101
|
Chen CH, Howng SL, Cheng TS, Chou MH, Huang CY, Hong YR. Molecular characterization of human ninein protein: two distinct subdomains required for centrosomal targeting and regulating signals in cell cycle. Biochem Biophys Res Commun 2003; 308:975-983. [PMID: 12927815 DOI: 10.1016/s0006-291x(03)01510-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The centrosomal protein ninein has been identified as a microtubules minus end capping, centriole position, and anchoring protein, but the true physiological function remains to be determined. In this report, using immunofluorescence analysis and GFP-fusions we show that coiled-coil II domain (CCII domain, 1303-2096) co-localized with gamma-tubulin and centrin at the centrosome. We further narrow down within 83 amino acids and classify a new centrosomal targeting signal. Interestingly, antibodies raised against CCII domain reveal that ninein protein declines from spindle poles during mitosis, but reaccumulates at centrosomes at the end of cell division. Moreover, the data also suggest that fragment 1783-1866 may be attributed to declined signal of ninein. In kinase assay, we show that CCII domain could readily be phosphorylated by AIK and PKA. Taken together, our results suggest that ninein protein contains two distinct subdomains which are required for targeting and regulating asymmetry centrosomes. Importantly, the decline of ninein during mitosis implies that this centrosomal protein may play a role to regulate the process of chromosome segregation without discrimination. The model we propose here will foster a clearer picture of how two asymmetric centrosomes could direct and ensure the correct segregation of chromosomes during the mitotic stage.
Collapse
Affiliation(s)
- Chang-Han Chen
- Graduate Institute of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
102
|
Spitzenberger F, Pietropaolo S, Verkade P, Habermann B, Lacas-Gervais S, Mziaut H, Pietropaolo M, Solimena M. Islet cell autoantigen of 69 kDa is an arfaptin-related protein associated with the Golgi complex of insulinoma INS-1 cells. J Biol Chem 2003; 278:26166-73. [PMID: 12682071 DOI: 10.1074/jbc.m213222200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Islet cell autoantigen of 69 kDa (ICA69) is a cytosolic protein of still unknown function. Involvement of ICA69 in neurosecretion has been suggested by the impairment of acetylcholine release at neuromuscular junctions upon mutation of its homologue gene ric-19 in C. elegans. In this study, we have further investigated the localization of ICA69 in neurons and insulinoma INS-1 cells. ICA69 was enriched in the perinuclear region, whereas it did not co-localize with markers of synaptic vesicles/synaptic-like microvesicles. Confocal microscopy and subcellular fractionation in INS-1 cells showed co-localization of ICA69 with markers of the Golgi complex and, to a minor extent, with immature insulin-containing secretory granules. The association of ICA69 with these organelles was confirmed by immunoelectron microscopy. Virtually no ICA69 immunogold labeling was observed on secretory granules near the plasma membrane, suggesting that ICA69 dissociates from secretory granule membranes during their maturation. In silico sequence and structural analyses revealed that the N-terminal region of ICA69 is similar to the region of arfaptins that interacts with ARF1, a small GTPase involved in vesicle budding at the Golgi complex and immature secretory granules. ICA69 is therefore a novel arfaptin-related protein that is likely to play a role in membrane trafficking at the Golgi complex and immature secretory granules in neurosecretory cells.
Collapse
Affiliation(s)
- Folker Spitzenberger
- Experimental Diabetology and the Department of Internal Medicine III, Carl Gustav Carus Medical School, University of Technology Dresden, 01307 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Fleming SL, Shank PR, Boekelheide K. gamma-Tubulin overexpression in Sertoli cells in vivo: I. Localization to sites of spermatid head attachment and alterations in Sertoli cell microtubule distribution. Biol Reprod 2003; 69:310-21. [PMID: 12672673 DOI: 10.1095/biolreprod.102.011791] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Sertoli cells play a number of roles in supporting spermatogenesis, including structural organization, physical and paracrine support of germ cells, and secretion of factors necessary for germ cell development. Studies with microtubule disrupting compounds indicate that intact microtubule networks are crucial for normal spermatogenesis. However, treatment with toxicants and pharmacologic agents that target microtubules lack cell-type selectivity and may therefore elicit direct effects on germ cells, which also require microtubule-mediated activities for division and morphological transformation. To evaluate the importance of Sertoli cell microtubule-based activities for spermatogenesis, an adenoviral vector that overexpresses the microtubule nucleating protein, gamma-tubulin, was used to selectively disrupt microtubule networks in Sertoli cells in vivo. gamma-Tubulin overexpression was observed to cause redistribution of Sertoli cell microtubule networks, and overexpression of a gamma-tubulin-enhanced green fluorescent protein fusion protein was observed to localize to the site of elongate spermatid head attachment to the seminiferous epithelium.
Collapse
Affiliation(s)
- Shawna L Fleming
- Departments of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
104
|
Stenoien DL, Sen S, Mancini MA, Brinkley BR. Dynamic association of a tumor amplified kinase, Aurora-A, with the centrosome and mitotic spindle. CELL MOTILITY AND THE CYTOSKELETON 2003; 55:134-46. [PMID: 12740874 DOI: 10.1002/cm.10120] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aurora-A kinase, also known as STK15/BTAK kinase, is a member of a serine/threonine kinase superfamily that includes the prototypic yeast Ipl1 and Drosophila aurora kinases as well as other mammalian and non-mammalian aurora kinases involved in the regulation of centrosomes and chromosome segregation. The Aurora-A gene is amplified and overexpressed in a wide variety of human tumors. Aurora-A is centrosome-associated during interphase, and binds the poles and half-spindle during mitosis; its over-expression has been associated with centrosome amplification and multipolar spindles. GFP-Aurora-A was used to mark centrosomes and spindles, and monitor their movements in living cells. Centrosome pairs labeled with GFP-Aurora-A are motile throughout interphase undergoing oscillations and tumbling motions requiring intact microtubules and ATP. Fluorescence recovery after photobleaching (FRAP) was used to examine the relative molecular mobility of GFP-Aurora-A, and GFP-labeled alpha-tubulin, gamma-tubulin, and NuMA. GFP-Aurora-A rapidly exchanges in and out of the centrosome and mitotic spindle (t(1/2) approximately 3 sec); in contrast, both tubulins are relatively immobile indicative of a structural role. GFP-NuMA mobility was intermediate in both interphase nuclei and at the mitotic spindle (t(1/2) approximately 23-30 sec). Deletion mapping identifies a central domain of Aurora-A as essential for its centrosomal localization that is augmented by both the amino and the carboxyl terminal ends of the protein. Interestingly, amino or carboxy terminal deletion mutants that maintained centrosomal targeting exhibited significantly slower molecular exchange. Collectively, these studies contrast the relative cellular dynamics of Aurora-A with other cytoskeletal proteins that share its micro-domains, and identify essential regions required for targeting and dynamics.
Collapse
Affiliation(s)
- D L Stenoien
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
105
|
Murphy TD. Drosophila skpA, a component of SCF ubiquitin ligases, regulates centrosome duplication independently of cyclin E accumulation. J Cell Sci 2003; 116:2321-32. [PMID: 12730292 DOI: 10.1242/jcs.00463] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Centrosome duplication must be coupled to the main cell cycle to ensure that each cell has precisely two centrosomes at the onset of mitosis. Supernumerary centrosomes are commonly observed in cancer cells, and may contribute to tumorigenesis. Drosophila skpA, a component of SCF ubiquitin ligases, regulates the link between the cell and centrosome cycles. Lethal skpA null mutants exhibit dramatic centrosome overduplication and additional defects in chromatin condensation, cell cycle progression and endoreduplication. Surprisingly, many mutant cells are able to organize pseudo-bipolar spindles and execute a normal anaphase in the presence of extra functional centrosomes. SkpA mutant cells accumulate higher levels of cyclin E than wildtype cells during S and G2, suggesting that elevated cdk2/cyclin E activity may account for the supernumerary centrosomes in skpA- cells. However, centrosome overduplication still occurs in skpA-; cycE- mutant animals, demonstrating that high cyclin E levels are not necessary for centrosome overduplication. These data suggest that additional SCF targets regulate the centrosome duplication pathway.
Collapse
Affiliation(s)
- Terence D Murphy
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210, USA.
| |
Collapse
|
106
|
Hut HMJ, Lemstra W, Blaauw EH, Van Cappellen GWA, Kampinga HH, Sibon OCM. Centrosomes split in the presence of impaired DNA integrity during mitosis. Mol Biol Cell 2003; 14:1993-2004. [PMID: 12802070 PMCID: PMC165092 DOI: 10.1091/mbc.e02-08-0510] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A well-established function of centrosomes is their role in accomplishing a successful mitosis that gives rise to a pair of identical daughter cells. We recently showed that DNA replication defects and DNA damage in Drosophila embryos trigger centrosomal changes, but it remained unclear whether comparable centrosomal responses can be provoked in somatic mammalian cells. To investigate the centrosomal organization in the presence of impaired DNA integrity, live and ultrastructural analysis was performed on gamma-tubulin-GFP and EGFP-alpha-tubulin-expressing Chinese hamster ovary cells. We have shown that during mitosis in the presence of incompletely replicated or damaged DNA, centrosomes split into fractions containing only one centriole. This results in the formation of multipolar spindles with extra centrosome-like structures. Despite the extra centrosomes and the multipolarity of the spindles, cells do exit from mitosis, resulting in severe division errors. Our data provide evidence of a novel mechanism showing how numerous centrosomes and spindle defects can arise and how this can lead to the formation of aneuploid cells.
Collapse
Affiliation(s)
- Henderika M J Hut
- Department of Radiation and Stress Cell Biology, Faculty of Medical Sciences, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
107
|
Takada S, Kelkar A, Theurkauf WE. Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity. Cell 2003; 113:87-99. [PMID: 12679037 DOI: 10.1016/s0092-8674(03)00202-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In syncytial Drosophila embryos, damaged or incompletely replicated DNA triggers centrosome disruption in mitosis, leading to defects in spindle assembly and anaphase chromosome segregation. The damaged nuclei drop from the cortex and are not incorporated into the cells that form the embryo proper. A null mutation in the Drosophila checkpoint kinase 2 tumor suppressor homolog (DmChk2) blocks this mitotic response to DNA lesions and also prevents loss of defective nuclei from the cortex. In addition, DNA damage leads to increased DmChk2 localization to the centrosome and spindle microtubules. DmChk2 is therefore essential for a "mitotic catastrophe" signal that disrupts centrosome function in response to genotoxic stress and ensures that mutant and aneuploid nuclei are eliminated from the embryonic precursor pool.
Collapse
Affiliation(s)
- Saeko Takada
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | |
Collapse
|
108
|
Abstract
This oversimplified view of foetal development and the risk to injury aims to highlight the following: assuming there is a normal environment, gene expression will generate a protein chain that should fold to the expected stereological shape to function normally. Here we must take into consideration the important role played by external (environmental) factors. Abnormal organogenesis or foetal injury are, in all likelihood, due to abnormal genes or genes expressing themselves 'out of sinc', that is to say 'outside' their time allocated for expression. This type of injury is difficult to correct. Morphogenesis, or the continuous remodelling of formed organ/systems can be more amenable to correction since the basic layout of the organ already exists. The common denominator to organogenesis and morphogenesis, at cellular/tissue levels, is the harmonic interplay between cell multiplication, cell migration, cell differentiation, cell death, the generation of intercellular matrix and its resorption. All of this must take place at the 'right time'. Any departure from it may lead to injury, whether clinically detectable or not.
Collapse
Affiliation(s)
- G Moscoso
- Early Human Development Research Unit, St George's Hospital Medical School, London, UK.
| |
Collapse
|
109
|
Abstract
Higher plants have developed a unique pathway to control their cytoskeleton assembly and dynamics. In most other eukaryotes, microtubules are nucleated in vivo at the nucleation and organizing centers and are involved in the establishment of polarity. Although the major cytoskeletal components are common to plant and animal cells, which suggests conserved regulation mechanisms, plants do not possess centrosome-like organelles. Nevertheless, they are able to build spindles and have developed their own specific cytoskeletal arrays: the cortical arrays, the preprophase band, and the phragmoplast, which all participate in basic developmental processes, as shown by defective mutants. New approaches provide essential clues to understanding the fundamental mechanisms of microtubule nucleation. Gamma-tubulin, which is considered to be the universal nucleator, is the essential component of microtubule-nucleating complexes identified as gamma-tubulin ring complexes (gamma-TuRC) in centriolar cells. A gamma-tubulin small complex (gamma-TuSC) forms a minimal nucleating unit recruited at specific sites of activity. These components--gamma-tubulin, Spc98p, and Spc97p--are present in higher plants. They play a crucial role in microtubule nucleation at the nuclear surface, which is known as the main functional plant microtubule-organizing center, and also probably at the cell cortex and at the phragmoplast, where secondary nucleation sites may exist. Surprisingly, plant gamma-tubulin is distributed along the microtubule length. As it is not associated with Spc98p, it may not be involved in microtubule nucleation, but may preferably control microtubule dynamics. Understanding the mechanisms of microtubule nucleation is the major challenge of the current research.
Collapse
Affiliation(s)
- Anne-Catherine Schmit
- Plant Molecular Biology Institute, National Center of Scientific Research, UPR 2357, Université Louis Pasteur, Strasbourg, France
| |
Collapse
|
110
|
Abstract
Microtubule nucleation is the process in which several tubulin molecules interact to form a microtubule seed. Microtubule nucleation occurs spontaneously in purified tubulin solutions, and molecular intermediates between tubulin dimers and microtubules have been identified. Microtubule nucleation is enhanced in tubulin solutions by the addition of gamma-tubulin or various gamma-tubulin complexes. In vivo, microtubule assembly is usually seeded by gamma-tubulin ring complexes. Recent studies suggest, however, that microtubule nucleation can occur in the absence of gamma-tubulin, and that gamma-tubulin may have other cell functions apart from being a major component of the gamma-tubulin ring complex.
Collapse
Affiliation(s)
- Didier Job
- INSERM Unité 366, DRDC/CS, CEA/Grenoble, 17 rue des Martyrs, 38054-Grenoble Cedex 9, Grenoble, France.
| | | | | |
Collapse
|
111
|
Du J, Hannon GJ. The centrosomal kinase Aurora-A/STK15 interacts with a putative tumor suppressor NM23-H1. Nucleic Acids Res 2002; 30:5465-75. [PMID: 12490715 PMCID: PMC140054 DOI: 10.1093/nar/gkf678] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alterations in the activity of the centrosomal kinase, Aurora-A/STK15, have been implicated in centrosome amplification, genome instability and cellular transformation. How STK15 participates in all of these processes remains largely mysterious. The activity of STK15 is regulated by phosphorylation and ubiquitin-mediated degradation, and physically interacts with protein phosphatase 1 (PP1) and CDC20. However, the precise roles of these modifications and interactions have yet to be fully appreciated. Here we show that STK15 associates with a putative tumor and metastasis suppressor, NM23-H1. STK15 and NM23 were initially found to interact in yeast in a two-hybrid assay. Association of these proteins in human cells was confirmed by co-immunoprecipitation from cell lysates and biochemical fractionation indicating that STK15 and NM23-H1 are present in a stable, physical complex. Notably, SKT15 and NM23 both localize to centrosomes throughout the cell cycle irrespective of the integrity of the microtubule network in normal human fibroblasts.
Collapse
Affiliation(s)
- Jian Du
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
112
|
Shang Y, Li B, Gorovsky MA. Tetrahymena thermophila contains a conventional gamma-tubulin that is differentially required for the maintenance of different microtubule-organizing centers. J Cell Biol 2002; 158:1195-206. [PMID: 12356864 PMCID: PMC2173235 DOI: 10.1083/jcb.200205101] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The gene (GTU1) encoding Tetrahymena thermophila gamma-tubulin was cloned and analyzed. GTU1 is a single-copy, essential gene encoding a conventional gamma-tubulin. HA-tagged GTU1p localizes to four microtubule-organizing centers (MTOCs) in vegetative cells: basal bodies (BBs), macronuclear envelopes, micronuclear envelopes, and contractile vacuole pores. gamma-Tubulin function was studied by placing the GTU1 gene under control of an inducible-repressible promoter. Overexpression of GTU1 had no detectable effect on cell growth or morphology. Depletion of gamma-tubulin resulted in marked changes in cell morphology and in MT bundling. MTOCs showed different sensitivities to gamma-tubulin depletion, with BBs being the most sensitive. gamma-Tubulin was required not only for the formation of new BBs but also for maintenance of mature BBs. BBs disappeared in stages, first losing gamma-tubulin and then centrin and glutamylated tubulin. When GTU1 expression was reinduced in depleted cells, BBs reformed rapidly, and the normal, highly organized structure of the Tetrahymena cell cortex was reestablished, indicating that the precise patterning of the cortex can be formed de novo.
Collapse
Affiliation(s)
- Yuhua Shang
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
113
|
Abstract
In the 1940s, screens for metabolic mutants of the filamentous fungus Neurospora crassa established the fundamental, one-to-one relationship between a gene and a specific protein, and also established fungi as important genetic organisms. Today, a wide range of filamentous species, which represents a billion years of evolutionary divergence, is used for experimental studies. The developmental complexity of these fungi sets them apart from unicellular yeasts, and allows the development of new screens that enable us to address biological questions that are relevant to all eukaryotes.
Collapse
Affiliation(s)
- Lorna Casselton
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | | |
Collapse
|
114
|
Fujita A, Vardy L, Garcia MA, Toda T. A fourth component of the fission yeast gamma-tubulin complex, Alp16, is required for cytoplasmic microtubule integrity and becomes indispensable when gamma-tubulin function is compromised. Mol Biol Cell 2002; 13:2360-73. [PMID: 12134075 PMCID: PMC117319 DOI: 10.1091/mbc.02-01-0603] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
gamma-Tubulin functions as a multiprotein complex, called the gamma-tubulin complex (gamma-TuC), and composes the microtubule organizing center (MTOC). Fission yeast Alp4 and Alp6 are homologues of two conserved gamma-TuC proteins, hGCP2 and hGCP3, respectively. We isolated a novel gene, alp16(+), as a multicopy suppressor of temperature-sensitive alp6-719 mutants. alp16(+) encodes a 759-amino-acid protein with two conserved regions found in all other members of gamma-TuC components. In addition, Alp16 contains an additional motif, which shows homology to hGCP6/Xgrip210. Gene disruption shows that alp16(+) is not essential for cell viability. However, alp16 deletion displays abnormally long cytoplasmic microtubules, which curve around the cell tip. Furthermore, alp16-deleted mutants are hypersensitive to microtubule-depolymerizing drugs and synthetically lethal with either temperature-sensitive alp4-225, alp4-1891, or alp6-719 mutants. Overproduction of Alp16 is lethal, with defective phenotypes very similar to loss of Alp4 or Alp6. Alp16 localizes to the spindle pole body throughout the cell cycle and to the equatorial MTOC at postanaphase. Alp16 coimmunoprecipitates with gamma-tubulin and cosediments with the gamma-TuC in a large complex (>20 S). Alp16 is, however, not required for the formation of this large complex. We discuss evolutional conservation and divergence of structure and function of the gamma-TuC between yeast and higher eukaryotes.
Collapse
Affiliation(s)
- Akiko Fujita
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, United Kingdom
| | | | | | | |
Collapse
|
115
|
Suh MR, Han JW, No YR, Lee J. Transient concentration of a gamma-tubulin-related protein with a pericentrin-related protein in the formation of basal bodies and flagella during the differentiation of Naegleria gruberi. CELL MOTILITY AND THE CYTOSKELETON 2002; 52:66-81. [PMID: 12112149 DOI: 10.1002/cm.10033] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The distribution of two proteins in Naegleria gruberi, N-gammaTRP (Naegleria gamma-tubulin-related protein) and N-PRP (Naegleria pericentrin-related protein), was examined during the de novo formation of basal bodies and flagella that occurs during the differentiation of N. gruberi. After the initiation of differentiation, N-gammaTRP and N-PRP began to concentrate at the same site within cells. The percentage of cells with a concentrated region of N-gammaTRP and N-PRP was maximal (68%) at 40 min when the synthesis of tubulin had just started but no assembled microtubules were visible. When concentrated tubulin became visible (60 min), the region of concentrated N-gammaTRP and N-PRP was co-localized with the tubulin spot and then flagella began to elongate from the region of concentrated tubulin. When cells had elongated flagella, the concentrated N-gammaTRP and N-PRP were translocated to the opposite end of the flagellated cells and disappeared. The transient concentration of N-gammaTRP coincided with the transient formation of an F-actin spot at which N-gammaTRP and alpha-tubulin mRNA were co-localized. The concentration of N-gammaTRP and formation of the F-actin spot occurred without the formation of microtubules but were inhibited by cytochalasin D. These observations suggest that the regional concentration of N-gammaTRP and N-PRP is mediated by actin filaments and might provide a site of microtubule nucleation for the assembly of newly synthesized tubulins into basal bodies and flagella.
Collapse
Affiliation(s)
- Mi Ra Suh
- Department of Biology and Institute of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
116
|
Sumiyoshi E, Sugimoto A, Yamamoto M. Protein phosphatase 4 is required for centrosome maturation in mitosis and sperm meiosis inC. elegans. J Cell Sci 2002; 115:1403-10. [PMID: 11896188 DOI: 10.1242/jcs.115.7.1403] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The centrosome consists of two centrioles surrounded by the pericentriolar material (PCM). In late G2 phase, centrosomes enlarge by recruiting extra PCM,and concomitantly its microtubule nucleation activity increases dramatically. The regulatory mechanisms of this dynamic change of centrosomes are not well understood. Protein phosphatase 4 (PP4) is known to localize to mitotic centrosomes in mammals and Drosophila. An involvement of PP4 in the mitotic spindle assembly has been implicated in Drosophila, but in vivo functions of PP4 in other organisms are largely unknown. Here we characterize two Caenorhabditis elegans PP4 genes, named pph-4.1 and pph-4.2. Inhibition of the function of each gene by RNA-mediated interference (RNAi) revealed that PPH-4.1 was essential for embryogenesis but PPH-4.2 was not. More specifically, PPH-4.1 was required for the formation of spindles in mitosis and sperm meiosis. However, this phosphatase was apparently dispensable for female meiotic divisions, which do not depend on centrosomes. In the cell depleted of pph-4.1 activity,localization of γ-tubulin and a Polo-like kinase homologue to the centrosome was severely disturbed. Immunofluorescence staining revealed that PPH-4.1 was present at centrosomes from prophase to telophase, but not during interphase. These results indicate that PPH-4.1 is a centrosomal protein involved in the recruitment of PCM components to the centrosome, and is essential for the activation of microtubule nucleation potential of the centrosome. Furthermore, chiasmata between homologous chromosomes were often absent in oocytes that lacked pph-4.1 activity. Thus, besides promoting spindle formation, PPH-4.1 appears to play a role in either the establishment or the maintenance of chiasmata during meiotic prophase I.
Collapse
Affiliation(s)
- Eisuke Sumiyoshi
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
117
|
Vinh DBN, Kern JW, Hancock WO, Howard J, Davis TN. Reconstitution and characterization of budding yeast gamma-tubulin complex. Mol Biol Cell 2002; 13:1144-57. [PMID: 11950928 PMCID: PMC102258 DOI: 10.1091/mbc.02-01-0607] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nucleation of microtubules is central to assembly of the mitotic spindle, which is required for each cell division. gamma-Tubulin is a universal component essential for microtubule nucleation from centrosomes. To elucidate the mechanism of microtubule nucleation in budding yeast we reconstituted and characterized the yeast gamma-tubulin complex (Tub4p complex) produced in insect cells. The recombinant complex has the same sedimentation coefficient (11.6 S) as the native complex in yeast cell extracts and contains one molecule of Spc97p, one molecule of Spc98p, and two molecules of Tub4p. The reconstituted Tub4p complex binds preformed microtubules and has a low nucleating activity, allowing us to begin a detailed analysis of conditions that enhance this nucleating activity. We tested whether binding of the recombinant Tub4p complex to the spindle pole body docking protein Spc110p affects its nucleating activity. The solubility of recombinant Spc110p in insect cells is improved by coexpression with yeast calmodulin (Cmd1p). The Spc110p/Cmd1p complex has a small sedimentation coefficient (4.2 S) and a large Stokes radius (14.3 nm), indicative of an elongated structure. The Tub4p complex binds Spc110p/Cmd1p via Spc98p and the K(d) for binding is 150 nM. The low nucleation activity of the Tub4p complex is not enhanced when it is bound to Spc110p/Cmd1p, suggesting that it requires additional components or modifications to achieve robust activity. Finally, we report the identification of a large 22 S Tub4p complex in yeast extract that contains multimers of Spc97p similar to gamma-tubulin ring complexes found in higher eukaryotic cells.
Collapse
Affiliation(s)
- Dani B N Vinh
- Departments of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
118
|
Daunderer C, Gräf RO. Molecular analysis of the cytosolic Dictyostelium gamma-tubulin complex. Eur J Cell Biol 2002; 81:175-84. [PMID: 12018385 DOI: 10.1078/0171-9335-00241] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
gamma-Tubulin plays an essential role in microtubule nucleation and organization and occurs, besides its centrosomal localization, in the cytosol, where it forms soluble complexes with other proteins. We investigated the size and composition of gamma-tubulin complexes in Dictyostelium, using a mutant cell line in which the endogenous copy of the gamma-tubulin gene had been replaced by a tagged version. Dictyostelium gamma-tubulin complexes were generally much smaller than the large gamma-tubulin ring complexes found in higher organisms. The stability of the small Dictyostelium gamma-tubulin complexes depended strongly on the purification conditions, with a striking stabilization of the complexes under high salt conditions. Furthermore, we cloned the Dictyostelium homolog of Spc97 and an almost complete sequence of the Dictyostelium homolog of Spc98, which are both components of gamma-tubulin complexes in other organisms. Both proteins localize to the centrosome in Dictyostelium throughout the cell cycle and are also present in a cytosolic pool. We could show that the prevailing small complex present in Dictyostelium consists of DdSpc98 and gamma-tubulin, whereas DdSpc97 does not associate. Dictyostelium is thus the first organism investigated so far where the three proteins do not interact stably in the cytosol.
Collapse
|
119
|
Grissom PM, Vaisberg EA, McIntosh JR. Identification of a novel light intermediate chain (D2LIC) for mammalian cytoplasmic dynein 2. Mol Biol Cell 2002; 13:817-29. [PMID: 11907264 PMCID: PMC99601 DOI: 10.1091/mbc.01-08-0402] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The diversity of dynein's functions in mammalian cells is a manifestation of both the existence of multiple dynein heavy chain isoforms and an extensive set of associated protein subunits. In this study, we have identified and characterized a novel subunit of the mammalian cytoplasmic dynein 2 complex. The sequence similarity between this 33-kDa subunit and the light intermediate chains (LICs) of cytoplasmic dynein 1 suggests that this protein is a dynein 2 LIC (D2LIC). D2LIC contains a P-loop motif near its NH(2) terminus, and it shares a short region of similarity to the yeast GTPases Spg1p and Tem1p. The D2LIC subunit interacts specifically with DHC2 (or cDhc1b) in both reciprocal immunoprecipitations and sedimentation assays. The expression of D2LIC also mirrors that of DHC2 in a variety of tissues. D2LIC colocalizes with DHC2 at the Golgi apparatus throughout the cell cycle. On brefeldin A-induced Golgi fragmentation, a fraction of D2LIC redistributes to the cytoplasm, leaving behind a subset of D2LIC that is localized around the centrosome. Our results suggest that D2LIC is a bona fide subunit of cytoplasmic dynein 2 that may play a role in maintaining Golgi organization by binding cytoplasmic dynein 2 to its Golgi-associated cargo.
Collapse
Affiliation(s)
- Paula M Grissom
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| | | | | |
Collapse
|
120
|
Gunawardane RN, Zheng Y, Oegema K, Wiese C. Purification and reconstitution of Drosophila gamma-tubulin complexes. Methods Cell Biol 2002; 67:1-25. [PMID: 11550462 DOI: 10.1016/s0091-679x(01)67002-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- R N Gunawardane
- Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA
| | | | | | | |
Collapse
|
121
|
Affiliation(s)
- Y Ovechkina
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
122
|
Affiliation(s)
- H C Joshi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
123
|
Zhou J, Shu HB, Joshi HC. Regulation of tubulin synthesis and cell cycle progression in mammalian cells by ?-tubulin-mediated microtubule nucleation. J Cell Biochem 2002. [DOI: 10.1002/jcb.10033] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
124
|
Inaguma Y, Ito H, Iwamoto I, Saga S, Kato K. AlphaB-crystallin phosphorylated at Ser-59 is localized in centrosomes and midbodies during mitosis. Eur J Cell Biol 2001; 80:741-8. [PMID: 11831387 DOI: 10.1078/0171-9335-00203] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have reported that the three serine residues in alphaB-crystallin are phosphorylated under various stress conditions. We prepared affinity-purified antibodies recognizing each of the phosphorylated serine residues (Ser-19, Ser-45, and Ser-59, respectively) in alphaB-crystallin with peptides (p19S, p45S, or p59S) that contained the corresponding phosphorylated serine residue. Immunocytochemically anti-p45S antibodies stained the cytoplasm of mitotic cells (J. Biol. Chem. 273, 28,346-28,354). We have now found that the anti-p59S antibodies recognize centrosomes and midbodies of dividing cells. alphaB-Crystallin was the only protein recognized by the anti-p59S antibodies in Western blot analyses of isolated centrosome fractions. alphaB-Crystallin phosphorylated at Ser-59 was localized at the microtubule organizing centers by means of double staining with anti-beta-tubulin antibody in aster formation analysis and was co-localized with gamma-tubulin in centrosomes. Gamma-Tubulin was co-immunoprecipitated with alphaB-crystallin in U373 glioma cell extracts. On the other hand, the location of the phosphorylated alphaB-crystallin deviated from that of alpha-tubulin or gamma-tubulin in the midbody region. Taken together with the evidences that several chaperones are distributed to centrosomes, these results suggest that alphaB-crystallin as a chaperone might be also involved in the quality control of proteins.
Collapse
Affiliation(s)
- Y Inaguma
- Department of Biochemistry, Institute for Developmental Research, Aichi Human Service Center, Japan
| | | | | | | | | |
Collapse
|
125
|
Murphy SM, Preble AM, Patel UK, O'Connell KL, Dias DP, Moritz M, Agard D, Stults JT, Stearns T. GCP5 and GCP6: two new members of the human gamma-tubulin complex. Mol Biol Cell 2001; 12:3340-52. [PMID: 11694571 PMCID: PMC60259 DOI: 10.1091/mbc.12.11.3340] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The gamma-tubulin complex is a large multiprotein complex that is required for microtubule nucleation at the centrosome. Here we report the purification and characterization of the human gamma-tubulin complex and the identification of its subunits. The human gamma-tubulin complex is a ring of ~25 nm, has a subunit structure similar to that reported for gamma-tubulin complexes from other species, and is able to nucleate microtubule polymerization in vitro. Mass spectrometry analysis of the human gamma-tubulin complex components confirmed the presence of four previously identified components (gamma-tubulin and gamma-tubulin complex proteins [GCPs] 2, 3, and 4) and led to the identification of two new components, GCP5 and GCP6. Sequence analysis revealed that the GCPs share five regions of sequence similarity and define a novel protein superfamily that is conserved in metazoans. GCP5 and GCP6, like other components of the gamma-tubulin complex, localize to the centrosome and associate with microtubules, suggesting that the entire gamma-tubulin complex takes part in both of these interactions. Stoichiometry experiments revealed that there is a single copy of GCP5 and multiple copies of gamma-tubulin, GCP2, GCP3, and GCP4 within the gamma-tubulin complex. Thus, the gamma-tubulin complex is conserved in structure and function, suggesting that the mechanism of microtubule nucleation is conserved.
Collapse
Affiliation(s)
- S M Murphy
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Vogel J, Drapkin B, Oomen J, Beach D, Bloom K, Snyder M. Phosphorylation of gamma-tubulin regulates microtubule organization in budding yeast. Dev Cell 2001; 1:621-31. [PMID: 11709183 DOI: 10.1016/s1534-5807(01)00073-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
gamma-Tubulin is essential for microtubule nucleation in yeast and other organisms; whether this protein is regulated in vivo has not been explored. We show that the budding yeast gamma-tubulin (Tub4p) is phosphorylated in vivo. Hyperphosphorylated Tub4p isoforms are restricted to G1. A conserved tyrosine near the carboxy terminus (Tyr445) is required for phosphorylation in vivo. A point mutation, Tyr445 to Asp, causes cells to arrest prior to anaphase. The frequency of new microtubules appearing in the SPB region and the number of microtubules are increased in tub4-Y445D cells, suggesting this mutation promotes microtubule assembly. These data suggest that modification of gamma-tubulin is important for controlling microtubule number, thereby influencing microtubule organization and function during the yeast cell cycle.
Collapse
Affiliation(s)
- J Vogel
- Department of Cellular, Molecular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
127
|
Dibbayawan TP, Harper JD, Marc J. A gamma-tubulin antibody against a plant peptide sequence localises to cell division-specific microtubule arrays and organelles in plants. Micron 2001; 32:671-8. [PMID: 11334736 DOI: 10.1016/s0968-4328(00)00064-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gamma tubulin (gamma-tubulin) is involved in microtubule initiation in the eukaryotes. In animal cells it is localised to centrosomes and to other, non-centrosomal sites of microtubule initiation. In addition, cytoplasmic complexes containing gamma-tubulin (gamma-TuRCs; gamma-somes) have been described, which are multiprotein complexes involved in microtubule initiation. Most localisations of gamma-tubulin in plants have previously been achieved using an antibody directed towards a conserved peptide sequence found in animal cells, showing co-localisation with all microtubule arrays throughout the cell cycle. Because different antibodies may give various patterns of subcellular localisation, in the present study we raised a polyclonal antibody ('Hayley') to the plant peptide sequence EDFATQGGDRKDVFFY (bold letters indicate plant-specific amino acids) to further investigate the subcellular distribution in plants. Immunoblotting using wheat root tip protein extracts revealed a 58 kDagamma-tubulin-like peptide as has been described before. Immunofluorescence microscopy of wheat root-tip cells, however, revealed localisation of gamma-tubulin to a subset of mitotic microtubule arrays and the cytokinetic phragmoplast, but not to interphase cortical arrays or the preprophase band of microtubules. This lack of labelling may be caused by a restriction of antibody access during interphase, but more likely by a cell division-specific conformational change in the gamma-tubulin molecule. Our antibody also gave an organelle-like labelling, not described before, which may represent storage forms or precursors of gamma-tubulin, perhaps related to plastid-based microtubule initiation in hepatics and hornworts.
Collapse
Affiliation(s)
- T P Dibbayawan
- School of Biological Sciences, Macleay Building, A12, University of Sydney, NSW 2006, Sydney, Australia
| | | | | |
Collapse
|
128
|
Raynaud-Messina B, Debec A, Tollon Y, Garès M, Wright M. Differential properties of the two Drosophila gamma-tubulin isotypes. Eur J Cell Biol 2001; 80:643-9. [PMID: 11713868 DOI: 10.1078/0171-9335-00195] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The functional significance of distinct gamma-tubulins in several unrelated eukaryotes remains an enigma due to the difficulties to investigate this question experimentally. Using specific nucleotidic and immunological probes, we have demonstrated that the two divergent Drosophila gamma-tubulins, gamma-tub23C and gamma-tub37CD, are expressed in cultured cells. Gamma-tub37CD is constantly detected at the centrosome and absent in the mitotic spindle, while gamma-tub23C is extensively recruited to the centrosome during mitosis and relocalizes in the mitotic spindle. The two gamma-tubulins exhibit distinct biochemical properties. Gamma-tub23C is present in the soluble gamma-tubulin small complexes (10S) and gamma-tubulin big complexes (35S) and is loosely associated to the cytoskeleton. In contrast, gamma-tub37CD is undetectable in the soluble fraction and exhibits a tight binding to the centrosome. Syncytial embryos also contain the two gamma-tubulin isotypes, which are differentially recruited at the centrosome. Gamma-tub23C is present in the 10S soluble complexes only, while y-tub37CD is contained in the two soluble complexes and is recruited at the centrosome where it exhibits an heterogeneous binding. These results demonstrated an heterogeneity of the two Drosophila gamma-tubulin isotypes both in the cytoskeletal and the soluble fractions. They suggest the direct implication of the 35S complex in the centrosomal recruitment of gamma-tubulin and a conditional functional redundancy between the two gamma-tubulins.
Collapse
Affiliation(s)
- B Raynaud-Messina
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse/France
| | | | | | | | | |
Collapse
|
129
|
Mermoud JE, Tassin AM, Pehrson JR, Brockdorff N. Centrosomal association of histone macroH2A1.2 in embryonic stem cells and somatic cells. Exp Cell Res 2001; 268:245-51. [PMID: 11478850 DOI: 10.1006/excr.2001.5277] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The histone 2A variant macroH2A1.2 is expressed in female and male mammals and is implicated in X-chromosome inactivation and autosomal gene silencing. In undifferentiated and early differentiating murine embryonic stem (ES) cells a cytosolic pool of macroH2A1.2 has recently been reported and found to be associated with the centrosome. Here, we show that the centrosomal association of macroH2A1.2 is a widespread phenomenon and is not restricted to undifferentiated and early differentiating ES cells. By indirect immunofluorescence we detect macroH2A1.2 protein in a juxtanuclear structure that duplicates once per cell cycle and colocalizes with centrosomal gamma-tubulin in both XX and XY ES cells prior to and throughout their differentiation. MacroH2A1.2 localization to the centrosome is also observed in female and male somatic cells, both in interphase and in mitosis. Biochemical analysis demonstrates that the association between macroH2A1.2 and the centrosome in somatic cells is stable, as macroH2A1.2 copurifies with centrosomes isolated from human lymphoblasts. Therefore, in addition to a nuclear pool of macroH2A1.2 a fraction of the histone is associated with the centrosome in various cell types and throughout ES cell differentiation.
Collapse
Affiliation(s)
- J E Mermoud
- X-Inactivation Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London W12 ONN, United Kingdom.
| | | | | | | |
Collapse
|
130
|
Hendrickson TW, Yao J, Bhadury S, Corbett AH, Joshi HC. Conditional mutations in gamma-tubulin reveal its involvement in chromosome segregation and cytokinesis. Mol Biol Cell 2001; 12:2469-81. [PMID: 11514629 PMCID: PMC58607 DOI: 10.1091/mbc.12.8.2469] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
gamma-Tubulin is a conserved essential protein required for assembly and function of the mitotic spindle in humans and yeast. For example, human gamma-tubulin can replace the gamma-tubulin gene in Schizosaccharomyces pombe. To understand the structural/functional domains of gamma-tubulin, we performed a systematic alanine-scanning mutagenesis of human gamma-tubulin (TUBG1) and studied phenotypes of each mutant allele in S. pombe. Our screen, both in the presence and absence of the endogenous S. pombe gamma-tubulin, resulted in 11 lethal mutations and 12 cold-sensitive mutations. Based on structural mapping onto a homology model of human gamma-tubulin generated by free energy minimization, all deleterious mutations are found in residues predicted to be located on the surface, some in positions to interact with alpha- and/or beta-tubulins in the microtubule lattice. As expected, one class of tubg1 mutations has either an abnormal assembly or loss of the mitotic spindle. Surprisingly, a subset of mutants with abnormal spindles does not arrest in M phase but proceeds through anaphase followed by abnormal cytokinesis. These studies reveal that in addition to its previously appreciated role in spindle microtubule nucleation, gamma-tubulin is involved in the coordination of postmetaphase events, anaphase, and cytokinesis.
Collapse
Affiliation(s)
- T W Hendrickson
- Program in Biochemistry, Cell, and Developmental Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
131
|
Setoguchi A, Okuda M, Nishida E, Yazawa M, Ishizaka T, Hong SH, Hisasue M, Nishimura R, Sasaki N, Yoshikawa Y, Masuda K, Ohno K, Tsujimoto H. Results of hyperamplification of centrosomes in naturally developing tumors of dogs. Am J Vet Res 2001; 62:1134-41. [PMID: 11453492 DOI: 10.2460/ajvr.2001.62.1134] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate results of centrosome hyperamplification in naturally developing tumors of dogs. SAMPLE POPULATION Tumor specimens from 9 dogs with tumors (rhabdomyosarcoma, osteosarcoma, chondrosarcoma, myxosarcoma, and mammary gland tumor) and 2 canine osteosarcoma cell lines. PROCEDURE 3 antibodies for centrosome proteins (ie, anti-gamma-tubulin, anti-BRCA1, and anti-pericentrin) were used for immunohistochemical analysis. Double immunostaining for centrosomes was used to confirm the specificity of these antibodies for centrosomes. Mutational analysis of the canine p53 gene was carried out by polymerase chain reaction-single-strand conformation polymorphism analysis, and expression of canine MDM2 protein was evaluated by use of immunohistochemical analysis, using anti-MDM2 antibody. RESULTS Immunohistochemical analysis of dog osteosarcoma cell lines with apparent aneuploidy revealed frequent hyperamplification of centrosomes in the osteosarcoma cell lines. Similar hyperamplified centrosomes were detected in the tumor tissues from all of the 9 tumors. The frequency of cells with hyperamplified centrosomes (3 to 20/cell) in each tumor tissue ranged from 9.50 to 48.1%, whereas centrosome hyperamplification was not observed in normal lymph nodes from these dogs. In 8 of the 9 tumors, mutation of p53 gene or overexpression of MDM2, or both, was detected. CONCLUSIONS AND CLINICAL RELEVANCE Various types of naturally developing tumors in dogs often have hyperamplification of centrosomes associated with chromosome instability. Hyperamplification of centrosomes is a novel tumor marker for use in cytologic and histologic examinations of clinical specimens obtained from dogs.
Collapse
MESH Headings
- Animals
- Centrosome/pathology
- Chromosome Aberrations/veterinary
- DNA, Neoplasm/chemistry
- Dog Diseases/genetics
- Dog Diseases/pathology
- Dogs
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Genes, p53/genetics
- Immunohistochemistry/veterinary
- Male
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/pathology
- Nuclear Proteins
- Polymorphism, Single-Stranded Conformational
- Proto-Oncogene Proteins/analysis
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins c-mdm2
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/genetics
- RNA, Neoplasm/isolation & purification
- Reverse Transcriptase Polymerase Chain Reaction/veterinary
- Sarcoma/chemistry
- Sarcoma/genetics
- Sarcoma/veterinary
- Sequence Analysis, DNA
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Setoguchi
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Chen D, Xu W, He P, Medrano EE, Whiteheart SW. Gaf-1, a gamma -SNAP-binding protein associated with the mitochondria. J Biol Chem 2001; 276:13127-35. [PMID: 11278501 DOI: 10.1074/jbc.m009424200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of alpha/beta-SNAP (Soluble NSF Attachment Protein) in vesicular trafficking is well established; however, the function of the ubiquitously expressed gamma-SNAP remains unclear. To further characterize the cellular role of this enigmatic protein, a two-hybrid screen was used to identify new, gamma-SNAP-binding proteins and to uncover potentially novel functions for gamma-SNAP. One such SNAP-binding protein, termed Gaf-1 (gamma-SNAP associate factor-1) specifically binds gamma- but not alpha-SNAP. The full-length Gaf-1 (75 kDa) is ubiquitously expressed and is found stoichiometrically associated with gamma-SNAP in cellular extracts. This binding is distinct from other SNAP interactions since no alpha-SNAP or NSF coprecipitated with Gaf-1. Subcellular fractionation and immunofluorescence analysis show that Gaf-1 is peripherally associated with the outer mitochondrial membrane. Only a fraction of gamma-SNAP was mitochondrial with the balance being either cytosolic or associated with other membrane fractions. GFP-gamma-SNAP and the C-terminal domain of Gaf-1 both show a reticular distribution in HEK-293 cells. This reticular structure colocalizes with Gaf-1 and mitochondria as well as with microtubules but not with other cytoskeletal elements. These data identify a class of gamma-SNAP interactions that is distinct from other members of the SNAP family and point to a potential role for gamma-SNAP in mitochondrial dynamics.
Collapse
Affiliation(s)
- D Chen
- Department of Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
133
|
Abstract
The Drosophila oocyte is a highly specialized cell type whose development utilizes MTOCs in various contexts. Figure 4 (see color insert) summarizes the characteristics of the MTOCs at different stages of oogenesis. Polarized mitoses are required to achieve oocyte determination. In the asymmetric germ-cell divisions that culminate in the egg chamber, the mitotic centrosomes are anchored to the spectrosome or fusome in order to produce the regular branching pattern of the cyst cells. It appears that the primary role of the fusome is to orchestrate the polarity and synchrony of oogenic mitoses. In the absence of fusomes or anchored spindles, the regular interconnected cyst network is lost and the oocyte does not differentiate. It is not known if the spindle itself is asymmetric, or whether either centrosome has equal potential to interact with the fusome. Several models can explain the need for polarized mitoses for oocyte differentiation. In one, an unequal distribution of unknown oocyte differentiation factors occurs from as early as the first cystoblast division. Here, the fusome may be required for the distribution of the factors. In another model, there is a mechanism that measures the number of ring canals in the cell, limiting the choice of oocyte to two potential pro-oocytes. In this model, polarized, synchronous divisions must occur to produce only two cells with the highest number of ring canals. In both of these models the centrosome plays an indirect role. A critical event in the determination of the oocyte is the formation of the MTOC. The oocyte MTOC forms shortly after completion of the germ cell mitoses and establishes a microtubule array along which factors required for oocyte determination are transported. It is unclear how this single MTOC forms in the 16-cell cyst, how the centrosomes become inactivated in the adjoining 15 nurse cells, or why the inactivated centrioles are transported into the oocyte. No molecular components of the MTOC are known except for centrosomin, which accumulates at the MTOC relatively late, at approximately stage 5 or 6 of oogenesis. The MTOC plays a central role in establishing the oocyte's polar coordinates. The oocyte microtubule array is required for the polar localization of axis-determining factors. At midoogenesis the MTOC appears to mediate the reversal of the microtubule array and the migration of the nucleus in the oocyte. The posterior follicle cells signal this reversal after receiving the gurken signal. What changes occur at the MTOC to trigger this cytoskeletal rearrangement? A better understanding of the MTOC's molecular components is necessary before we can begin to unravel the mechanisms underlying these events. The morphology of the MTOC changes after it shifts to the oocyte anterior. Staining with anti-centrosomin antibodies shows that the MTOC changes from discrete nucleus-associated bodies into a broad structure associated with the anterior cortex. The molecular mechanisms underlying this structural rearrangement of the MTOC at midoogenesis are presently unknown. Meiosis I occurs in the absence of centrosomes, but meiosis II spindles are linked by a shared, acentriolar, astral MTOC. The organization of the meiosis I spindle poles requires the NCD motor protein; however, the meiosis I spindle poles are acentriolar and contain no known centrosomal core proteins. The meiosis II astral spindle pole has a unique ring-shaped morphology and contains centrosomal proteins, such as gamma-tubulin. Strong mutations in the maternal gamma Tub37C gene do not block meiosis I, but prevent the progression of meiosis II.
Collapse
Affiliation(s)
- T L Megraw
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
134
|
Gräf R, Brusis N, Daunderer C, Euteneuer U, Hestermann A, Schliwa M, Ueda M. Comparative structural, molecular, and functional aspects of the Dictyostelium discoideum centrosome. Curr Top Dev Biol 2001; 49:161-85. [PMID: 11005018 DOI: 10.1016/s0070-2153(99)49008-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- R Gräf
- Adolf-Butenandt-Institut/Zellbiologie, Ludwig-Maximilians-Universität München, Germany
| | | | | | | | | | | | | |
Collapse
|
135
|
Affiliation(s)
- W F Rothwell
- Sinsheimer Laboratories, Department of Biology, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
136
|
Affiliation(s)
- B R Oakley
- Department of Molecular Genetics, Ohio State University, Columbus 43210, USA
| |
Collapse
|
137
|
Abstract
In the past, centrosome maturation has been described as the change in microtubule nucleation potential that occurs as cells pass through specific phases of the cell cycle. It is suggested that the idea of centrosome maturation be expanded to include gain of functions that are not necessarily related to microtubule nucleation. Some of these functions could be transient and dependent on the temporary association of molecules with the centrosome as cells progress through the cell cycle. Thus, the centrosome may best be viewed as a site for mediating macromolecular interactions, perhaps as a central processing station within the cell. The centromatrix, a relatively stable lattice of polymers within the centrosome's PCM, could serve as a scaffold for the transient binding of mediator molecules, as well as allow the dynamic exchange of centrosome constituents with a soluble cytoplasmic pool. New evidence adds support to the idea that centrioles are crucial for the maintenance of PCM structure. However, significant evidence indicates that aspects of centrosome structure and function can be maintained in the absence of centrioles. In the case of paternal centrosome maturation, sperm centrioles may not contain an associated centromatrix. It is proposed that regulation of paternal centrioles or centriole associated proteins could mediate centriole-dependent centromatrix assembly following fertilization. Thus, regulation of centromatrix-centriole interactions could be involved in maintaining the integrity of the centrosome's PCM and play an important role in centrosome disassembly during cell differentiation and morphogenesis.
Collapse
Affiliation(s)
- R E Palazzo
- Department of Molecular Biosciences, University of Kansas, Lawrence 66045, USA
| | | | | | | | | |
Collapse
|
138
|
Affiliation(s)
- J Vogel
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
139
|
Francis SE, Davis TN. The spindle pole body of Saccharomyces cerevisiae: architecture and assembly of the core components. Curr Top Dev Biol 2001; 49:105-32. [PMID: 11005016 DOI: 10.1016/s0070-2153(99)49006-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- S E Francis
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
140
|
Lange BM, Faragher AJ, March P, Gull K. Centriole duplication and maturation in animal cells. Curr Top Dev Biol 2001; 49:235-49. [PMID: 11005021 DOI: 10.1016/s0070-2153(99)49011-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- B M Lange
- School of Biological Sciences, University of Manchester, United Kingdom
| | | | | | | |
Collapse
|
141
|
Hong YR, Chen CH, Chuo MH, Liou SY, Howng SL. Genomic organization and molecular characterization of the human ninein gene. Biochem Biophys Res Commun 2000; 279:989-995. [PMID: 11162463 DOI: 10.1006/bbrc.2000.4050] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The centrosome plays a key role in the formation of the mitotic spindle, cell polarity, and cell locomotion. Previously we identified a novel centrosomal associated protein hNinein using GSK-3beta as a bait in the yeast two-hybrid assay. In this report, the hNinein genome was found to correspond to 29 exons of genomic sequence on human chromosome 14q22. Promoter analysis predicts that hNinein contains a TATA, two CCAAT, and three GC boxes. The promoter exhibits the following potential transcription factor binding sites: Sp1, p300, and AP-1. In addition, an alternatively spliced isoform, encoded a 2041-amino-acid protein of 237,900 Da, which was designated hNinein-Lm (GenBank AF302773). The hNinein-Lm genome was found to correspond to 28 exons (2'-29). Amino acid sequence comparison with hNinein showed that hNinein-Lm exhibited an EF-hand Ca2+ binding domain in the N-terminus which similar to mouse ninein. Northern blot showed that this hNinein-Lm isoform was expressed more than hNinein in tissues examined. Differential RT-PCR combining Southern blotting also showed that hNinein-Lm is much more abundant compared to hNinein. Two forms of ninein may also imply the status of ninein associated with a pair of the centrioles in the centrosome structure. Furthermore, molecular characterization shows that human ninein is oligomerized at the C-terminal end which overlapped with GSK-3beta binding site, suggesting that oligomerization of ninein may be regulated by GSK-3beta phosphorylation.
Collapse
Affiliation(s)
- Y R Hong
- Graduate Institute of Biochemistry, Kaohsiung Medical University, 807, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
142
|
Takeoka A, Shimizu M, Horio T. Identification of an alpha-tubulin mutant of fission yeast from gamma-tubulin-interacting protein screening: genetic evidence for alpha-/gamma-tubulin interaction. J Cell Sci 2000; 113 Pt 24:4557-62. [PMID: 11082048 DOI: 10.1242/jcs.113.24.4557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
gamma-Tubulin has been determined to be a central element of microtubule nucleation and, thus, indispensable for cellular organization of the microtubule. Utilizing the fact that human gamma-tubulin can function in the fission yeast Schizosaccharomyces pombe, we have generated a unique mutant screening procedure which can specifically select mutants of genes encoding gamma-tubulin-interacting proteins. One of the isolated mutants, cs76, turned out to carry a mutation in the alpha 1-tubulin gene (nda2(+)). This result suggests a direct interaction between the alpha- and gamma-tubulins. We located the mutation site in the nda2 gene and characterized the mutant phenotype. Our results demonstrate the importance of the alpha-/gamma-tubulin interaction in microtubule nucleation and should complement previous knowledge.
Collapse
Affiliation(s)
- A Takeoka
- Department of Food Microbiology, The University of Tokushima School of Medicine, Kuramoto, Tokushima 770-8503, Japan
| | | | | |
Collapse
|
143
|
Kanai M, Uchida M, Hanai S, Uematsu N, Uchida K, Miwa M. Poly(ADP-ribose) polymerase localizes to the centrosomes and chromosomes. Biochem Biophys Res Commun 2000; 278:385-9. [PMID: 11097846 DOI: 10.1006/bbrc.2000.3801] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) takes part mainly in regulation of DNA repair, thereby maintaining genomic stability in the nucleus. However, what role PARP plays in mitotic cells is not known. Centrosomes play an important role in maintaining the fidelity of chromosome distribution during cell division. Loss of these functions might cause chromosomal instability and aneuploidy. p53 and BRCA1 were recently found to localize to the centrosome at mitosis. We found that PARP is localized to the centrosomes and the chromosomes at cell-division phase and interphase by indirect immunofluorescence. Furthermore, by analysis of isolated centrosomes PARP protein was found to associate with the centrosomes during mitosis. These data suggest that PARP may be involved in maintenance of chromosomal stability.
Collapse
Affiliation(s)
- M Kanai
- Department of Biochemistry and Molecular Oncology, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
144
|
Vardy L, Toda T. The fission yeast gamma-tubulin complex is required in G(1) phase and is a component of the spindle assembly checkpoint. EMBO J 2000; 19:6098-111. [PMID: 11080156 PMCID: PMC305819 DOI: 10.1093/emboj/19.22.6098] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2000] [Revised: 09/04/2000] [Accepted: 09/22/2000] [Indexed: 11/14/2022] Open
Abstract
Microtubule polymerization is initiated from the microtubule organizing centre (MTOC), which contains the gamma-tubulin complex. We have identified fission yeast Alp4 and Alp6, which are homologues of the gamma-tubulin-interacting proteins Sc.Spc97/Hs.Gcp2 and Sc. Spc98/Hs.Gcp3, respectively. The size of the fission yeast gamma-tubulin complex is large (>2000 kDa), comparable to that in metazoans. Both Alp4 and Alp6 localize to the spindle pole body (SPB) and also to the equatorial MTOC. Temperature-sensitive (ts) alp4 and alp6 mutants show two types of microtubular defects. First, monopolar mitotic spindles form. Secondly, abnormally long cytoplasmic microtubules appear that do not stop at the cell tips and are still associated with the SPB. Alp4 function is required in G(1) phase and ts mutants become lethal before S-phase. alp4 and alp6 mutants are hypersensitive to the microtubule- destabilizing drug thiabendazole (TBZ) and show a lethal 'cut' phenotype in its presence. Furthermore, alp4mad2 double mutants show an exaggerated multiple septation phenotype in TBZ. These results indicate that Alp4 and Alp6 may play a crucial role in the spindle pole-mediated checkpoint pathway.
Collapse
Affiliation(s)
- L Vardy
- Laboratory of Cell Regulation, Imperial Cancer Research Fund, PO Box 123, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
145
|
Ochi T. Induction of centrosome injury, multipolar spindles and multipolar division in cultured V79 cells exposed to dimethylarsinic acid: role for microtubules in centrosome dynamics. Mutat Res 2000; 454:21-33. [PMID: 11035156 DOI: 10.1016/s0027-5107(00)00096-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Role for microtubules in the induction of multiple microtubule organizing centers (MTOCs) and multipolar spindles by dimethylarsinic acid (DMAA), a methylated derivative of inorganic arsenics, was investigated with respect to the effects of microtubule disruption and reorganization. DMAA induced multiple signals of gamma-tubulin, a well-characterized component of MTOCs in the centrosome, in a manner specific to mitotic cells. The multiple signals of gamma-tubulin were co-localized with multipolar spindles caused by DMAA. Disruption of microtubules by nocodazole (NOZ) suppressed the appearance of centrosome injury caused by DMAA while disorganization of actin microfilaments by cytochalasin D did not. Post-treatment incubation of cells in which multiple signals of gamma-tubulin caused by DMAA had been coalesced to one or two dots by NOZ caused the reappearance of mitotic cells with multiple signals of gamma-tubulin, in conjunction with reorganization of the microtubules. These results suggest a role for microtubules in the dynamic behavior of the mitotic centrosome. DMAA induced aberrant cytokinesis, such as tripolar and quadripolar division, in a concentration-dependent manner. These results, together with the findings of earlier studies, suggest that the centrosome is the primary target for the induction of multipolar spindles by DMAA and the resultant induction of multinucleation and multipolar division.
Collapse
Affiliation(s)
- T Ochi
- Department of Toxicology and Environmental Health, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, 199-0195, Kanagawa, Japan.
| |
Collapse
|
146
|
Vogel J, Snyder M. The carboxy terminus of Tub4p is required for gamma-tubulin function in budding yeast. J Cell Sci 2000; 113 Pt 21:3871-82. [PMID: 11034914 DOI: 10.1242/jcs.113.21.3871] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The role of gamma-tubulin in microtubule nucleation is well established, however, its function in other aspects of microtubule organization is unknown. The carboxy termini of alpha/beta-tubulins influence the assembly and stability of microtubules. We investigated the role of the carboxy terminus of yeast gamma-tubulin (Tub4p) in microtubule organization. This region consists of a conserved domain (DSYLD), and acidic tail. Cells expressing truncations lacking the DSYLD domain, tail or both regions are temperature sensitive for growth. Growth defects of tub4 mutants lacking either or both carboxy-terminal domains are suppressed by the microtubule destabilizing drug benomyl. tub4 carboxy-terminal mutants arrest as large budded cells with short bipolar spindles positioned at the bud neck. Electron microscopic analysis of wild-type and CTR mutant cells reveals that SPBs are tightly associated with the bud neck/cortex by cytoplasmic microtubules in mutants lacking the tail region (tub4-delta 444, tub4-delta 448). Mutants lacking the DSYLD residues (tub4-delta 444, tub4-delta DSYLD) form many cytoplasmic microtubules. We propose that the carboxy terminus of Tub4p is required for re-organization of the microtubules upon completion of nuclear migration, and facilitates spindle elongation into the bud.
Collapse
Affiliation(s)
- J Vogel
- Department of Cellular, Molecular and Developmental Biology, Yale University, PO Box 208103, New Haven CT 06520, USA
| | | |
Collapse
|
147
|
Rasmussen TP, Mastrangelo MA, Eden A, Pehrson JR, Jaenisch R. Dynamic relocalization of histone MacroH2A1 from centrosomes to inactive X chromosomes during X inactivation. J Cell Biol 2000; 150:1189-98. [PMID: 10974005 PMCID: PMC2175247 DOI: 10.1083/jcb.150.5.1189] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2000] [Accepted: 07/18/2000] [Indexed: 11/22/2022] Open
Abstract
Histone variant macroH2A1 (macroH2A1) contains an NH(2)-terminal domain that is highly similar to core histone H2A and a larger COOH-terminal domain of unknown function. MacroH2A1 is expressed at similar levels in male and female embryonic stem (ES) cells and adult tissues, but a portion of total macroH2A1 protein localizes to the inactive X chromosomes (Xi) of differentiated female cells in concentrations called macrochromatin bodies. Here, we show that centrosomes of undifferentiated male and female ES cells harbor a substantial store of macroH2A1 as a nonchromatin-associated pool. Greater than 95% of centrosomes from undifferentiated ES cells contain macroH2A1. Cell fractionation experiments confirmed that macroH2A1 resides at a pericentrosomal location in close proximity to the known centrosomal proteins gamma-tubulin and Skp1. Retention of macroH2A1 at centrosomes was partially labile in the presence of nocodazole suggesting that intact microtubules are necessary for accumulation of macroH2A1 at centrosomes. Upon differentiation of female ES cells, Xist RNA expression became upregulated and monoallelic as judged by fluorescent in situ hybridization, but early Xist signals lacked associated macroH2A1. Xi acquired macroH2A1 soon thereafter as indicated by the colocalization of Xist RNA and macroH2A1. Accumulation of macroH2A1 on X chromosomes occurred with a corresponding loss of centrosomal macroH2A1. Our results define a sequence for the loading of macroH2A1 on the Xi and place this event in the context of differentiation and Xist expression. Furthermore, these results suggest a role for the centrosome in the X inactivation process.
Collapse
Affiliation(s)
| | | | - Amir Eden
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - John R. Pehrson
- University of Pennsylvania Veterinary School, Philadelphia, Pennsylvania 19104-6048
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
148
|
Chiba S, Okuda M, Mussman JG, Fukasawa K. Genomic convergence and suppression of centrosome hyperamplification in primary p53-/- cells in prolonged culture. Exp Cell Res 2000; 258:310-21. [PMID: 10896782 DOI: 10.1006/excr.2000.4916] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chromosome instability, a major property of cancer cells, is believed to promote mutations that establish malignant phenotypes. Centrosome hyperamplification and the consequential increase in the frequency of aberrant mitoses are the major causes of chromosome instability in cancer cells that lack the functional p53 tumor suppressor protein. Here, we examined dynamic changes of chromosome and centrosome behaviors during long-term culturing of primary epithelial cells derived from p53-null mice. The heterogeneity in the number of chromosomes per cell in the early to mid passage cell population diminished in late passage cells, giving rise to distinct subpopulations of cells. Concomitantly, centrosome hyperamplification that was observed at a high frequency in early to mid passage cells was suppressed in late passage cells. These results provide an explanation for the frequent observations that some cancer cell lines and tissues that lack functional p53 show normal centrosome behaviors and altered, yet relatively stable, chromosomes. Moreover, our in vitro findings may provide a model for possible genomic convergence in cultured cells. This may be analogous to the genomic convergence model proposed for in vivo tumor progression in which chromosome instability initially imposed during tumorigenesis becomes suppressed when neoplastic cells have acquired chromosome compositions that promise an optimal growth in a given environment.
Collapse
Affiliation(s)
- S Chiba
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | | | |
Collapse
|
149
|
Sakai H, Maruno A, Sugawara N, Takahashi K, Hoshi C, Nakamura A, Nakamura R, Shinozaki N, Sato M, Osumi M. Nucleation of Astral-shaped Microtubules from Latex Beads Conjugated with MTOG Proteins. Zoolog Sci 2000; 17:609-15. [DOI: 10.2108/zsj.17.609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/1999] [Accepted: 11/11/1999] [Indexed: 11/17/2022]
|
150
|
Akashi T, Yoon Y, Oakley BR. Characterization of gamma-tubulin complexes in Aspergillus nidulans and detection of putative gamma-tubulin interacting proteins. CELL MOTILITY AND THE CYTOSKELETON 2000; 37:149-58. [PMID: 9186012 DOI: 10.1002/(sici)1097-0169(1997)37:2<149::aid-cm7>3.0.co;2-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
gamma-Tubulin is central to the nucleation of microtubule assembly in vivo. Although it is most obviously located at microtubule organizing centers, it is also found in soluble cytoplasmic complexes. Characterizing these complexes and identifying proteins that interact with gamma-tubulin in vivo will be necessary if gamma-tubulin function is to be understood fully. We have begun to investigate soluble complexes of gamma-tubulin in Aspergillus nidulans, the organism in which gamma-tubulin was discovered and in which a great deal of genetic and molecular genetic analysis of gamma-tubulin has been carried out. We find that approximately 32% of the gamma-tubulin in A. nidulans is soluble. Sucrose density gradients revealed that the soluble gamma-tubulin is in 8-20S complexes with little or no monomeric gamma-tubulin present. In the presence of 0.5 M KCl the average size of the complexes decreased and a peak was present between 4S and 11S. Cross-linking experiments with a zero-length cross-linker suggest that gamma-tubulin in isolated nuclei and in intact hyphae interacts physically with three proteins with molecular weights of approximately 105, 95, and 80 kDa.
Collapse
Affiliation(s)
- T Akashi
- Laboratory of Medical Mycology, Nagoya University School of Medicine, Aichi, Japan
| | | | | |
Collapse
|