101
|
Chatterjee PK, Coren JS. Isolating large nested deletions in bacterial and P1 artificial chromosomes by in vivo P1 packaging of products of Cre-catalysed recombination between the endogenous and a transposed loxP site. Nucleic Acids Res 1997; 25:2205-12. [PMID: 9153322 PMCID: PMC146717 DOI: 10.1093/nar/25.11.2205] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A general approach for isolating large nested deletions in P1 artificial chromosomes (PACs) and bacterial artificial chromosomes (BACs) by retrofitting with a loxP site-containing Tn10 mini-transposon is described. Cre-mediated recombination between the loxP site existing in these clones and one introduced by transposition leads to deletions and inversions of the DNA between these sites. Large deletions are selectively recovered by transducing the retrofitted PAC or BAC clones with P1 phage. The requirement that both loxP sites in the cointegrate be packaged into a P1 head ensures that only large deletions are rescued. PCR analyses identified these deletions as products of legitimate recombination between loxP sites mediated by Cre protein. BACs produce deletions much more efficiently than PACs although the former cannot be induced to greater than unit copy in cells. Mammalian cell-responsive antibiotic resistance markers are introduced as part of the transposon into genomic clone deletions for subsequent functional analysis. Most importantly, the loxP site retrofitting and P1 transduction can be performed in the same bacterial host containing these clones directly isolated from PAC or BAC libraries. These procedures should facilitate physical and functional mapping of genes and regulatory elements in these large plasmids.
Collapse
Affiliation(s)
- P K Chatterjee
- Department of Medicine, SUNY Health Science Center, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | |
Collapse
|
102
|
Furnari BA, Russell P, Leatherwood J. Pch1(+), a second essential C-type cyclin gene in Schizosaccharomyces pombe. J Biol Chem 1997; 272:12100-6. [PMID: 9115279 DOI: 10.1074/jbc.272.18.12100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Schizosaccharomyces pombe gene pch1(+) (pombe cyclin C homology) was isolated in a two-hybrid screen for proteins that interact with Cdc2. The cyclin box region of Pch1 protein shares greatest sequence identity with mammalian and Drosophila C-type cyclins ( approximately 33% identity). Pch1 is significantly less similar to Mcs2 (19% identity), a second member of the C-type cyclin family in S. pombe. Cdc2 co-precipitates with Pch1 in S. pombe cell lysates, although Cdc2 may not be the major catalytic partner of a Pch1 kinase in vivo. Purified Pch1-associated kinase phosphorylated myelin basic protein, histone H1, and a peptide corresponding to the carboxyl-terminal domain repeat of RNA polymerase II. The amount of pch1 mRNA does not oscillate during the cell cycle, as is the case for mRNA transcripts of other C-type cyclin genes. Deltapch1 cells are inviable, therefore S. pombe has two essential genes that encode members of the C-type cyclin family, pch1(+) and mcs2(+). The Deltapch1 mutation causes pleiotropic morphological defects and an associated growth deficiency, but loss of Pch1 activity does not result in a cdc cell cycle-arrest phenotype.
Collapse
Affiliation(s)
- B A Furnari
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
103
|
Parker AE, Clyne RK, Carr AM, Kelly TJ. The Schizosaccharomyces pombe rad11+ gene encodes the large subunit of replication protein A. Mol Cell Biol 1997; 17:2381-90. [PMID: 9111307 PMCID: PMC232087 DOI: 10.1128/mcb.17.5.2381] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein present in all eukaryotes. In vitro studies have implicated RPA in simian virus 40 DNA synthesis and nucleotide excision repair, but little direct information is available about the in vivo roles of the protein. We report here the cloning of the largest subunit of RPA (rpa1+) from the fission yeast Schizosaccharomyces pombe. The rpa1+ gene is essential for viability and is expressed specifically at S phase of the cell cycle. Genetic analysis revealed that rpa1+ is the locus of the S. pombe radiation-sensitive mutation rad11. The rad11 allele exhibits pleiotropic effects consistent with an in vivo role for RPA in both DNA repair and DNA synthesis. The mutant is sensitive to both UV and ionizing radiation but is not defective in the DNA damage-dependent checkpoint, consistent with the hypothesis that RPA is part of the enzymatic machinery of DNA repair. When incubated in hydroxyurea, rad11 cells initially arrest with a 1C DNA content but then lose viability coincident with reentry into S phase, suggesting that DNA synthesis is aberrant under these conditions. A significant fraction of the mutant cells subsequently undergo inappropriate mitosis in the presence of hydroxyurea, indicating that RPA also plays a role in the checkpoint mechanism that monitors the completion of S phase. We propose that RPA is required to maintain the integrity of replication complexes when DNA replication is blocked. We further suggest that the rad11 mutation leads to the premature breakdown of such complexes, thereby preventing recovery from the hydroxyurea arrest and eliminating a signal recognized by the S-phase checkpoint mechanism.
Collapse
Affiliation(s)
- A E Parker
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
104
|
Chang F, Drubin D, Nurse P. cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin. J Cell Biol 1997; 137:169-82. [PMID: 9105045 PMCID: PMC2139860 DOI: 10.1083/jcb.137.1.169] [Citation(s) in RCA: 329] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1996] [Revised: 02/14/1997] [Indexed: 02/04/2023] Open
Abstract
As in many other eukaryotic cells, cell division in fission yeast depends on the assembly of an actin ring that circumscribes the middle of the cell. Schizosaccharomyces pombe cdc12 is an essential gene necessary for actin ring assembly and septum formation. Here we show that cdc12p is a member of a family of proteins including Drosophila diaphanous, Saccharomyces cerevisiae BNI1, and S. pombe fus1, which are involved in cytokinesis or other actin-mediated processes. Using indirect immunofluorescence, we show that cdc12p is located in the cell division ring and not in other actin structures. When overexpressed, cdc12p is located at a medial spot in interphase that anticipates the future ring site. cdc12p localization is altered in actin ring mutants. cdc8 (tropomyosin homologue), cdc3 (profilin homologue), and cdc15 mutants exhibit no specific cdc12p staining during mitosis. cdc4 mutant cells exhibit a medial cortical cdc12p spot in place of a ring. mid1 mutant cells generally exhibit a cdc12p spot with a single cdc12p strand extending in a random direction. Based on these patterns, we present a model in which ring assembly originates from a single point on the cortex and in which a molecular pathway for the functions of cytokinesis proteins is suggested. Finally, we found that cdc12 and cdc3 mutants show a synthetic-lethal genetic interaction, and a proline-rich domain of cdc12p binds directly to profilin cdc3p in vitro, suggesting that one function of cdc12p in ring assembly is to bind profilin.
Collapse
Affiliation(s)
- F Chang
- Imperial Cancer Research Fund, London, United Kingdom.
| | | | | |
Collapse
|
105
|
|
106
|
Abstract
In Schizosaccharomyces pombe, the activity of the M-phase-inducing Cdc2/Cdc13 cyclin-dependent kinase is inhibited by Wee1 and Mik1 tyrosine kinases, and activated by Cdc25 and Pyp3 tyrosine phosphatases. Cdc2/Cdc13 activity is also indirectly regulated by the approximately 70 kDa Nim1 (Cdrl) serine/threonine kinase, which promotes mitosis by inhibiting Wee1 via direct phosphorylation. To understand better the function and regulation of Nim1, the yeast two-hybrid system was used to isolate S.pombe cDNA clones encoding proteins that interact with Nim1. Sixteen of the 17 cDNA clones were derived from the same gene, named nif1 + (nim1 interacting factor-1). Nif1 is a novel approximately 75 kDa protein containing a leucine zipper motif. The Nif1-Nim1 interaction requires a small region of Nim1 that immediately follows the N-terminal catalytic domain. This region is required for Nim1 activity both in vivo and in vitro. delta nif1 mutants are approximately 10% smaller than wild type, indicating that Nif1 is involved in inhibiting the onset of mitosis. Consistent with this proposal, overproduction of Nif1 was found to cause a cell elongation phenotype that is very similar to delta nim1 mutants. Nif1 overproduction causes cell cycle arrest in cells that are partly defective for Cdc25 activity, but has no effect in delta nim1 or delta wee1 mutants. Nif1 also inhibits Nim1-mediated phosphorylation of Wee1 in an insect cell expression system. These observations strongly suggest that Nif1 negatively regulates the onset of mitosis by a novel mechanism, namely inhibiting Nim1 kinase.
Collapse
Affiliation(s)
- L Wu
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
107
|
Lichtenberg-Fraté H, Näschen T, Heiland S, Höfer M. Properties and heterologous expression of the glucose transporter GHT1 from Schizosaccharomyces pombe. Yeast 1997; 13:215-24. [PMID: 9090050 DOI: 10.1002/(sici)1097-0061(19970315)13:3<215::aid-yea80>3.0.co;2-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genomic DNA of the Schizosaccharomyces pombe glucose transporter, GHT1, was obtained by complementation of the glucose transport deficient Sz. pombe strain YGS-5. Here we describe the GHT1 gene that encodes a protein of 565 amino acids with a corresponding molecular mass of 62.5 kDa. This eukaryotic glucose transporter contains 12 putative transmembrane segments and is homologous to the HXT multigene family of S. cerevisiae with several amino acid motifs of this sugar transporter family. It is also homologous to other sugar carriers from human, mouse and Escherichia coli. The function of the Ght1 protein as a glucose transporter was proved both by homologous and heterologous expression in the Sz. pombe mutant YGS-5 and in the S. cerevisiae hxt mutant RE700A, respectively. Both transformed yeast strains transported D-glucose with substrate specificity similar to that in Sz. pombe wild-type cells. Moreover, the cells of the two transformed yeast strains accumulated 2-deoxy-D-glucose, a non-metabolizable D-glucose analogue, with an efficiency similar to Sz. pombe wild-type cells. The ability of the S. cerevisiae mutant RE700A to accumulate 2DG in an delta mu H+ dependent manner after transformation with GHT1 provides evidence that the Sz. pombe transporter catalyses an energy-dependent uptake of glucose.
Collapse
|
108
|
Rogel-Gaillard C, Bourgeaux N, Save JC, Renard C, Coullin P, Pinton P, Yerle M, Vaiman M, Chardon P. Construction of a swine YAC library allowing an efficient recovery of unique and centromeric repeated sequences. Mamm Genome 1997; 8:186-92. [PMID: 9069119 DOI: 10.1007/s003359900387] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A swine DNA genomic library was constructed in yeast artificial chromosome (YAC) using the pYAC4 vector and the AB1380 strain. The DNA prepared from two Large White males was partially digested with EcoRI and size selected after both digestion and ligation. The YAC library contained 33792 arrayed clones with an average size of 280 kb as estimated by analysis of 2% of the clones, thus representing a threefold coverage of the swine haploid genome. The library was organized in pools to facilitate the PCR screening. The complexity of the library was tested both for unique and centromeric repeated sequences. In all, 20 out of 22 primer sets allowed the characterization of one to six clones containing specific unique sequences. These sequences are known to be on Chromosomes (Chrs) 1, 2, 5, 6, 7, 8, 13, 14, 15, 17, and X. Eight additional clones carrying centromeric repeat units were also isolated with a single primer set. The sequencing of 37 distinct repeat units of about 340 bp subcloned from these eight YACs revealed high sequence diversity indicating the existence of numerous centromeric repeat unit subfamilies in swine. Furthermore, the analysis of the restriction patterns with selected enzymes suggested a higher order organization of the repeat units. According to preliminary FISH experiments on a small number of randomly chosen YACs and YACs carrying specific sequences, the chimerism appeared to be low. In addition, primed in situ labeling experiments favored the idea that the YACs with centromeric repeat sequences were derived from a subset of metacentric and submetacentric chromosomes.
Collapse
Affiliation(s)
- C Rogel-Gaillard
- Laboratoire mixte INRA-CEA de Radiobiologie appliquée, DSV, DRR, LRA Domaine de Vilvert, 78352 Jouy en Josas CEDEX, France
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Cooper JP, Nimmo ER, Allshire RC, Cech TR. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 1997; 385:744-7. [PMID: 9034194 DOI: 10.1038/385744a0] [Citation(s) in RCA: 394] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Telomeres, the specialized nucleoprotein structures that comprise the ends of eukaryotic chromosomes, are essential for complete replication, and regulation of their length has been a focus of research on tumorigenesis. In the budding yeast Saccharomyces cerevisiae, the protein Rap1p binds to telomeric DNA and functions in the regulation of telomere length. A human telomere protein, hTRF (human TTAGGG repeat factor) binds the telomere sequence in vitro and localizes to telomeres cytologically, but its functions are not yet known. Here we use a genetic screen to identify a telomere protein in fission yeast, Taz1p (telomere-associated in Schizosaccharomyces pombe), that shares homology to the Myb proto-oncogene DNA-binding domain with hTRF. Disruption or deletion of the taz1+ gene causes a massive increase in telomere length. Taz1p is required for the repression of telomere-adjacent gene expression and for normal meiosis or sporulation. It may be a negative regulator of the telomere-replicating enzyme, telomerase, or may protect against activation of telomerase-independent pathways of telomere elongation.
Collapse
Affiliation(s)
- J P Cooper
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309, USA
| | | | | | | |
Collapse
|
110
|
Nam K, Lee G, Trambley J, Devine SE, Boeke JD. Severe growth defect in a Schizosaccharomyces pombe mutant defective in intron lariat degradation. Mol Cell Biol 1997; 17:809-18. [PMID: 9001235 PMCID: PMC231807 DOI: 10.1128/mcb.17.2.809] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cDNAs and genes encoding the intron lariat-debranching enzyme were isolated from the nematode Caenorhabditis elegans and the fission yeast Schizosaccharomyces pombe based on their homology with the Saccharomyces cerevisiae gene. The cDNAs were shown to be functional in an interspecific complementation experiment; they can complement an S. cerevisiae dbr1 null mutant. About 2.5% of budding yeast S. cerevisiae genes have introns, and the accumulation of excised introns in a dbr1 null mutant has little effect on cell growth. In contrast, many S. pombe genes contain introns, and often multiple introns per gene, so that S. pombe is estimated to contain approximately 40 times as many introns as S. cerevisiae. The S. pombe dbr1 gene was disrupted and shown to be nonessential. Like the S. cerevisiae mutant, the S. pombe null mutant accumulated introns to high levels, indicating that intron lariat debranching represents a rate-limiting step in intron degradation in both species. Unlike the S. cerevisiae mutant, the S. pombe dbr1::leu1+ mutant had a severe growth defect and exhibited an aberrant elongated cell shape in addition to an intron accumulation phenotype. The growth defect of the S. pombe dbr1::leu1+ strain suggests that debranching activity is critical for efficient intron RNA degradation and that blocking this pathway interferes with cell growth.
Collapse
Affiliation(s)
- K Nam
- Laboratory of Molecular Genetics II, Samsung Biomedical Research Institute, Kangnam Ku, Seoul, Republic of Korea.
| | | | | | | | | |
Collapse
|
111
|
Christensen PU, Davis K, Nielsen O, Davey J. Abc1: a new ABC transporter from the fission yeast Schizosaccharomyces pombe. FEMS Microbiol Lett 1997; 147:97-102. [PMID: 9037770 DOI: 10.1111/j.1574-6968.1997.tb10226.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have isolated the abc1 gene from the fission yeast Schizosaccharomyces pombe. Sequence analysis suggests that the Abc1 protein is a member of the ABC superfamily of transporters and is composed of two structurally homologous halves, each consisting of a hydrophobic region of six transmembrane domains and a hydrophilic region containing one ATP-binding site. The abc1 gene appears to be expressed under all growth conditions but gene disruption experiments indicate that it is not essential for growth. The sequence of the abc1 gene has been deposited in the EMBL data library under the Accession Number Y09354.
Collapse
|
112
|
Matynia A, Dimitrov K, Mueller U, He X, Sazer S. Perturbations in the spi1p GTPase cycle of Schizosaccharomyces pombe through its GTPase-activating protein and guanine nucleotide exchange factor components result in similar phenotypic consequences. Mol Cell Biol 1996; 16:6352-62. [PMID: 8887664 PMCID: PMC231637 DOI: 10.1128/mcb.16.11.6352] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
spi1p of Schizosaccharomyces pombe is a structural homolog of the mammalian GTPase Ran. The distribution between the GTP- and GDP-bound forms of the protein is regulated by evolutionarily conserved gene products, rna1p and pim1p, functioning as GTPase-activating protein (GAP) and guanine nucleotide exchange factor (GEF), respectively. Antibodies to spi1p, pim1p, and rna1p were generated and used to demonstrate that pim1p is exclusively nuclear, while rna1p is cytoplasmic. A loss of pim1p GEF activity or an increase in the rna1p GAP activity correlates with a change in the localization of the GTPase from predominantly nuclear to uniformly distributed, suggesting that the two forms are topologically segregated and that the nucleotide-bound state of spi1p may dictate its intracellular localization. We demonstrate that the phenotype of cells overproducing the GAP resembles the previously reported phenotype of mutants with alterations in the GEF: the cells are arrested in the cell cycle as septated, binucleated cells with highly condensed chromatin, fragmented nuclear envelopes, and abnormally wide septa. Consistent with the expectation that either an increased dosage of the GAP or a mutation in the GEF would lead to an increase of the spi1p-GDP/spi1p-GTP ratio relative to that of wild-type cells, overexpression of the GAP together with a mutation in the GEF is synthetically lethal. The similar phenotypic consequences of altering the functioning of the nuclear GEF or the cytoplasmic GAP suggest that there is a single pool of the spi1p GTPase that shuttles between the nucleus and the cytoplasm. Phenotypically, rna1 null mutants, in which spi1p-GTP would be expected to accumulate, resemble pim1(ts) and rna1p-overproducing cells, in which spi1p-GDP would be expected to accumulate. Taken together, these results support the hypothesis that the balance between the GDP- and GTP-bound forms of spi1p mediates the host of nuclear processes that are adversely affected when the functioning of different components of this system is perturbed in various organisms.
Collapse
Affiliation(s)
- A Matynia
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
113
|
Sohrmann M, Fankhauser C, Brodbeck C, Simanis V. The dmf1/mid1 gene is essential for correct positioning of the division septum in fission yeast. Genes Dev 1996; 10:2707-19. [PMID: 8946912 DOI: 10.1101/gad.10.21.2707] [Citation(s) in RCA: 225] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Little is known about the mechanisms that establish the position of the division plane in eukaryotic cells. Wild-type fission yeast cells divide by forming a septum in the middle of the cell at the end of mitosis. Dmf1 mutants complete mitosis and initiate septum formation, but the septa that form are positioned at random locations and angles in the cell, rather than in the middle. We have cloned the dmf1 gene as a suppressor of the cdc7-24 mutant. The dmf1 mutant is allelic with mid1. The gene encodes a novel protein containing a putative nuclear localization signal, and a carboxy-terminal PH domain. In wild-type cells, Dmf1p is nuclear during interphase, and relocates to form a medial ring at the cell cortex coincident with the onset of mitosis. This relocalization occurs before formation of the actin ring and is associated with increased phosphorylation of Dmf1p. The Dmf1p ring can be formed in the absence of an actin ring, but depends on some of the genes required for actin ring formation. When the septum is completed and the cells separate, Dmf1p staining is once again nuclear. These data implicate Dmf1p as an important element in assuring correct placement of the division septum in Schizosaccharomyces pombe cells.
Collapse
Affiliation(s)
- M Sohrmann
- Swiss Institute for Experimental Cancer Research, S/Lausanne, Switzerland
| | | | | | | |
Collapse
|
114
|
Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG. Life with 6000 genes. Science 1996; 274:546, 563-7. [PMID: 8849441 DOI: 10.1126/science.274.5287.546] [Citation(s) in RCA: 2547] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The genome of the yeast Saccharomyces cerevisiae has been completely sequenced through a worldwide collaboration. The sequence of 12,068 kilobases defines 5885 potential protein-encoding genes, approximately 140 genes specifying ribosomal RNA, 40 genes for small nuclear RNA molecules, and 275 transfer RNA genes. In addition, the complete sequence provides information about the higher order organization of yeast's 16 chromosomes and allows some insight into their evolutionary history. The genome shows a considerable amount of apparent genetic redundancy, and one of the major problems to be tackled during the next stage of the yeast genome project is to elucidate the biological functions of all of these genes.
Collapse
Affiliation(s)
- A Goffeau
- Université Catholique de Louvain, Unité de Biochimie Physiologique, Place Croix du Sud, 2/20, 1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Pidoux AL, LeDizet M, Cande WZ. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function. Mol Biol Cell 1996; 7:1639-55. [PMID: 8898367 PMCID: PMC276011 DOI: 10.1091/mbc.7.10.1639] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have used anti-peptide antibodies raised against highly conserved regions of the kinesin motor domain to identify kinesin-related proteins in the fission yeast Schizosaccharomyces pombe. Here we report the identification of a new kinesin-related protein, which we have named pkl1. Sequence homology and domain organization place pkl1 in the Kar3/ncd subfamily of kinesin-related proteins. Bacterially expressed pkl1 fusion proteins display microtubule-stimulated ATPase activity, nucleotide-sensitive binding, and bundling of microtubules. Immunofluorescence studies with affinity-purified antibodies indicate that the pkl1 protein localizes to the nucleus and the mitotic spindle. Pkl1 null mutants are viable but have increased sensitivity to microtubule-disrupting drugs. Disruption of pkl1+ suppresses mutations in another kinesin-related protein, cut7, which is known to act in the spindle. Overexpression of pkl1 to very high levels causes a similar phenotype to that seen in cut7 mutants: V-shaped and star-shaped microtubule structures are observed, which we interpret to be spindles with unseparated spindle poles. These observations suggest that pkl1 and cut7 provide opposing forces in the spindle. We propose that pkl1 functions as a microtubule-dependent motor that is involved in microtubule organization in the mitotic spindle.
Collapse
Affiliation(s)
- A L Pidoux
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA
| | | | | |
Collapse
|
116
|
Ishiguro J, Kobayashi W. An actin point-mutation neighboring the 'hydrophobic plug' causes defects in the maintenance of cell polarity and septum organization in the fission yeast Schizosaccharomyces pombe. FEBS Lett 1996; 392:237-41. [PMID: 8774852 DOI: 10.1016/0014-5793(96)00819-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The fission yeast cps8 mutation gives rise to abnormally enlarged and dispolarized cells, each of which contains several nuclei with aberrant multisepta. Molecular cloning and sequence analysis of the cps8 gene indicated that it encodes an actin with an amino acid substitution of aspartic acid for glycine at residue 273 in the hydrophobic loop that is located between actin subdomains 3 and 4. Fluorescence microscopy using phalloidin and anti-actin antibody revealed changes in the F-actin structure and distribution in the mutant cells. These results indicate that the hydrophobic loop plays an essential role for creating normal F-actin structure, only by which cell polarity and the late mitotic events can be maintained properly.
Collapse
Affiliation(s)
- J Ishiguro
- Department of Biology, Faculty of Science, Konan University, Kobe, Japan
| | | |
Collapse
|
117
|
Fischli A, Schmid SR, Coppolecchia R, Linder P. The translation initiation factor eIF4A from Schizosaccharomyces pombe is closely related to its mammalian counterpart. Yeast 1996; 12:977-81. [PMID: 8873451 DOI: 10.1002/(sici)1097-0061(199608)12:10<977::aid-yea996>3.0.co;2-s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have isolated a cDNA clone encoding eIF4A from Schizosaccharomyces pombe. The deduced protein sequence is similar in length and sequence to other eIF4A proteins and exhibits highest similarity with the mammalian eIF4A protein. Hybridization with genomic DNA reveals two eIF4A genes located on two different chromosomes.
Collapse
Affiliation(s)
- A Fischli
- Department of Microbiology, University Basel, Switzerland
| | | | | | | |
Collapse
|
118
|
Chatterjee PK, Sternberg NL. Retrofitting high molecular weight DNA cloned in P1: introduction of reporter genes, markers selectable in mammalian cells and generation of nested deletions. GENETIC ANALYSIS : BIOMOLECULAR ENGINEERING 1996; 13:33-42. [PMID: 8880146 DOI: 10.1016/1050-3862(95)00147-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The bacteriophage P.1. cloning system is proving to be quite useful for the cloning and analysis of genomic DNA inserts of up to 95 kb in size. In an effort to use that DNA directly in biological experiments we have embarked on a scheme to retrofit the P.1. DNA using a mini-Tn10 transposon system. This transposon system is used in two ways: (i) to introduce a variety of sequence signals that are recognizable in mammalian cells, such as mammalian cell-responsive resistance markers and reporter genes, and (ii) to generate a nested set of deletions in a P.1. clone by using a ioxP site located within the transposon. In this report we show that such transpositions into P.1. DNA are efficient, distributed throughout the entire length of the genomic fragment and do not disrupt the DNA in any location other than the site of insertion of the transposon. The Tn10-based P.1. transduction system described here provides a general scheme for retrofitting any large genomic DNA cloned in a P.1. vector, thus facilitating the use of clones from the current P.1. recombinant libraries in cellular transformation studies.
Collapse
Affiliation(s)
- P K Chatterjee
- DuPont Merck Pharmaceutical Company, Glenolden, PA 19036, USA.
| | | |
Collapse
|
119
|
Couzin N, Trézéguet V, Le Saux A, Lauquin GJ. Cloning of the gene encoding the mitochondrial adenine nucleotide carrier of Schizosaccharomyces pombe by functional complementation in Saccharomyces cerevisiae. Gene 1996; 171:113-7. [PMID: 8675018 DOI: 10.1016/0378-1119(96)00095-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We describe the isolation and sequencing of both cDNA and genomic clones encoding the mitochondrial ADP/ATP carrier (Anc) of Schizosaccharomyces pombe (Sp). The cDNA clone was isolated from a cDNA library of this fission yeast by complementation of a Saccharomyces cerevisiae (Sc) strain defective in adenine nucleotide carrier. The predicted amino acid (aa) sequence (322 aa) shared similarity with the known Anc sequences. It is more closely related to Neurospora crassa (Nc) Anc than to ScAnc1, 2, or 3 or Kluyveromyces lactis (Kl) Anc. Hybridization experiments with ordered libraries of Sp genomic DNA led to the physical mapping (chromosome II, NotI-B region) and the isolation of the Sp ANC1 gene. We also conclude that a single-copy gene encodes the Sp Anc.
Collapse
|
120
|
Bonnefoy N, Kermorgant M, Brivet-Chevillotte P, Dujardin G. Cloning by functional complementation, and inactivation, of the Schizosaccharomyces pombe homologue of the Saccharomyces cerevisiae gene ABC1. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:204-10. [PMID: 8668131 DOI: 10.1007/bf02172919] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Saccharomyces cerevisiae gene ABC1 is required for the correct functioning of the bc1 complex of the mitochondrial respiratory chain. By functional complementation of a S. cerevisiae abc1(-) mutant, we have cloned a Schizosaccharomyces pombe cDNA, whose predicted product is 50% identical to the Abc1 protein. Significant homology is also observed with bacterial, nematode, and even human amino acid sequences of unknown function, suggesting that the Abc1 protein is conserved through evolution. The cloned cDNA corresponds to a single S. pombe gene abc1Sp, located on chromosome II, expression of which is not regulated by the carbon source. Inactivation of the abc1Sp gene by homologous gene replacement causes a respiratory deficiency which is efficiently rescued by the expression of the S. cerevisiae ABC1 gene. The inactivated strain shows a drastic decrease in the bc1 complex activity. a decrease in cytochrome aa3 and a slow growth phenotype. To our knowledge, this is the first example of the inactivation of a respiratory gene in S. pombe. Our results highlight the fact that S. pombe growth is highly dependent upon respiration, and that S. pombe could represent a valuable model for studying nucleo-mitochondrial interactions in higher eukaryotes.
Collapse
Affiliation(s)
- N Bonnefoy
- Centre de Génétique Moléculaire, Laboratoire propre du C.N.R.S. associé à l'université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
121
|
Metcheva IS, Stedman TT, Buck GA. An arrayed bacteriophage P1 genomic library of Pneumocystis carinii. J Eukaryot Microbiol 1996; 43:171-6. [PMID: 8640187 DOI: 10.1111/j.1550-7408.1996.tb01386.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have constructed an arrayed, large insert, multiple coverage genomic library of Pneumocystis carinii DNA using the bacteriophage P1 cloning system. The library consists of approximately 4800 independent clones with an average insert size of approximately 55 kbp individually arrayed in 50 microtiter plates, and is readily screened on ten or fewer microtiter plate-sized filters using a high density colony replicating device. Screening of the library for unique P. carinii sequences detected an average of 4-5 positive clones for each, consistent with a several-fold coverage of the approximately 10-mbp P. carinii genome. Restriction and hybridization analyses demonstrated that the P1 clones in this library are quite stable and contain few, if any, chimeric inserts. Thus, this arrayed, large insert library of P. carinii genomic DNA will be a valuable tool in the future genetic dissection of this important pathogen.
Collapse
Affiliation(s)
- I S Metcheva
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond 23298, USA
| | | | | |
Collapse
|
122
|
Bobovnikova Y, Kim SJ, Wetmur JG. Insert selection by BamHI methyltransferase protection in P1 phage-based cloning. Gene 1996; 170:39-44. [PMID: 8621086 DOI: 10.1016/0378-1119(95)00840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A P1-based cloning system has been tested which depends upon (i) in vitro selection for vectors containing inserts mediated by methyltransferase (MTase) protection, and (ii) in vivo vector arm Cre-mediated recombination following electroporation. Specifically, chromosomal DNA was digested with BglII, dephosphorylated, methylated with BamHI MTase and ligated into the BamHI site of the vector, thereby destroying that site. Subsequent BamHI digestion acted as the in vitro selection, eliminating vector religation products prior to electroporation into cells expressing the Cre recombinase. Electroporation with linearized vector gave approx. 10(6) transformants per microgram vector, depending on vector concentration. Cloning of BglII fragments of gamma DNA using the in vitro selection system led to 1.3-4-fold fewer transformants per microgram vector. Plasmids recovered from these clones were all found to contain a gamma BglII fragment and the representation of fragments in the clones was independent of the length of the fragments. Both in vitro selection and electroporation are applicable to library construction using size-selected human DNA, with size selection either before or after ligation and BamHi digestion.
Collapse
Affiliation(s)
- Y Bobovnikova
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
123
|
Philipp WJ, Poulet S, Eiglmeier K, Pascopella L, Balasubramanian V, Heym B, Bergh S, Bloom BR, Jacobs WR, Cole ST. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc Natl Acad Sci U S A 1996; 93:3132-7. [PMID: 8610181 PMCID: PMC39774 DOI: 10.1073/pnas.93.7.3132] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis, was constructed by using a twin-pronged approach. Pulsed-field gel electrophoretic analysis enabled cleavage sites for Asn I and Dra I to be positioned on the 4.4-Mb circular chromosome, while, in parallel, clones from two cosmid libraries were ordered into contigs by means of fingerprinting and hybridization mapping. The resultant contig map was readily correlated with the physical map of the genome via the landmarked restriction sites. Over 165 genes and markers were localized on the integrated map, thus enabling comparisons with the leprosy bacillus, Mycobacterium leprae, to be undertaken. Mycobacterial genomes appear to have evolved as mosaic structures since extended segments with conserved gene order and organization are interspersed with different flanking regions. Repetitive sequences and insertion elements are highly abundant in M. tuberculosis, but the distribution of IS6110 is apparently nonrandom.
Collapse
Affiliation(s)
- W J Philipp
- Unite de Genetique Moleculaire Bacterienne, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Much progress has been made in the development of techniques for constructing dense grids either of ligands, such as peptides and oligonucleotides, or of cloned nucleic acids. Such arrays are finding practical applications in the analysis of sequence variation and gene expression. Methods for carrying out large numbers of analyses in parallel will be essential for the genetic programme that is developing from large-scale sequencing projects.
Collapse
Affiliation(s)
- E M Southern
- Department of Biochemistry, University of Oxford, UK
| |
Collapse
|
125
|
Leatherwood J, Lopez-Girona A, Russell P. Interaction of Cdc2 and Cdc18 with a fission yeast ORC2-like protein. Nature 1996; 379:360-3. [PMID: 8552194 DOI: 10.1038/379360a0] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In fission yeast, Cdc2 kinase has both positive and negative roles in regulating DNA replication, being first necessary for the transition from G1 to S phase and later required to prevent the re-initiation of DNA replication during G2. We report here that Cdc2 interacts with Orp2, a protein similar to the Orc2 replication factor subunit of Saccharomyces cerevisiae origin recognition complex (ORC). ORC binds chromosomal origins and is essential for chromosomal replication initiation. Fission yeast Orp2 is required for DNA replication and interacts with the rate-limiting replication activator Cdc18. Cells lacking Orp2 undergo aberrant mitosis, indicating that Orp2 is involved in generating a checkpoint signal. These findings suggest that ORC functions are conserved among eukaryotes and provide evidence that Cdc2 controls DNA replication initiation by acting directly at chromosomal origins.
Collapse
Affiliation(s)
- J Leatherwood
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
126
|
Scholler P, Benes V, Voss H, Ansorge W, Hoheisel JD. Sequencing 39,350 bp of Saccharomyces cerevisiae chromosome XII utilizing ordered shotgun libraries. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1996; 6:257-62. [PMID: 8988361 DOI: 10.3109/10425179609020872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A 39,350 bp cosmid containing DNA of Saccharomyces cerevisiae chromosome XII was sequenced by making use of ordered sub-clones of 1 kb insert-length selected from a physical clone map. In a first analysis, 96 clones were sequenced from both ends (10 gels) with two standard sequencing primers covering 91% of the total sequence (49% double-stranded). After selection of another eight clones six gaps of a total of 1.8 kb and several single-stranded stretches remained. These gaps were closed by 86 primer walks leading to an overall redundancy of 4.4 per base and a total of 292 sequencing reactions. The number of walking primers can be reduced significantly by more uniform clone lengths and longer sequencing reads, thus, the total amount of sequencing reactions can approach the minimum value achieved with primer walking strategies, with only very few walking primers needed for gap closure.
Collapse
Affiliation(s)
- P Scholler
- Molecular-Genetic Genome Analysis Group, Deutsches Krebstforschungszentrum, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
127
|
Bhandarkar SM, Chirravuri S, Arnold J. Parallel computing of physical maps--a comparative study in SIMD and MIMD parallelism. J Comput Biol 1996; 3:503-28. [PMID: 9018601 DOI: 10.1089/cmb.1996.3.503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ordering clones from a genomic library into physical maps of whole chromosomes presents a central computational problem in genetics. Chromosome reconstruction via clone ordering is usually isomorphic to the NP-complete Optimal Linear Arrangement problem. Parallel SIMD and MIMD algorithms for simulated annealing based on Markov chain distribution are proposed and applied to the problem of chromosome reconstruction via clone ordering. Perturbation methods and problem-specific annealing heuristics are proposed and described. The SIMD algorithms are implemented on a 2048 processor MasPar MP-2 system which is an SIMD 2-D toroidal mesh architecture whereas the MIMD algorithms are implemented on an 8 processor Intel iPSC/860 which is an MIMD hypercube architecture. A comparative analysis of the various SIMD and MIMD algorithms is presented in which the convergence, speedup, and scalability characteristics of the various algorithms are analyzed and discussed. On a fine-grained, massively parallel SIMD architecture with a low synchronization overhead such as the MasPar MP-2, a parallel simulated annealing algorithm based on multiple periodically interacting searches performs the best. For a coarse-grained MIMD architecture with high synchronization overhead such as the Intel iPSC/860, a parallel simulated annealing algorithm based on multiple independent searches yields the best results. In either case, distribution of clonal data across multiple processors is shown to exacerbate the tendency of the parallel simulated annealing algorithm to get trapped in a local optimum.
Collapse
Affiliation(s)
- S M Bhandarkar
- Department of Computer Science, University of Georgia, Athens 30602-7404, USA
| | | | | |
Collapse
|
128
|
Plyte SE, Feoktistova A, Burke JD, Woodgett JR, Gould KL. Schizosaccharomyces pombe skp1+ encodes a protein kinase related to mammalian glycogen synthase kinase 3 and complements a cdc14 cytokinesis mutant. Mol Cell Biol 1996; 16:179-91. [PMID: 8524294 PMCID: PMC230991 DOI: 10.1128/mcb.16.1.179] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report the cloning of the skp1+ gene, a Schizosaccharomyces pombe homolog of the glycogen synthase kinase 3 (GSK-3) family whose members in higher eukaryotes are involved in cell fate determination, nuclear signalling, and hormonal regulation. skp1 is 67% identical to mammalian GSK-3 beta and displays similar biochemical properties in vitro. Like GSK-3 beta, skp1 is phosphorylated on a conserved tyrosine residue, and this phosphorylation is required for efficient activity. skp1 is also phosphorylated at a serine which has been identified as S-335. Phosphorylation at this site is likely to inhibit its function. Unlike the mammalian enzyme, skp1 both tyrosine autophosphorylates in yeast cells and can phosphorylate other proteins on tyrosine in bacteria. The skp1+ gene is not essential. However, cells with deletions in skp1+ are sensitive to heat shock and exhibit defects in sporulation. Overexpression of wild-type skp1+ specifically complements cdc14-118, one of several mutations causing a defect in cytokinesis. In addition, certain phosphorylation site mutants induce a delay or block in cytokinesis when overexpressed. Together, these data identify novel interactions of a fission yeast GSK-3 homolog with elements of the cytokinesis machinery.
Collapse
Affiliation(s)
- S E Plyte
- Ontario Cancer Institute, Toronto, Canada
| | | | | | | | | |
Collapse
|
129
|
Muris DF, Vreeken K, Carr AM, Murray JM, Smit C, Lohman PH, Pastink A. Isolation of the Schizosaccharomyces pombe RAD54 homologue, rhp54+, a gene involved in the repair of radiation damage and replication fidelity. J Cell Sci 1996; 109 ( Pt 1):73-81. [PMID: 8834792 DOI: 10.1242/jcs.109.1.73] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RAD54 gene of Saccharomyces cerevisiae encodes a putative helicase, which is involved in the recombinational repair of DNA damage. The RAD54 homologue of the fission yeast Schizosaccharomyces pombe, rhp54+, was isolated by using the RAD54 gene as a heterologous probe. The gene is predicted to encode a protein of 852 amino acids. The overall homology between the mutual proteins of the two species is 67% with 51% identical amino acids and 16% similar amino acids. A rhp54 deletion mutant is very sensitive to both ionizing radiation and UV. Fluorescence microscopy of the rhp54 mutant cells revealed that a large portion of the cells are elongated and occasionally contain aberrant nuclei. In addition, FACS analysis showed an increased DNA content in comparison with wild-type cells. Through a minichromosome-loss assay it was shown that the rhp54 deletion mutant has a very high level of chromosome loss. Furthermore, the rhp54 mutation in either a rad17 or a cdc2.3w mutant background (where the S-phase/mitosis checkpoint is absent) shows a significant reduction in viability. It is hypothesized that the rhp54+ gene is involved in the recombinational repair of UV and X-ray damage and plays a role in the processing of replication-specific lesions.
Collapse
Affiliation(s)
- D F Muris
- Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, Netherlands
| | | | | | | | | | | | | |
Collapse
|
130
|
Muzi-Falconi M, Kelly TJ. Orp1, a member of the Cdc18/Cdc6 family of S-phase regulators, is homologous to a component of the origin recognition complex. Proc Natl Acad Sci U S A 1995; 92:12475-9. [PMID: 8618924 PMCID: PMC40380 DOI: 10.1073/pnas.92.26.12475] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
cdc18+ of Schizosaccharomyces pombe is a periodically expressed gene that is required for entry into S phase and for the coordination of S phase with mitosis. cdc18+ is related to the Saccharomyces cerevisiae gene CDC6, which has also been implicated in the control of DNA replication. We have identified a new Sch. pombe gene, orp1+, that encodes an 80-kDa protein with amino acid sequence motifs conserved in the Cdc18 and Cdc6 proteins. Genetic analysis indicates that orp1+ is essential for viability. Germinating spores lacking the orp1+ gene are capable of undergoing one or more rounds of DNA replication but fail to progress further, arresting as long cells with a variety of deranged nuclear structures. Unlike cdc18+, orp1+ is expressed constitutively during the cell cycle. cdc18+, CDC6, and orp1+ belong to a family of related genes that also includes the gene ORC1, which encodes a subunit of the origin recognition complex (ORC) of S. cerevisiae. The products of this gene family share a 250-amino acid domain that is highly conserved in evolution and contains several characteristic motifs, including a consensus purine nucleotide-binding motif. Among the members of this gene family, orp1+ is most closely related to S. cerevisiae ORC1. Thus, the protein encoded by orp1+ may represent a component of an Sch. pombe ORC. The orp1+ gene is also closely related to an uncharacterized putative human homologue. It is likely that the members of the cdc18/CDC6 family play key roles in the regulation of DNA replication during the cell cycle of diverse species from archaebacteria to man.
Collapse
Affiliation(s)
- M Muzi-Falconi
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
131
|
Fankhauser H, Zurlinden A, Schweingruber AM, Edenharter E, Schweingruber ME. Schizosaccharomyces pombe thiamine pyrophosphokinase is encoded by gene tnr3 and is a regulator of thiamine metabolism, phosphate metabolism, mating, and growth. J Biol Chem 1995; 270:28457-62. [PMID: 7499352 DOI: 10.1074/jbc.270.47.28457] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Schizosaccharomyces pombe gene tnr3 has been genetically defined as a negative regulator of genes involved in thiamine metabolism (Schweingruber, A. M., Frankhauser, H., Dlugonski, J., Steinmann-Loss, C., and Schweingruber, M. E. (1992) Genetics 130, 445-449). We have isolated and sequenced the gene and show that it codes for a putative protein of 569 amino acids which exhibits, in its carboxyl-terminal half, good homology to Saccharomyces cerevisiae thiamine pyrophosphokinase (TPK). tnr3 mutants have reduced levels of intracellular thiamine diphosphate, show impaired TPK activity, which is enhanced by introducing the tnr3 wild type gene on a plasmid, and can be complemented by the S. cerevisiae TPK-encoding gene TH180. These data strongly suggest that tnr3 encodes S. pombe TPK. We present evidence that TPK also acts as a negative regulator for gene pho1, which is derepressed when cells are starved for phosphate and show that in contrast to wild type cells, tnr3 mutants mate constitutively in response to thiamine, indicating that TPK is also involved in regulation of mating. Disruption of the tnr3 gene is lethal, and a tnr3 mutant expressing only residual TPK activity grows slowly and shows aberrant morphology.
Collapse
MESH Headings
- Acid Phosphatase/biosynthesis
- Acid Phosphatase/metabolism
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Crosses, Genetic
- DNA Primers
- DNA, Fungal/chemistry
- DNA, Fungal/metabolism
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Genes, Synthetic
- Molecular Sequence Data
- Phosphates/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Saccharomyces cerevisiae/enzymology
- Schizosaccharomyces/enzymology
- Schizosaccharomyces/genetics
- Schizosaccharomyces/physiology
- Sequence Homology, Amino Acid
- Species Specificity
- Thiamin Pyrophosphokinase/genetics
- Thiamin Pyrophosphokinase/metabolism
- Thiamine/metabolism
Collapse
Affiliation(s)
- H Fankhauser
- Institute of General Microbiology, University of Bern, Switzerland
| | | | | | | | | |
Collapse
|
132
|
Svoboda A, Bähler J, Kohli J. Microtubule-driven nuclear movements and linear elements as meiosis-specific characteristics of the fission yeasts Schizosaccharomyces versatilis and Schizosaccharomyces pombe. Chromosoma 1995; 104:203-14. [PMID: 8529460 DOI: 10.1007/bf00352185] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Meiotic prophase in Schizosaccharomyces pombe is characterized by striking nuclear movements and the formation of linear elements along chromosomes instead of tripartite synaptonemal complexes. We analysed the organization of nuclei and microtubules in cells of fission yeasts undergoing sexual differentiation. S. japonicus var. versatilis and S. pombe cells were studied in parallel, taking advantage of the better cytology in S. versatilis. During conjugation, microtubules were directed towards the mating projection. These microtubules seem to lead the haploid nuclei together in the zygote by interaction with the spindle pole bodies at the nuclear periphery. After karyogamy, arrays of microtubules emanating from the spindle pole body of the diploid nucleus extended to both cell poles. The same differentiated microtubule configuration was elaborated upon induction of azygotic meiosis in S. pombe. The cyclic movements of the elongated nuclei between the cell poles is reflected by a dynamic and coordinated shortening and lengthening of the two microtubule arrays. When the nucleus was at a cell end, one array was short while the other bridged the whole cell length. Experiments with inhibitors showed that microtubules are required for karyogamy and for the elongated shape and movement of nuclei during meiotic prophase. In both fission yeasts the SPBs and nucleoli are at the leading ends of the moving nuclei. Astral and cytoplasmic microtubules were also prominent during meiotic divisions and sporulation. We further show that in S. versatilis the linear elements formed during meiotic prophase are similar to those in S. pombe. Tripartite synaptonemal complexes were never detected. Taken together, these findings suggest that S. pombe and S. versatilis share basic characteristics in the organization of microtubules and the structure and behaviour of nuclei during their meiotic cell cycle. The prominent differentiations of microtubules and nuclei may be involved in the pairing, recombination, and segregation of meiotic chromosomes.
Collapse
Affiliation(s)
- A Svoboda
- Department of Biology, Faculty of Medicine, Masaryk University, Jostova 10, 66 243 Brno, Czech Republic
| | | | | |
Collapse
|
133
|
Plochocka-Zulinska D, Rasmussen G, Rasmussen C. Regulation of calcineurin gene expression in Schizosaccharomyces pombe. Dependence on the ste11 transcription factor. J Biol Chem 1995; 270:24794-9. [PMID: 7559598 DOI: 10.1074/jbc.270.42.24794] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Calmodulin and its target enzymes are important regulators of numerous cellular processes, including reversible protein phosphorylation. The calmodulin-dependent protein phosphatase (calcineurin) has been suggested to play roles in activation of T cells and in the mating response of yeast. Recently, studies have shown it to be the target of immunosuppressant drugs such as cyclosporin and FK-506. In this study, we have cloned the gene for the catalytic subunit of calcineurin, CnA, from the yeast Schizosaccharomyces pombe. The gene (named ppb1+) has been mapped to chromosome II by analysis of the hybridization of a genomic DNA probe to an ordered library. The gene produces a single mRNA species of 2.5 kilobases, which varies during the cell cycle in exponentially growing cells. In addition, expression of ppb1+ mRA is induced by nitrogen starvation, a condition that favors mating in S. pombe. The ppb1+ gene promoter contains a cis-acting element for the ste11 transcription factor, and we have shown that induction of the ppb1+ mRNA during nitrogen starvation is dependent on the ste11 gene product. Together with earlier studies showing that disruption of the ppb1+ gene in S. pombe results in sterility (Yoshida, T., Toda, T., and Yanagida, M. (1994) J. Cell Sci., 107, 1725-1735), our studies suggest that the ppb1+ gene plays a role in the gene expression cascade that is essential for mating and sporulation in S. pombe.
Collapse
|
134
|
Scholler P, Karger AE, Meier-Ewert S, Lehrach H, Delius H, Hoheisel JD. Fine-mapping of shotgun template-libraries; an efficient strategy for the systematic sequencing of genomic DNA. Nucleic Acids Res 1995; 23:3842-9. [PMID: 7479026 PMCID: PMC307300 DOI: 10.1093/nar/23.19.3842] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To test the effectiveness of ordering shotgun DNA-templates prior to sequence analysis, the 450 kb left arm of yeast chromosome XII was randomly subcloned into a phagemid vector. Clones were ordered by hybridisation to an average map density of one new insert every 125 bp and are currently used for sequencing the chromosomal fragment. An 11.5 kb overlap between the template map and a DNA fragment that had been sequenced earlier allowed an independent evaluation of the strategy's effectiveness. To this end, clones were selected from the map and tag-sequenced from either end, thus comparing the map position with the actual location within the 11.5 kb. Of 65 selected clones, taken mostly at random from a total of 423, 58 mapped on average about a quarter of a clone length around their predicted position, with the other seven being between 0.6 and 1.5 clone length off. 75-86 sequencing reactions on clones selected from the map would have been sufficient for completely sequencing both strands of the 11.5 kb fragment. The results demonstrate the efficacy of such template sorting, considerably assisting sequencing at relatively little cost on the mapping level.
Collapse
Affiliation(s)
- P Scholler
- Molecular-Genetic Genome Analysis Group, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
135
|
Paluh JL, Clayton DA. Schizosaccharomyces pombe RNase MRP RNA is homologous to metazoan RNase MRP RNAs and may provide clues to interrelationships between RNase MRP and RNase P. Yeast 1995; 11:1249-64. [PMID: 8553696 DOI: 10.1002/yea.320111305] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
RNase MRP and RNase P ribonucleoproteins are structurally and functionally similar across a large evolutionary distance. To better characterize possible complex interrelationships between these two enzymes, we have employed the fission yeast Schizosaccharomyces pombe. Unlike Saccharomyces cerevisiae, S. pombe is believed to harbour only one genetic locus for the RNA component of RNase P and does not contain a known mitochondrially encoded RNase P RNA. We have identified the single nuclear gene for the RNA component of RNase MRP in S. pombe, mrp-1, by homology to vertebrate RNase MRP RNAs. The mrp-1 gene encodes an RNA of maximum mature length 400 nucleotides that shares a high degree of identity, in evolutionarily conserved regions, to both vertebrate RNase MRP RNAs and S. pombe RNase P RNA. Disruption of mrp-1 in the diploid strain SP826 and sporulation of tetrads resulted in a 2 dead:2 viable segregation, consistent with the gene being essential. Lethality is rescued by a plasmid-borne copy of mrp-1. Partially purified ribonucleoprotein RNase MRP activity correctly and efficiently processed all previously characterized heterologous mitochondrial RNA substrates. The compact mitochondrial genome of S. pombe contains sequence elements with > 50% identity to mammalian D-loop CSBI and CSBII elements. The identification of mrp-1 in S. pombe should facilitate not only comparisons between the related ribonucleoproteins RNase MRP and RNase P, but should also provide an opportunity for genetic elucidation of RNase MRP function in a situation reflective of the animal kingdom.
Collapse
Affiliation(s)
- J L Paluh
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427, USA
| | | |
Collapse
|
136
|
Fankhauser C, Reymond A, Cerutti L, Utzig S, Hofmann K, Simanis V. The S. pombe cdc15 gene is a key element in the reorganization of F-actin at mitosis. Cell 1995; 82:435-44. [PMID: 7634333 DOI: 10.1016/0092-8674(95)90432-8] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The S. pombe cdc15 gene is essential for cell division. cdc15ts mutants do not form a septum, but growth and nuclear division continue, leading to formation of multinucleate cells. The earliest step in septum formation and cytokinesis, rearrangement of actin to the center of the cell, is associated with appearance of hypophosphorylated cdc15p and formation of a cdc15p ring, which colocalizes with actin. Loss of cdc15p function impairs formation of the actin ring. The abundance of cdc15 mRNA varies through the cell division cycle, peaking in early mitosis before septation. Expression of cdc15 in G2-arrested cells induces actin rearrangement to the center of the cell. These data implicate cdc15p as a key element in mediating the cytoskeletal rearrangements required for cytokinesis.
Collapse
Affiliation(s)
- C Fankhauser
- Swiss Institute for Experimental Cancer Research
| | | | | | | | | | | |
Collapse
|
137
|
Sipiczki M. Phylogenesis of fission yeasts. Contradictions surrounding the origin of a century old genus. Antonie Van Leeuwenhoek 1995; 68:119-49. [PMID: 8546451 DOI: 10.1007/bf00873099] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The phylogenesis of fungi is controversial due to their simple morphology and poor fossilization. Traditional classification supported by morphological studies and physiological traits placed the fission yeasts in one group with ascomycetous yeasts. The rRNA sequence comparisons, however, revealed an enormous evolutionary gap between Saccharomyces and Schizosaccharomyces. As shown in this review, the protein sequences also show a large gap which is almost as large as that separating Schizosaccharomyces from higher animals. Since the two yeasts share features (both cytological and molecular) in common which are also characteristic of ascomycetous fungi, their separation must have taken place later than the sequence differences may suggest. Possible reasons for the paradox are discussed. The sequence data also suggest a slower evolutionary rate in the Schizosaccharomyces lineage than in the Saccharomyces branch. In the fission yeast lineage two ramifications can be supposed. First S. japonicus (Hasegawaea japonica) branched off, then S. octosporus (Octosporomyces octosporus) separated from S. pombe.
Collapse
Affiliation(s)
- M Sipiczki
- Department of Genetics, University of Debrecen, Hungary
| |
Collapse
|
138
|
McCollum D, Balasubramanian MK, Pelcher LE, Hemmingsen SM, Gould KL. Schizosaccharomyces pombe cdc4+ gene encodes a novel EF-hand protein essential for cytokinesis. J Cell Biol 1995; 130:651-60. [PMID: 7622565 PMCID: PMC2120525 DOI: 10.1083/jcb.130.3.651] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Schizosaccharomyces pombe cells divide by medial fission. One class of cell division mutants (cdc), the late septation mutants, defines four genes: cdc3, cdc4, cdc8, and cdc12 (Nurse, P., P. Thuriaux, and K. Nasmyth. 1976. Mol. & Gen. Genet. 146:167-178). We have cloned and characterized the cdc4 gene and show that the predicted gene product. Cdc4p, is a 141-amino acid polypeptide that is similar in sequence to EF-hand proteins including myosin light chains, calmodulin, and troponin C. Two temperature-sensitive lethal alleles, cdc4-8 and cdc4-31, accumulate multiple nuclei and multiple improper F-actin rings and septa but fail to complete cytokinesis. Deletion of cdc4 also results in a lethal terminal phenotype characterized by multinucleate, elongated cells that fail to complete cytokinesis. Sequence comparisons suggest that Cdc4p may be a member of a new class of EF-hand proteins. Cdc4p localizes to a ringlike structure in the medial region of cells undergoing cytokinesis. Thus, Cdc4p appears to be an essential component of the F-actin contractile ring. We find that Cdc4 protein forms a complex with a 200-kD protein which can be cross-linked to UTP, a property common to myosin heavy chains. Together these results suggest that Cdc4p may be a novel myosin light chain.
Collapse
Affiliation(s)
- D McCollum
- Howard Hughes Medical Institute, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
139
|
Fankhauser H, Schweingruber AM, Edenharter E, Schweingruber ME. Growth of a mutant defective in a putative phosphoinositide-specific phospholipase C of Schizosaccharomyces pombe is restored by low concentrations of phosphate and inositol. Curr Genet 1995; 28:199-203. [PMID: 8590474 DOI: 10.1007/bf00315789] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A mutant (plc1-1) of Schizosaccharomyces pombe unable to grow on a minimal medium containing high amounts of phosphate was selected. On yeast-extract agar its growth is temperature sensitive. Tests in liquid synthetic medium show that growth of the mutant is partially restored by lowering the phosphate and inositol concentrations in the growth medium. The growth defect is fully suppressed by a plasmid encoding a putative protein having the structural features of phosphoinositide-specific phospholipases C (PI-PLC). This protein, of 899 amino-acids, contains the characteristic X and Y domains found in all PI-PLCs of higher and lower eucaryotes and reveals, in addition, an EF-hand motif (putative Ca(2+)-binding site). Like the corresponding enzyme from Saccharomyces cerevisiae, the S. pombe PI-PLC is most similar to the delta form of PI-PLC isoenzymes. The cloned gene integrates at the plc1 site indicating that plc1 codes for a putative PI-PLC. Plc1 physically maps on the left arm of chromosome II between rad11 and mei3.
Collapse
Affiliation(s)
- H Fankhauser
- Institute of General Microbiology, University of Berne, Switzerland
| | | | | | | |
Collapse
|
140
|
Scholler P, Schwarz S, Hoheisel JD. High-resolution cosmid mapping of the left arm of Saccharomyces cerevisiae chromosome XII; a first step towards an ordered sequencing approach. Yeast 1995; 11:659-66. [PMID: 7483838 DOI: 10.1002/yea.320110706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
For the sequencing of the left arm of chromosome XII of Saccharomyces cerevisiae, we fine-mapped the entire 450 kb fragment between the ribosomal DNA (rDNA) and the left telomere. Total yeast DNA in agarose blocks was digested with I-PpoI, which exclusively cuts once in each repeat unit of the rDNA. The resulting fragment was isolated from pulsed-field gels, together with the equally sized chromosome IX. A cosmid library of some 30-fold chromosome coverage was generated from this material, with the cloning efficiency being around 20,000 clones per microgram genomic DNA. The chromosome XII and IX specific clones were identified by complementary hybridizations with the respective chromosomes. For the left arm of chromosome XII, a contiguous cosmid array (contig) with an average map resolution better than 9 kb was generated by clone hybridization procedures. The ordered library serves as a tool for the physical mapping of genetic markers. Also, a minimal set of 15 clones was selected that covers the entire fragment. This subset forms the basis for the generation of a template map of much higher resolution for a directed sequencing of the left arm of chromosome XII.
Collapse
Affiliation(s)
- P Scholler
- German Cancer Research Center, Heidelberg
| | | | | |
Collapse
|
141
|
Qin M, Lee E, Zankel T, Ow DW. Site-specific cleavage of chromosomes in vitro through Cre-lox recombination. Nucleic Acids Res 1995; 23:1923-7. [PMID: 7596819 PMCID: PMC306964 DOI: 10.1093/nar/23.11.1923] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Site-specific recombination systems are useful tools for chromosome engineering in vivo and site-specific DNA cleavage methods have applications in genome analysis and gene isolation. Here, we report a new method to fragment chromosomes in vitro using the Cre-lox site-specific recombination system. Two lox sites were targeted into the 5.7 Mb chromosomes I of Schizosaccharomyces pombe. In vitro recombination between chromosomal lox sites and exogenously provided lox oligonucleotides 'cleaved' the chromosome at the defined lox sequences. Site-specific cleavage of lox sites in the tobacco genome was also demonstrated. This recombination-based cleavage method provides a novel approach for structural and functional analyses of eukaryotic chromosomes as it allows direct isolation of chromosome regions that correspond to phenotypes revealed through Cre-lox mediated chromosome rearrangements in vivo. Moreover, recombination with end-labeled lox oligonucleotides would permit the specific end-labeling of chromosome segments to facilitate the long range mapping of chromosomes.
Collapse
Affiliation(s)
- M Qin
- Plant Gene Expression Center, US Department of Agriculture, Albany, CA 94710, USA
| | | | | | | |
Collapse
|
142
|
Affiliation(s)
- M Fonstein
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
143
|
Ohkura H, Hagan IM, Glover DM. The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev 1995; 9:1059-73. [PMID: 7744248 DOI: 10.1101/gad.9.9.1059] [Citation(s) in RCA: 309] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have identified a Schizosaccharomyces pombe gene with homology to the budding yeast gene CDC5, the Drosophila gene polo, and the mammalian family of genes encoding polo-like kinases. Disruption of this gene, plo1+, indicates that it is essential. Loss of plo1+ function leads to a mitotic arrest in which condensed chromosomes are associated with a monopolar spindle or to the failure of septation following the completion of nuclear division. In the latter case, cells show a failure both in the formation of an F-actin ring and in the deposition of septal material, suggesting that plo1+ function is required high in the regulatory cascade that controls septation. The overexpression of plo1+ in wild-type cells also results in the formation of monopolar spindles but also induces the formation of multiple septa without nuclear division. Septation can also be induced in the absence of mitotic commitment and concomitant spindle formation by the overexpression of plo1+ in cdc25-22 or cdc2-33 cells arrested in G2; in G1 cells arrested at Start by the cdc10-V50 mutation, or in cells lacking the cyclin B homolog cdc13 that undergo repeated S phases in the absence of mitosis.
Collapse
Affiliation(s)
- H Ohkura
- Department of Anatomy and Physiology, University of Dundee, UK
| | | | | |
Collapse
|
144
|
Zhao Y, Lieberman HB. Schizosaccharomyces pombe: a model for molecular studies of eukaryotic genes. DNA Cell Biol 1995; 14:359-71. [PMID: 7748486 DOI: 10.1089/dna.1995.14.359] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Several features of the fission yeast Schizosaccharomyces pombe make it exceptionally well suited for the study of eukaryotic genes. It is a relatively simple eukaryote that can be readily grown and manipulated in the laboratory, using a variety of highly developed and sophisticated methodologies. Schizosaccharomyces pombe cells share many molecular, genetic, and biochemical features with cells from multicellular organisms, making it a particularly useful model to study the structure, function, and regulation of genes from more complex species. For examples, this yeast divides by binary fission, has many genes that contain introns, is capable of using mammalian gene promoters and polyadenylation signals, and has been used to clone mammalian genes by functional complementation of mutants. We present a summary of the biology of S. pombe, useful features that make it amenable to laboratory studies, and molecular techniques available to manipulate the genome of this organism as well as other eukaryotic genes within the fission yeast cellular environment.
Collapse
Affiliation(s)
- Y Zhao
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
145
|
Selleri L, Smith MW, Holmsen AL, Romo AJ, Thomas SD, Paternotte C, Romberg LC, Wei YH, Evans GA. High-resolution physical mapping of a 250-kb region of human chromosome 11q24 by genomic sequence sampling (GSS). Genomics 1995; 26:489-501. [PMID: 7607672 DOI: 10.1016/0888-7543(95)80167-k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A physical map of the region of human chromosome 11q24 containing the FLI1 gene, disrupted by the t(11;22) translocation in Ewing sarcoma and primitive neuroectodermal tumors, was analyzed by genomic sequence sampling. Using a 4- to 5-fold coverage chromosome 11-specific library, 22 region-specific cosmid clones were identified by phenol emulsion reassociation hybridization, with a 245-kb yeast artificial chromosome clone containing the FLI1 gene, and by directed "walking" techniques. Cosmid contigs were constructed by individual clone fingerprinting using restriction enzyme digestion and assembly with the Genome Reconstruction and AsseMbly (GRAM) computer algorithm. The relative orientation and spacing of cosmid contigs with respect to the chromosome was determined by the structural analysis of cosmid clones and by direct visual in situ hybridization mapping. Each cosmid clone in the contig was subjected to "one-pass" end sequencing, and the resulting ordered sequence fragments represent approximately 5% of the complete DNA sequence, making the entire region accessible by PCR amplification. The sequence samples were analyzed for putative exons, repetitive DNAs, and simple sequence repeats using a variety of computer algorithms. Based upon the computer predictions, Southern and Northern blot experiments led to the independent identification and localization of the FLI1 gene as well as a previously unknown gene located in this region of chromosome 11q24. This approach to high-resolution physical analysis of human chromosomes allows the assembly of detailed sequence-based maps and provides a tool for further structural and functional analysis of the genome.
Collapse
Affiliation(s)
- L Selleri
- Molecular Genetics Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Allshire RC. Elements of chromosome structure and function in fission yeast. SEMINARS IN CELL BIOLOGY 1995; 6:55-64. [PMID: 7548843 DOI: 10.1016/1043-4682(95)90001-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The investigation of fission yeast chromosome structure and function has moved rapidly over the past 10 years. The isolation of replication origins, telomeres and centromeres has allowed the development of minichromosomes, a yeast artificial chromosome (YAC)-like cloning system and investigations into chromosome segregation and behaviour during mitosis and meiosis. Many mutants have been isolated which are defective in chromosome segregation. The development of the fluorescent in-situ hybridization (FISH) technique for use in S. pombe has allowed the localization of centromeres and telomeres throughout mitosis and meiosis. In combination with indirect immunofluorescence to detect spindle and chromosomal proteins, the FISH technique should further advance our understanding of fission yeast chromosome structure and function. The recent discovery of a heterochromatin-like structure mediating transcriptional repression at centromeres reinforces the notion that fission yeast centromeres are similar to those of larger eukaryotes. Further characterization of such phenomena will accelerate the genetic dissection of this important chromosomal element.
Collapse
Affiliation(s)
- R C Allshire
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland, UK
| |
Collapse
|
147
|
|
148
|
Abstract
Increasing emphasis is being given to genomic cloning using Escherichia coli vectors of intermediate insert capacity, such as bacteriophage P1, P1-derived artificial chromosomes and the F factor based bacterial artificial chromosomes. These vectors are being used in addition to yeast artifical chromosomes (YACs) in recognition of the difficulties encountered with YAC stability and with handling of YAC DNAs (problems that will not easily be overcome). Nonetheless, YACs remain the most practical cloning system for global contig building. Efforts are currently under way to produce YAC contigs that represent the human and mouse genomes, and these will increasingly exploit extensive anchoring to detailed genetic maps. Intermediate capacity clone collections based on YAC contigs will follow, enabling the compilation of mapped gene catalogues. In this way, the era of big gene hunts will draw to a close.
Collapse
|
149
|
Wilkinson CR, Bartlett R, Nurse P, Bird AP. The fission yeast gene pmt1+ encodes a DNA methyltransferase homologue. Nucleic Acids Res 1995; 23:203-10. [PMID: 7862522 PMCID: PMC306655 DOI: 10.1093/nar/23.2.203] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA methylation of cytosine residues is a widespread phenomenon and has been implicated in a number of biological processes in both prokaryotes and eukaryotes. This methylation occurs at the 5-position of cytosine and is catalyzed by a distinct family of conserved enzymes, the cytosine-5 methyltransferases (m5C-MTases). We have cloned a fission yeast gene pmt1+ (pombe methyltransferase) which encodes a protein that shares significant homology with both prokaryotic and eukaryotic m5C-MTases. All 10 conserved domains found in these enzymes are present in the pmt1 protein. This is the first m5C-MTase homologue cloned from a fungal species. Its presence is surprising, given the inability to detect DNA methylation in yeasts. Haploid cells lacking the pmt1+ gene are viable, indicating that pmt1+ is not an essential gene. Purified, bacterially produced pmt1 protein does not possess obvious methyltransferase activity in vitro. Thus the biological significance of the m5C-MTase homologue in fission yeast is currently unclear.
Collapse
Affiliation(s)
- C R Wilkinson
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | | | |
Collapse
|
150
|
Cavan G, MacDonald D. Mutations which reduce levels of pyruvate dehydrogenase in Schizosaccharomyces pombe cause a requirement for arginine or glutamine. FEMS Microbiol Lett 1994; 124:361-5. [PMID: 7851743 DOI: 10.1111/j.1574-6968.1994.tb07309.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Forty-four mutants of Schizosaccharomyces pombe were isolated which required supplementation with arginine or glutamine. These mutants appear to define three genes, provisionally named agg1, agg2 and agg3 (arginine, glutamine requiring). Mutants in all three genes were found to have reduced levels of pyruvate dehydrogenase compared to wild-type.
Collapse
Affiliation(s)
- G Cavan
- Department of Environmental Biology, Institute of Grassland and Environmental Research, Aberystwyth, Dyfed, UK
| | | |
Collapse
|