101
|
Dernburg AF, Sedat JW, Hawley RS. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 1996; 86:135-46. [PMID: 8689681 DOI: 10.1016/s0092-8674(00)80084-7] [Citation(s) in RCA: 294] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have investigated the mechanism that enables achiasmate chromosomes to segregate from each other at meiosis I in D. melanogaster oocytes. Using novel cytological methods, we asked whether nonexchange chromosomes are paired prior to disjunction. Our results show that the heterochromatin of homologous chromosomes remains associated throughout prophase until metaphase I regardless of whether they undergo exchange, suggesting that homologous recognition can lead to segregation even in the absence of chiasmata. However, partner chromosomes lacking homology do not pair prior to disjunction. Furthermore, euchromatic synapsis is not maintained throughout prophase. These observations provide a physical demonstration that homologous and heterologous achiasmate segregations occur by different mechanisms and establish a role for heterochromatin in maintaining the alignment of chromosomes during meiosis.
Collapse
Affiliation(s)
- A F Dernburg
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0554, USA
| | | | | |
Collapse
|
102
|
Karpen GH, Le MH, Le H. Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 1996; 273:118-22. [PMID: 8658180 DOI: 10.1126/science.273.5271.118] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The chromosomal requirements for achiasmate (nonexchange) homolog disjunction in Drosophila female meiosis I have been identified with the use of a series of molecularly defined minichromosome deletion derivatives. Efficient disjunction requires 1000 kilobases of overlap in the centric heterochromatin and is not affected by homologous euchromatin or overall size differences. Disjunction efficiency decreases linearly as heterochromatic overlap is reduced from 1000 to 430 kilobases of overlap. Further observations, including rescue experiments with nod kinesin-like protein transgenes, demonstrate that heterochromatin does not act solely to promote chromosome movement or spindle attachment. Thus, it is proposed that centric heterochromatin contains multiple pairing elements that act additively to initiate or maintain the proper alignment of achiasmate chromosomes in meiosis I. How heterochromatin could act to promote chromosome pairing is discussed here.
Collapse
Affiliation(s)
- G H Karpen
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
103
|
Dernburg AF, Broman KW, Fung JC, Marshall WF, Philips J, Agard DA, Sedat JW. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 1996; 85:745-59. [PMID: 8646782 DOI: 10.1016/s0092-8674(00)81240-4] [Citation(s) in RCA: 302] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY Position-effect variegation (PEV) describes the stochastic transcriptional silencing of a gene positioned adjacent to heterochromatin. Using FISH, we have tested whether variegated expression of the eye-color gene brown in Drosophila is influenced by its nuclear localization. In embryonic nuclei, a heterochromatic insertion at the brown locus is always spatially isolated from other heterochromatin. However, during larval development this insertion physically associates with other heterochromatic regions on the same chromosome in a stochastic manner. These observations indicate that the brown gene is silenced by specific contact with centromeric heterochromatin. Moreover, they provide direct evidence for long-range chromosome interactions and their impact on three-dimensional nuclear architecture, while providing a cohesive explanation for the phenomenon of PEV.
Collapse
Affiliation(s)
- A F Dernburg
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0554, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Human Y Chromosome Function in Male Germ Cell Development. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1566-3116(08)60019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
105
|
Abstract
Recently many exciting advances have been achieved in our understanding of Drosophila meiosis due to combined cytological and genetic approaches. New techniques have permitted the characterization of chromosome position and spindle formation in female meiosis I. The proteins encoded by the nod and ncd genes, two genes known to be needed for the proper partitioning of chromosomes lacking exchange events, have been identified and found to be kinesin-like motors. The effects of mutations in these genes on the spindle and chromosomes, together with the localization of the proteins, have yielded a model for the mechanism of female meiosis I. In male meiosis I, the chromosomal regions responsible for homolog pairing have been resolved to the level of specific DNA sequences. This provides a foundation for elucidating the molecular basis of meiotic pairing. The cytological techniques available in Drosophila also have permitted inroads into the regulation of sister-chromatid segregation. The products of two genes (mei-S332 and ord) essential for sister-chromatid cohesion have been identified recently. Additional advances in understanding Drosophila meiosis are the delineation of a functional centromere by using minichromosome derivatives and the identification of several regulatory genes for the meiotic cell cycle.
Collapse
Affiliation(s)
- T L Orr-Weaver
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge 02142, USA
| |
Collapse
|
106
|
Affiliation(s)
- J J Sekelsky
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | |
Collapse
|
107
|
Abstract
The DNA elements responsible for centromere activity in a metazoan have been localized using the Drosophila minichromosome Dp1187. Deleted minichromosomes were generated by irradiation mutagenesis, and their molecular structures were determined by pulsed-field Southern blot analysis. Analyses of the transmission behavior of Dp1187 derivatives localized sequences necessary for chromosome inheritance within the centric heterochromatin. The essential core of the centromere is contained within a 220 kb region that includes significant amounts of complex DNA. Completely normal inheritance also requires approximately 200 kb on either side of the essential core. This flanking DNA predominantly contains highly repeated sequences, and the amount required for normal transmission differs among division types and between the sexes. We propose that the essential core is the site of kinetochore formation and that flanking DNA provides two functions: sister chromatid cohesion and indirect assistance in kinetochore formation or function.
Collapse
Affiliation(s)
- T D Murphy
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
108
|
Park HS, Yamamoto MT. The centric region of the X chromosome rDNA functions in male meiotic pairing in Drosophila melanogaster. Chromosoma 1995; 103:700-7. [PMID: 7664617 DOI: 10.1007/bf00344231] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In Drosophila melanogaster males, sex chromosome pairing at meiosis is ensured by so-called pairing site(s) located discretely in the centric heterochromatin. The property of the pairing sites is not well understood. Recently, an hypothesis has been proposed that 240 bp repeats in the nontranscribed spacer region of rDNA function as the pairing sites in male meiosis. However, considerable cytogenetic evidence exists that is contrary to this hypothesis. Hence, the question is whether the chromosomal rDNA clusters, in which a high copy number of 240 bp repeats exists, are involved in the pairing. In order to resolve the problem we X-rayed Drosophila carrying the X chromosome inversion In(1)scV2L sc8R and generated free, mini-X chromosomes carrying a substantial amount of rDNA. We defined cytogenetically the size of the mini-chromosomes and studied their meiotic behavior. Our results demonstrate that the heterochromatin at the distal end of the inversion, whose length is approximately 0.4 times that of the fourth chromosome, includes a meiotic pairing site in the male. We discuss the cytological location of the pairing site and the possible role of rDNA in meiotic pairing.
Collapse
Affiliation(s)
- H S Park
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606, Japan
| | | |
Collapse
|
109
|
Murphy TD, Karpen GH. Interactions between the nod+ kinesin-like gene and extracentromeric sequences are required for transmission of a Drosophila minichromosome. Cell 1995; 81:139-48. [PMID: 7720069 DOI: 10.1016/0092-8674(95)90378-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study, we demonstrate a role for extracentromeric sequences in chromosome inheritance. Genetic analyses indicate that transmission of the Drosophila minichromosome Dp1187 is sensitive to the dosage of nod+, a kinesin-like gene required for the meiotic transmission of achiasmate chromosomes. Minichromosome deletions displayed increased loss rates in females heterozygous for a loss-of-function allele of nod (nod/+). We have analyzed the structures of nod-sensitive deletions and conclude that multiple regions of Dp1187 interact genetically with nod+ to promote normal chromosome transmission. Most nod+ interactions are observed with regions that are not essential for centromere function. We propose that normal chromosome transmission requires forces generated outside the kinetochore, perhaps to maintain tension on kinetochore microtubules and stabilize the attachment of achiasmate chromosomes to the metaphase spindle.
Collapse
Affiliation(s)
- T D Murphy
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
110
|
Ault JG, Rieder CL. Meiosis in Drosophila males. I. The question of separate conjunctive mechanisms for the XY and autosomal bivalents. Chromosoma 1994; 103:352-6. [PMID: 7821091 DOI: 10.1007/bf00417883] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The conjunctive mechanism of the XY bivalent is believed to differ from that of the autosomal bivalents in the achiasmate Drosophila melanogaster male. It has been proposed that hypothetical cohesive elements, termed collochores, hold the X and Y chromosomes together at or near their nucleolar organizing regions (NORs) and that collochores are not exhibited by autosomal bivalents. In electron micrographs, unique fibrillar material is observed between the X and Y chromosomes at the synaptic site. Recently, the 240 bp nontranscribed spacer associated with rRNA genes at the NOR has been implicated as the essential DNA sequence for XY pairing. To test whether this DNA sequence is always associated with XY pairing and to determine its relationship to the unique fibrillar material, we studied the XY bivalent in Drosophila simulans. The D. simulans Y chromosome has few, if any, rRNA genes, but does have a large block (3,000 kb or 12,500 copies) of the nontranscribed spacer repeat located at the distal end of its long arm. This is in contrast to the D. melanogaster Y, which has the repeat located among rRNA genes on its short arm. Using light and electron microscopy, we show that the X does indeed pair with the distal end of the long arm of the D. simulans Y. However, no fibrillar material is evident in serial thin sections of the D. simulans XY bivalent, suggesting that this material (in D. melanogaster) may be remnants of the NOR rather than a morphological manifestation of the hypothetical collochores.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J G Ault
- Wadsworth Center for Laboratories and Research, Albany, NY 12201-0509
| | | |
Collapse
|
111
|
Abstract
The demonstration by Zhang and Spradling (1) of efficient P element transposition into heterochromatic regions will aid ongoing studies of heterochromatin structure and function. P element insertions will provide entry points for further molecular analysis of heterochromatin and will allow the isolation of small and large heterochromatic deficiencies. The generation of heterochromatic P insertions also will aid the study of heterochromatic genes. Of the heterochromatic insertions isolated by Zhang and Spradling, five were homozygous lethal, and one of these defined a lethal locus not previously uncovered by heterochromatic deficiencies. P elements have previously been used to mutagenize and clone specific heterochromatic genes (14, 19, 26). New methods, like those described here (1, 32), should allow the efficient identification and molecular isolation of other single-copy heterochromatic genes. Furthermore, since position-effect suppression allowed the recovery of heterochromatic P insertions, it may also allow the recovery of insertions in euchromatic regions previously refractory to P mutagenesis. Studies of position-effect variegation show that genes normally found in heterochromatin require a heterochromatic context for normal expression and that heterochromatin is inhibitory to euchromatic gene expression (16). The physical basis of these related phenomena--chromatin assembly, nuclear positioning, and/or heterochromatin elimination--can be resolved only with a more thorough understanding of heterochromatin structure and functions. Analyzing heterochromatin also will help define the chromosomal components responsible for inheritance processes such as chromosome pairing, sister chromatid adhesion, and centromere function. These efforts will be facilitated by the effective use of P elements combined with other current molecular-genetic approaches.
Collapse
Affiliation(s)
- K R Cook
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | | |
Collapse
|
112
|
Abstract
The phenomenon of position-effect variegation has long been used as evidence for the importance of chromosome position to gene expression in eukaryotes. Investigations published within the past few years demonstrate that position-effect variegation is caused by multiple mechanisms, and that direct tests of hypotheses are possible with numerous model systems.
Collapse
Affiliation(s)
- G H Karpen
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037-1099
| |
Collapse
|
113
|
Abstract
Meiotic pairing has now been shown to require heterochromatic homology and to be sensitive to repeat number in both male and female Drosophila. The increased pairing ability of repetitive sequences could be one reason that most eukaryotes allow the accumulation of tandem repeated elements. This may well be a reflection of a general role for heterochromatin, and at least a partial explanation of the ubiquity of heterochromatin through the eukaryotes.
Collapse
|
114
|
Abstract
The chromosomes which segregate in anaphase I of meiosis are usually physically bound together through chiasmata. This association is necessary for proper segregation, since univalents sort independently from one another in the first meiotic division and this frequently leads to genetically unbalanced offspring. There are, however, a number of species where genetic exchanges in the form of meiotic cross-overs, the prerequisite of the formation of chiasmata, are routinely missing in one sex or between specific chromosomes. These species nevertheless manage to segregate these non-exchange chromosomes. There are four direct modes for associating achiasmatic chromosomes: (a) modified SC, (b) adhesion of chromatids comparable to somatic pairing, (c) 'stickiness' of heterochromatin or (d) specific 'segregation bodies', consisting of material structurally different from chromatin. There is also the possibility that the spindle-possibly joining forces with the kinetochores--carries out the faithful segregation of univalents which are not directly physically attached to one another. Finally, amphitelic orientation of univalents in metaphase I and pairing of the chromatids in meiosis II appear to ensure correct segregation as well.
Collapse
Affiliation(s)
- K W Wolf
- Institut für Biologie der Medizinischen Universität zu Lübeck, Deutschland
| |
Collapse
|
115
|
Affiliation(s)
- C Gonzalez
- Department of Anatomy and Physiology, University of Dundee, Scotland
| | | | | |
Collapse
|
116
|
Camerini-Otero RD, Hsieh P. Parallel DNA triplexes, homologous recombination, and other homology-dependent DNA interactions. Cell 1993; 73:217-23. [PMID: 8477443 DOI: 10.1016/0092-8674(93)90224-e] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- R D Camerini-Otero
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
117
|
McKee BD, Lumsden SE, Das S. The distribution of male meiotic pairing sites on chromosome 2 of Drosophila melanogaster: meiotic pairing and segregation of 2-Y transpositions. Chromosoma 1993; 102:180-94. [PMID: 8384545 DOI: 10.1007/bf00387733] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The distribution of meiotic pairing sites on a Drosophila melanogaster autosome was studied by characterizing patterns of prophase pairing and anaphase segregation in males heterozygous for a number of 2-Y transpositions, collectively covering all of chromosome arm 2R and one-fourth of chromosome arm 2L. It was found that all transpositions involving euchromatin from chromosome 2, even short stretches, increased the frequency of prophase I quadrivalents involving the sex and second chromosome bivalents above background levels. Quadrivalent frequencies were the same whether the males carried both elements of the transposition or just the Dp(2:Y) element along with two normal chromosome 2s, indicating that pairing is non-competitive. The frequency of quadrivalents was proportional to the size of the transposed region, suggesting that pairing sites are widely distributed on chromosome 2. Moreover, all but the smallest transpositions caused a detectable bias in the segregation ratio, in favor of alternate segregations, indicating that the prophase associations were effective in orienting centromeres to opposite poles. One transposition involving only heterochromatin of chromosome 2 had no effect on quadrivalent frequency, consistent with previous evidence that autosomal heterochromatin lacks meiotic pairing ability in males. One region at the base of chromosome arm 2L proved to be especially effective in stimulating quadrivalent formation and anaphase segregation, indicating the presence of a strong pairing site in this region. It is concluded that autosomal pairing in D. melanogaster males is based on general homology, despite the lack of homologous recombination.
Collapse
Affiliation(s)
- B D McKee
- Department of Zoology, University of Tennessee, Knoxville 37996
| | | | | |
Collapse
|
118
|
Endow SA. Meiotic chromosome distribution in Drosophila oocytes: roles of two kinesin-related proteins. Chromosoma 1992; 102:1-8. [PMID: 1291224 DOI: 10.1007/bf00352283] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent new information regarding the proteins required for proper distribution of chromosomes in meiosis has come from studies of Drosophila mutants. These studies reveal that proteins related to the microtubule motor protein, kinesin, function in meiotic chromosome segregation in Drosophila females. The two proteins identified thus far are likely to play very different roles in the process. The ncd protein is a spindle motor in meiosis but may perform a different role in the early mitotic divisions of the embryo. nod functions earlier in meiosis than ncd, prior to the meiotic divisions, and may be either chromosome or spindle associated. The identification of nod as a kinesin protein raises new questions regarding the distributive model of meiotic chromosome segregation.
Collapse
Affiliation(s)
- S A Endow
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
119
|
Abstract
Large repeated DNA arrays are a major component of the eukaryotic genome, but we know little about their internal organization. Understanding their architecture, however, is critical for describing genome structure and for inferring the mechanisms that shape it. One repeated family that is yielding a picture of how structure, function and recombination mechanisms come together is the ribosomal DNA (rDNA) of Drosophila melanogaster.
Collapse
Affiliation(s)
- S M Williams
- Department of Biology, Boston University, MA 02215
| | | |
Collapse
|
120
|
Hawley RS, Irick H, Zitron AE, Haddox DA, Lohe A, New C, Whitley MD, Arbel T, Jang J, McKim K. There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. DEVELOPMENTAL GENETICS 1992; 13:440-67. [PMID: 1304424 DOI: 10.1002/dvg.1020130608] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There are numerous examples of the regular segregation of achiasmate chromosomes at meiosis I in Drosophila melanogaster females. Classically, the choice of achiasmate segregational partners has been thought to be independent of homology, but rather made on the basis of availability or similarities in size and shape. To the contrary, we show here that heterochromatic homology plays a primary role in ensuring the proper segregation of achiasmate homologs. We observe that the heterochromatin of chromosome 4 functions as, or contains, a meiotic pairing site. We show that free duplications carrying the 4th chromosome pericentric heterochromatin induce high frequencies of 4th chromosome nondisjunction regardless of their size. Moreover, a duplication from which some of the 4th chromosome heterochromatin has been removed is unable to induce 4th chromosome nondisjunction. Similarly, in the absence of either euchromatic homology or a size similarity, duplications bearing the X chromosome heterochromatin also disrupt the segregation of two achiasmate X chromosome centromeres. Although heterochromatic regions are sufficient to conjoin nonexchange homologues, we confirm that the segregation of heterologous chromosomes is determined by size, shape, and availability. The meiotic mutation Axs differentiates between these two processes of achiasmate centromere coorientation by disrupting only the homology-dependent mechanism. Thus there are two different mechanisms by which achiasmate segregational partners are chosen. We propose that the absence of diplotene-diakinesis during female meiosis allows heterochromatic pairings to persist until prometaphase and thus to co-orient homologous centromeres. We also propose that heterologous disjunctions result from a separate and homology-independent process that likely occurs during prometaphase. The latter process, which may not require the physical association of segregational partners, is similar to those observed in many insects, in Saccharomyces cerevisiae and in C. elegans males. We also suggest that the physical basis of this process may reflect known properties of the Drosophila meiotic spindle.
Collapse
Affiliation(s)
- R S Hawley
- Department of Genetics, University of California, Davis
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Merrill CJ, Chakravarti D, Habera L, Das S, Eisenhour L, McKee BD. Promoter-containing ribosomal DNA fragments function as X-Y meiotic pairing sites in D. melanogaster males. DEVELOPMENTAL GENETICS 1992; 13:468-84. [PMID: 1304425 DOI: 10.1002/dvg.1020130609] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Drosophila melanogaster ribosomal DNA (rDNA) functions as an X-Y meiotic pairing site. Deletions encompassing the X chromosomal rDNA block (located in the heterochromatin) disrupt X-Y pairing and disjunction. Insertions of single, complete rRNA genes at ectopic locations on the heterochromatically deficient X partially restore X-Y pairing capacity. This study was undertaken to test fragments of an rDNA repeat for the ability to stimulate X-Y pairing and disjunction and to test for relationships between pairing capacity and two other phenotypes associated with rDNA insertions: transcription and the ability to organize a nucleolus. Insertions of three different fragments, all of which retained the rDNA promoter and upstream spacer sequences and which differed among each other in the length of downstream sequences, were obtained by P-element mediated transformation. One of the fragments is truncated only 140bp downstream from the promoter. Insertions of all three fragments proved capable of stimulating X-Y disjunction. Double insertions were substantially more effective than single insertions. RNA/PCR analysis was used to show that transcripts initiated at the inserted rDNA promoters are present in testis RNA from all insertions. Treatment with an antinucleolar antibody revealed that none of the insertions was associated with a mininucleolus. Thus promoter-containing rDNA fragments are autonomously capable of being transcribed and of functioning as X-Y pairing sites, but not of forming a mini-nucleolus.
Collapse
Affiliation(s)
- C J Merrill
- Department of Genetics, University of Wisconsin, Madison
| | | | | | | | | | | |
Collapse
|
122
|
Clark AG, Szumski FM, Lyckegaard EM. Population genetics of the Y chromosome of Drosophila melanogaster: rDNA variation and phenotypic correlates. Genet Res (Camb) 1991; 58:7-13. [PMID: 1936985 DOI: 10.1017/s0016672300029554] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One means of examining the evolutionary significance of molecular variation on the Y chromosome is to identify phenotypes specifically affected by Y-linked genes, and to quantify the phenotypic variation and its correlation to the molecular variation. The functional importance of the Y-linked array of rRNA genes is demonstrated by the ability of Y chromosome to rescue X-linked bobbed lethal alleles, whose lethality is seen in homozygous females. Because low numbers of X-linked rDNA gene copies result in increased developmental time and shortened bristles, and because there is considerable natural variation in Y-linked copy number, a careful examination of Y-linked variation in these two traits may uncover a mode of selection acting on the multigene family. In this study, 36 Y-chromosome replacement lines were tested to detect subtle variation in bristle phenotypes and developmental rates. Correlations among these traits, rDNA gene copy number, and intergenic sequence length were quantified. The absence of significant correlations between phenotypic characters and rDNA copy number of intergenic sequence length suggests that the extant molecular variation in Y-linked rDNA can have at most very small selective effects.
Collapse
Affiliation(s)
- A G Clark
- Department of Biology and Genetics Program, Pennsylvania State University, University Park 16802
| | | | | |
Collapse
|
123
|
Matsuda Y, Hirobe T, Chapman VM. Genetic basis of X-Y chromosome dissociation and male sterility in interspecific hybrids. Proc Natl Acad Sci U S A 1991; 88:4850-4. [PMID: 2052565 PMCID: PMC51764 DOI: 10.1073/pnas.88.11.4850] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A high frequency of X-Y chromosome dissociation (95%) was found at first meiotic metaphase (MI) in spermatocytes of interspecific hybrids between laboratory mice, C57BL/6J (BL/6) and Mus spretus, compared with an X-Y dissociation frequency of only 3-4% in parental mice. The X-Y dissociation in F1 hybrids occurred before diakinesis rather than as a precocious dissociation at MI. The high X-Y dissociation was accompanied by spermatogenic breakdown after MI, resulting in male sterility. All F1 males were sterile and approximately half of the backcross males from fertile F1 females crossed with either BL/6 or M. spretus males were sterile. Male sterility was highly correlated with X-Y dissociation in both backcrosses. All of the mice with high X-Y dissociation were sterile and all of the males with low X-Y dissociation were fertile or subfertile. This correlation suggested that genetic divergence of the X-Y pairing region could contribute to the male sterile phenotype such that the BL/6 X chromosome would not pair with the M. spretus Y chromosome. The segregation of species-type alleles of amelogenin (Amelb and Amels), a distal X chromosome locus adjacent to the X-Y pairing region, was followed in backcross males that were analyzed for X-Y dissociation and sterility (we have used Amel as the designation for the mouse amelogenin locus; the current designation for this locus is Amg). A 95% concordance between Amelb with fertility and Amels with sterility was observed in backcrosses with BL/6, whereas the converse was observed in the backcross to M. spretus. These results imply that X-Y pairing plays an important role in male fertility and suggest that genetic divergence in X-Y pairing region between Mus species can contribute to the reproductive barriers between species and the process of speciation.
Collapse
Affiliation(s)
- Y Matsuda
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | | |
Collapse
|
124
|
The frequency of meiotic recombination in yeast is independent of the number and position of homologous donor sequences: implications for chromosome pairing. Proc Natl Acad Sci U S A 1991; 88:1120-4. [PMID: 1996313 PMCID: PMC50968 DOI: 10.1073/pnas.88.4.1120] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We constructed diploids of Saccharomyces cerevisiae homozygous for LEU2 and carrying one, two, or four copies of leu2 at ectopic locations and determined the frequency of 3+:1- (LEU2:leu2) meiotic tetrads. Gene conversion between a LEU2 recipient and a leu2 ectopic donor occurred at the same frequency as did gene conversion between allelic copies of LEU2 and leu2. An increase in the number of possible ectopic donor loci did not lead to a proportional increase in the level of ectopic gene conversion. We suggest that the limiting step in meiotic recombination is the activation of a locus to become a recipient in recombination and that once activated, a locus can search the entire genome for a homologous partner with which to recombine. In this respect, this search for a homologous partner resembles the efficient premeiotic methylation/inactivation of duplicated sequences in Ascobolus and Neurospora. These observations support models in which strand exchange serves to align homologous chromosomes prior to their becoming much more fully synapsed by the elaboration of the synaptonemal complex.
Collapse
|
125
|
Affiliation(s)
- M L Pardue
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139-4391
| | | |
Collapse
|