101
|
Brooks R, Eckmann CR, Jantsch MF. The double-stranded RNA-binding domains of Xenopus laevis ADAR1 exhibit different RNA-binding behaviors. FEBS Lett 1998; 434:121-6. [PMID: 9738463 DOI: 10.1016/s0014-5793(98)00963-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have cloned cDNAs encoding two versions of Xenopus double-stranded RNA adenosine deaminase (ADAR1). Like ADAR1 proteins from other species Xenopus ADAR1 contains three double-stranded RNA-binding domains (dsRBDs) which are most likely required for substrate binding and recognition of this RNA-editing enzyme. Analysis of mammalian ADAR1 identified the third dsRBD in this enzyme as most important for RNA binding. Here we analyzed the three dsRBDs of Xenopus ADAR1 for their in vitro RNA-binding behavior using two different assays. Northwestern assays identified the second dsRBD in the Xenopus protein as most important for RNA binding while in-solution assays demonstrated the importance of the third dsRBD for RNA binding. The differences between these two assays are discussed and we suggest that both the second and third dsRBD of Xenopus ADAR1 are important for RNA binding in vivo. We show further that all three dsRBDs can contribute to a cooperative binding effect.
Collapse
Affiliation(s)
- R Brooks
- Department of Cytology and Genetics, Institute of Botany, University of Vienna, Austria
| | | | | |
Collapse
|
102
|
Gomer RH. Antisense: a key tool for cell and developmental studies in Dictyostelium. GENETIC ENGINEERING 1998; 20:135-41. [PMID: 9666558 DOI: 10.1007/978-1-4899-1739-3_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- R H Gomer
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77081, USA
| |
Collapse
|
103
|
Joseph EM, Melton DA. Mutant Vg1 ligands disrupt endoderm and mesoderm formation in Xenopus embryos. Development 1998; 125:2677-85. [PMID: 9636082 DOI: 10.1242/dev.125.14.2677] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Xenopus Vg1 gene, a TGFbeta superfamily member, is expressed as a maternal mRNA localized to prospective endoderm, and mature Vg1 protein can induce both endodermal and mesodermal markers in embryonic cells. Most previous work on embryonic inducers, including activin, BMPs and Vg1, has relied on ectopic expression to assay for gene function. Here we employ a mutant ligand approach to block Vg1 signaling in developing embryos. The results indicate that Vg1 expression is essential for normal endodermal development and the induction of dorsal mesoderm in vivo.
Collapse
Affiliation(s)
- E M Joseph
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
104
|
Schlesinger RW, Husak PJ, Bradshaw GL, Panayotov PP. Mechanisms involved in natural and experimental neuropathogenicity of influenza viruses: evidence and speculation. Adv Virus Res 1998; 50:289-379. [PMID: 9521002 DOI: 10.1016/s0065-3527(08)60811-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- R W Schlesinger
- Department of Molecular Genetics and Microbiology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854-5635, USA
| | | | | | | |
Collapse
|
105
|
Abstract
The use of complementary RNA sequences such as antisense RNAs and ribozymes to regulate the expression of specific genes in eukaryotic cells has been well-documented, particularly with their application to both human gene therapy and plant biotechnology. Despite the simplicity of this approach, this technique usually results in only partial suppression of gene expression and, in some instances, even fails to regulate the gene of interest. The variation observed with antisense RNA and ribozyme-mediated regulation is further complicated by the many factors with the potential to impact on the effectiveness of these RNAs. Recent advances in the understanding of the global architecture of the nucleus, chromatin structure, and RNA metabolism provide useful and necessary information for designing novel approaches to improving antisense RNA and ribozyme regulation. These studies predict that the position of genes within the nucleus is not random and that transcripts produced from these genes follow specific tracks in migrating to the cell cytoplasm. These observations have the potential to impact significantly on the ways in which RNA-mediated forms of gene regulation are applied. The purpose of this review is to discuss the concept of colocalizing antisense RNAs and ribozymes with their target mRNAs and to introduce a variety of approaches aimed at achieving this goal.
Collapse
Affiliation(s)
- G M Arndt
- Department of Biology, University of Saskatchewan, Saskatoon, Canada.
| | | |
Collapse
|
106
|
Abstract
The use of synthetic antisense oligonucleotides as specific inhibitors of gene expression exploits the susceptibility of mRNA to functional blockade at several levels, including mRNA processing, transport, translation and degradation. It is becoming increasingly apparent that the actions of these synthetic oligomers are analogous to those of endogenous RNA molecules involved in the regulation of gene expression in both prokaryotes and eukaryotes. A growing number of eukaryotic genes are now thought to be regulated at least in part by natural antisense RNA transcribed from the presumptive non-coding DNA strand. This possibility is supported by the presence of a complex system of double-stranded (ds) RNA-specific proteins and dsRNA-induced signal transduction pathways in eukaryotic cells. The presence of functional open reading frames in a number of recognized natural antisense RNA transcripts indicates that, in addition to regulating gene function at the RNA level, the antisense strand of many genes may code for as yet unidentified proteins. In the present study we review the current literature on the role(s) played by natural antisense RNA in eukaryotic cells, with an emphasis on genes for which clear evidence of regulation, or potential regulation by natural antisense RNA is available.
Collapse
Affiliation(s)
- R Knee
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
107
|
Abstract
The type of RNA editing that converts adenosine to inosine in double-stranded RNA generates different isoforms of subunits of the ionotropic glutamate-gated ion channel receptors. Recently, it has been reported that the pre-mRNA of the serotonin 2C receptor can be edited by the same mechanism.
Collapse
Affiliation(s)
- M A O'Connell
- Department of Cell Biology, Biozentrum of the University of Basel, Klingelberstrasse 70, CH-4056, Basel, Switzerland.
| |
Collapse
|
108
|
Kumar M, Carmichael GG. Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts. Proc Natl Acad Sci U S A 1997; 94:3542-7. [PMID: 9108012 PMCID: PMC20475 DOI: 10.1073/pnas.94.8.3542] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Antisense RNA may regulate the expression of a number of eukaryotic genes, but little is known about its prevalence or mechanism of action. We have used a model system in which antisense control can be studied both genetically and biochemically. Late in polyoma virus infection, early-strand mRNA levels are down-regulated by nuclear antisense RNA from the late strand. Analysis of early-strand transcripts isolated late in infection revealed extensive base modifications. In many transcripts almost half of the adenosines were altered to inosines or guanosines. These results suggest modification of RNA duplexes by double-stranded RNA adenosine deaminase or a related enzyme. Probes that detect only modified RNAs revealed that these molecules are not highly unstable, but accumulate within the nucleus and are thus inert for gene expression. Antisense-induced modifications can account for most or all of the observed regulation, with the lowered levels of early-strand RNAs commonly observed late in infection resulting from the fact that many transcripts are invisible to standard hybridization probes. This work suggests that similar antisense-mediated control mechanisms may also operate under physiological conditions in uninfected eukaryotic cells, and leads to the proposal that there is a novel pool of nuclear RNAs that cannot be seen with many molecular probes heretofore used.
Collapse
Affiliation(s)
- M Kumar
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030-3205, USA
| | | |
Collapse
|
109
|
Role of Gene Overlap in the Regulation of mRNA Translation for Mitochondrial Cytochrome P-450c27/25 in the Rat. J Biol Chem 1997. [DOI: 10.1016/s0021-9258(19)67259-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
110
|
Abstract
We studied the effects in Xenopus embryos of overexpression of antisense RNA complementary to the messenger RNA of eFGF. We show that the expression of sense RNA can be severely depressed in the presence of an excess of antisense RNA. This occurs by both partial destruction of the message and by a depression of translation of the residual message. The diminution of inducing activity of eFGF, measured in animal cap assays either by activation of the Brachyury gene or by morphology, parallels the reduction of translation. Endogenous eFGF expression is reduced to a similar extent, again by a combination of mRNA destruction and inhibition of translation. This shows that the overexpression of antisense RNA is, contrary to general opinion, a potentially useful technique for studying gene function in Xenopus embryos. However, in the case of eFGF, there is little or no overall phenotypic effect on whole embryos. This is probably because of the presence of several other FGFs with overlapping expression domains in the early embryo.
Collapse
Affiliation(s)
- A Lombardo
- Developmental Biology Programme, School of Biology and Biochemistry, University of Bath, United Kingdom
| | | |
Collapse
|
111
|
Kola I, Sumarsono SH. Microinjection of in vitro transcribed RNA and antisense oligonucleotides in mouse oocytes and early embryos to study the gain- and loss-of-function of genes. Mol Biotechnol 1996; 6:191-9. [PMID: 8970172 DOI: 10.1007/bf02740773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mouse oocytes have proven useful in experiments aimed at studying gene function. They have been used to analyze the gain-of-function acquired after microinjection of RNA transcribed in vitro from specific gene constructs, and for establishing loss-of-function mutation obtained by injecting in vitro transcribed antisense RNA and/or synthetic oligonucleotides. This article presents protocols utilized in these studies. Specifically, the acquisition of mouse oocytes and/or embryos, the genesis of the necessary DNA and/or RNA to be used, and procedures for microinjection.
Collapse
Affiliation(s)
- I Kola
- Institute of Reproduction and Development, Monash University, Clayton, Vic., Australia.
| | | |
Collapse
|
112
|
Lallier TE, Whittaker CA, DeSimone DW. Integrin alpha 6 expression is required for early nervous system development in Xenopus laevis. Development 1996; 122:2539-54. [PMID: 8756298 DOI: 10.1242/dev.122.8.2539] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The integrin alpha 6 subunit pairs with both the beta 1 and beta 4 subunits to form a subfamily of laminin receptors. Here we report the cDNA cloning and primary sequence for the Xenopus homologue of the mammalian integrin alpha 6 subunit. We present data demonstrating the spatial and temporal expression of alpha 6 mRNA and protein during early development. Initially, alpha 6 transcripts are expressed in the dorsal ectoderm and future neural plate at the end of gastrulation. Later in development, alpha 6 mRNAs are expressed in a variety of neural derivatives, including the developing sensory placodes (otic and olfactory) and commissural neurons within the neural tube. Integrin alpha 6 is also expressed in the elongating pronephric duct as well as a subset of the rhombencephalic neural crest, which will form the Schwann cells lining several cranial nerves (VII, VIII and X). In vivo expression of an alpha 6 antisense transcript in the animal hemisphere leads to a reduction in alpha 6 protein expression, a loss of adhesion to laminin, and severe defects in normal development. In 35% of cases, reduced levels of alpha 6 expression result in embryos that complete gastrulation normally but arrest at neurulation prior to the formation of the neural plate. In an additional 22% of cases, embryos develop with severe axial defects, including complete loss of head or tail structures. In contrast, overexpression of the alpha 6 subunit by injection of full-length mRNA has no apparent effect on embryonic development. Co-injection of antisense and sense plasmid constructs results in a partial rescue of the antisense-generated phenotypes. These data indicate that the integrin alpha 6 subunit is critical for the early development of the nervous system in amphibians.
Collapse
Affiliation(s)
- T E Lallier
- Department of Cell Biology, University of Virginia, Charlottesville 22908, USA
| | | | | |
Collapse
|
113
|
Dagle JM, Weeks DL. Positively charged oligonucleotides overcome potassium-mediated inhibition of triplex DNA formation. Nucleic Acids Res 1996; 24:2143-9. [PMID: 8668547 PMCID: PMC145908 DOI: 10.1093/nar/24.11.2143] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The formation of triplex DNA using unmodified, purine-rich oligonucleotides (ODNs) is inhibited by physiologic levels of potassium. Changing negative phosphodiester bonds in a triplex forming oligonucleotide (TFO) to neutral linkages causes a small increase in triplex formation. When phosphodiester bonds in a TFO are converted to positively-charged linkages the formation of triplex DNA increases dramatically. In the absence of KCl, a 17mer TFO containing 11 positively-charged linkages at a concentration of 0.2 microM converts essentially all of a 30 bp target duplex to a triplex. Less than 15% of the target duplex is shifted by 2 microMolar of the unmodified TFO. In 130 mM KCl, triplex formation is undetectable using the unmodified TFO, while triplex formation is nearly complete with 2 microM positively-charged TFO. With increasing potassium, TFOs containing a higher proportion of modified linkages show enhanced triplex formation compared with those less modified. In contrast with unmodified TFOs, triplex formation with more heavily modified TFOs can occur in the absence of divalent cations. We conclude that replacement of phosphodiester bonds with positively-charged phosphoramidate linkages results in more efficient triplex formation, suggesting that these compounds may prove useful for in vivo applications.
Collapse
Affiliation(s)
- J M Dagle
- Department of Pediatrics, The University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
114
|
Affiliation(s)
- A Herbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
115
|
Nicholson AW. Structure, reactivity, and biology of double-stranded RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 52:1-65. [PMID: 8821257 DOI: 10.1016/s0079-6603(08)60963-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A W Nicholson
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| |
Collapse
|
116
|
Affiliation(s)
- A Herbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
117
|
Patterson JB, Samuel CE. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol 1995; 15:5376-88. [PMID: 7565688 PMCID: PMC230787 DOI: 10.1128/mcb.15.10.5376] [Citation(s) in RCA: 445] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A 6,474-nucleotide human cDNA clone designated K88, which encodes double-stranded RNA (dsRNA)-specific adenosine deaminase, was isolated in a screen for interferon (IFN)-regulated cDNAs. Northern (RNA) blot analysis revealed that the K88 cDNA hybridized to a single major transcript of approximately 6.7 kb in human cells which was increased about fivefold by IFN treatment. Polyclonal antisera prepared against K88 cDNA products expressed in Escherichia coli as glutathione S-transferase (GST) fusion proteins recognized two proteins by Western (immunoblot) analysis. An IFN-induced 150-kDa protein and a constitutively expressed 110-kDa protein whose level was not altered by IFN treatment were detected in human amnion U and neuroblastoma SH-SY5Y cell lines. Only the 150-kDa protein was detected in mouse fibroblasts with antiserum raised against the recombinant human protein; the mouse 150-kDa protein was IFN inducible. Immunofluorescence microscopy and cell fractionation analyses showed that the 110-kDa protein was exclusively nuclear, whereas the 150-kDa protein was present in both the cytoplasm and nucleus of human cells. The amino acid sequence deduced from the K88 cDNA includes three copies of the highly conserved R motif commonly found in dsRNA-binding proteins. Both the 150-kDa and the 110-kDa proteins prepared from human nuclear extracts bound to double-stranded but not to single-stranded RNA affinity columns. Furthermore, E. coli-expressed GST-K88 fusion proteins that included the R motif possessed dsRNA-binding activity. Extracts prepared either from K88 cDNA-transfected cells or from IFN-treated cells contained increased dsRNA-specific adenosine deaminase enzyme activity. These results establish that K88 encodes an IFN-inducible dsRNA-specific adenosine deaminase and suggest that at least two forms of dsRNA-specific adenosine deaminase occur in human cells.
Collapse
Affiliation(s)
- J B Patterson
- Department of Biological Sciences, University of California, Santa Barbara 93106, USA
| | | |
Collapse
|
118
|
Abstract
In this report, we describe a recombinant provirus generated during in vitro passage that contains a short region of adenosine-to-guanosine hypermutation. The hypermutated region is restricted to complementary sequences present in the recombinant provirus. We propose that a duplex was formed in the recombinant RNA prior to reverse transcription. This duplex was a substrate for double-stranded RNA adenosine deaminase, an activity found in all cells examined that deaminates A in double-stranded RNA, converting it to inosine, which is further converted to a guanosine by reverse transcription. It appears that cis viral sequences facilitated the A-->G transitions.
Collapse
Affiliation(s)
- A M Hajjar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
119
|
Baranyi L, Campbell W, Ohshima K, Fujimoto S, Boros M, Okada H. The antisense homology box: a new motif within proteins that encodes biologically active peptides. Nat Med 1995; 1:894-901. [PMID: 7585214 DOI: 10.1038/nm0995-894] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Amphiphilic peptides approximately fifteen amino acids in length and their corresponding antisense peptides exist within protein molecules. These regions (termed antisense homology boxes) are separated by approximately fifty amino acids. Because many sense-antisense peptide pairs have been reported to recognize and bind to each other, antisense homology boxes may be involved in folding, chaperoning and oligomer formation of proteins. The antisense homology box-derived peptide CALSVDRYRAVASW, a fragment of human endothelin A receptor, proved to be a specific inhibitor of endothelin peptide (ET-1) in a smooth muscle relaxation assay. The peptide was able to block endotoxin-induced shock in rats as well. Our finding of endothelin receptor inhibitor among antisense homology box-derived peptides indicates that searching proteins for this new motif may be useful in finding biologically active peptides.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Computer Simulation
- DNA, Antisense/genetics
- Drug Design
- Endothelins/antagonists & inhibitors
- Endotoxins/toxicity
- Humans
- Models, Molecular
- Molecular Chaperones/chemistry
- Molecular Chaperones/genetics
- Molecular Sequence Data
- Muscle, Smooth, Vascular/drug effects
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/pharmacology
- Protein Binding
- Protein Conformation
- Protein Folding
- Protein Structure, Tertiary
- Rats
- Receptor, Endothelin A
- Receptors, Endothelin/chemistry
- Receptors, Endothelin/genetics
- Sequence Homology, Amino Acid
- Shock, Septic/chemically induced
- Shock, Septic/prevention & control
- Structure-Activity Relationship
Collapse
Affiliation(s)
- L Baranyi
- Choju Medical Institute, Noyori Fukushimura Hospital, Toyohashi, Japan
| | | | | | | | | | | |
Collapse
|
120
|
Woolf TM, Chase JM, Stinchcomb DT. Toward the therapeutic editing of mutated RNA sequences. Proc Natl Acad Sci U S A 1995; 92:8298-302. [PMID: 7545300 PMCID: PMC41144 DOI: 10.1073/pnas.92.18.8298] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
If RNA editing could be rationally directed to mutated RNA sequences, genetic diseases caused by certain base substitutions could be treated. Here we use a synthetic complementary RNA oligonucleotide to direct the correction of a premature stop codon mutation in dystrophin RNA. The complementary RNA oligonucleotide was hybridized to a premature stop codon and the hybrid was treated with nuclear extracts containing the cellular enzyme double-stranded RNA adenosine deaminase. When the treated RNAs were translated in vitro, a dramatic increase in expression of a downstream luciferase coding region was observed. The cDNA sequence data are consistent with deamination of the adenosine in the UAG stop codon to inosine by double-stranded RNA adenosine deaminase. Injection of oligonucleotide-mRNA hybrids into Xenopus embryos also resulted in an increase in luciferase expression. These experiments demonstrate the principle of therapeutic RNA editing.
Collapse
Affiliation(s)
- T M Woolf
- Ribozyme Pharmaceuticals, Inc., Boulder, CO 80301, USA
| | | | | |
Collapse
|
121
|
Herbert A, Lowenhaupt K, Spitzner J, Rich A. Chicken double-stranded RNA adenosine deaminase has apparent specificity for Z-DNA. Proc Natl Acad Sci U S A 1995; 92:7550-4. [PMID: 7638229 PMCID: PMC41377 DOI: 10.1073/pnas.92.16.7550] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A M(r) 140,000 protein has been purified from chicken lungs to apparent homogeneity. The protein binds with high affinity to a non-BNA conformation, which is most likely to the Z-DNA. The protein also has a binding site for double-stranded RNA (dsRNA). Peptide sequences from this protein show similarity to dsRNA adenosine deaminase, an enzyme that deaminates adenosine in dsRNA to form inosine. Assays for this enzyme confirm that dsRNA adenosine deaminase activity and Z-DNA binding are properties of the same molecule. The coupling of these two activities in a single molecule may indicate a distinctive mechanism of gene regulation that is, in part, dependent on DNA topology. As such, DNA topology, through its effects on the efficiency and extent of RNA editing may be important in the generation of new phenotypes during evolution.
Collapse
Affiliation(s)
- A Herbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
122
|
Nichols A, Rungger-Brändle E, Muster L, Rungger D. Inhibition of Xhox1A gene expression in Xenopus embryos by antisense RNA produced from an expression vector read by RNA polymerase III. Mech Dev 1995; 52:37-49. [PMID: 7577674 DOI: 10.1016/0925-4773(95)00387-g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Antisense inhibition of gene expression during Xenopus development was obtained by injecting, into the zygote, an expression vector carrying the adenovirus VAI gene read by RNA polymerase III. This vector yields high levels of antisense RNA in most embryonic cells between mid-blastula transition and tailbud stage. As a target we chose the Xenopus homeobox gene Xhox1A. A 26 bp long oligonucleotide, including the initiation codon of this gene, was inserted in opposite polarity into the vector. Antisense treatment reduces Xhox1A mRNA in embryos up to stage 22 and Xhox1A protein expression up to stage 30. Half of the antisense-treated embryos develop a characteristic phenotype with disorganized somites in the anterior trunk and delayed development of the intestinal tract.
Collapse
Affiliation(s)
- A Nichols
- Station de Zoologie expérimentale, University of Geneva, Chêne-Bougeries, Switzerland
| | | | | | | |
Collapse
|
123
|
Moulds C, Lewis JG, Froehler BC, Grant D, Huang T, Milligan JF, Matteucci MD, Wagner RW. Site and mechanism of antisense inhibition by C-5 propyne oligonucleotides. Biochemistry 1995; 34:5044-53. [PMID: 7536034 DOI: 10.1021/bi00015a015] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antisense gene inhibition occurs when an oligonucleotide (ON) has sufficient binding affinity such that it hybridizes its reverse complementary target RNA and prevents translation either by causing inactivation of the RNA (possibly by RNase H) or by interfering with a cellular process such as stalling a ribosome. The mechanisms underlying these processes were explored. Cellular antisense inhibition was evaluated in a microinjection assay using ON modifications which precluded or allowed in vitro RNase H cleavage of ON/RNA hybrids. RNase H-independent inhibition of protein synthesis could be achieved by targeting either the 5'-untranslated region or the 5'-splice junction of SV40 large T antigen using 2'-O-allyl phosphodiester ONs which contained C-5 propynylpyrimidines (C-5 propyne). Inhibition at both sites was 20-fold less active than inhibition using RNase H-competent C-5 propyne 2'-deoxy phosphorothioate ONs. In vitro analysis of association and dissociation of the two classes of ONs with complementary RNA showed that the C-5 propyne 2'-O-allyl phosphodiester ON bound to RNA as well as the C-5 propyne 2'-deoxy phosphorothioate ON. In vitro translation assays suggested that the two classes of ONs should yield equivalent antisense effects in the absence of RNase H. Next, ON/T antigen RNA hybrids were injected into the nuclei and cytoplasm of cells. Injection of C-5 propyne 2'-O-allyl phosphodiester ON/RNA hybrids resulted in expression of T antigen, implying that the ONs dissociated from the RNA in cells which likely accounted for their low potency. In contrast, when C-5 propyne 2'-deoxy phosphorothioate ON/T antigen RNA complexes were injected into the nucleus, the duplexes were stable enough to completely block T antigen translation, presumably by RNA inactivation. Thus, a dramatic finding is that C-5 propyne 2'-deoxy phosphorothioate ONs, once hybridized to RNA, are completely effective at preventing mRNA translation. The implication is that further increases in complex stability coupled with effective RNase H cleavage will not result in enhanced potency. We predict that the development of more effective ONs will only come from modifications which increase the rate of ON/RNA complex formation within the nucleus.
Collapse
Affiliation(s)
- C Moulds
- Gilead Sciences, Foster City, California 94404, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
It has been postulated that the cellular double-stranded (ds) RNA adenosine deaminase enzyme is responsible for biased hypermutation during persistent SSPE measles infections in humans. As a test of this hypothesis we studied the effect of negative-strand RNA virus infection on enzyme activity. The adenosine deaminase activity was found in nuclear extracts of both uninfected CV-1 and A549 cells and in cytoplasmic extracts of A549, but not CV-1, cells. During measles or Sendai virus infection of either CV-1 or A549 cells the adenosine deaminase activity in the nucleus remained fairly constant up to 24 h post infection, and there was no apparent re-partitioning of the enzyme between the nucleus and the cytoplasm. Transcription complexes of Sendai virus in vitro or measles virus in vivo did not serve as substrates for the enzyme. These data suggest that even though some portion of the adenosine deaminase enzyme may be present in the cytoplasm of at least some cells during virus infection, modification of the viral RNAs by this enzyme, if it occurs at all, must be at a very low level not directly detectable by biochemical analysis.
Collapse
Affiliation(s)
- S M Horikami
- Department of Immunology and Medical Microbiology, University of Florida College of Medicine, Gainesville 32610, USA
| | | |
Collapse
|
125
|
O'Connell MA, Krause S, Higuchi M, Hsuan JJ, Totty NF, Jenny A, Keller W. Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol Cell Biol 1995; 15:1389-97. [PMID: 7862132 PMCID: PMC230363 DOI: 10.1128/mcb.15.3.1389] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Double-stranded RNA (dsRNA)-specific adenosine deaminase converts adenosine to inosine in dsRNA. The protein has been purified from calf thymus, and here we describe the cloning of cDNAs encoding both the human and rat proteins as well as a partial bovine clone. The human and rat clones are very similar at the amino acid level except at their N termini and contain three dsRNA binding motifs, a putative nuclear targeting signal, and a possible deaminase motif. Antibodies raised against the protein encoded by the partial bovine clone specifically recognize the calf thymus dsRNA adenosine deaminase. Furthermore, the antibodies can immunodeplete a calf thymus extract of dsRNA adenosine deaminase activity, and the activity can be restored by addition of pure bovine deaminase. Staining of HeLa cells confirms the nuclear localization of the dsRNA-specific adenosine deaminase. In situ hybridization in rat brain slices indicates a widespread distribution of the enzyme in the brain.
Collapse
Affiliation(s)
- M A O'Connell
- Department of Cell Biology, University of Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
126
|
Pannese M, Polo C, Andreazzoli M, Vignali R, Kablar B, Barsacchi G, Boncinelli E. The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 1995; 121:707-20. [PMID: 7720578 DOI: 10.1242/dev.121.3.707] [Citation(s) in RCA: 318] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this paper we study Xotx2, a Xenopus homeobox gene related to orthodenticle, a gene expressed in the developing head of Drosophila. The murine cognate, Otx2, is first expressed in the entire epiblast of prestreak embryos and later in very anterior regions of late-gastrulae, including the neuroectoderm of presumptive fore- and mid-brain. In Xenopus, RNase protection experiments reveal that Xotx2 is expressed at low levels throughout early development from unfertilized egg to late blastula, when its expression level significantly increases. Whole-mount in situ hybridization shows a localized expression in the dorsal region of the marginal zone at stage 9.5. At stage 10.25 Xotx2 is expressed in dorsal bottle cells and in cells of the dorsal deep zone fated to give rise to prechordal mesendoderm, suggesting a role in the specification of very anterior structures. In stage 10.5 gastrulae, Xotx2 transcripts start to be detectable also in presumptive anterior neuroectoderm, where they persist in subsequent stages. Various treatments of early embryos cause a general reorganization of Xotx2 expression. In particular, retinoic acid treatment essentially abolishes Xotx2 expression in neuroectoderm. Microinjection of Xotx2 mRNA in 1-, 2- and 4-cell stage embryos causes the appearance of secondary cement glands and partial secondary axes in embryos with reduced trunk and tail structures. The presence of the Xotx2 homeodomain is required to produce these effects. In particular, this homeodomain contains a specific lysine residue at position 9 of the recognition helix. Microinjected transcripts of Xotx2 constructs containing a homeodomain where this lysine is substituted by a glutamine or a glutamic acid residue fail to cause these effects.
Collapse
Affiliation(s)
- M Pannese
- DIBIT, Istituto Scientifico H. S. Raffaele, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
Interspersed RNA is an abundant class of cytoplasmic poly(A)+ RNA which contains repetitive elements within mostly heterogeneous single copy sequences. In spite of its quantitative importance in oocytes or eggs (two-thirds of the total poly(A)+ RNA), very little is known about its synthesis, its interaction with other molecules, and its functional significance. Here, we analysed a prevalent family of interspersed RNA (XR family) during Xenopus oogenesis. We found that XR interspersed RNA, unlike extracted interspersed RNA, did not form RNA duplexes in vivo. In small oocytes (stage III), XR RNA interacted with proteins forming rapidly sedimenting ribonucleoprotein particles (RNPs) with a median sedimentation constant of 80S. However, towards the end of oogenesis (stage VI), these XR RNPs changed into smaller particles with a median sedimentation constant of 40S. By analysing the proteins associated with XR RNA sequence, we have identified a 42 kilodalton protein in small oocytes, which was replaced by a 45 kilodalton protein at stage V of oogenesis.
Collapse
Affiliation(s)
- C Liu
- Department of Developmental and Cell Biology, University of California at Irvine, USA
| | | |
Collapse
|
128
|
[6] Hybrid arrest screening in oocytes. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1043-9471(05)80036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
129
|
Woolf TM. To cleave or not to cleave: ribozymes and antisense. ANTISENSE RESEARCH AND DEVELOPMENT 1995; 5:227-32. [PMID: 8785479 DOI: 10.1089/ard.1995.5.227] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- T M Woolf
- Ontogeny, Inc., Cambridge, MA 02139, USA
| |
Collapse
|
130
|
Abstract
RNA genomes evolve largely on the basis of single point mutations introduced by imprecise RNA polymerases, or by recombination. Clusters of certain transitions (biased hypermutations) were detected first in the genomes of persistent viruses, and in the past year have also been found in the genomes of lytic RNA viruses. A cellular RNA-modifying enzyme probably introduces the clustered transitions and thus contributes to the evolution of RNA viruses.
Collapse
Affiliation(s)
- R Cattaneo
- Institut für Molekularbiologie I, Universität Zürich, Switzerland
| |
Collapse
|
131
|
Polson AG, Bass BL. Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J 1994; 13:5701-11. [PMID: 7527340 PMCID: PMC395536 DOI: 10.1002/j.1460-2075.1994.tb06908.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Double-stranded RNA adenosine deaminase (dsRAD), previously called the double-stranded RNA (dsRNA) unwinding/modifying activity, modifies adenosines to inosines within dsRNA. We used ribonuclease U2 and a mutant of ribonuclease T1 to map the sites of modification in several RNA duplexes. We found that dsRAD had a 5' neighbor preference (A = U > C > G) but no apparent 3' neighbor preference. Further, the proximity of the strand termini affected whether an adenosine was modified. Most importantly, dsRAD exhibited selectivity, modifying a minimal number of adenosines in short dsRNAs. Our results suggest that the specific editing of glutamate receptor subunit B mRNA could be performed in vivo by dsRAD without the aid of specificity factors, and support the hypothesis that dsRAD is responsible for hypermutations in certain RNA viruses.
Collapse
Affiliation(s)
- A G Polson
- Howard Hughes Medical Institute, Department of Biochemistry, University of Utah, Salt Lake City 84132
| | | |
Collapse
|
132
|
Johansson HE, Belsham GJ, Sproat BS, Hentze MW. Target-specific arrest of mRNA translation by antisense 2'-O-alkyloligoribonucleotides. Nucleic Acids Res 1994; 22:4591-8. [PMID: 7984406 PMCID: PMC308505 DOI: 10.1093/nar/22.22.4591] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We describe a novel experimental approach to investigate mRNA translation. Antisense 2'-O-allyl oligoribonucleotides (oligos) efficiently arrest translation of targeted mRNAs in rabbit reticulocyte lysate and wheat germ extract while displaying minimal non-specific effects on translation. Oligo/mRNA-hybrids positioned anywhere within the 5' UTR or the first approximately 20 nucleotides of the open reading frame block cap-dependent translation initiation with high specificity. The thermodynamic stability of hybrids between 2'-O-alkyl oligos and RNA permits translational inhibition with oligos as short as 10 nucleotides. This inhibition is independent of RNase H cleavage or modifications which render the mRNA untranslatable. We show that 2'-O-alkyl oligos can also be employed to interfere with cap-independent internal initiation of translation and to arrest translation elongation. The latter is accomplished by UV-crosslinking of psoralen-tagged 2'-O-methyloligoribonucleotides to the mRNA within the open reading frame. The utility of 2'-O-alkyloligoribonucleotides to arrest translation from defined positions within an mRNA provides new approaches to investigate mRNA translation.
Collapse
Affiliation(s)
- H E Johansson
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
133
|
O'Connell MA, Keller W. Purification and properties of double-stranded RNA-specific adenosine deaminase from calf thymus. Proc Natl Acad Sci U S A 1994; 91:10596-600. [PMID: 7937998 PMCID: PMC45068 DOI: 10.1073/pnas.91.22.10596] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A double-stranded RNA-specific adenosine deaminase, which converts adenosine to inosine, has been purified to homogeneity from calf thymus. The enzyme was purified approximately 340,000-fold by a series of column chromatography steps. The enzyme consists of a single polypeptide with a molecular mass of 116 kDa as determined by electrophoresis on a SDS/polyacrylamide gel. The native protein sediments at 4.2 s in glycerol gradients and has a Stokes radius of 42 A upon gel-filtration chromatography. This leads to an estimate of approximately 74,100 for the native molecular weight, suggesting that the enzyme exists as a monomer in solution. Enzyme activity is optimal at 0.1 M KCl and 37 degrees C. Divalent metal ions or ATP is not required for activity. The Km for double-stranded RNA substrate is approximately 7 x 10(-11) M. The Vmax is approximately 10(-9) mol of inosine produced per min per mg and the Kcat is 0.13 min-1.
Collapse
Affiliation(s)
- M A O'Connell
- Department of Cell Biology, University of Basel, Switzerland
| | | |
Collapse
|
134
|
Egebjerg J, Kukekov V, Heinemann SF. Intron sequence directs RNA editing of the glutamate receptor subunit GluR2 coding sequence. Proc Natl Acad Sci U S A 1994; 91:10270-4. [PMID: 7937939 PMCID: PMC45001 DOI: 10.1073/pnas.91.22.10270] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Ca2+ permeability and the rectifying properties of the glutamate receptors assembled from the subunits GluR1-GluR4 depend upon a critical Arg in the GluR2 subunit located in a domain that has been proposed to span the membrane. The GluR2 subunit gene encodes a Gln (CAG) at this position, whereas the mRNA is edited so that it encodes an Arg (CGG) at this position [Sommer, B., Kohler, M., Sprengel, R. & Seeburg, P. H. (1991) Cell 67, 11-20]. The editing process is specific since only the GluR2 subunit RNA is edited even though the GluR1, GluR3, and GluR4 RNAs have a similar sequence. We show that this selective RNA editing depends upon a critical intron sequence in the GluR2 gene. This critical intron sequence is sufficient to cause editing of the GluR3 subunit exon in a chimera minigene constructed so that the GluR3 exon is placed upstream to the GluR2 intron sequence. Transfections of a neuronal cell line, N2a, with minigene constructs encoding different fragments of the GluR2 gene demonstrate that the 5' part of the 3' intron is essential for editing. Part of the exon and this critical intron sequence contains an inverted repeat that can fold into a structure consisting of three helical elements. Similar conclusions were reached by Higuchi, M., Single, F. n., Köhler, M., Sommer, B., Sprengel, R. & Seeburg, P. H. [(1993) Cell 75, 1361-1370]. These experiments demonstrate that the low Ca2+ permeability of the ionotropic non-N-methyl-D-aspartate glutamate receptors depends upon RNA editing, which requires a sequence in an intron 3' to the exon.
Collapse
Affiliation(s)
- J Egebjerg
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | | | | |
Collapse
|
135
|
The cytoplasm of Xenopus oocytes contains a factor that protects double-stranded RNA from adenosine-to-inosine modification. Mol Cell Biol 1994. [PMID: 8035819 DOI: 10.1128/mcb.14.8.5425] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Here we describe studies of double-stranded RNA (dsRNA) adenosine deaminase in Xenopus laevis, in particular during meiotic maturation, the period during which a stage VI oocyte matures to an egg. We show that dsRNA adenosine deaminase is in the nuclei of stage VI oocytes. Most importantly, we demonstrate that the cytoplasm of stage VI oocytes contains a factor that protects microinjected dsRNA from deamination when dsRNA adenosine deaminase is released from the nucleus during meiotic maturation. Our data suggest that the protection factor is a cytoplasmic dsRNA-binding protein or proteins that bind to dsRNA in a sequence-independent manner to occlude dsRNA from binding to dsRNA adenosine deaminase. The cytoplasmic double-stranded RNA-binding protein(s) does not bind to other nucleic acids and can be titrated at high concentrations of dsRNA. These studies raise the question of whether all dsRNA-binding proteins share endogenous substrates and also suggest potential means of regulating dsRNA adenosine deaminase in vivo.
Collapse
|
136
|
Klein PS, Melton DA. Induction of mesoderm in Xenopus laevis embryos by translation initiation factor 4E. Science 1994; 265:803-6. [PMID: 8047887 DOI: 10.1126/science.8047887] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The microinjection of messenger RNA encoding the eukaryotic translation initiation factor 4E (eIF-4E) into early embryos of Xenopus laevis leads to the induction of mesoderm in ectodermal explants. This induction occurs without a stimulation of overall protein synthesis and is blocked by the co-expression of a dominant negative mutant of the proto-oncogene ras or a truncated activin type II receptor. Although other translation factors have been studied in vertebrate and invertebrate embryos, none have been shown to play a direct role in development. The results here suggest a mechanism for relaying and amplifying signals for mesoderm induction.
Collapse
Affiliation(s)
- P S Klein
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
137
|
Saccomanno L, Bass BL. The cytoplasm of Xenopus oocytes contains a factor that protects double-stranded RNA from adenosine-to-inosine modification. Mol Cell Biol 1994; 14:5425-32. [PMID: 8035819 PMCID: PMC359061 DOI: 10.1128/mcb.14.8.5425-5432.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Here we describe studies of double-stranded RNA (dsRNA) adenosine deaminase in Xenopus laevis, in particular during meiotic maturation, the period during which a stage VI oocyte matures to an egg. We show that dsRNA adenosine deaminase is in the nuclei of stage VI oocytes. Most importantly, we demonstrate that the cytoplasm of stage VI oocytes contains a factor that protects microinjected dsRNA from deamination when dsRNA adenosine deaminase is released from the nucleus during meiotic maturation. Our data suggest that the protection factor is a cytoplasmic dsRNA-binding protein or proteins that bind to dsRNA in a sequence-independent manner to occlude dsRNA from binding to dsRNA adenosine deaminase. The cytoplasmic double-stranded RNA-binding protein(s) does not bind to other nucleic acids and can be titrated at high concentrations of dsRNA. These studies raise the question of whether all dsRNA-binding proteins share endogenous substrates and also suggest potential means of regulating dsRNA adenosine deaminase in vivo.
Collapse
Affiliation(s)
- L Saccomanno
- Department of Biochemistry, University of Utah, Salt Lake City 84132
| | | |
Collapse
|
138
|
Xiao Q, Sharp TV, Jeffrey IW, James MC, Pruijn GJ, van Venrooij WJ, Clemens MJ. The La antigen inhibits the activation of the interferon-inducible protein kinase PKR by sequestering and unwinding double-stranded RNA. Nucleic Acids Res 1994; 22:2512-8. [PMID: 7518914 PMCID: PMC308203 DOI: 10.1093/nar/22.13.2512] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The La (SS-B) autoimmune antigen is an RNA-binding protein that is present in both nucleus and cytoplasm of eukaryotic cells. The spectrum of RNAs that interact with the La antigen includes species which also bind to the interferon-inducible protein kinase PKR. We have investigated whether the La antigen can regulate the activity of PKR and have observed that both the autophosphorylation of the protein kinase that accompanies its activation by dsRNA and the dsRNA-dependent phosphorylation of the alpha subunit of polypeptide chain initiation factor eIF-2 by PKR are inhibited in the presence of recombinant La antigen. This inhibition is partially relieved at higher concentrations of dsRNA. Once activated by dsRNA the protein kinase activity of PKR is insensitive to the La antigen. We have demonstrated by a filter binding assay that La is a dsRNA binding protein. Furthermore, when recombinant La is incubated with a 900 bp synthetic dsRNA or with naturally occurring reovirus dsRNA it converts these substrates to single-stranded forms. We conclude that the La antigen inhibits the dsRNA-dependent activation of PKR by binding and unwinding dsRNA and that it may therefore play a role in the regulation of this protein kinase in interferon-treated or virus-infected cells.
Collapse
Affiliation(s)
- Q Xiao
- Department of Cellular and Molecular Sciences, St George's Hospital Medical School, London, UK
| | | | | | | | | | | | | |
Collapse
|
139
|
Kim U, Garner T, Sanford T, Speicher D, Murray J, Nishikura K. Purification and characterization of double-stranded RNA adenosine deaminase from bovine nuclear extracts. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36857-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
140
|
Laabi Y, Gras MP, Brouet JC, Berger R, Larsen CJ, Tsapis A. The BCMA gene, preferentially expressed during B lymphoid maturation, is bidirectionally transcribed. Nucleic Acids Res 1994; 22:1147-54. [PMID: 8165126 PMCID: PMC523635 DOI: 10.1093/nar/22.7.1147] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In a previous study of a t(4;16)(q26;p13) translocation, found in a human malignant T-cell lymphoma the BCMA gene, located on chromosome band 16p13.1, has been characterized. In this study we show that the BCMA gene is organized into three exons and its major initiation transcription site is located 69 nucleotides downstream of a TATA box. RNase protection assays demonstrated that the BCMA gene is preferentially expressed in mature B cells, suggesting a role for this gene in the B-cell developmental process. A cDNA complementary to the BCMA cDNA was cloned and sequenced and its presence was assessed by RNase protection assay and anchor-PCR amplification. This antisense-BCMA RNA is transcribed from the same locus as BCMA, and exhibits mRNA characteristic features, e.g. polyadenylation and splicing. It also contains an ORF encoding a putative 115 aa polypeptide, presenting no homology with already known sequences. RNase protection assays demonstrated the simultaneous expression of natural sense and antisense-BCMA transcripts in the majority of human B-cell lines tested.
Collapse
MESH Headings
- Amino Acid Sequence
- B-Cell Maturation Antigen
- B-Lymphocytes/metabolism
- Base Sequence
- Blotting, Southern
- Cell Differentiation
- Cells, Cultured
- Chromosomes, Human, Pair 16
- Cloning, Molecular
- DNA
- Exons
- Humans
- Interleukin-2/genetics
- Lymphoma, T-Cell
- Molecular Sequence Data
- Poly A
- Proteins/genetics
- Proteins/metabolism
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor
- Ribonucleases
- TATA Box
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- Y Laabi
- INSERM U301, Institut de Génétique Moléculaire, Paris, France
| | | | | | | | | | | |
Collapse
|
141
|
Dekker EJ, Vaessen MJ, van den Berg C, Timmermans A, Godsave S, Holling T, Nieuwkoop P, Geurts van Kessel A, Durston A. Overexpression of a cellular retinoic acid binding protein (xCRABP) causes anteroposterior defects in developing Xenopus embryos. Development 1994; 120:973-85. [PMID: 7600972 DOI: 10.1242/dev.120.4.973] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have isolated the first Xenopus laevis cDNA coding for a cellular retinoic acid binding protein (xCRABP). xCRABP contains a single open reading frame, coding for an approximately 15 × 10(3) M(r) protein. Northern blot analysis shows that this cDNA hybridizes to a mRNA that is expressed both maternally and zygotically and which already reaches maximal expression during gastrulation (much earlier than previously described CRABP genes from other species). In situ hybridisation showed that at the onset of gastrulation, xCRABP mRNA is localised at the dorsal side of the embryo, in the ectoderm and in invaginating mesoderm. xCRABP expression then rapidly resolves into two domains; a neural domain, which becomes localised in the anterior hindbrain, and a posterior domain in neuroectoderm and mesoderm. These two domains were already evident by the mid-gastrula stage. We investigated the function of xCRABP by injecting fertilized eggs with an excess of sense xCRABP mRNA and examined the effects on development. We observed embryos with clear antero-posterior defects, many of which resembled the effects of treating Xenopus gastrulae with all-trans retinoic acid. Notably, the heart was deleted, anterior brain structures and the tail were reduced, and segmentation of the hindbrain was inhibited. The effects of injecting xCRABP transcripts are compatible with the idea that xCRABP overexpression modulates the action of an endogenous retinoid, thereby regulating the expression of retinoid target genes, such as Hox genes. In support of this, we showed that the expression of two Xenopus Hoxb genes, Hoxb-9 and Hoxb-4, is strongly enhanced by xCRABP over-expression. These results suggest that xCRABP expression may help to specify the anteroposterior axis during the early development of Xenopus laevis.
Collapse
Affiliation(s)
- E J Dekker
- Netherlands Institute for Developmental Biology, Utrecht
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Hough R, Bass B. Purification of the Xenopus laevis double-stranded RNA adenosine deaminase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36972-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
143
|
Roy C. Triple-helix formation interferes with the transcription and hinged DNA structure of the interferon-inducible 6-16 gene promoter. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:493-503. [PMID: 7510230 DOI: 10.1111/j.1432-1033.1994.tb18648.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interferon responsive element (IRE) of the 6-16 gene lies within two 39-bp elements in tandem. A purine-rich oligodeoxynucleotide, oligo(dN), was found to be able to pair with the purine-rich strand of the IRE in an antiparallel orientation which led to triple-helix formation with Mg2+ being necessary for triplex stability. Footprinting analysis confirmed these results. The interaction between the IRE and the oligo(dN) was reversible and had a Kd equal to 20 nM. The two repeats of the 6-16 gene IRE can form a hinged DNA structure through pairing of their purine-rich regions; exonuclease III experiments support this model. The hybrid DNA structure leads to a parallel pairing of the purine strands of the 6-16 gene IRE and this conformation was shown to be destabilized by triplex formation. When co-transfected with a reporter gene whose promoter was under the control of the 6-16 gene IRE, the triple-helix-forming oligo(dN)s inhibit the interferon-induced stimulation of the reporter gene with complete inhibition being obtained with 1 microM oligo(dN) at the time of transfection. When added to the cell culture medium after transfection, the concentrations of oligo(dN) needed to obtain 50% inhibition of the interferon effect on gene transcription must be 50-100 times higher. Besides the existence of a peculiar structure for the 6-16 gene IRE, the possibility of interfering with gene expression by means of oligo(dN)s is demonstrated.
Collapse
Affiliation(s)
- C Roy
- Institut de Génétique Moléculaire, UMR 9942, C. N. R. S., Montpellier, France
| |
Collapse
|
144
|
Pantopoulos K, Johansson HE, Hentze MW. The role of the 5' untranslated region of eukaryotic messenger RNAs in translation and its investigation using antisense technologies. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 48:181-238. [PMID: 7938549 PMCID: PMC7133200 DOI: 10.1016/s0079-6603(08)60856-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter discusses the recent advances in the field of translational control and the possibility of applying the powerful antisense technology to investigate some of the unanswered questions, especially those pertaining to the role of the 5’untranslated region ( UTR) on translation initiation. Translational regulation is predominantly exerted during the initiation phase that is considered to be the rate-limiting step. Two types of translational regulation can be distinguished: global, in which the initiation rate of (nearly) all cellular messenger RNA (mRNA) is controlled and selective, in which the translation rate of specific mRNAs varies in response to the biological stimuli. In most cases of global regulation, control is exerted via the phosphorylation state of certain initiation factors, whereas only a few examples of selective regulation have been characterized well enough to define the underlying molecular events. Interestingly, cis-acting regulatory sequences, affecting translation initiation, have been found not only in the 5’UTRs of selectively regulated mRNAs, but also in the 3’UTRs. Thus, in addition to the protein encoding open reading frames, both the 5’ and 3’UTRs of mRNAs must be considered for their effect on translation.
Collapse
Key Words
- alas, 5-aminolevulinate synthase
- bfgf, basic fibroblast growth factor
- bip, immunoglobulin-binding protein
- cat, chloramphenicol acetyltransferase
- dai, double-stranded rna-activated inhibitor
- ealas, erythroid-specific form of alas
- frp, ferritin repressor protein
- gcd, general control derepressible
- gcn, general control nonderepressible
- gef, guanine-nucleotide exchange factor
- grp, glucose-regulated protein
- hgh, human growth hormone
- icam, intracellular adhesion molecule
- ire, iron-responsive element
- ire-bp, iron-responsive element-binding protein
- ires, internal ribosomal entry site
- irf, iron regulatory factor
- irp, iron regulatory protein
- la, lupus erythematosus antigen
- lap, liver-enriched activating protein
- lip, liver-enriched inhibitory protein
- mep, methyl phosphonate
- pa, phosphoramidate
- pdgf, platelet-derived growth factor
- pest, phosphotriester
- pll, poly(1-lysine)
- po, phosphodiester
- ps, phosphorothioate
- ps2, phosphorodithioate
- ssl, suppressor of stem-loop
- tce, translational control element
- tgf, transforming growth factor
Collapse
Affiliation(s)
- K Pantopoulos
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
145
|
Mirochnitchenko O, Inouye S, Inouye M. Production of single-stranded DNA in mammalian cells by means of a bacterial retron. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41956-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
146
|
Morgan R, Edge M, Colman A. A more efficient and specific strategy in the ablation of mRNA in Xenopus laevis using mixtures of antisense oligos. Nucleic Acids Res 1993; 21:4615-20. [PMID: 8233799 PMCID: PMC311199 DOI: 10.1093/nar/21.19.4615] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previously, antisense oligodeoxyribonucleotides (oligos) have been used to ablate specific mRNAs from the maternal RNA pool of Xenopus laevis oocytes. However, this strategy is limited by the dose of oligo which can be used and the fact that 100% cleavage of the target RNA is rare. Further, non-specific cleavage of other RNAs can also occur. We demonstrate that the use of several oligos against the histone H4 RNA results in a marked improvement in the efficiency of target degradation, due to synergistic action between oligos and the existence of RNA in at least two different secondary structures. We show, by using a set of overlapping oligos complementary to the entire H4 RNA, that the amount of oligo required for efficient target ablation is greatly lowered and non-specific effects are reduced.
Collapse
Affiliation(s)
- R Morgan
- School of Biochemistry, University of Birmingham, UK
| | | | | |
Collapse
|
147
|
Wang S, Dolnick BJ. Quantitative evaluation of intracellular sense: antisense RNA hybrid duplexes. Nucleic Acids Res 1993; 21:4383-91. [PMID: 8414997 PMCID: PMC310077 DOI: 10.1093/nar/21.18.4383] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Previous studies have demonstrated that for an antisense RNA to be effective in attenuating gene expression, a large but indeterminate excess of antisense RNA is required. To quantitatively evaluate RNA hybrid duplex formation, expression vectors containing antisense dihydrofolate reductase (DHFR) cDNAs were transfected into KB and KB-1BT (a DHFR overexpressing variant) cells and transfectants expressing antisense transcripts of exon 1 through intron I (ex1-I) or exons 1 through 4 (ex1-4) were analyzed for hybrid duplex formation. Stable duplexes were detectable in KB-1BT but not in KB cells. Approximately 5-9% of antisense ex1-I RNA and 20-37% of antisense ex1-4 RNA were found in duplexes. The amount of each hybrid duplex RNA was found to be a linear function of intracellular single-stranded antisense RNA levels and a hybrid index, Hs:as, was devised to describe this relationship. Based upon the value of Hs:as for each antisense RNA:mRNA duplex, it is calculated that an approximate 2,800- and 600-fold excess of ex1-I and ex1-4 antisense RNA are respectively required for 50% of DHFR mRNA to be present in duplexes. Results support the hypothesis that intracellular sense:antisense RNA hybrid duplex formation is inefficient and dependent upon the levels, lengths and possibly the structures of the RNAs involved.
Collapse
Affiliation(s)
- S Wang
- Department of Experimental Therapeutics, Grace Cancer Drug Center, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | |
Collapse
|
148
|
Peculis BA, Steitz JA. Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell 1993; 73:1233-45. [PMID: 8513505 DOI: 10.1016/0092-8674(93)90651-6] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The nucleoli of vertebrate cells contain several snRNPs, of which only one, U3, has been assigned a role in rRNA processing. We present the primary sequence of Xenopus U8, a fibrillarin-associated nucleolar snRNA, and examine its expression through oocyte development. Antisense deoxyoligonucleotides were microinjected into Xenopus oocytes to deplete the endogenous pool of U8 RNA. Analysis of the mature rRNAs and rRNA intermediates that accumulate in the U8-depleted oocytes indicate that the U8 snRNP is essential for correct maturation of the 5.8S and 28S rRNAs at both their 5' and 3' ends. U8 is therefore a nucleolar snRNA implicated in a nucleolytic rRNA processing step other than 18S maturation. Evidence for a long-lived 5.8S rRNA intermediate (12S) in Xenopus is also presented.
Collapse
Affiliation(s)
- B A Peculis
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536-0812
| | | |
Collapse
|
149
|
Action of spontaneously produced beta interferon in differentiation of embryonal carcinoma cells through an autoinduction mechanism. Mol Cell Biol 1993. [PMID: 8474445 DOI: 10.1128/mcb.13.5.2846] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the current study, we have addressed the role of interferons (IFNs) in controlling the differentiation of pluripotent P19 embryonal carcinoma (EC) cells. Blocking IFN activity in the culture medium of differentiating cells with antibodies leads to a strong decrease in the degree of differentiation. The antibodies are active for a relatively short time. During this time, IFN-beta mRNA can be detected in the differentiating cells, as can increases of IFN stimulation response element-binding activity and NF-KB. The timing of IFN action also coincides with the accumulation of cytoplasmic double-stranded RNA (dsRNA) and with a drop in dsRNA unwindase-modificase activity. A model for the involvement of autoinduction of IFN by intracellular dsRNA in the control of differentiation in this system is presented.
Collapse
|
150
|
Belhumeur P, Lanoix J, Blais Y, Forget D, Steyaert A, Skup D. Action of spontaneously produced beta interferon in differentiation of embryonal carcinoma cells through an autoinduction mechanism. Mol Cell Biol 1993; 13:2846-57. [PMID: 8474445 PMCID: PMC359673 DOI: 10.1128/mcb.13.5.2846-2857.1993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In the current study, we have addressed the role of interferons (IFNs) in controlling the differentiation of pluripotent P19 embryonal carcinoma (EC) cells. Blocking IFN activity in the culture medium of differentiating cells with antibodies leads to a strong decrease in the degree of differentiation. The antibodies are active for a relatively short time. During this time, IFN-beta mRNA can be detected in the differentiating cells, as can increases of IFN stimulation response element-binding activity and NF-KB. The timing of IFN action also coincides with the accumulation of cytoplasmic double-stranded RNA (dsRNA) and with a drop in dsRNA unwindase-modificase activity. A model for the involvement of autoinduction of IFN by intracellular dsRNA in the control of differentiation in this system is presented.
Collapse
Affiliation(s)
- P Belhumeur
- Institut du Cancer de Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|