101
|
Sayd T, Morzel M, Chambon C, Franck M, Figwer P, Larzul C, Le Roy P, Monin G, Chérel P, Laville E. Proteome analysis of the sarcoplasmic fraction of pig semimembranosus muscle: implications on meat color development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:2732-7. [PMID: 16569068 DOI: 10.1021/jf052569v] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two-dimensional electrophoresis was used to investigate sarcoplasmic protein expression in pig Semimembranosus muscles sampled 20 min after slaughter. Two groups (light and dark) of 12 animals were selected from 1000 pigs, based on meat L values measured 36 h postmortem. Twenty-two proteins or fragments (p < 0.05) were differentially expressed. Muscles leading to darker meat had a more oxidative metabolism, indicated by more abundant mitochondrial enzymes of the respiratory chain, hemoglobin, and chaperone or regulator proteins (HSP27, alphaB-crystallin, and glucose-regulated protein 58 kDa). Conversely, enzymes of glycolysis were overexpressed in the lighter group. Such samples were also characterized by higher levels of glutathione S-transferase omega, which can activate the RyR calcium channels, and higher levels of cyclophilin D. This protein pattern is likely to have severe implications on postmortem metabolism, namely, acceleration of ATP depletion and pH fall and subsequent enhanced protein denaturation, well-known to induce discoloration.
Collapse
Affiliation(s)
- Thierry Sayd
- Qualité des Produits Animaux, INRA, 63122 St. Genès-Champanelle, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Chinopoulos C, Adam-Vizi V. Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. FEBS J 2006; 273:433-50. [PMID: 16420469 DOI: 10.1111/j.1742-4658.2005.05103.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interplay among reactive oxygen species (ROS) formation, elevated intracellular calcium concentration and mitochondrial demise is a recurring theme in research focusing on brain pathology, both for acute and chronic neurodegenerative states. However, causality, extent of contribution or the sequence of these events prior to cell death is not yet firmly established. Here we review the role of the alpha-ketoglutarate dehydrogenase complex as a newly identified source of mitochondrial ROS production. Furthermore, based on contemporary reports we examine novel concepts as potential mediators of neuronal injury connecting mitochondria, increased [Ca2+]c and ROS/reactive nitrogen species (RNS) formation; specifically: (a) the possibility that plasmalemmal nonselective cationic channels contribute to the latent [Ca2+]c rise in the context of glutamate-induced delayed calcium deregulation; (b) the likelihood of the involvement of the channels in the phenomenon of 'Ca2+ paradox' that might be implicated in ischemia/reperfusion injury; and (c) how ROS/RNS and mitochondrial status could influence the activity of these channels leading to loss of ionic homeostasis and cell death.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Neurobiochemical Group, Hungarian Academy of Sciences, Szentagothai Knowledge Center, Budapest, Hungary
| | | |
Collapse
|
103
|
Palmi M, Davey G, Tipton KF, Meini A. Taurine, taurine analogues, and mitochondrial function and dysfuntion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 583:469-79. [PMID: 17153634 DOI: 10.1007/978-0-387-33504-9_53] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- M Palmi
- Dipartimento di Scienze Anatomiche e Biomediche, Università di Siena, Siena, Italy.
| | | | | | | |
Collapse
|
104
|
Tanaka T, Izawa S, Inoue Y. GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J Biol Chem 2005; 280:42078-87. [PMID: 16251189 DOI: 10.1074/jbc.m508622200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that Saccharomyces cerevisiae has three glutathione peroxidase homologues (GPX1, GPX2, and GPX3) (Inoue, Y., Matsuda, T., Sugiyama, K., Izawa, S., and Kimura, A. (1999) J. Biol. Chem. 274, 27002-27009). Of these, the GPX2 gene product (Gpx2) shows the greatest similarity to phospholipid hydroperoxide glutathione peroxidase. Here we show that GPX2 encodes an atypical 2-Cys peroxiredoxin which uses thioredoxin as an electron donor. Gpx2 was essentially in a reduced form even in mutants defective in glutathione reductase or glutaredoxin under oxidative stressed conditions. On the other hand, Gpx2 was partially oxidized in a mutant defective in cytosolic thioredoxin (trx1Deltatrx2Delta) under non-stressed conditions and completely oxidized in tert-butyl hydroperoxide-treated cells of trx1Deltatrx2Delta and thioredoxin reductase-deficient mutant cells. Alanine scanning of cysteine residues of Gpx2 revealed that an intramolecular disulfide bond was formed between Cys37 and Cys83 in vivo. Gpx2 was purified to determine whether it functions as a peroxidase that uses thioredoxin as an electron donor in vitro. Gpx2 reduced H2O2 and tert-butyl hydroperoxide in the presence of thioredoxin, thioredoxin reductase, and NADPH (for H2O2, Km= 20 microm, kcat = 9.57 x 10(2) s(-1); for tert-butyl hydroperoxide, Km= 62.5 microm, kcat = 3.68 x 10(2) s(-1)); however, it showed remarkably less activity toward these peroxides in the presence of glutathione, glutathione reductase, and NADPH. The sensitivity of yeast cells to tert-butyl hydroperoxide was found to be exacerbated by the co-existence of Ca2+, a tendency that was most obvious in gpx2Delta cells. Although the redox state of Gpx2 was not affected by Ca2+, the Gpx2 level was markedly increased in the presence of both tert-butyl hydroperoxide and Ca2+. Gpx2 is likely to play an important role in the protection of cells from oxidative stress in the presence of Ca2+.
Collapse
Affiliation(s)
- Tomoaki Tanaka
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
105
|
Adam-Vizi V. Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 2005; 7:1140-9. [PMID: 16115017 DOI: 10.1089/ars.2005.7.1140] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Overwhelming evidence has accumulated indicating that oxidative stress is a crucial factor in the pathogenesis of neurodegenerative diseases. The major site of production of superoxide, the primary reactive oxygen species (ROS), is considered to be the respiratory chain in the mitochondria, but the exact mechanism and the precise location of the physiologically relevant ROS generation within the respiratory chain have not been disclosed as yet. Studies performed with isolated mitochondria have located ROS generation on complex I and complex III, respectively, depending on the substrates or inhibitors used to fuel or inhibit respiration. A more "physiological" approach is to address ROS generation of in situ mitochondria, which are present in their normal cytosolic environment. Hydrogen peroxide formation in mitochondria in situ in isolated nerve terminals is enhanced when complex I, complex III, or complex IV is inhibited. However, to induce a significant increase in ROS production, complex III and complex IV have to be inhibited by >70%, which raises doubts as to the physiological importance of ROS generation by these complexes. In contrast, complex I inhibition to a small degree is sufficient to enhance ROS generation, indicating that inhibition of complex I by approximately 25-30% observed in postmortem samples of substantia nigra from patients suffering from Parkinson's disease could be important in inducing oxidative stress. Recently, it has been described that a key Krebs cycle enzyme, alpha-ketoglutarate dehydrogenase (alpha-KGDH), is also able to produce ROS. ROS formation by alpha-KGDH is regulated by the NADH/NAD+ ratio, suggesting that this enzyme could substantially contribute to generation of oxidative stress due to inhibition of complex I. As alpha-KGDH is not only a generator but also a target of ROS, it is proposed that alpha-KGDH is a key factor in a vicious cycle by which oxidative stress is induced and promoted in nerve terminals.
Collapse
Affiliation(s)
- Vera Adam-Vizi
- Department of Medical Biochemistry, Semmelweis University, Neurochemical Group, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
106
|
Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. BIOCHEMISTRY (MOSCOW) 2005; 70:200-14. [PMID: 15807660 DOI: 10.1007/s10541-005-0102-7] [Citation(s) in RCA: 847] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oxidative stress is considered a major contributor to etiology of both "normal" senescence and severe pathologies with serious public health implications. Mitochondria generate reactive oxygen species (ROS) that are thought to augment intracellular oxidative stress. Mitochondria possess at least nine known sites that are capable of generating superoxide anion, a progenitor ROS. Mitochondria also possess numerous ROS defense systems that are much less studied. Studies of the last three decades shed light on many important mechanistic details of mitochondrial ROS production, but the bigger picture remains obscure. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal. An integrative, systemic approach is applied to analysis of mitochondrial ROS metabolism, which is now dissected into mitochondrial ROS production, mitochondrial ROS removal, and mitochondrial ROS emission. It is suggested that mitochondria augment intracellular oxidative stress due primarily to failure of their ROS removal systems, whereas the role of mitochondrial ROS emission is yet to be determined and a net increase in mitochondrial ROS production in situ remains to be demonstrated.
Collapse
Affiliation(s)
- A Yu Andreyev
- Alumni of Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | | |
Collapse
|
107
|
Lapointe J, Kimmins S, Maclaren LA, Bilodeau JF. Estrogen selectively up-regulates the phospholipid hydroperoxide glutathione peroxidase in the oviducts. Endocrinology 2005; 146:2583-92. [PMID: 15746255 DOI: 10.1210/en.2004-1373] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The oviduct plays a crucial role in mammalian reproduction by providing an optimal environment for the final maturation and transport of gametes, fertilization, and early embryonic development. It is now recognized that these reproductive events in vitro can be either negatively or positively affected by reactive oxygen species such as hydrogen peroxide and lipid hydroperoxides. In the current study, we analyzed the expression of the phospholipid hydroperoxide glutathione peroxidase (PHGPx or GPx-4), a selenoenzyme that directly reduces membrane-bound lipid hydroperoxides in the bovine oviduct. Using in situ hybridization, we demonstrated that GPx-4 expression is almost restricted to the oviductal luminal epithelium in contrast to GPx-1, which is widely distributed, and GPx-2 and -3, which are mainly detected in the epithelial cells and lamina propria. Interestingly, real-time quantitative RT-PCR analysis showed that GPx-4 expression was highest during the follicular and postovulatory phases. In addition, GPx-4 expression was highest in the isthmus proximal to the dominant follicle during the follicular stage and remained high during the postovulatory period. This increased in expression of GPx-4 corresponded to increased GPx-4 enzymatic activity. Based on intrauterine infusion of estradiol, we determined that the increase in expression and activity of GPx-4 is estrogen mediated. This work clearly demonstrates that GPx-4 gene expression is influenced by the proximity of the dominant follicle in the oviduct in vivo. We propose that GPx-4 has an important role in the physiological control of peroxide tone in the bordering cells of the oviductal lumen.
Collapse
Affiliation(s)
- Jérome Lapointe
- Unité d'Ontogénie et Reproduction, Centre Hospitalier Universitaire de Québec, Pavillon Centre Hospitalier de l'Université Laval, Local T-1-49, 2705 Boulevard W. Laurier, Ste-Foy, Québec, Canada G1V 4G2
| | | | | | | |
Collapse
|
108
|
Falchi AM, Isola R, Diana A, Putzolu M, Diaz G. Characterization of depolarization and repolarization phases of mitochondrial membrane potential fluctuations induced by tetramethylrhodamine methyl ester photoactivation. FEBS J 2005; 272:1649-59. [PMID: 15794752 DOI: 10.1111/j.1742-4658.2005.04586.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Depolarization and repolarization phases (D and R phases, respectively) of mitochondrial potential fluctuations induced by photoactivation of the fluorescent probe tetramethylrhodamine methyl ester (TMRM) were analyzed separately and investigated using specific inhibitors and substrates. The frequency of R phases was significantly inhibited by oligomycin and aurovertin (mitochondrial ATP synthase inhibitors), rotenone (mitochondrial complex I inhibitor) and iodoacetic acid (inhibitor of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase). Succinic acid (mitochondrial complex II substrate, given in the permeable form of dimethyl ester) abolished the rotenone-induced inhibition of R phases. Taken together, these findings indicate that the activity of both respiratory chain and ATP synthase were required for the recovery of the mitochondrial potential. The frequency of D phases prevailed over that of R phases in all experimental conditions, resulting in a progressive depolarization of mitochondria accompanied by NAD(P)H oxidation and Ca2+ influx. D phases were not blocked by cyclosporin A (inhibitor of the permeability transition pore) or o-phenyl-EGTA (a Ca2+ chelator), suggesting that the permeability transition pore was not involved in mitochondrial potential fluctuations.
Collapse
Affiliation(s)
- Angela M Falchi
- Department of Cytomorphology, University of Cagliari, Monserrato, Italy
| | | | | | | | | |
Collapse
|
109
|
Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 2005; 24:7779-88. [PMID: 15356189 PMCID: PMC6729932 DOI: 10.1523/jneurosci.1899-04.2004] [Citation(s) in RCA: 513] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitochondria-produced reactive oxygen species (ROS) are thought to contribute to cell death caused by a multitude of pathological conditions. The molecular sites of mitochondrial ROS production are not well established but are generally thought to be located in complex I and complex III of the electron transport chain. We measured H(2)O(2) production, respiration, and NADPH reduction level in rat brain mitochondria oxidizing a variety of respiratory substrates. Under conditions of maximum respiration induced with either ADP or carbonyl cyanide p-trifluoromethoxyphenylhydrazone,alpha-ketoglutarate supported the highest rate of H(2)O(2) production. In the absence of ADP or in the presence of rotenone, H(2)O(2) production rates correlated with the reduction level of mitochondrial NADPH with various substrates, with the exception of alpha-ketoglutarate. Isolated mitochondrial alpha-ketoglutarate dehydrogenase (KGDHC) and pyruvate dehydrogenase (PDHC) complexes produced superoxide and H(2)O(2). NAD(+) inhibited ROS production by the isolated enzymes and by permeabilized mitochondria. We also measured H(2)O(2) production by brain mitochondria isolated from heterozygous knock-out mice deficient in dihydrolipoyl dehydrogenase (Dld). Although this enzyme is a part of both KGDHC and PDHC, there was greater impairment of KGDHC activity in Dld-deficient mitochondria. These mitochondria also produced significantly less H(2)O(2) than mitochondria isolated from their littermate wild-type mice. The data strongly indicate that KGDHC is a primary site of ROS production in normally functioning mitochondria.
Collapse
Affiliation(s)
- Anatoly A Starkov
- Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Nakagawa Y. Role of mitochondrial phospholipid hydroperoxide glutathione peroxidase (PHGPx) as an antiapoptotic factor. Biol Pharm Bull 2005; 27:956-60. [PMID: 15256721 DOI: 10.1248/bpb.27.956] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a unique antioxidant enzyme that markedly reduces lipid hydroperoxide generated in biomembranes. Overexpression of mitochondrial PHGPx potentially suppresses the release of cytochrome c (cyt. c) from mitochondria and apoptosis. The hydroperoxide level in mitochondria was elevated in 2-deoxyglucose (2DG)-induced apoptosis, but not in apoptosis-resistant cells in which mitochondrial PHGPx was overexpressed. From studies of the overexpression of PHGPx, the generation of hydrogen peroxide and lipid hydroperoxide in mitochondria might be important triggers of apoptosis. In particular lipid hydroperoxide could be involved in the initiation of cyt. c liberation from mitochondria in 2DG-induced apoptosis since lipid hydroperoxide is a primary substrate for PHGPx. The release of cyt. c from mitochondria is an important proapoptotic signal in the mitochondrial death pathway. Several reports demonstrated the reactive oxgen species could be involved in cyt. c liberation, although its mechanism is still unknown. Cardiolipin (CL), which exclusively locates in the innermembrane of mitochondria, shows strong affinity for cyt. c is required for the adenine nucleotide translocator (ANT) that controls the opening and closing of the permeability transition pore. Association of cyt. c with CL is lost upon peroxidation. CL hydroperoxide (CLOOH), in contrast to CL, does not bind to cyt. c. Furthermore, CLOOH can open the permeability transion pore by the inactivation of ANT. These previous results suggest that mitochondrial PHGPx inhibits the release of cyt. c from mitochondria by the scavenging CLOOH and could prevent apoptosis.
Collapse
Affiliation(s)
- Yasuhito Nakagawa
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.
| |
Collapse
|
111
|
Starkov AA, Chinopoulos C, Fiskum G. Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 2005; 36:257-64. [PMID: 15261481 DOI: 10.1016/j.ceca.2004.02.012] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 02/18/2004] [Indexed: 11/23/2022]
Abstract
Acute ischemic and brain injury is triggered by excitotoxic elevation of intraneuronal Ca2+ followed by reoxygenation-dependent oxidative stress, metabolic failure, and cell death. Studies performed in vitro with neurons exposed to excitotoxic concentrations of glutamate demonstrate an initial rise in cytosolic [Ca2+], followed by a reduction to a normal, albeit slightly elevated concentration. This reduction in cytosolic [Ca2+] is due partially to active, respiration-dependent mitochondrial Ca2+ sequestration. Within minutes to an hour following the initial Ca2+ transient, most neurons undergo delayed Ca2+ deregulation characterized by a dramatic rise in cytosolic Ca2+. This prelethal secondary rise in Ca2+ is due to influx across the plasma membrane but is dependent on the initial mitochondrial Ca2+ uptake and associated oxidative stress. Mitochondrial Ca2+ uptake can stimulate the net production of reactive oxygen species (ROS) through activation of the membrane permeability transition, release of cytochrome c, respiratory inhibition, release of pyridine nucleotides, and loss of intramitochondrial glutathione necessary for detoxification of peroxides. Targets of mitochondrially derived ROS may include plasma membrane Ca2+ channels that mediate excitotoxic delayed Ca2+ deregulation.
Collapse
Affiliation(s)
- Anatoly A Starkov
- Department of Neurology, Weil Medical College, Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
112
|
Zoratti M, Szabò I, De Marchi U. Mitochondrial permeability transitions: how many doors to the house? BIOCHIMICA ET BIOPHYSICA ACTA 2005; 1706:40-52. [PMID: 15620364 DOI: 10.1016/j.bbabio.2004.10.006] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 10/20/2004] [Accepted: 10/21/2004] [Indexed: 12/18/2022]
Abstract
The inner mitochondrial membrane is famously impermeable to solutes not provided with a specific carrier. When this impermeability is lost, either in a developmental context or under stress, the consequences for the cell can be far-reaching. Permeabilization of isolated mitochondria, studied since the early days of the field, is often discussed as if it were a biochemically well-defined phenomenon, occurring by a unique mechanism. On the contrary, evidence has been accumulating that it may be the common outcome of several distinct processes, involving different proteins or protein complexes, depending on circumstances. A clear definition of this putative variety is a prerequisite for an understanding of mitochondrial permeabilization within cells, of its roles in the life of organisms, and of the possibilities for pharmacological intervention.
Collapse
Affiliation(s)
- Mario Zoratti
- CNR Institute of Neuroscience, Biomembranes Section, Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| | | | | |
Collapse
|
113
|
Rodriguez-Enriquez S, He L, Lemasters JJ. Role of mitochondrial permeability transition pores in mitochondrial autophagy. Int J Biochem Cell Biol 2004; 36:2463-72. [PMID: 15325585 DOI: 10.1016/j.biocel.2004.04.009] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During autophagy, cells rid themselves of damaged and superfluous mitochondria, as well as other organelles. This activation of mitochondrial turnover could be the result of changes in the physiological state of mitochondria. Confocal microscopy and fluorescence techniques indicate that onset of mitochondrial permeability transition is one such change. The mitochondrial permeability transition is a reversible phenomenon whereby the mitochondrial inner membrane becomes freely permeable to solutes of less than 1500 Da. At onset of the mitochondrial permeability transition, mitochondria depolarize, uncouple, and undergo large amplitude swelling due to opening of permeability transition pores, which may form by aggregation of damaged, misfolded membrane proteins. When injurious cellular stresses occur, cells may protect themselves using autophagy to remove damaged mitochondria and mutated mitochondrial DNA. Ca(2+) overloading, reactive oxygen and nitrogen species, decreased mitochondrial membrane potential, and oxidation of pyridine nucleotides and glutathione all promote mitochondrial damage and onset of the mitochondrial permeability transition. The mitochondrial permeability transition is also associated with necrosis and apoptosis after a variety of stimuli. This review emphasizes the role of the mitochondrial permeability transition as a key event in mitochondrial autophagy.
Collapse
Affiliation(s)
- Sara Rodriguez-Enriquez
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina at Chapel Hill, CB #7090, 236 Taylor Hall, Chapel Hill, NC 27599-7090, USA
| | | | | |
Collapse
|
114
|
Curry DJ, Wright DA, Lee RC, Kang UJ, Frim DM. Poloxamer 188 Volumetrically Decreases Neuronal Loss in the Rat in a Time-dependent Manner. Neurosurgery 2004; 55:943-8; discussion 948-9. [PMID: 15458603 DOI: 10.1227/01.neu.0000137890.29862.2c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 06/04/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Excitotoxicity is a multistep process that results in either necrosis or apoptosis. It has been associated with neuronal death in trauma, ischemia, and neurodegeneration. The final step in necrotic cell death is the rupture of a cell's plasma membrane; repair of this membrane rupture is a potentially powerful technique of neuroprotection. Poloxamer 188 (P-188) is a synthetic surfactant that seals experimentally porated membranes. This study investigated the usefulness and time dependence of intrathecal P-188 in protecting neurons in an in vivo model of excitotoxicity in the rat. METHODS Twenty-eight Sprague-Dawley rats underwent striatal infusion of quinolinic acid to produce a spherical excitotoxic lesion. Each animal then received either vehicle or P-188 at 10 minutes, 4 hours, or both time points after surgery by direct cisterna magna injection. Animals were killed at 1 week, and brains were stained immunohistochemically for the neuronal marker Neu-N. Volumes of neuronal loss were calculated and compared between groups by analysis of variance. RESULTS All animals were found to have spherical, stereotyped lesions. The animals that received intrathecal poloxamer at the early injection time had statistically smaller lesions (8.16 +/- 6.12 mm(3); n = 5; P = 0.0015) than controls (18.25 +/- 11.42 mm(3); n = 11). Those animals that received poloxamer at both injection times also had statistically smaller lesions (10.57 +/- 9.00 mm(3); n = 7; P = 0.0095). The group that received poloxamer at the late injection time only did not have significantly decreased lesion size (14.86 +/- 7.95 mm(3); n = 5). CONCLUSION Intrathecal P-188 reduces neuronal loss after excitotoxic injury in the rat only when delivered immediately after the toxin. This observation confirms the potential of surfactant molecules as neuroprotectants but predicts that their usefulness is best realized by early and potentially ongoing treatment.
Collapse
Affiliation(s)
- Daniel J Curry
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
115
|
Koshkin V, Bikopoulos G, Chan CB, Wheeler MB. The characterization of mitochondrial permeability transition in clonal pancreatic beta-cells. Multiple modes and regulation. J Biol Chem 2004; 279:41368-76. [PMID: 15231823 DOI: 10.1074/jbc.m406914200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial permeability transition (MPT), which contributes substantially to the regulation of normal mitochondrial metabolism, also plays a crucial role in the initiation of cell death. It is known that MPT is regulated in a tissue-specific manner. The importance of MPT in the pancreatic beta-cell is heightened by the fact that mitochondrial bioenergetics serve as the main glucose-sensing regulator and energy source for insulin secretion. In the present study, using MIN6 and INS-1 beta-cells, we revealed that both Ca(2+)-phosphate- and oxidant-induced MPT is remarkably different from other tissues. Ca(2+)-phosphate-induced transition is accompanied by a decline in mitochondrial reactive oxygen species production related to a significant potential dependence of reactive oxygen species formation in beta-cell mitochondria. Hydroperoxides, which are indirect MPT co-inducers active in liver and heart mitochondria, are inefficient in beta-cell mitochondria, due to the low mitochondrial ability to metabolize them. Direct cross-linking of mitochondrial thiols in pancreatic beta-cells induces the opening of a low conductance ion permeability of the mitochondrial membrane instead of the full scale MPT opening typical for liver mitochondria. Low conductance MPT is independent of both endogenous and exogenous Ca(2+), suggesting a novel type of nonclassical MPT in beta-cells. It results in the conversion of electrical transmembrane potential into DeltapH instead of a decrease in total protonmotive force, thus mitochondrial respiration remains in a controlled state. Both Ca(2+)- and oxidant-induced MPTs are phosphate-dependent and, through the "phosphate flush" (associated with stimulation of insulin secretion), are expected to participate in the regulation in beta-cell glucose-sensing and secretory activity.
Collapse
Affiliation(s)
- Vasilij Koshkin
- Departments of Physiology and Medicine, University of Toronto, Toronto M5S 1A8, Canada
| | | | | | | |
Collapse
|
116
|
Barhoumi R, Faske J, Liu X, Tjalkens RB. Manganese potentiates lipopolysaccharide-induced expression of NOS2 in C6 glioma cells through mitochondrial-dependent activation of nuclear factor kappaB. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2004; 122:167-79. [PMID: 15010209 DOI: 10.1016/j.molbrainres.2003.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2003] [Indexed: 11/22/2022]
Abstract
Neuronal injury in manganese neurotoxicity (manganism) is thought to involve activation of astroglial cells and subsequent overproduction of nitric oxide (NO) by inducible nitric oxide synthase (NOS2). Manganese (Mn) enhances the effects of proinflammatory cytokines on expression of NOS2 but the molecular basis for this effect has not been established. It was postulated in the present studies that Mn enhances expression of NOS2 through the cis-acting factor, nuclear factor kappaB (NF-kappaB). Exposure of C6 glioma cells to lipopopolysaccharide (LPS) resulted in increased expression of NOS2 and production of NO that was dramatically potentiated by Mn and was blocked through overexpression of mutant IkappaBalpha (S32/36A). LPS-induced DNA binding of p65/p50 was similarly enhanced by Mn and was decreased by mutant IkappaBalpha. Phosphorylation of IkappaBalpha was potentiated by Mn and LPS and was not blocked by U0126, a selective inhibitor of ERK1/2. Mn decreased mitochondrial membrane potential and increased matrix calcium, associated with a rise in intracellular reactive oxygen species (ROS) that was attenuated by the mitochondrial-specific antioxidant, MitoQ. Blocking mitochondrial ROS also attenuated the enhancing effect of Mn on LPS-induced phosphorylation of IkappaBalpha and expression of NOS2, suggesting a link between Mn-induced mitochondrial dysfunction and activation of NF-kappaB. Overexpression of a dominant-negative mutant of the NF-kappaB-interacting kinase (Nik) prevented enhancement of LPS-induced phosphorylation of IkappaBalpha by Mn. These data indicate that Mn augments LPS-induced expression of NOS2 in C6 cells by increasing mitochondrial ROS and activation of NF-kappaB.
Collapse
Affiliation(s)
- Rola Barhoumi
- Department of Anatomy, Neuroscience Program, College of Veterinary Medicine, Texas A&M University, MS 4458 TAMU, College Station, TX 77843-4458, USA
| | | | | | | |
Collapse
|
117
|
Abstract
The specific pathologic processes preceding the onset of irreversible cerebral injury seem to be a combination of several complex mechanisms due to the severity and duration of the insult to the biochemical modifications in the brain. An early diagnosis of the newborn at high risk for brain damage is relevant for preventive programs. Neuroprotective strategies will benefit from the detection of biochemical markers with high reliability and predictability for brain injury.
Collapse
Affiliation(s)
- Giuseppe Buonocore
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, V.le Bracci, 36, 53100 Siena, Italy.
| | | |
Collapse
|
118
|
Gunter TE, Miller LM, Gavin CE, Eliseev R, Salter J, Buntinas L, Alexandrov A, Hammond S, Gunter KK. Determination of the oxidation states of manganese in brain, liver, and heart mitochondria. J Neurochem 2004; 88:266-80. [PMID: 14690515 DOI: 10.1046/j.1471-4159.2003.02122.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Excess brain manganese can produce toxicity with symptoms that resemble those of Parkinsonism and causes that remain elusive. Manganese accumulates in mitochondria, a major source of superoxide, which can oxidize Mn2+ to the powerful oxidizing agent Mn3+. Oxidation of important cell components by Mn3+ has been suggested as a cause of the toxic effects of manganese. Determining the oxidation states of intramitochondrial manganese could help to identify the dominant mechanism of manganese toxicity. Using X-ray absorbance near edge structure (XANES) spectroscopy, we have characterized the oxidation state of manganese in mitochondria isolated from brain, liver, and heart over concentrations ranging from physiological to pathological. Results showed that (i) spectra from different model manganese complexes of the same oxidation state were similar to each other and different from those of other oxidation states and that the position of the absorption edge increases with oxidation state; (ii) spectra from intramitochondrial manganese in isolated brain, heart and liver mitochondria were virtually identical; and (iii) under these conditions intramitochondrial manganese exists primarily as a combination of Mn2+ complexes. No evidence for Mn3+ was detected in samples containing more than endogenous manganese levels, even after incubation under conditions promoting reactive oxygen species (ROS) production. While the presence of Mn3+ complexes cannot be proven in the spectrum of endogenous mitochondrial manganese, the shape of this spectrum could suggest the presence of Mn3+ near the limit of detection, probably as MnSOD.
Collapse
Affiliation(s)
- Thomas E Gunter
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Kirkinezos IG, Hernandez D, Bradley WG, Moraes CT. An ALS mouse model with a permeable blood-brain barrier benefits from systemic cyclosporine A treatment. J Neurochem 2004; 88:821-6. [PMID: 14756802 DOI: 10.1046/j.1471-4159.2003.02181.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To test potentially beneficial drugs to amyotrophic lateral sclerosis (ALS), we created an ALS mouse model with a permeable blood-brain barrier, by crossing the G93A-SOD1 transgenic mouse with a multiple drug resistance type 1a/b (mdr1a/b) gene knockout mouse. To validate the model, we administered cyclosporine A intraperitoneally to the mice. Cyclosporine A accumulated in the brain and spinal cord of this mouse model, whereas it was unable to penetrate the CNS of mdr1a/b wild-type animals. Systemic administration of cyclosporine A extended the life of the double-mutant male mice by approximately 12%. Surprisingly, the effect was more robust in male mice and only marginal in female mice. These results demonstrate the usefulness of this combined mouse model for the testing of potentially therapeutic drugs and support the role of mitochondrial-mediated apoptosis in the pathway to motor neuron death in SOD1-associated ALS.
Collapse
Affiliation(s)
- Ilias G Kirkinezos
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
120
|
Abstract
Cardiomyocyte (CM) apoptosis has been reported in a variety of cardiovascular diseases, including myocardial infarction, ischemia/reperfusion, end-stage heart failure, arrhythmogenic right ventricular dysplasia, and adriamycin-induced cardiomyopathy. The role of CM apoptosis in the development and progression of cardiac diseases merits further investigation. Cumulative evidence suggests that reactive oxygen species (ROS), which have been implicated in cardiac pathophysiology, can trigger myocyte apoptosis by up-regulating proapoptotic proteins, such as Bax and caspases, and the mitochondria-dependent pathway. These apoptotic proteins and pathways are inhibited by various antioxidants, as well as by overexpression of the antiapoptotic protein Bcl-2 by way of the antioxidant pathway. Detection of CM apoptosis with the terminal transferase-mediated DNA nick-end labeling assay alone has recently been questioned because of technical concerns regarding its sensitivity and specificity. Because CMs are mononuclear or binuclear, if only one nucleus or a certain percentage of fragmented nuclei is stained with TUNEL assay at the early stage of apoptotic cell death, it remains unknown whether this particular early apoptotic CM is still functionally active. The issue of TUNEL specificity further questions reports of high percentages of apoptotic CM nuclei (0.02%-35%) in the heart. Nevertheless, oxidative stress is a major apoptotic stimulus in many cardiovascular diseases and the process can be inhibited by antioxidants both in vitro and in vivo.
Collapse
Affiliation(s)
- Dinender Kumar
- Division of Cardiology, Department of Medicine and Cardiovascular Research Group, Faculty of Medicine, University of Alberta.
| | | |
Collapse
|
121
|
Salgueiro-Pagadigorria CL, Kelmer-Bracht AM, Bracht A, Ishii-Iwamoto EL. Naproxen affects Ca2+ fluxes in mitochondria, microsomes and plasma membrane vesicles. Chem Biol Interact 2004; 147:49-63. [PMID: 14726152 DOI: 10.1016/j.cbi.2003.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
There is substantial evidence that nonsteroidal anti-inflammatory drugs (NSAIDs) affect cellular processes regulated by Ca(2+) ions, including the metabolic responses of the liver to Ca(2+)-dependent hormones. The aim of the present study was to determine whether the effects of naproxen are mediated by a direct action on cellular Ca(2+) fluxes. The effects of naproxen on 45Ca(2+) fluxes in mitochondria, microsomes and inside-out plasma membrane vesicles were examined. Naproxen strongly impaired the mitochondrial capacity to retain 45Ca(2+) and inhibited also ATP-dependent 45Ca(2+) uptake by microsomes. Naproxen did not modify 45Ca(2+) uptake by inside-out plasma membrane vesicles, but it inhibited the hexokinase/glucose-induced Ca(2+) efflux from preloaded vesicles. Additional assays performed in isolated mitochondria revealed that naproxen causes mitochondrial uncoupling and swelling in the presence of Ca(2+) ions. These effects were prevented by EGTA, ruthenium red and cyclosporin A, indicating that naproxen acts synergistically with Ca(2+) ions by promoting the mitochondrial permeability transition. The experimental results suggest that naproxen may impair the metabolic responses to Ca(2+)-dependent hormones acting by at least two mechanisms: (1) by interfering with the supply of external Ca(2+) through a direct action on the plasma membrane Ca(2+) influx, and (2) by affecting the refilling of the agonist-sensitive internal stores, including endoplasmic reticulum and mitochondria.
Collapse
|
122
|
Aon MA, Cortassa S, Marbán E, O'Rourke B. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 2003; 278:44735-44. [PMID: 12930841 DOI: 10.1074/jbc.m302673200] [Citation(s) in RCA: 414] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS) and/or Ca2+ overload can trigger depolarization of mitochondrial inner membrane potential (DeltaPsim) and cell injury. Little is known about how loss of DeltaPsim in a small number of mitochondria might influence the overall function of the cell. Here we employ the narrow focal excitation volume of the two-photon microscope to examine the effect of local mitochondrial depolarization in guinea pig ventricular myocytes. Remarkably, a single local laser flash triggered synchronized and self-sustained oscillations in DeltaPsim, NADH, and ROS after a delay of approximately 40s, in more than 70% of the mitochondrial population. Oscillations were initiated only after a specific threshold level of mitochondrially produced ROS was exceeded, and did not involve the classical permeability transition pore or intracellular Ca2+ overload. The synchronized transitions were abolished by several respiratory inhibitors or a superoxide dismutase mimetic. Anion channel inhibitors potentiated matrix ROS accumulation in the flashed region, but blocked propagation to the rest of the myocyte, suggesting that an inner membrane, superoxide-permeable, anion channel opens in response to free radicals. The transitions in mitochondrial energetics were tightly coupled to activation of sarcolemmal KATP currents, causing oscillations in action potential duration, and thus might contribute to catastrophic arrhythmias during ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Miguel A Aon
- Johns Hopkins University, Institute of Molecular Cardiobiology, Baltimore, Maryland 21205-2195, USA
| | | | | | | |
Collapse
|
123
|
Toescu EC, Verkhratsky A. Neuronal ageing from an intraneuronal perspective: roles of endoplasmic reticulum and mitochondria. Cell Calcium 2003; 34:311-23. [PMID: 12909078 DOI: 10.1016/s0143-4160(03)00142-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The nature of brain ageing and the age-dependent decline in cognitive functions remains poorly understood. Physiological brain ageing is characterised by mild mental dysfunctions, whereas age-dependent neurodegeneration, as illustrated by Alzheimer disease (AD), results rapidly in severe dementia. These two states of the aged brain, the physiological and the pathological, are fundamentally different as the latter stems from significant neuronal loss, whereas the former develops without significant neuronal demise. In this paper, we review the changes in neuronal Ca(2+) homeostasis that occur during brain ageing, and conclude that normal, physiological ageing is characterised mainly by a decrease of neuronal homeostatic reserve, defined as the capacity to respond effectively to functional and metabolic stressors, but does not reach the trigger required to induce neuronal death. In contrast, during neurodegenerative states, Ca(2+) homeostasis is affected early during the pathological process and result in significant neuronal demise. We also review recent evidence suggesting that the endoplasmic reticulum (ER) might play an important role in controlling the balance between healthy and pathological neuronal ageing.
Collapse
Affiliation(s)
- Emil C Toescu
- Department of Physiology, The University of Birmingham, B15 2TT Edgbaston, UK.
| | | |
Collapse
|
124
|
Gillessen T, Budd SL, Lipton SA. Excitatory amino acid neurotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:3-40. [PMID: 12575816 DOI: 10.1007/978-1-4615-0123-7_1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Gillessen
- Institut fuer Pharmakologie und Toxikologie, Bereich Studien und Wissenachaft, Neuherbergstrasse 11, 80937 Muenchen, Germany
| | | | | |
Collapse
|
125
|
Gogvadze V, Walter PB, Ames BN. The role of Fe2+-induced lipid peroxidation in the initiation of the mitochondrial permeability transition. Arch Biochem Biophys 2003; 414:255-60. [PMID: 12781777 DOI: 10.1016/s0003-9861(02)00750-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Iron and iron complexes stimulate lipid peroxidation and formation of malondialdehyde (MDA). We have studied the effects of Fe2+ and ascorbate on mitochondrial permeability transition induced by phosphate and Ca2+. Iron is necessary for detectable MDA formation, but only Ca2+ and phosphate are necessary for the induction of membrane potential loss (Deltapsi) and Ca2+ release. Keeping the iron at a constant concentration and varying the Ca2+ level changed the mitochondrial Ca2+ retention times, but not the amount of MDA formation. The antioxidant butylated hydroxytoluene at low concentrations prevented MDA formation, but not mitochondrial Ca2+ release. Preincubation of mitochondria with Fe2+ decreased Ca2+ retention time in a concentration-dependent manner and facilitated Ca2+-stimulated MDA accumulation. Thus, Ca2+ phosphate-induced mitochondrial permeability transition (MPT) can be separated mechanistically from MDA accumulation. Lipid peroxidation products do not appear to participate in the initial phase of the permeability transition, but sensitize mitochondria toward MPT.
Collapse
Affiliation(s)
- Vladimir Gogvadze
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
126
|
Lemeshko VV, Lopez LF, Solano S, Torres R. The natural antioxidant otobaphenol delays the permeability transition of mitochondria and induces their aggregation. Antioxid Redox Signal 2003; 5:281-90. [PMID: 12880483 DOI: 10.1089/152308603322110869] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The lignan otobaphenol, (8R,8'R,7R)-4'-hydroxy-5'-methoxy-3,4-methylenedioxy-2',7,8,8'-neolignan, extracted from Virola Aff. Pavonis leaves, completely inhibits at a concentration of 2.5 micro M the Fe(3+)-ascorbate-induced lipoperoxidation of rat liver mitochondria that was determined by oxygen consumption and accumulation of thiobarbituric acid-reactive species. At 25 micro M, it delays the mitochondrial permeability transition induced by tert-butyl hydroperoxide or Ca(2+), substantially inhibits the state 3 respiration, does not affect the state 4 respiration and the ADP/O ratio (with succinate), diminishes the rate of Ca(2+) uptake by mitochondria, and delays the ruthenium red-insensitive uncoupler-induced release of the loaded Ca(2+). Dose-dependent delaying of the calcium-induced swelling of mitochondria in the presence of otobaphenol nonlinearly correlates with its 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity. At 75 micro M and higher, this lignan causes mitochondrial aggregation and is able to aggregate itself, without mitochondria. The formed aggregates of otobaphenol do not cause an aggregation of subsequently added mitochondria. Thus, otobaphenol seems to be a promising target to prevent the oxidative stress death of cells.
Collapse
Affiliation(s)
- Victor V Lemeshko
- School of Physics, Science Department, National University of Colombia, Medellin Branch, AA3840 Medellin, Colombia.
| | | | | | | |
Collapse
|
127
|
Imai H, Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med 2003; 34:145-69. [PMID: 12521597 DOI: 10.1016/s0891-5849(02)01197-8] [Citation(s) in RCA: 537] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are known mediators of intracellular signal cascades. Excessive production of ROS may lead to oxidative stress, loss of cell function, and cell death by apoptosis or necrosis. Lipid hydroperoxides are one type of ROS whose biological function has not yet been clarified. Phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) is a unique antioxidant enzyme that can directly reduce phospholipid hydroperoxide in mammalian cells. This contrasts with most antioxidant enzymes, which cannot reduce intracellular phospholipid hydroperoxides directly. In this review, we focus on the structure and biological functions of PHGPx in mammalian cells. Recently, molecular techniques have allowed overexpression of PHGPx in mammalian cell lines, from which it has become clear that lipid hydroperoxides also have an important function as activators of lipoxygenase and cyclooxygenase, participate in inflammation, and act as signal molecules for apoptotic cell death and receptor-mediated signal transduction at the cellular level.
Collapse
Affiliation(s)
- Hirotaka Imai
- School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo, Japan
| | | |
Collapse
|
128
|
Bernardi P, Penzo D, Wojtczak L. Mitochondrial energy dissipation by fatty acids. Mechanisms and implications for cell death. VITAMINS AND HORMONES 2003; 65:97-126. [PMID: 12481544 DOI: 10.1016/s0083-6729(02)65061-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
For most cell types, fatty acids are excellent respiratory substrates. After being transported across the outer and inner mitochondrial membranes they undergo beta-oxidation in the matrix and feed electrons into the mitochondrial energy-conserving respiratory chain. On the other hand, fatty acids also physically interact with mitochondrial membranes, and possess the potential to alter their permeability. This occurs according to two mechanisms: an increase in proton conductance of the inner mitochondrial membrane and the opening of the permeability transition pore, an inner membrane high-conductance channel that may be involved in the release of apoptogenic proteins into the cytosol. This article addresses in some detail the mechanisms through which fatty acids exert their protonophoric action and how they modulate the permeability transition pore and discusses the cellular effects of fatty acids, with specific emphasis on their role as potential mitochondrial mediators of apoptotic signaling.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | | | | |
Collapse
|
129
|
Plaetzer K, Kiesslich T, Verwanger T, Krammer B. The Modes of Cell Death Induced by PDT: An Overview. ACTA ACUST UNITED AC 2003. [DOI: 10.1078/1615-1615-00082] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
130
|
Tirosh O, Shilo S, Aronis A, Sen CK. Redox regulation of mitochondrial permeability transition: effects of uncoupler, lipoic acid and its positively charged analog LA-plus and selenium. Biofactors 2003; 17:297-306. [PMID: 12897451 DOI: 10.1002/biof.5520170129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
131
|
Salvi M, Brunati AM, Clari G, Toninello A. Interaction of genistein with the mitochondrial electron transport chain results in opening of the membrane transition pore. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1556:187-96. [PMID: 12460676 DOI: 10.1016/s0005-2728(02)00361-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genistein, a natural isoflavone present in soybeans, is a potent agent in the prophylaxis and treatment of cancer. Addition of genistein to isolated rat liver mitochondria (RLM) induces swelling, loss of membrane potential and release of accumulated Ca2+. These changes are Ca2+-dependent and are prevented by cyclosporin A (CsA) and bongkrekic acid (BKA), two classical inhibitors of the mitochondrial permeability transition (MPT). Induction of the MPT by genistein is accompanied by oxidation of thiol groups and pyridine nucleotides. The reducing agent dithioerythritol and the alkylating agent N-ethylmaleimide (NEM) completely prevent the opening of the transition pore, thereby emphasizing that the effect of the isoflavone correlates with the mitochondrial redox state. Further analyses showed that genistein induces the MPT by the generation of reactive oxygen species (ROS) due to its interaction with the respiratory chain at the level of mitochondrial complex III.
Collapse
Affiliation(s)
- Mauro Salvi
- Dipartimento di Chimica Biologica, Istituto di Neuroscienze del C.N.R., Unità per lo Studio delle Biomembrane, Università di Padova, Via G. Colombo 3, 35121, Padova, Italy
| | | | | | | |
Collapse
|
132
|
Starkov AA, Polster BM, Fiskum G. Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax. J Neurochem 2002; 83:220-8. [PMID: 12358746 DOI: 10.1046/j.1471-4159.2002.01153.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abnormal accumulation of Ca2+ and exposure to pro-apoptotic proteins, such as Bax, is believed to stimulate mitochondrial generation of reactive oxygen species (ROS) and contribute to neural cell death during acute ischemic and traumatic brain injury, and in neurodegenerative diseases, e.g. Parkinson's disease. However, the mechanism by which Ca2+ or apoptotic proteins stimulate mitochondrial ROS production is unclear. We used a sensitive fluorescent probe to compare the effects of Ca2+ on H2O2 emission by isolated rat brain mitochondria in the presence of physiological concentrations of ATP and Mg2+ and different respiratory substrates. In the absence of respiratory chain inhibitors, Ca2+ suppressed H2O2 generation and reduced the membrane potential of mitochondria oxidizing succinate, or glutamate plus malate. In the presence of the respiratory chain Complex I inhibitor rotenone, accumulation of Ca2+ stimulated H2O2 production by mitochondria oxidizing succinate, and this stimulation was associated with release of mitochondrial cytochrome c. In the presence of glutamate plus malate, or succinate, cytochrome c release and H2O2 formation were stimulated by human recombinant full-length Bax in the presence of a BH3 cell death domain peptide. These results indicate that in the presence of ATP and Mg2+, Ca2+ accumulation either inhibits or stimulates mitochondrial H2O2 production, depending on the respiratory substrate and the effect of Ca2+ on the mitochondrial membrane potential. Bax plus a BH3 domain peptide stimulate H2O2 production by brain mitochondria due to release of cytochrome c and this stimulation is insensitive to changes in membrane potential.
Collapse
Affiliation(s)
- Anatoly A Starkov
- Department of Anesthesiology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
133
|
Vicente JA, Peixoto F, Lopes ML, Madeira VM. Differential sensitivities of plant and animal mitochondria to the herbicide paraquat. J Biochem Mol Toxicol 2002; 15:322-30. [PMID: 11835632 DOI: 10.1002/jbt.10010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Paraquat herbicide is toxic to animals, including humans, via putative toxicity mechanisms associated to microsomal and mitochondrial redox systems. It is also believed to act in plants by generating highly reactive oxygen free radicals from electrons of photosystem I on exposure to light. Paraquat also acts on non-chlorophyllous plant tissues, where mitochondria are candidate targets, as in animal tissues. Therefore, we compared the interaction of paraquat with the mitochondrial bioenergetics of potato tuber, using rat liver mitochondria as a reference. Paraquat depressed succinate-dependent mitochondrial Delta(psi), with simultaneous stimulation of state 4 O2 consumption. It also induced a slow time-dependent effect for respiration of succinate, exogenous NADH, and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD)/ascorbate, which was more pronounced in rat than in potato mitochondria. However, with potato tuber mitochondria, the Delta(psi) promoted by complex-I-dependent respiration is insensitive to this effect, indicating a protection against paraquat radical afforded by complex I redox activity, which was just the reverse of to the findings for rat liver mitochondria. The experimental set up with the tetraphenyl phosphonium (TPP+)-electrode also indicated production of the paraquat radical in mitochondria, also suggesting its accessibility to the outside space. The different activities of protective antioxidant agents can contribute to explain the different sensitivities of both kinds of mitochondria. Values of SOD activity and alpha-tocopherol detected in potato mitochondria were significantly higher than in rat mitochondria, which, in turn, revealed higher values of lipid peroxidation induced by paraquat.
Collapse
Affiliation(s)
- J A Vicente
- Departamento de Botânica, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, 3004-517 Coimbra, Portugal.
| | | | | | | |
Collapse
|
134
|
Kira Y, Sato EF, Inoue M. Association of Cu,Zn-type superoxide dismutase with mitochondria and peroxisomes. Arch Biochem Biophys 2002; 399:96-102. [PMID: 11883908 DOI: 10.1006/abbi.2001.2738] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The subcellular localization of Cu,Zn-type superoxide dismutase (Cu,Zn-SOD) was investigated in rat tissues and cultured human fibroblasts. Subcellular fractionation, Nycodenz gradient centrifugation, and immunoblot analysis using specific antibodies showed that Cu,Zn-SOD was localized in cytosol, mitochondria, and peroxisomes of rat liver and brain. Treatment of highly purified mitochondria from rat liver with either Chaps or Triton X-100 released the bound Cu,Zn-SOD into supernatant fraction. Depolarization of mitochondria by inorganic phosphate and Ca(2+) released both Cu,Zn-SOD and cytochrome c from mitochondria. Digitonin also released Cu,Zn-SOD but not cytochrome c from mitochondria. Confocal immunofluorescence microscopy revealed that anti-Cu,Zn-SOD antibody in cultured human fibroblasts was found to colocalize with antibodies to Mn-SOD and PMP-70, markers of mitochondria and peroxisomes, respectively. Incubation of human Cu,Zn-SOD with purified mitochondria resulted in their association. These results indicate that Cu,Zn-SOD associates with mitochondria and peroxisomes in various cell types such as those in brain, liver, and skin.
Collapse
Affiliation(s)
- Yukimi Kira
- Department of Biochemistry and Molecular Pathology, Osaka City University Medical School, 1-4-3 Asahimachi, Abeno, Osaka, 545-8585, Japan
| | | | | |
Collapse
|
135
|
Masubuchi Y, Nakayama S, Horie T. Role of mitochondrial permeability transition in diclofenac-induced hepatocyte injury in rats. Hepatology 2002; 35:544-51. [PMID: 11870366 DOI: 10.1053/jhep.2002.31871] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Hepatotoxicity of diclofenac has been known in experimental animals and humans but its mechanism has not been fully understood. The present study examined the role of mitochondrial permeability transition (MPT) in the pathogenesis of diclofenac-induced hepatocyte injury by using isolated mitochondria and primary culture hepatocytes from rats. Incubation of energized mitochondria with succinate in the presence of Ca(2+) and diclofenac resulted in mitochondrial swelling, leakage of accumulated Ca(2+), membrane depolarization, and oxidation of nicotinamide adenine dinucleotide phosphate and protein thiol. All of these phenomena were suppressed by coincubation of the mitochondria with cyclosporin A, a typical inhibitor of MPT, showing that diclofenac opened the MPT pore. It was also suggested that reactive oxygen species probably generated during mitochondrial respiration and/or voltage-dependent mechanism was involved in MPT, which are proposed as mechanisms of MPT by uncouplers of mitochondrial oxidative phosphorylation. Culture of hepatocytes for 24 hours with diclofenac caused a decrease in cellular ATP, leakage of lactate dehydrogenase and membrane depolarization. The hepatocyte toxicity thus observed was attenuated by coincubation of the hepatocytes with cyclosporin A and verapamil, a Ca(2+) channel blocker. In conclusion, these results showed the important role of MPT in pathogenesis of hepatocyte injury induced by diclofenac and its possible contribution to human idiosyncratic hepatotoxicity.
Collapse
Affiliation(s)
- Yasuhiro Masubuchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | |
Collapse
|
136
|
Neuss M, Monticone R, Lundberg MS, Chesley AT, Fleck E, Crow MT. The apoptotic regulatory protein ARC (apoptosis repressor with caspase recruitment domain) prevents oxidant stress-mediated cell death by preserving mitochondrial function. J Biol Chem 2001; 276:33915-22. [PMID: 11438535 DOI: 10.1074/jbc.m104080200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ARC is an apoptotic regulatory protein expressed almost exclusively in myogenic cells. It contains a caspase recruitment domain (CARD) through which it has been shown to block the activation of some initiator caspases. Because ARC also blocks caspase-independent events associated with apoptosis, such as hypoxia-induced cytochrome c release, we examined its role in cell death triggered by exposure to hydrogen peroxide (H(2)O(2)) in the myogenic cell line, H9c2. Cell death in this model was caspase-independent and characterized by dose-dependent reduction in ARC expression accompanied by disruption of the mitochondrial membrane potential (Delta psi(m)) and loss of plasma membrane integrity, typical of necrotic cell death. Ectopic expression of ARC prevented both H(2)O(2)-induced mitochondrial dysfunction and cell death without affecting the stress kinase response, suggesting that ARCs protective effects were downstream of early signaling events and not due to quenching of H(2)O(2). ARC was also effective in blocking H(2)O(2)-induced loss of membrane integrity and/or disruption of Delta psi(m) in two human cell lines in which it is not normally expressed. These results demonstrate that, in addition to its ability to block caspase-dependent and -independent events in apoptosis, ARC also prevents necrosis-like cell death via the preservation of mitochondrial function.
Collapse
Affiliation(s)
- M Neuss
- Department of Medicine/Cardiology, German Heart Institute, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
137
|
Qu B, Li QT, Wong KP, Tan TM, Halliwell B. Mechanism of clofibrate hepatotoxicity: mitochondrial damage and oxidative stress in hepatocytes. Free Radic Biol Med 2001; 31:659-69. [PMID: 11522451 DOI: 10.1016/s0891-5849(01)00632-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peroxisome proliferators have been found to induce hepatocarcinogenesis in rodents, and may cause mitochondrial damage. Consistent with this, clofibrate increased hepatic mitochondrial oxidative DNA and protein damage in mice. The present investigation aimed to study the mechanism by which this might occur by examining the effect of clofibrate on freshly isolated mouse liver mitochondria and a cultured hepatocyte cell line, AML-12. Mitochondrial membrane potential (Delta Psi(m)) was determined by using the fluorescent dye 5,5',6,6'-tetrachloro-1,1', 3,3'-tetraethyl-benzimidazolylcarbocyanine iodide (JC-1) and tetramethylrhodamine methyl ester (TMRM). Application of clofibrate at concentrations greater than 0.3 mM rapidly collapsed the Delta Psi(m) both in liver cells and in isolated mitochondria. The loss of Delta Psi(m) occurred prior to cell death and appeared to involve the mitochondrial permeability transition (MPT), as revealed by calcein fluorescence studies and the protective effect of cyclosporin A (CsA) on the decrease in Delta Psi(m). Levels of reactive oxygen species (ROS) were measured with the fluorescent probes 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate (DCFDA) and dihydrorhodamine 123 (DHR123). Treatment of the hepatocytes with clofibrate caused a significant increase in intracellular and mitochondrial ROS. Antioxidants such as vitamin C, deferoxamine, and catalase were able to protect the cells against the clofibrate-induced loss of viability, as was CsA, but to a lesser extent. These results suggest that one action of clofibrate might be to impair mitochondrial function, so stimulating formation of ROS, which eventually contribute to cell death.
Collapse
Affiliation(s)
- B Qu
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
138
|
Lin HL, Liu TY, Wu CW, Chi CW. 2-Methoxyestradiol-induced caspase-3 activation and apoptosis occurs through G(2)/M arrest dependent and independent pathways in gastric carcinoma cells. Cancer 2001. [PMID: 11505393 DOI: 10.1002/1097-0142(20010801)92:3%3c500::aid-cncr1348%3e3.0.co;2-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND 2-Methoxyestradiol (2-Me), one of the estrogen metabolites, has recently been found to possess anti-angiogenesis activity in vivo. Many chemotherapeutic agents, such as taxol, docetaxel, and vinblastine, interact with microtubules and then induce apoptosis. It has been suggested that 2-Me acts on microtubules and results in G(2)/M-cycle arrest of tumor cells. Whether 2-Me induces apoptosis in gastric carcinoma cell lines is not known. Moreover, reactive oxygen species (ROS) produced by 2-Me may be involved in cytotoxicity of tumor cells. Thus, another objective of this study was to evaluate the relation between cell cycle arrest, ROS formation, and caspase activity levels after 2-Me treatment in gastric carcinoma cells. METHODS It was determined whether 2-Me directly induced apoptosis in two gastric carcinoma cell lines (SC-M1 and NUGC-3) through caspase-3 and caspase-8 activation and, eventually, induced DNA fragmentation. To clarify the effect of 2-Me-induced G(2)/M arrest in apoptosis, calcium ionophore, A23187, and thapsigargin were used to modulate 2-Me-induced cell cycle responses. Moreover, the role of 2-Me-induced ROS formation in the cell cycle responses also was evaluated. RESULTS It was found that 2-Me treatment resulted in G(2)/M-cycle arrest, caspase-8 and caspase-3 activation, and DNA fragmentation. In addition, the 2-Me induced, concomitant increases of peroxide and superoxide anions were correlated with G(2)/M-cycle arrest. Treatment with calcium ionophore A23187 and thapsigargin partially reversed the 2-Me-induced G(2)/M-cycle arrest, with a concomitant decrease in both peroxide and superoxide levels. Moreover, A23187 blocked the 2-Me-induced caspase-3 activation, whereas thapsigargin had no effect. Treatment with calcium channel blockers did not affect 2-Me-induced cell cycle arrest or caspase-3 activation. CONCLUSIONS These results suggest that the 2-Me-induced apoptosis of gastric carcinoma cells by DNA fragmentation accompanied caspase activation. Elevation of free radicals was associated with G(2)/M-cycle arrest. The induction of G(2)/M-cycle arrest is not a prerequisite for caspase activation.
Collapse
Affiliation(s)
- H L Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
139
|
Lin HL, Liu TY, Wu CW, Chi CW. 2-Methoxyestradiol-induced caspase-3 activation and apoptosis occurs through G(2)/M arrest dependent and independent pathways in gastric carcinoma cells. Cancer 2001; 92:500-9. [PMID: 11505393 DOI: 10.1002/1097-0142(20010801)92:3<500::aid-cncr1348>3.0.co;2-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND 2-Methoxyestradiol (2-Me), one of the estrogen metabolites, has recently been found to possess anti-angiogenesis activity in vivo. Many chemotherapeutic agents, such as taxol, docetaxel, and vinblastine, interact with microtubules and then induce apoptosis. It has been suggested that 2-Me acts on microtubules and results in G(2)/M-cycle arrest of tumor cells. Whether 2-Me induces apoptosis in gastric carcinoma cell lines is not known. Moreover, reactive oxygen species (ROS) produced by 2-Me may be involved in cytotoxicity of tumor cells. Thus, another objective of this study was to evaluate the relation between cell cycle arrest, ROS formation, and caspase activity levels after 2-Me treatment in gastric carcinoma cells. METHODS It was determined whether 2-Me directly induced apoptosis in two gastric carcinoma cell lines (SC-M1 and NUGC-3) through caspase-3 and caspase-8 activation and, eventually, induced DNA fragmentation. To clarify the effect of 2-Me-induced G(2)/M arrest in apoptosis, calcium ionophore, A23187, and thapsigargin were used to modulate 2-Me-induced cell cycle responses. Moreover, the role of 2-Me-induced ROS formation in the cell cycle responses also was evaluated. RESULTS It was found that 2-Me treatment resulted in G(2)/M-cycle arrest, caspase-8 and caspase-3 activation, and DNA fragmentation. In addition, the 2-Me induced, concomitant increases of peroxide and superoxide anions were correlated with G(2)/M-cycle arrest. Treatment with calcium ionophore A23187 and thapsigargin partially reversed the 2-Me-induced G(2)/M-cycle arrest, with a concomitant decrease in both peroxide and superoxide levels. Moreover, A23187 blocked the 2-Me-induced caspase-3 activation, whereas thapsigargin had no effect. Treatment with calcium channel blockers did not affect 2-Me-induced cell cycle arrest or caspase-3 activation. CONCLUSIONS These results suggest that the 2-Me-induced apoptosis of gastric carcinoma cells by DNA fragmentation accompanied caspase activation. Elevation of free radicals was associated with G(2)/M-cycle arrest. The induction of G(2)/M-cycle arrest is not a prerequisite for caspase activation.
Collapse
Affiliation(s)
- H L Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
140
|
Mattie MD, Freedman JH. Protective effects of aspirin and vitamin E (alpha-tocopherol) against copper- and cadmium-induced toxicity. Biochem Biophys Res Commun 2001; 285:921-5. [PMID: 11467839 DOI: 10.1006/bbrc.2001.5259] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 24-h exposure to copper (400 microM, 600 microM) or cadmium (5 microM, 10 microM) significantly reduces the viability of COS-7 cells. A 2-h preincubation with vitamin E does not protect COS-7 cells from copper-induced toxicity, but does protect against cadmium-induced toxicity. Preincubation with aspirin protects cells from both copper- and cadmium-induced toxicity. A combination of aspirin and vitamin E (10 microM and 25 microM, respectively) increases cell viability in copper-exposed cells in a clearly additive manner, while in cadmium-exposed cells the effects are slightly additive. These results indicate that aspirin and vitamin E can protect cells from metal-induced toxicity. Differences in the protective effects of aspirin and vitamin E on copper versus cadmium-induced toxicity may be due to alternative mechanisms of metal toxicity or antioxidant activity.
Collapse
Affiliation(s)
- M D Mattie
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
141
|
Schuchmann S, Kovacs R, Kann O, Heinemann U, Buchheim K. Monitoring NAD(P)H autofluorescence to assess mitochondrial metabolic functions in rat hippocampal-entorhinal cortex slices. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2001; 7:267-76. [PMID: 11431129 DOI: 10.1016/s1385-299x(01)00080-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in neuronal energy metabolism, mitochondrial functions and homeostasis of reactive oxygen species are often supposed to induce alterations in neuronal activity in hippocampal slice models. In order to investigate the NAD(P)H autofluorescence signal in brain slice models, methods to monitor NAD(P)H signal in isolated mitochondria as described by Chance et al. [J. Biol. Chem. 254 (1979) 4764] and dissociated neurons as described by Duchen [Biochem. J. 283 (1992) 41] were adapted to recording conditions required for brain slices. Considering different experimental questions, we established an approach to monitor NAD(P)H autofluorescence signals from hippocampal slices of 400 microm thickness under either submerged or interface conditions. Therefore the procedure described here allows the measurement of NAD(P)H autofluorescence under conditions typically required in electrophysiological experiments. Depolarization of plasma membrane caused by electrical stimulation or application of glutamate (100 microM) resulted in a characteristic initial decrease followed by a long-lasting increase in the NAD(P)H autofluorescence signal. H(2)O(2) (100 microM) evoked a strong NAD(P)H signal decrease indicating direct oxidation to the nonfluorescencend NAD(P)(+). In contrast, the increase in NAD(P)H signal that followed a brief inhibition of mitochondrial respiratory chain complex I using rotenone (1 microM) indicated an accumulation of NAD(P)H. However, in presence of rotenone (1 microM) electrically evoked long-lasting NAD(P)H signal overshoot decreased progressively, due to a negative feedback of accumulated NAD(P)H to the citrate cycle. A comparable reduction in NAD(P)H signal increase were observed during low-Mg(2+) induced epileptiform activity, indicating a relative energy failure. In conclusion, the method presented here allows to monitor NAD(P)H autofluorescence signals to gain insight into the coupling of neuronal activity, energy metabolism and mitochondrial function in brain slice models.
Collapse
Affiliation(s)
- S Schuchmann
- Institut für Physiologie, Universitätsklinikum Charité, Humboldt-Universität Berlin, Tucholskystrasse 2, D-10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
142
|
Abstract
Mitochondrial permeability transition (MPT) is a non-selective inner membrane permeabilization that may precede necrotic and apoptotic cell death. Although this process has a specific inhibitor, cyclosporin A, little is known about the nature of the proteinaceous pore that results in MPT. Here, we review data indicating that MPT is not a consequence of the opening of a pre-formed pore, but the consequence of oxidative damage to pre-existing membrane proteins.
Collapse
Affiliation(s)
- A J Kowaltowski
- Departamento de Bioquímica, Instituto de Quimica, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
143
|
Sokol RJ, Straka MS, Dahl R, Devereaux MW, Yerushalmi B, Gumpricht E, Elkins N, Everson G. Role of oxidant stress in the permeability transition induced in rat hepatic mitochondria by hydrophobic bile acids. Pediatr Res 2001; 49:519-31. [PMID: 11264436 DOI: 10.1203/00006450-200104000-00014] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydrophobic bile acids may cause hepatocellular necrosis and apoptosis during cholestatic liver diseases. The mechanism for this injury may involve mitochondrial dysfunction and the generation of oxidant stress. The purpose of this study was to determine the relationship of oxidant stress and the mitochondrial membrane permeability transition (MMPT) in hepatocyte necrosis induced by bile acids. The MMPT was measured spectrophotometrically and morphologically in rat liver mitochondria exposed to glycochenodeoxycholic acid (GCDC). Freshly isolated rat hepatocytes were exposed to GCDC and hepatocellular necrosis was assessed by lactate dehydrogenase release, hydroperoxide generation by dichlorofluorescein fluorescence, and the MMPT in cells by JC1 and tetramethylrhodamine methylester fluorescence on flow cytometry. GCDC induced the MMPT in a dose- and Ca(2+)-dependent manner. Antioxidants significantly inhibited the GCDC-induced MMPT and the generation of hydroperoxides in isolated mitochondria. Other detergents failed to induce the MMPT and a calpain-like protease inhibitor had no effect on the GCDC-induced MMPT. In isolated rat hepatocytes, GCDC induced the MMPT, which was inhibited by antioxidants. Blocking the MMPT in hepatocytes reduced hepatocyte necrosis and oxidant stress caused by GCDC. Oxidant stress, and not detergent effects or the stimulation of calpain-like proteases, mediates the GCDC-induced MMPT in hepatocytes. We propose that reducing mitochondrial generation of reactive oxygen species or preventing increases in mitochondrial Ca(2+) may protect the hepatocyte against bile acid-induced necrosis.
Collapse
Affiliation(s)
- R J Sokol
- Pediatric Liver Center, Section of Pediatric Gastroenterology, Hepatology and Nutrition, The Children's Hospital, Denver, Colorado 80218, U.S.A.
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Sparagna GC, Hickson-Bick DL, Buja LM, McMillin JB. A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 2000; 279:H2124-32. [PMID: 11045945 DOI: 10.1152/ajpheart.2000.279.5.h2124] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
After cardiac ischemia, long-chain fatty acids, such as palmitate, increase in plasma and heart. Palmitate has previously been shown to cause apoptosis in cardiac myocytes. Cultured neonatal rat cardiac myocytes were studied to assess mitochondrial alterations during apoptosis. Phosphatidylserine translocation and caspase 3-like activity confirmed the apoptotic action of palmitate. Cytosolic cytochrome c was detected at 8 h and plateaued at 12 h. The mitochondrial membrane potential (DeltaPsi) in tetramethylrhodamine ethyl ester-loaded cardiac myocytes decreased significantly in individual mitochondria by 8 h. This loss was heterogeneous, with a few energized mitochondria per myocyte remaining at 24 h. Total ATP levels remained high at 16 h. The DeltaPsi loss was delayed by cyclosporin A, a mitochondrial permeability transition inhibitor. Mitochondrial swelling accompanied changes in DeltaPsi. Carnitine palmitoyltransferase I activity fell at 16 h; this decline was accompanied by ceramide increases that paralleled decreased complex III activity. We conclude that carnitine palmitoyltransferase I inhibition, ceramide accumulation, and complex III inhibition are downstream events in cardiac apoptosis mediated by palmitate and occur independent of events leading to caspase 3-like activation.
Collapse
Affiliation(s)
- G C Sparagna
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
145
|
Mingatto FE, dos Santos AC, Rodrigues T, Pigoso AA, Uyemura SA, Curti C. Effects of nimesulide and its reduced metabolite on mitochondria. Br J Pharmacol 2000; 131:1154-60. [PMID: 11082123 PMCID: PMC1572426 DOI: 10.1038/sj.bjp.0703667] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. We investigated the effects of nimesulide, a recently developed non-steroidal anti-inflammatory drug, and of a metabolite resulting from reduction of the nitro group to an amine derivative, on succinate-energized isolated rat liver mitochondria incubated in the absence or presence of 20 microM Ca(2+), 1 microM cyclosporin A (CsA) or 5 microM ruthenium red. 2. Nimesulide uncoupled mitochondria through a protonophoretic mechanism and oxidized mitochondrial NAD(P)H, both effects presenting an EC(50) of approximately 5 microM. 3. Within the same concentration range nimesulide induced mitochondrial Ca(2+) efflux in a partly ruthenium red-sensitive manner, and induced mitochondrial permeability transition (MPT) when ruthenium red was added after Ca(2+) uptake by mitochondria. Nimesulide induced MPT even in de-energized mitochondria incubated with 0.5 mM Ca(2+). 4. Both Ca(2+) efflux and MPT were prevented to a similar extent by CsA, Mg(2+), ADP, ATP and butylhydroxytoluene, whereas dithiothreitol and N-ethylmaleimide, which markedly prevented MPT, had only a partial or no effect on Ca(2+) efflux, respectively. 5. The reduction of the nitro group of nimesulide to an amine derivative completely suppressed the above mitochondrial responses, indicating that the nitro group determines both the protonophoretic and NAD(P)H oxidant properties of the drug. 6. The nimesulide reduction product demonstrated a partial protective effect against accumulation of reactive oxygen species derived from mitochondria under conditions of oxidative stress like those resulting from the presence of t-butyl hydroperoxide. 7. The main conclusion is that nimesulide, on account of its nitro group, acts as a potent protonophoretic uncoupler and NAD(P)H oxidant on isolated rat liver mitochondria, inducing Ca(2+) efflux or MPT within a concentration range which can be reached in vivo, thus presenting the potential ability to interfere with the energy and Ca(2+) homeostasis in the liver cell.
Collapse
Affiliation(s)
- Fábio Erminio Mingatto
- Department of Physics & Chemistry, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antonio Cardozo dos Santos
- Department of Clinical, Toxicological & Bromatological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tiago Rodrigues
- Department of Physics & Chemistry, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Acácio Antonio Pigoso
- Department of Physics & Chemistry, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sérgio Akira Uyemura
- Department of Clinical, Toxicological & Bromatological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Curti
- Department of Physics & Chemistry, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Author for correspondence:
| |
Collapse
|
146
|
Arita K, Utsumi T, Kato A, Kanno T, Kobuchi H, Inoue B, Akiyama J, Utsumi K. Mechanism of dibucaine-induced apoptosis in promyelocytic leukemia cells (HL-60). Biochem Pharmacol 2000; 60:905-15. [PMID: 10974198 DOI: 10.1016/s0006-2952(00)00406-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dibucaine, a local anesthetic, inhibited the growth of promyelocytic leukemia cells (HL-60) without inducing arrest of the cell cycle and differentiation to granulocytes. Typical DNA fragmentation and DNA ladder formation were induced in a concentration- and time-dependent manner. The half-maximal concentration of dibucaine required to induce apoptosis was 100 microM. These effects were prevented completely by the pan-caspase inhibitor z-Val-Ala-Asp-(OMe)-fluoromethylketone (z-VAD-fmk), thereby implicating the cysteine aspartase (caspase) cascade in the process. Dibucaine activated various caspases, such as caspase-3, -6, -8, and -9 (-like) activities, but not caspase-1 (-like) activity, and induced mitochondrial membrane depolarization and the release of cytochrome c (Cyt.c) from mitochondria into the cytosol. Processing of pro-caspase-3, -8, and -9 by dibucaine was confirmed by western blot analysis. Bid, a death agonist member of the Bcl-2 family, was processed by caspases following exposure of cells to dibucaine. However, 100 microM dibucaine scarcely inhibited oxidative phosphorylation, but it induced membrane permeability transition in isolated rat liver mitochondria. Taken together, these data suggest that dibucaine induced apoptosis of HL-60 cells through activation of the caspase cascade in conjunction with Cyt.c release induced by a processed product of Bid and depolarization of the mitochondrial membrane potential.
Collapse
Affiliation(s)
- K Arita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, 753-8515, Yamaguchi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Jordani MC, Santos AC, Prado IM, Uyemura SA, Curti C. Flufenamic acid as an inducer of mitochondrial permeability transition. Mol Cell Biochem 2000; 210:153-8. [PMID: 10976768 DOI: 10.1023/a:1007185825101] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To assess the mechanism by which mitochondrial permeability transition (MPT) is induced by the nonpolar carboxylic acids, we investigated the effects of flufenamic acid (3'-trifluoromethyl diphenylamine-2-carboxylic acid, FA) on mitochondrial respiration, electrical transmembrane potential difference (delta psi), osmotic swelling, Ca2+ efflux, NAD(P)H oxidation and reactive oxygen species (ROS) generation. Succinate-energized isolated rat liver mitochondria incubated in the absence or presence of 10 microM Ca2+, 5 microM ruthenium red (RR) or 1 microM cyclosporin A (CsA) were used. The dose response-curves for both respiration release and delta psi dissipation were nearly linear, presenting an IC50 of approximately 10 microM and reaching saturation within 25-50 microM, indicating that FA causes mitochondrial uncoupling by a protonophoric mechanism. Within this same concentration range FA showed the ability to induce MPT in energized mitochondria incubated with 10 microM Ca2+, followed by delta psi dissipation and Ca2+ efflux, and even in deenergized mitochondria incubated with 0.5 mM Ca2+. ADP, Mg2+, trifluoperazine (TFP) and N-ethylmaleimide (NEM) reduced the extent of FA-promoted swelling in energized mitochondria by approximately one half, whereas dithiothreitol (DTT) slightly enhanced it. NAD(P)H oxidation and ROS generation (H2O2 production) by mitochondria were markedly stimulated by FA; these responses were partly prevented by CsA, suggesting that they may be implicated as both a cause and effect of FA-induced MPT. FA incubated with mitochondria under swelling assay conditions caused a decrease of approximately 40% in the content of protein thiol groups reacting with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). The present results are consistent with a ROS-intermediated sensitization of MPT by a direct or indirect FA interaction with inner mitochondrial membrane at a site which is in equilibrium with the NAD(P)H pool, namely thiol groups of integral membrane proteins.
Collapse
Affiliation(s)
- M C Jordani
- Department of Physics and Chemistry, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|
148
|
Abstract
The molecular cytotoxic mechanisms of hepatocyte cell death induced by CuCl2, an essential redox transition metal has been compared with CdCl2, an environmental toxin. The ED50 concentrations found for Cu2+ and Cd2+ (i.e. 50% membrane lysis in 2 h) were 50 and 20 microM respectively. However reactive oxygen species ('ROS') formation, GSH oxidation and lipid peroxidation were induced by Cu2+ at these concentrations much more rapidly than by Cd2+. The decline of mitochondrial membrane potential though occurred at the same time and to the same extent for both metals. Furthermore the cytotoxicity and decline of mitochondrial membrane potential induced by these metals was prevented by the 'ROS' scavengers dimethyl sulfoxide, mannitol, catalase or SOD, as well as by desferoxamine, N,N diphenylphenylenediamine or alpha-tocopherol succinate. Hepatocyte GSH was protective as GSH depleted hepatocytes were much more susceptible to Cu2+ and Cd2+ than normal hepatocytes. It is concluded that Cu2+-induced cytotoxicity occurs as a result of a mitochondrial 'ROS' formation independently of cytosolic 'ROS' formation due to redox cycling.
Collapse
Affiliation(s)
- J Pourahmad
- Faculty of Pharmacy, University of Toronto, Ont., Canada
| | | |
Collapse
|
149
|
Viola A, Lutz NW, Maroc C, Chabannon C, Julliard M, Cozzone PJ. Metabolic effects of photodynamically induced apoptosis in an erythroleukemic cell line. A (31)P NMR spectroscopic study of Victoria-Blue-BO-sensitized TF-1 cells. Int J Cancer 2000; 85:733-9. [PMID: 10699957 DOI: 10.1002/(sici)1097-0215(20000301)85:5<733::aid-ijc22>3.0.co;2-c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Victoria Blue BO (VB BO) is a new and promising photosensitizer currently being evaluated for photodynamic therapy (PDT). Its photochemical processes are mediated by oxygen radicals, but do not involve singlet oxygen. We used (31)P NMR spectroscopy of VB-BO sensitized TF-1 leukemic cells to gain further insight into the biochemical mechanisms underlying PDT-induced cell death. Sham-treatment experiments were performed to evaluate the effects of this photosensitizer in the absence of light irradiation. Significant metabolic differences were detected for TF-1 cells incubated with VB BO but not exposed to light, as compared with native cells (controls). These changes include reductions in phosphocreatine, UDP-hexose and phosphodiester levels (as percentage of total phosphate) and slightly reduced intracellular pH. Complete phosphocreatine depletion, significant acidification and concomitant inorganic-phosphate accumulation were observed for TF-1 cells irradiated after incubation with VB BO. Moreover, significant changes in phospholipid metabolites, i.e., accumulation of cytidine 5'-diphosphate choline and a decrease in phosphodiester levels, were observed for PDT-treated vs. sham-treated cells. Perturbations of phospholipid metabolism may be involved in programmed cell death, and the detection of a characteristic DNA ladder pattern by gel electrophoresis confirmed the existence of apoptosis in PDT-treated TF-1 cells.
Collapse
Affiliation(s)
- A Viola
- Laboratoire AM3, ESA-CNRS 6009, Faculté Saint-Jérôme, Marseille, France
| | | | | | | | | | | |
Collapse
|
150
|
Sakurai K, Stoyanovsky DA, Fujimoto Y, Cederbaum AI. Mitochondrial permeability transition induced by 1-hydroxyethyl radical. Free Radic Biol Med 2000; 28:273-80. [PMID: 11281295 DOI: 10.1016/s0891-5849(99)00236-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Impairment of mitochondrial functions has been found in ethanol-induced liver injury. Ethanol can be oxidized to the 1-hydroxyethyl radical (HER) by rat liver microsomal systems. Experiments were carried out to evaluate the ability of HER to cause mitochondrial swelling as an indicator of the mitochondrial permeability transition (MPT). Electron spin resonance (ESR) spectroscopy was used to detect HER and to study its interaction with mitochondria. The ESR signal intensity of the spin adduct formed from alpha-(4-pyridyl-1-oxide) N-tert-butylnitrone (POBN) and HER generated from either a thermic decomposition of 1,1'-dihydroxyazoethane (DHAE) or a Fenton reaction system containing ethanol was markedly diminished by the addition of mitochondria, indicating an interaction between HER and mitochondria. Exposure of rat liver mitochondria to HER generated from either system caused swelling, as reflected by a decrease in absorbance at 540 nm, in a HER concentration-dependent and a cyclosporin A-sensitive manner. Mitochondrial swelling was also induced in the Fenton reaction system without ethanol. The DHAE-dependent generation of HER in mitochondrial suspension resulted in a decrease of membrane protein thiols and collapse of the membrane potential (delta psi). The swelling induced by HER was prevented by glutathione and vitamin E, but not by superoxide dismutase. Catalase did not prevent the swelling caused by the acetaldehyde/hydroxylamine O-sulfonate (HOS) system, but was inhibitory in the Fenton reaction system with or without ethanol. These results indicate that HER, as well as hydroxyl radical, can induce the MPT, and suggest the possibility that the collapse of delta psi caused by HER may, at least in part, contribute to impairment of mitochondrial function caused by ethanol and in ethanol-induced liver injury.
Collapse
Affiliation(s)
- K Sakurai
- Department of Biochemistry, Hokkaido College of Pharmacy, Otaru Hokkaido, Japan
| | | | | | | |
Collapse
|