has revealed that in all cases of X-linked myotubular myopathy the pattern of expression of myosin light chains, tropomyosin and troponin was roughly similar to that of normal age matched control muscle. However, biopsies from infants affected by congenital myotonic dystrophy demonstrated a predominance of most fast contractile protein isoforms. Non-denaturing gel electrophoresis confirmed the presence of both fast and slow myosin isoforms in X-linked myotubular myopathy. Fetal myosin was also present but in amounts higher than that found in normal muscles of the same age. In congenital myotonic dystrophy fetal and fast myosin were the predominant isoforms detected by native gel electrophoresis. These results were confirmed by immunocytochemistry and Western blot analysis using antibodies specific for the different myosin isoforms.
Collapse
|
124
|
Abstract
Distinct types of muscle fibers form and become innervated by appropriate motor neurons during development. Though the activity pattern of the innervating motor neuron affects fiber type in the adult, it is now clear that innervation is not required for the initial formation of fast and slow muscle fibers during embryonic and fetal development. In addition, multiple types of intrinsically different myoblasts are found at different stages of development and motor neurons may preferentially innervate specific types of muscle fibers at relatively early stages of myogenesis. Thus, at least some of the information required for the formation of specific motor units must be carried by muscle cells. Cellular and molecular analyses of the multiple types of myoblasts, myosin heavy chain isoforms, and myogenesis regulating proteins of the MyoD family are leading to a new understanding of the events that choreograph the formation of fast and slow motor units.
Collapse
Affiliation(s)
- J B Miller
- Cecil B. Day Neuromuscular Laboratory, Massachusetts General Hospital, Boston 02129
| |
Collapse
|
125
|
Innervation and maturation of muscular tissue in testicular teratomas in strain 129/Sv-ter mice. VIRCHOWS ARCHIV. B, CELL PATHOLOGY INCLUDING MOLECULAR PATHOLOGY 1990; 59:223-9. [PMID: 1980172 DOI: 10.1007/bf02899408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In strain 129/Sv-ter mice, teratomas develop spontaneously during the 13th day of gestation. These testicular germ cell tumors exhibit characteristics of different germ layers closely resembling normal embryonic tissue. We investigated the interrelationship between nervous and muscular tissues (often found side by side) in teratomas of 4-week-old 129/Sv-ter mice. In well-differentiated mouse teratomas, histochemically and immunohistochemically distinct muscle fiber types could be distinguished, but not with all reactions. According to its aerobic oxidative capacity, teratoma muscle tissue was comparable with normal muscles. However, with respect to myosin-related properties, fiber type differentiation was incomplete. The muscle fibers - generally arranged in bundles - contained one centrally located endplate which was contacted mostly by a single nerve terminal. From this, proper endplate zones within the fiber bundles were formed. Occasionally "type grouping" was encountered, suggesting collateral axonal branching paralleled by synapse elimination. Together with the earlier in vivo observation of muscular contractions, we assume that teratoma muscle fibers are innervated by nerve cells (within the nervous tissue compartments) corresponding to spinal motoneurons. Thus, myogenesis, maturation and innervation of skeletal muscular tissue in mouse teratomas are largely comparable to normal development.
Collapse
|
126
|
Pedrosa F, Soukup T, Thornell LE. Expression of an alpha cardiac-like myosin heavy chain in muscle spindle fibres. HISTOCHEMISTRY 1990; 95:105-13. [PMID: 2150514 DOI: 10.1007/bf00266582] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the present study we have investigated the reactivity of rat muscle to a specific monoclonal antibody directed against alpha cardiac myosin heavy chain. Serial cross sections of rat hindlimb muscles from the 17th day in utero to adulthood, and after neonatal denervation and de-efferentation, were studied by light microscope immunohistochemistry. Staining with anti-alpha myosin heavy chain was restricted to intrafusal bag fibres in all specimens studied. Nuclear bag2 fibres were moderately to strongly stained in the intracapsular portion and gradually lost their reactivity towards the ends, whereas nuclear bag1 fibres were stained for a short distance in each pole. Nuclear bag2 fibres displayed reactivity to anti-alpha myosin heavy chain from the 21st day of gestation, whereas nuclear bag1 fibres only acquired reactivity to anti-alpha myosin heavy chain three days after birth. After neonatal de-efferentation, the reactivity of nuclear bag2 fibres to anti-alpha myosin heavy chain was decreased and limited to a shorter portion of the fibre, whereas nuclear bag1 fibres were unreactive. We showed that a myosin heavy chain isoform hitherto unknown for skeletal muscle is specifically expressed in rat nuclear bag fibres. These findings add further complexity to the intricate pattern of isomyosin expression in intrafusal fibres. Furthermore, we show that motor innervation influences the expression of this isomyosin along the length of the fibres.
Collapse
Affiliation(s)
- F Pedrosa
- Department of Anatomy, University of Umeå, Sweden
| | | | | |
Collapse
|
127
|
Abstract
The necessity of innervation and/or neural activity for the formation of muscle spindles was investigated by treating fetal rats with neurotoxins on embryonic day 16 or 17 (E16-17), one or two days prior to the onset of spindle assembly. The neurotoxin-treated soleus muscles were examined on E21 for the presence of spindles and immunocytochemical expression of the slow-tonic myosin heavy-chain (MHC) isoform, which is characteristic of intrafusal fibers. Irreversible destruction of sensory and motor nerves by beta-bungarotoxin prevented the formation of spindles and expression of the slow-tonic MHC. Abolishment of nerve and muscle activity by tetrodotoxin did not block the spindle assembly or expression of the slow-tonic MHC. Thus, the formation and differentiation of spindles is dependent on innervation, but is independent of activity in nerve fibers or muscle cells.
Collapse
Affiliation(s)
- J Kucera
- Department of Neurology, School of Medicine, Boston University, MA 02118
| | | |
Collapse
|
128
|
Condon K, Silberstein L, Blau HM, Thompson WJ. Development of muscle fiber types in the prenatal rat hindlimb. Dev Biol 1990; 138:256-74. [PMID: 2108065 DOI: 10.1016/0012-1606(90)90196-p] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immunohistochemistry was used to examine the expression of embryonic, slow, and neonatal isoforms of myosin heavy chain in muscle fibers of the embryonic rat hindlimb. While the embryonic isoform is present in every fiber throughout prenatal development, by the time of birth the expression of the slow and neonatal isoforms occurs, for the most part, in separate, complementary populations of fibers. The pattern of slow and neonatal expression is highly stereotyped in individual muscles and mirrors the distribution of slow and fast fibers found in the adult. This pattern is not present at the early stages of myogenesis but unfolds gradually as different generations of fibers are added. As has been noted by previous investigators (e.g., Narusawa et al., 1987, J. Cell Biol. 104, 447-459), all of the earliest generation (primary) muscle fibers initially express the slow isoform but some of these primary fibers later lose this expression. In this study we show that loss of slow myosin in these fibers is accompanied by the expression of neonatal myosin. This switch in isoform expression occurs in all primary fibers located in specific regions of particular muscles. However, in other muscles primary fibers which retain their slow expression are extensively intermixed with those that switch to neonatal expression. Later generated (secondary) muscle fibers, which are interspersed among the primary fibers, express neonatal myosin, although a few of them in stereotyped locations later switch from neonatal to slow myosin expression. Many of the observed changes in myosin expression occur coincidentally with the arrival of axons in the limb or the invasion of axons into individual muscles. Thus, although both fiber birth date and intramuscular position are grossly predictive of fiber fate, neither factor is sufficient to account for the final pattern of fiber types seen in the rat hindlimb. The possibility that fiber diversification is dependent upon innervation is tested in the accompanying paper (K. Condon, L. Silberstein, H.M. Blau, and W.J. Thompson, 1990, Dev. Biol. 138, 275-295).
Collapse
Affiliation(s)
- K Condon
- Department of Zoology, University of Texas, Austin 78712
| | | | | | | |
Collapse
|