101
|
Turner JMA, Mahadevaiah SK, Elliott DJ, Garchon HJ, Pehrson JR, Jaenisch R, Burgoyne PS. Meiotic sex chromosome inactivation in male mice with targeted disruptions of Xist. J Cell Sci 2002; 115:4097-105. [PMID: 12356914 DOI: 10.1242/jcs.00111] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
X chromosome inactivation occurs twice during the life cycle of placental mammals. In normal females, one X chromosome in each cell is inactivated early in embryogenesis, while in the male, the X chromosome is inactivated together with the Y chromosome in spermatogenic cells shortly before or during early meiotic prophase. Inactivation of one X chromosome in somatic cells of females serves to equalise X-linked gene dosage between males and females, but the role of male meiotic sex chromosome inactivation (MSCI) is unknown. The inactive X-chromosome of somatic cells and male meiotic cells share similar properties such as late replication and enrichment for histone macroH2A1.2, suggesting a common mechanism of inactivation. This possibility is supported by the fact that Xist RNA that mediates somatic X-inactivation is expressed in the testis of male mice and humans. In the present study we show that both Xist RNA and Tsix RNA, an antisense RNA that controls Xist function in the soma, are expressed in the testis in a germ-cell-dependent manner. However, our finding that MSCI and sex-body formation are unaltered in mice with targeted mutations of Xist that prevent somatic X inactivation suggests that somatic X-inactivation and MSCI occur by fundamentally different mechanisms.
Collapse
Affiliation(s)
- James M A Turner
- Division of Developmental Genetics, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | |
Collapse
|
102
|
Lee JT. Homozygous Tsix mutant mice reveal a sex-ratio distortion and revert to random X-inactivation. Nat Genet 2002; 32:195-200. [PMID: 12145659 DOI: 10.1038/ng939] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tsix controls X-chromosome inactivation (XCI) by blocking the accumulation of Xist RNA on the future active X chromosome. Deleting Tsix on one X chromosome (X(Delta)X) skews XCI toward the mutated X chromosome in the female soma. Here I have generated homozygous Tsix-null mice (X(Delta)X(Delta)) to test how deleting the second allele affects the choice of XCI. Homozygosity leads to extremely low fertility and reveals two previously unknown non-mendelian patterns of inheritance. First, the sex ratio is skewed against female births so that one daughter is born for every two to three sons. Second, the pattern of XCI unexpectedly returns to random in surviving X(Delta)X(Delta) mice. Thus, with respect to choice, mutation of Tsix yields a phenotypic abnormality in heterozygotes but not homozygotes. To reconcile the paradox of female loss with apparent reversion to random choice, I propose that deleting both Tsix alleles results in chaotic choice and that randomness in X(Delta)X(Delta) survivors reflects a fortuitous selection of distinct X chromosomes as active and inactive.
Collapse
Affiliation(s)
- Jeannie T Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| |
Collapse
|
103
|
Johnston CM, Newall AET, Brockdorff N, Nesterova TB. Enox, a novel gene that maps 10 kb upstream of Xist and partially escapes X inactivation. Genomics 2002; 80:236-44. [PMID: 12160738 DOI: 10.1006/geno.2002.6819] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dosage compensation in mammals is accomplished by the transcriptional silencing of a single X chromosome in female cells, a process termed X inactivation. A cytogenetically defined region of the X chromosome, the X-inactivation center (Xic), is necessary in cis for this process. Although the precise nature of the Xic remains unknown, a key component, the Xist gene, has been shown to be essential for X inactivation. In XX somatic cells, Xist RNA is specifically transcribed from the inactive X chromosome, which is otherwise essentially heterochromatic. Previous studies aimed at defining the proximal limit of the Xic have indicated that it lies within 30 kb upstream of the Xist promoter. Here we describe a novel gene, Enox (expressed neighbor of Xist), that maps to an unmethylated CpG island 10 kb upstream of Xist. Enox transcripts are antisense relative to Xist, highly heterogeneous, and apparently noncoding. In female somatic tissue Enox partially escapes from X inactivation. We discuss the implications of these findings in relation to our understanding of the Xic.
Collapse
Affiliation(s)
- Colette M Johnston
- X Inactivation Group, MRC Clinical Sciences Centre, Faculty of Medicine ICSTM, Hammersmith Hospital, Du Cane Road, London, UK
| | | | | | | |
Collapse
|
104
|
Abstract
X inactivation is the developmentally regulated silencing of a single X chromosome in XX female mammals. In recent years, the Xist gene has been revealed as the master regulatory switch controlling this process. Parental imprinting and/or counting mechanisms ensure that Xist is expressed only on the inactive X chromosome. Chromosome silencing then results from the accumulation of the Xist RNA silencing signal, in cis, over the entire length of the X chromosome. A key issue has been to identify the factors that interact with Xist RNA to initiate heritable gene silencing. This review discusses recent progress that has put this goal in sight.
Collapse
Affiliation(s)
- Neil Brockdorff
- X Inactivation Group, MRC Clinical Sciences Centre, ICSM, Hammersmith Hospital, DuCane Road, W12 0NN, London, UK.
| |
Collapse
|
105
|
Xue F, Tian XC, Du F, Kubota C, Taneja M, Dinnyes A, Dai Y, Levine H, Pereira LV, Yang X. Aberrant patterns of X chromosome inactivation in bovine clones. Nat Genet 2002; 31:216-20. [PMID: 12032569 DOI: 10.1038/ng900] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, epigenetic marks on the X chromosomes are involved in dosage compensation. Specifically, they are required for X chromosome inactivation (XCI), the random transcriptional silencing of one of the two X chromosomes in female cells during late blastocyst development. During natural reproduction, both X chromosomes are active in the female zygote. In somatic-cell cloning, however, the cloned embryos receive one active (Xa) and one inactive (Xi) X chromosome from the donor cells. Patterns of XCIhave been reported normal in cloned mice, but have yet to be investigated in other species. We examined allele-specific expression of the X-linked monoamine oxidase type A (MAOA) gene and the expression of nine additional X-linked genes in nine cloned XX calves. We found aberrant expression patterns in nine of ten X-linked genes and hypomethylation of Xist in organs of deceased clones. Analysis of MAOA expression in bovine placentae from natural reproduction revealed imprinted XCI with preferential inactivation of the paternal X chromosome. In contrast, we found random XCI in placentae of the deceased clones but completely skewed XCI in that of live clones. Thus, incomplete nuclear reprogramming may generate abnormal epigenetic marks on the X chromosomes of cloned cattle, affecting both random and imprinted XCI.
Collapse
Affiliation(s)
- Fei Xue
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Hartshorn C, Rice JE, Wangh LJ. Developmentally-regulated changes of Xist RNA levels in single preimplantation mouse embryos, as revealed by quantitative real-time PCR. Mol Reprod Dev 2002; 61:425-36. [PMID: 11891913 DOI: 10.1002/mrd.10037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Xist RNA localizes to the inactive X chromosome in cells of late cleavage stage female mouse embryos (Sheardown et al., 1997: Cell 91:99-107). Fluorescence in situ hybridization (FISH), however, does not quantify the number of Xist transcripts per nucleus. We have used real-time reverse transcription-polymerase chain reaction (RT-PCR) to measure Xist RNA levels in single preimplantation embryos and to establish developmental profiles in both female and male samples. The gender of each embryo was readily established based on Xist RNA levels, by counting Xist gene copies per cell, and by independent detection of the presence/absence of Sry, a Y chromosome-specific gene. Xist expression in males was found to be very low at all stages, as suggested by FISH. In contrast, female embryos contained measurable levels of Xist mRNA starting at the late 2-cell stage and rapidly accumulated Xist transcripts until morula stage. Xist RNA accumulation per embryo then reached a plateau, while cell division continued. We propose that during early cleavage high enough levels of Xist mRNA are transcribed to generate a pool of unbound molecules. This pool would serve to temporarily maintain X chromosome inactivation without additional transcription while the trophectoderm and inner cell mass (ICM) differentiate. The ICM would then loose the paternally imprinted pattern of X inactivation originally present in all embryonic cells.
Collapse
Affiliation(s)
- Cristina Hartshorn
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| | | | | |
Collapse
|
107
|
Williams JW, Hawes SM, Patel B, Latham KE. Trophectoderm-specific expression of the X-linked Bex1/Rex3 gene in preimplantation stage mouse embryos. Mol Reprod Dev 2002; 61:281-7. [PMID: 11835573 DOI: 10.1002/mrd.10100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Bex1/Rex3 gene was recently identified as an X-linked gene that is differentially expressed between parthenogenetic and normal fertilized, preimplantation stage mouse embryos. The Bex1/Rex3 gene appears to be expressed preferentially from the maternal X chromosome in blastocysts, but from either X chromosome in later stage embryonic tissues and adult tissues. To investigate whether differential expression of the Bex1/Rex3 gene between normal and parthenogenetic blastocyst stage embryos reflects genomic imprinting at the Bex1/Rex3 locus itself, or instead is the result of preferential inactivation of the paternal X chromosome or differences in timing of cellular differentiation, we examined in detail the expression pattern of the Bex1/Rex3 mRNA in normal preimplantation stage embryos, and compared its expression between androgenetic, gynogenetic, and normal fertilized embryos. Expression data reveal that the Bex1/Rex3 gene is initially transcribed at the 2-cell stage, transiently induced at the 8-cell stage, and then increases in expression again at the blastocyst stage. Very little expression is observed in isolated inner cell masses, indicating selective expression in the trophectoderm. Comparisons of Bex1/Rex3 mRNA expression between male and female androgenetic and control embryos and gynogenetic embros failed to reveal any significant difference in expression between the different classes of embryos at the 8-cell stage, or the expanding blastocyst stage (121 hr post-hCG). At the late blastocyst stage (141 hr post-hCG), expression was significantly lower in XY control embryos as compared with XX controls. Bex1/Rex3 mRNA expression did not differ between XX and XY androgenones at the blastocyst stage or between gynogenones and XX control embryos. Thus, the Bex1/Rex3 gene does not appear to be regulated directly by genomic imprinting during the preimplantation period, just as it is not regulated by imprinting at later stages. Apparent differences in gene expression may arise through the effects of trophectoderm-specific expression coupled with differences in timing of trophectoderm differentiation between the different classes of embryos and effects of preferential paternal X chromosome inactivation (XCI).
Collapse
Affiliation(s)
- Jean W Williams
- The Fels Institute for Cancer Research and Molecular Biology, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
108
|
Mermoud JE, Popova B, Peters AHFM, Jenuwein T, Brockdorff N. Histone H3 lysine 9 methylation occurs rapidly at the onset of random X chromosome inactivation. Curr Biol 2002; 12:247-51. [PMID: 11839280 DOI: 10.1016/s0960-9822(02)00660-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In female mammals, a single X chromosome is stably and heritably silenced early in embryogenesis. The inactive X is characterized by asynchronous DNA replication and epigenetic chromatin modifications, including DNA methylation, histone H3/H4 hypoacetylation, and incorporation of a variant histone macroH2A. X inactivation is initiated by a cis-acting RNA molecule, the X-inactive specific transcript (Xist), which coats the chromosome. However, the mechanism by which Xist induces chromosome silencing is poorly understood. An important approach towards answering this question has been to determine the temporal order of epigenetic chromatin modifications in an in vitro model system, differentiating XX embryonic stem (ES) cells, and thereby to identify candidate targets for Xist RNA. To date, these studies have demonstrated that, following accumulation of Xist RNA, the transition to late replication of the X chromosome is the earliest detectable event. H4 hypoacetylation, macroH2A1.2 incorporation, and DNA methylation all occur subsequently. Recently, it has been shown that chromatin of the inactive X is also characterized by methylation of histone H3 at lysine 9 (H3-K9). Here we show that H3-K9 methylation is a very early event in the process of X inactivation, which closely parallels the onset of Xist RNA accumulation.
Collapse
Affiliation(s)
- Jacqueline E Mermoud
- X Inactivation Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London W12 ONN, United Kingdom
| | | | | | | | | |
Collapse
|
109
|
Zuccotti M, Boiani M, Ponce R, Guizzardi S, Scandroglio R, Garagna S, Redi CA. Mouse Xist expression begins at zygotic genome activation and is timed by a zygotic clock. Mol Reprod Dev 2002; 61:14-20. [PMID: 11774371 DOI: 10.1002/mrd.1126] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The imprinted mouse Xist (X-inactive specific transcript) gene is involved in the initiation of X-chromosome inactivation. Only the paternal Xist is expressed in preimplantation development beginning from the 4-cell stage, preceding and in correlation with paternal X-inactivation in the extraembryonic lineage of the blastocyst. To better understand the mechanisms regulating Xist expression in early development, we investigated the precise timing of its onset. We set up a single-cell RT-PCR for the simultaneous analysis on single embryos of Xist and Hprt (internal control) cDNAs and a Y-chromosome specific DNA sequence, Zfy (for embryo sexing). Applying this procedure, we demonstrate that Xist expression begins at the G2-phase of 2-cell female embryos, earlier than previously reported and at the same time of the major wave of zygotic genome activation (ZGA). We then examined, if Xist expression at the 2-cell stage is dependent on the lapse of time spent since fertilization, as previously reported for zygotic genes. One-cell embryos at the G2-phase of the first cell-cycle were cultured with cytochalasin D (inhibitor of cytokinesis but not of DNA synthesis or nuclear progression) for a time equivalent to the 4-cell stage in control, untreated embryos. We show that Xist activation occurs at a scheduled time following fertilization despite the embryos being blocked at the 1-cell stage, suggesting the existence of a zygotic clock involved in the regulation of the transcription of this imprinted gene.
Collapse
Affiliation(s)
- Maurizio Zuccotti
- Dipartimento di Medicina Sperimentale, Sezione di Istologia ed Embriologia Generale, Universita' degli Studi di Parma, Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
110
|
Nesterova TB, Mermoud JE, Hilton K, Pehrson J, Surani MA, McLaren A, Brockdorff N. Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells. Differentiation 2002; 69:216-25. [PMID: 11841480 DOI: 10.1046/j.1432-0436.2002.690415.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular mechanism underlying X chromosome inactivation in female mammals involves the non-coding RNAs Xist and its antisense partner Tsix. Prior to X inactivation, these RNAs are transcribed in an unstable form from all X chromosomes, both in the early embryo and in undifferentiated embryonic stem (ES) cells. Upon differentiation, the expression of these unstable transcripts from all alleles is silenced, and Xist RNA becomes stabilised specifically on the inactivating X chromosome. This pattern of expression is then maintained throughout subsequent somatic cell divisions. Once established, the inactive state of the X chromosome is remarkably stable, the only natural case of reactivation occurring in XX primordial germ cells (PGCs) when they enter the genital ridge. To gain insight into the X reactivation process, we have analysed Xist gene expression using RNA FISH in PGCs and also in PGC-derived embryonic germ (EG) cells. XX EG cells were shown to express unstable Xist/Tsix from both X chromosomes. In contrast, no unstable Xist/Tsix transcripts were detected in XX PGCs at any stage. Instead, a proportion of XX PGCs isolated from the genital ridge between 11.5 and 13.5 dpc (the period during which X chromosome reactivation occurs) showed an accumulation of stable Xist RNA on one X. The number of these cells decreased progressively and was nearly extinguished by 13.5 dpc. As a late marker for the inactive state, we analysed localisation of the histone H2A variant macroH2A1.2. Although macroH2A1.2 expression was observed in PGCs, no significant localisation to the inactive X was detected at any stage. We discuss these results in the context of understanding X chromosome reactivation.
Collapse
Affiliation(s)
- Tatyana B Nesterova
- X inactivation Group, MRC Clinical Sciences Centre, Faculty of Medicine ICSTM, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|
111
|
Farazmand A, Koykul W, Peippo J, Baguma-Nibasheka M, King WA, Basrur PK. Sex-linked genes are not silenced in fetal bovine testes expressing X-inactive specific transcript (XIST). THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 290:327-40. [PMID: 11550180 DOI: 10.1002/jez.1073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
X-inactive specific transcript (XIST), which is thought to be the central factor for the X-inactivation process in female mammals, is known to be expressed in males during spermatogenesis. Our studies have shown that XIST is not only expressed in adult bovine testis but is also expressed in fetal, newborn, and prepubertal testes long before spermatogenesis is established. To determine whether the XIST expressed in fetal testes is involved in silencing the genes on the X chromosome, we investigated the status of X-linked genes, including glucose-6-phosphate-dehydrogenase (G6PD), hypoxanthine phosphoribosyl transferase (HPRT), and X-linked zinc finger protein gene (ZFX), in fetal bovine gonads at the developmental stage, when meiosis is initiated in fetal ovaries in this species. Reverse transcription and a semiquantitative polymerase chain reaction based on the optical density of each gene-specific band relative to that of the co-amplified Quantum RNA 18S Internal Standard (Ambion, Austin, TX) showed that the XIST gene was expressed in the testes of approximately 90-day-old fetuses and was silent in all their nongonadal organs tested, although at a significantly lower level than that in fetal organs of female fetuses. Our observation that the expression of X-linked genes in the fetal testis was comparable to that in male nongonadal organs, in which X inactivation does not occur, indicates that the low level of XIST, or XIST-like RNA, expressed in the fetal bovine testis is not involved in silencing X-linked genes.
Collapse
Affiliation(s)
- A Farazmand
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | |
Collapse
|
112
|
Nesterova TB, Barton SC, Surani MA, Brockdorff N. Loss of Xist imprinting in diploid parthenogenetic preimplantation embryos. Dev Biol 2001; 235:343-50. [PMID: 11437441 DOI: 10.1006/dbio.2001.0295] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have analysed Xist expression patterns in parthenogenetic and control fertilised preimplantation embryos by using RNA FISH. In normal XX embryos, maternally derived Xist alleles are repressed throughout preimplantation development. Paternal alleles are expressed as early as the 2-cell stage. In parthenogenetic embryos, we observed Xist RNA expression and accumulation from the morula stage onwards, indicating loss of maternal imprinting. In the majority of cells, expression was from a single allele, indicating that X chromosome counting occurs to establish appropriate monoallelic Xist expression. We discuss these data in the context of models for regulation of imprinted and random X inactivation.
Collapse
Affiliation(s)
- T B Nesterova
- X Inactivation Group, MRC Clinical Sciences Centre, ICSM, Hammersmith Hospital, DuCane Rd, London W12 ONN, United Kingdom
| | | | | | | |
Collapse
|
113
|
Nesterova TB, Slobodyanyuk SY, Elisaphenko EA, Shevchenko AI, Johnston C, Pavlova ME, Rogozin IB, Kolesnikov NN, Brockdorff N, Zakian SM. Characterization of the genomic Xist locus in rodents reveals conservation of overall gene structure and tandem repeats but rapid evolution of unique sequence. Genome Res 2001; 11:833-49. [PMID: 11337478 PMCID: PMC311126 DOI: 10.1101/gr.174901] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2000] [Accepted: 02/27/2001] [Indexed: 11/24/2022]
Abstract
The Xist locus plays a central role in the regulation of X chromosome inactivation in mammals, although its exact mode of action remains to be elucidated. Evolutionary studies are important in identifying conserved genomic regions and defining their possible function. Here we report cloning, sequence analysis, and detailed characterization of the Xist gene from four closely related species of common vole (field mouse), Microtus arvalis. Our analysis reveals that there is overall conservation of Xist gene structure both between different vole species and relative to mouse and human Xist/XIST. Within transcribed sequence, there is significant conservation over five short regions of unique sequence and also over Xist-specific tandem repeats. The majority of unique sequences, however, are evolving at an unexpectedly high rate. This is also evident from analysis of flanking sequences, which reveals a very high rate of rearrangement and invasion of dispersed repeats. We discuss these results in the context of Xist gene function and evolution.
Collapse
Affiliation(s)
- T B Nesterova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Sado T, Wang Z, Sasaki H, Li E. Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 2001; 128:1275-86. [PMID: 11262229 DOI: 10.1242/dev.128.8.1275] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammals, X-chromosome inactivation is imprinted in the extra-embryonic lineages with paternal X chromosome being preferentially inactivated. In this study, we investigate the role of Tsix, the antisense transcript from the Xist locus, in regulation of Xist expression and X-inactivation. We show that Tsix is transcribed from two putative promoters and its transcripts are processed. Expression of Tsix is first detected in blastocysts and is imprinted with only the maternal allele transcribed. The imprinted expression of Tsix persists in the extra-embryonic tissues after implantation, but is erased in embryonic tissues. To investigate the function of Tsix in X-inactivation, we disrupted Tsix by insertion of an IRES(β)geo cassette in the second exon, which blocked transcripts from both promoters. While disruption of the paternal Tsix allele has no adverse effects on embryonic development, inheritance of a disrupted maternal allele results in ectopic Xist expression and early embryonic lethality, owing to inactivation of both X chromosomes in females and single X chromosome in males. Further, early developmental defects of female embryos with maternal transmission of Tsix mutation can be rescued by paternal inheritance of the Xist deletion. These results provide genetic evidence that Tsix plays a crucial role in maintaining Xist silencing in cis and in regulation of imprinted X-inactivation in the extra-embryonic tissues.
Collapse
Affiliation(s)
- T Sado
- Division of Human Genetics, National Institute of Genetics, Yata, Mishima, Japan.
| | | | | | | |
Collapse
|
115
|
Ohlsson R, Paldi A, Graves JA. Did genomic imprinting and X chromosome inactivation arise from stochastic expression? Trends Genet 2001; 17:136-41. [PMID: 11226606 DOI: 10.1016/s0168-9525(00)02211-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both X chromosome inactivation and autosomal genomic imprinting generate a functional hemizygosity. Here we consider models that explain the evolution of genomic imprinting and X chromosome inactivation from novel perspectives. Specifically, we suggest that random (in)activation events are common in genes and gene clusters with a low probability of transcription. These generate variability that natural selection has acted on to evolve stable monoallelic expression. Possible selection forces might include a need for dosage compensation and the prevention of biallelic silencing where a total switch off would be lethal. Two different mechanisms can accomplish regular monoallelic expression - genomic imprinting and gene counting.
Collapse
Affiliation(s)
- R Ohlsson
- Dept of Genetics and Development, Evolution Biology Centre, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden.
| | | | | |
Collapse
|
116
|
Farazmand A, Koykul W, King WA, Basrur PK. Expression of X inactive specific transcript (Xist) and testicular morphogenesis in bovine fetuses. Anim Biotechnol 2001; 11:51-61. [PMID: 10885812 DOI: 10.1080/10495390009525947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Inactivation of one of the 2 X chromosomes in the somatic cells of female mammals is the process by which their X-linked gene products are equalized to those of their male counterparts. In male mammals, however, a sex vesicle representing the condensed and transcriptionally silenced sex chromosomes is detected during early meiotic prophase. Since the exact stage of development at which X inactivation is initiated in the bovine testis is not established as yet, we undertook to study fetuses ranging in age from 30 to 180 days of gestation, to determine the transcriptional status of the Xist gene currently thought to be the prerequisite component of X inactivation. Our studies using reverse transcription polymerase chain reaction (RT-PCR) approach with primers designed to amplify a 463 bp product from a conserved region of the first exon of bovine Xist gene, proved that Xist expression is evident in bovine fetal testes as early as 50 days of gestation and that it continues at least to the end of the second trimester (180 days) of gestation. Morphological studies on fetal testes during gestational stage spanning the period of Xist expression revealed the presence of large intra-tubular cells overtly resembling the prespermatogonia of postnatal bovine testes, at 50 days and preleptotene like cells as early as 90 days of gestation. We hypothesize that the expression of the Xist gene, or the recently discovered Tsix gene antisense to Xist in orientation, may be related to the presence of these cells which participate in the morphogenesis of the fetal bovine testis.
Collapse
Affiliation(s)
- A Farazmand
- Department of Biomedical Sciences, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
117
|
Chadwick BP, Willard HF. A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol 2001; 152:375-84. [PMID: 11266453 PMCID: PMC2199617 DOI: 10.1083/jcb.152.2.375] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chromatin on the mammalian inactive X chromosome differs in a number of ways from that on the active X. One protein, macroH2A, whose amino terminus is closely related to histone H2A, is enriched on the heterochromatic inactive X chromosome in female cells. Here, we report the identification and localization of a novel and more distant histone variant, designated H2A-Bbd, that is only 48% identical to histone H2A. In both interphase and metaphase female cells, using either a myc epitope-tagged or green fluorescent protein-tagged H2A-Bbd construct, the inactive X chromosome is markedly deficient in H2A-Bbd staining, while the active X and the autosomes stain throughout. In double-labeling experiments, antibodies to acetylated histone H4 show a pattern of staining indistinguishable from H2A-Bbd in interphase nuclei and on metaphase chromosomes. Chromatin fractionation demonstrates association of H2A-Bbd with the histone proteins. Separation of micrococcal nuclease-digested chromatin by sucrose gradient ultracentrifugation shows cofractionation of H2A-Bbd with nucleosomes, supporting the idea that H2A-Bbd is incorporated into nucleosomes as a substitute for the core histone H2A. This finding, in combination with the overlap with acetylated forms of H4, raises the possibility that H2A-Bbd is enriched in nucleosomes associated with transcriptionally active regions of the genome. The distribution of H2A-Bbd thus distinguishes chromatin on the active and inactive X chromosomes.
Collapse
Affiliation(s)
- Brian P. Chadwick
- Department of Genetics, Case Western Reserve University School of Medicine and Center for Human Genetics and Research Institute, University Hospitals of Cleveland, Cleveland, Ohio 44106-4955
| | - Huntington F. Willard
- Department of Genetics, Case Western Reserve University School of Medicine and Center for Human Genetics and Research Institute, University Hospitals of Cleveland, Cleveland, Ohio 44106-4955
| |
Collapse
|
118
|
Abstract
Although sexual dimorphic development in the mammalian embryo prior to differentiation of the gonad has been documented, there are many seemingly conflicting observations and gaps in our understanding of this process. Conditions that influence the process include gamete interaction, that might give one sex and advantage in the fertilization process and in rates of blastomere cleavage that would allow one sex to accumulate cells at a faster rate. In this scenario, males could accumulate more cells within a defined window of development. Another key difference between males and females is the number of copies of genes located on the sex chromosomes. Transcripts from the Y-chromosome are thought to function as transcription factors, which could accelerate development. Conversely, the X-chromosome contains genes that code for rate limiting steps in pathways key to embryo metabolism and stress reduction. It can be envisioned that prior to X-chromosome inactivation in females, elevated levels of transcripts for such genes may enable greater protection from environmental stress and regulate growth. As we gain a better understanding of how males and female develop we will be able to exert greater control over the manipulation of the sex ratio for the offspring of domestic animals.
Collapse
Affiliation(s)
- H P Kochhar
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada NIG 2W1
| | | | | |
Collapse
|
119
|
Ruiz MF, Esteban MR, Doñoro C, Goday C, Sánchez L. Evolution of dosage compensation in Diptera: the gene maleless implements dosage compensation in Drosophila (Brachycera suborder) but its homolog in Sciara (Nematocera suborder) appears to play no role in dosage compensation. Genetics 2000; 156:1853-65. [PMID: 11102379 PMCID: PMC1461397 DOI: 10.1093/genetics/156.4.1853] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Drosophila melanogaster and in Sciara ocellaris dosage compensation occurs by hypertranscription of the single male X chromosome. This article reports the cloning and characterization in S. ocellaris of the gene homologous to maleless (mle) of D. melanogaster, which implements dosage compensation. The Sciara mle gene produces a single transcript, encoding a helicase, which is present in both male and female larvae and adults and in testes and ovaries. Both Sciara and Drosophila MLE proteins are highly conserved. The affinity-purified antibody to D. melanogaster MLE recognizes the S. ocellaris MLE protein. In contrast to Drosophila polytene chromosomes, where MLE is preferentially associated with the male X chromosome, in Sciara MLE is found associated with all chromosomes. Anti-MLE staining of Drosophila postblastoderm male embryos revealed a single nuclear dot, whereas Sciara male and female embryos present multiple intranuclear staining spots. This expression pattern in Sciara is also observed before blastoderm stage, when dosage compensation is not yet set up. The affinity-purified antibodies against D. melanogaster MSL1, MSL3, and MOF proteins involved in dosage compensation also revealed no differences in the staining pattern between the X chromosome and the autosomes in both Sciara males and females. These results lead us to propose that different proteins in Drosophila and Sciara would implement dosage compensation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Cell Nucleus/ultrastructure
- Chromosomal Proteins, Non-Histone
- Chromosomes/chemistry
- Cloning, Molecular
- DNA Helicases
- DNA-Binding Proteins
- Diptera/embryology
- Diptera/genetics
- Dosage Compensation, Genetic
- Drosophila Proteins
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/ultrastructure
- Female
- Fluorescent Antibody Technique, Indirect
- Gene Expression Regulation, Developmental
- Genes, Insect
- Insect Proteins/genetics
- Insect Proteins/immunology
- Insect Proteins/physiology
- Male
- Molecular Sequence Data
- RNA Helicases/genetics
- RNA Helicases/immunology
- RNA Helicases/physiology
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sex Determination Processes
- Species Specificity
- Transcription Factors/genetics
- Transcription Factors/immunology
- Transcription Factors/physiology
- Transcription, Genetic
- X Chromosome/genetics
Collapse
Affiliation(s)
- M F Ruiz
- Centro de Investigaciones Biológicas, Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
120
|
Brown CJ, Robinson WP. The causes and consequences of random and non-random X chromosome inactivation in humans. Clin Genet 2000; 58:353-63. [PMID: 11140834 DOI: 10.1034/j.1399-0004.2000.580504.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
X chromosome (X) inactivation is a remarkable biological process including the choice and cis-limited inactivation of one X, as well as the stable maintenance of this silencing by epigenetic chromatin alterations. The process results in females generally being mosaic for two populations of cells--one with each parental X active. In this review, we discuss recent advances in our understanding of how inactivation works, as well as the causes and clinical implications of deviations from random inactivation.
Collapse
Affiliation(s)
- C J Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
121
|
Abstract
In marsupials and in extraembryonic tissues of placental mammals, X inactivation is imprinted to occur on the paternal chromosome. Here, we find that imprinting is controlled by the antisense Xist gene, Tsix. Tsix is maternally expressed and mice carrying a Tsix deletion show normal paternal but impaired maternal transmission. Maternal inheritance occurs infrequently, with surviving progeny showing intrauterine growth retardation and reduced fertility. Transmission ratio distortion results from disrupted imprinting and postimplantation loss of mutant embryos. In contrast to effects in embryonic stem cells, deleting Tsix causes ectopic X inactivation in early male embryos and inactivation of both X chromosomes in female embryos, indicating that X chromosome counting cannot override Tsix imprinting. These results highlight differences between imprinted and random X inactivation but show that Tsix regulates both. We propose that an imprinting center lies within Tsix.
Collapse
Affiliation(s)
- J T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston 02114, USA.
| |
Collapse
|
122
|
Abstract
X-chromosome inactivation (XCI) is the process by which mammals perform dosage compensation of X-linked gene products between XY males and XX females, resulting in the transcriptional silencing of all but one X chromosome per diploid cell. XCI involves counting the X chromosomes in a cell, randomly choosing those to be inactivated, spreading the inactivation signal in cis throughout the chromosome, and maintaining the inactive state of those X chromosomes during cell divisions thereafter. How the cell performs all these tasks is a fascinating problem and, together with epigenetic inheritance, a basic cellular mechanism that remains to be fully understood. In this review, we describe recent experiments aimed at understanding the first events of XCI and propose a model for initiation of XCI.
Collapse
Affiliation(s)
- L V Pereira
- Depto. Biologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil.
| | | |
Collapse
|
123
|
Sado T, Fenner MH, Tan SS, Tam P, Shioda T, Li E. X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev Biol 2000; 225:294-303. [PMID: 10985851 DOI: 10.1006/dbio.2000.9823] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been suggested that DNA methylation plays a crucial role in genomic imprinting and X inactivation. Using DNA methyltransferase 1 (Dnmt1)-deficient mouse embryos carrying X-linked lacZ transgenes, we studied the effects of genomic demethylation on X inactivation. Based on the expression pattern of lacZ, the imprinted X inactivation in the visceral endoderm, a derivative of the extraembryonic lineage, was unaffected in Dnmt1 mutant embryos at the time other imprinted genes showed aberrant expression. Random X inactivation in the embryonic lineage of Dnmt1 mutant embryos, however, was unstable as a result of hypomethylation, causing reactivation of, at least, one lacZ transgene that had initially been repressed. Our results suggest that maintenance of imprinted X inactivation in the extraembryonic lineage can tolerate extensive demethylation while normal levels of methylation are required for stable maintenance of X inactivation in the embryonic lineage.
Collapse
Affiliation(s)
- T Sado
- Cardiovascular Research Center, Cancer Center and Department of Medicine, Harvard Medical School, Massachusetts General Hospital-East, 149, 13th Street, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
124
|
Hoyer-Fender S, Costanzi C, Pehrson JR. Histone macroH2A1.2 is concentrated in the XY-body by the early pachytene stage of spermatogenesis. Exp Cell Res 2000; 258:254-60. [PMID: 10896776 DOI: 10.1006/excr.2000.4951] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pairing of sex chromosomes during meiosis in male mammals is associated with ongoing heterochromatinization and X inactivation. This process occurs in a specific area of the nucleus that can be discerned morphologically: the sex vesicle or XY-body. In contrast to X inactivation in the somatic cells of female mammals the reasons for X inactivation in the male germline remain obscure. We have recently demonstrated that the inactive X chromosome in somatic cells of female mammals is marked by a high concentration of histone macroH2A. Here we investigate X inactivation in the meiotic cells of the male germline. We demonstrate here that macroH2A1.2 is present in the nuclei of germ cells starting first with localization that is largely, if not exclusively, to the developing XY-body in early pachytene spermatocytes. Our results suggest that inactivation of sex chromosomes in the male germ cell includes a major alteration of the nucleosomal structure.
Collapse
Affiliation(s)
- S Hoyer-Fender
- Universität Göttingen, III, Zoologisches Institut-Entwicklungsbiologie, Humboldtallee 34A, Göttingen, 37073, Germany.
| | | | | |
Collapse
|
125
|
Goto Y, Takagi N. Maternally inherited X chromosome is not inactivated in mouse blastocysts due to parental imprinting. Chromosome Res 2000; 8:101-9. [PMID: 10780698 DOI: 10.1023/a:1009234217981] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mouse embryos having an additional maternally inherited X chromosome (X(M)) invariably die before midgestation with the deficient extraembryonic ectoderm of the polar trophectoderm lineage, whereas postnatal mice having an additional paternally inherited X chromosome (X(P)) survive beyond parturition. A cytogenetic study led us to hypothesize that abnormal development of such embryos disomic for X(M) (DsX(M)) is attributable to two doses of active X(M) chromosome in extraembryonic tissues. To test the validity of this hypothesis, we examined the initial X chromosome inactivation pattern in embryos at the blastocyst stage by means of replication banding method as well as RNA FISH detecting Xist transcripts. X(P) was the only asynchronously replicating X chromosome, if any, in X(M)X(M)X(P) blastocysts, and no such allocyclic X chromosome was ever detected in X(M)X(M)Y blastocysts. In agreement with these findings, only one Xist paint signal was detected in 79% of X(M)X(M)X(P) cells, whereas no such signal was found in X(M)X(M)Y embryos. Thus, the present study supports the hypothesis that two X chromosomes remaining active in the extraembryonic cell lineages due to the maternal imprinting explain the underdevelopment of extraembryonic structures and hence early postimplantation death of DsX(M) embryos.
Collapse
Affiliation(s)
- Y Goto
- Division of Bioscience, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
126
|
Abstract
In mammals, the levels of X-linked gene products in males and females are equalised by the silencing, early in development, of most of the genes on one of the two female X chromosomes. Once established, the silent state is stable from one cell generation to the next. In eutherian mammals, the inactive X chromosome (Xi) differs from its active homologue (Xa) in a number of ways, including increased methylation of selected CpGs, replication late in S-phase, expression of the Xist gene with binding of Xist RNA and underacetylation of core histones. The latter is a common property of genetically inactive chromatin but, in the case of Xi, it is not clear whether it is an integral part of the silencing process or simply a consequence of some other property of Xi, such as late replication. The present review describes two approaches that address this problem. The first shows that Xi in marsupial mammals also contains underacetylated H4, even though its properties differ widely from those of the eutherian Xi. The continued presence of histone underacetylation on Xi in these evolutionarily distant mammals argues for its fundamental importance. The second approach uses mouse embryonic stem cells and places H4 deacetylation in a sequence of events leading to complete X inactivation. The results argue that histone underacetylation plays a role in the stabilisation of the inactive state, rather than in its initiation.
Collapse
Affiliation(s)
- A M Keohane
- Department of Anatomy, University of Birmingham Medical School, Edgbaston, U.K
| | | | | | | |
Collapse
|
127
|
Davis TL, Tremblay KD, Bartolomei MS. Imprinted expression and methylation of the mouse H19 gene are conserved in extraembryonic lineages. DEVELOPMENTAL GENETICS 2000; 23:111-8. [PMID: 9770268 DOI: 10.1002/(sici)1520-6408(1998)23:2<111::aid-dvg3>3.0.co;2-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The imprinted H19 gene is hypomethylated on the active maternal allele and hypermethylated on the repressed paternal allele in the somatic tissues of mice and humans. We previously demonstrated that the paternal-specific methylation of a 2 kb region located between -2 and -4 kb relative to the start of transcription is maintained throughout murine development, and we thus propose that this region is crucial to determining the imprinted expression of H19. Here, we test the correlation between differential methylation and imprinted expression by analyzing the mouse H19 gene in the undermethylated extraembryonic tissues. During early and midpostimplantation stages, > 95% of the H19 RNA is derived from the maternal allele. Dissection of yolk sac revealed that the paternal allele is expressed at a low level in the viseral endoderm but is completely repressed in visceral mesoderm. Bisulfite methylation analysis of yolk sac DNA showed that the maternal allele was hypomethylated and that 95% of the paternally derived clones were hypermethylated. Thus in extraembryonic lineages, the majority of H19 DNA is differentially methylated. These results lend further support to the hypothesis that DNA methylation confers the imprint on H19.
Collapse
Affiliation(s)
- T L Davis
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104,
| | | | | |
Collapse
|
128
|
Wang Q, Latham KE. Translation of maternal messenger ribonucleic acids encoding transcription factors during genome activation in early mouse embryos. Biol Reprod 2000; 62:969-78. [PMID: 10727266 DOI: 10.1095/biolreprod62.4.969] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Embryonic genome activation (EGA) in mice is sensitive to treatment with cycloheximide, indicating that protein synthesis plays an important role in mediating EGA. We hypothesized that regulated maternal mRNA recruitment may control the time of EGA by controlling the time of appearance of certain transcription factors (TFs). We also hypothesized that synthesis of other TFs may contribute to EGA independently of controlling the timing of EGA. To test these hypotheses, we used sucrose density gradient fractionation coupled to a quantitative reverse transcription-polymerase chain reaction method to compare polysomal mRNA abundances of specific TF mRNAs between metaphase II oocytes, 1-cell-stage embryos, and 2-cell-stage embryos. We observed a 2-cell-stage-specific increase in polysomal abundance of mouse TEA DNA binding domain 2 (mTEAD-2) mRNA, coincident with the first appearance of mTEAD activity in the early embryo. The mRNAs encoding Sp1, TATA binding protein, and cyclic AMP response element binding protein did not undergo translational recruitment, but exhibited differences in polysomal abundance. We also observed a continuous, high proportion in the polysomal fraction for the mRNA encoding ribosomal protein L23 mRNA, which contrasted with the patterns observed for other maternal transcripts. These observations are consistent with the hypothesis that regulated recruitment of maternal TF mRNAs may control the time of activation of some genes during EGA, and that continuous synthesis of other TFs, like Sp1, may facilitate EGA.
Collapse
Affiliation(s)
- Q Wang
- The Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
129
|
Warshawsky D, Stavropoulos N, Lee JT. Further examination of the Xist promoter-switch hypothesis in X inactivation: evidence against the existence and function of a P(0) promoter. Proc Natl Acad Sci U S A 1999; 96:14424-9. [PMID: 10588721 PMCID: PMC24452 DOI: 10.1073/pnas.96.25.14424] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The onset of X inactivation coincides with accumulation of Xist RNA along the future inactive X chromosome. A recent hypothesis proposed that accumulation is initiated by a promoter switch within Xist. In this hypothesis, an upstream promoter (P(0)) produces an unstable transcript, while the known downstream promoter (P(1)) produces a stable RNA. To test this hypothesis, we examined expression and half-life of Xist RNA produced from an Xist transgene lacking P(0) but retaining P(1). We confirm the previous finding that P(0) is dispensable for Xist expression in undifferentiated cells and that P(1) can be used in both undifferentiated and differentiated cells. Herein, we show that Xist RNA initiated at P(1) is unstable and does not accumulate. Further analysis indicates that the transcriptional boundary at P(0) does not represent the 5' end of a distinct Xist isoform. Instead, P(0) is an artifact of cross-amplification caused by a pseudogene of the highly expressed ribosomal protein S12 gene Rps12. Using strand-specific techniques, we find that transcription upstream of P(1) originates from the DNA strand opposite Xist and represents the 3' end of the antisense Tsix RNA. Thus, these data do not support the existence of a P(0) promoter and suggest that mechanisms other than switching of functionally distinct promoters control the up-regulation of Xist.
Collapse
Affiliation(s)
- D Warshawsky
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
130
|
Debrand E, Chureau C, Arnaud D, Avner P, Heard E. Functional analysis of the DXPas34 locus, a 3' regulator of Xist expression. Mol Cell Biol 1999; 19:8513-25. [PMID: 10567576 PMCID: PMC84967 DOI: 10.1128/mcb.19.12.8513] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
X inactivation in female mammals is controlled by a key locus on the X chromosome, the X-inactivation center (Xic). The Xic controls the initiation and propagation of inactivation in cis. It also ensures that the correct number of X chromosomes undergo inactivation (counting) and determines which X chromosome becomes inactivated (choice). The Xist gene maps to the Xic region and is essential for the initiation of X inactivation in cis. Regulatory elements of X inactivation have been proposed to lie 3' to Xist. One such element, lying 15 kb downstream of Xist, is the DXPas34 locus, which was first identified as a result of its hypermethylation on the active X chromosome and the correlation of its methylation level with allelism at the X-controlling element (Xce), a locus known to affect choice. In this study, we have tested the potential function of the DXPas34 locus in Xist regulation and X-inactivation initiation by deleting it in the context of large Xist-containing yeast artificial chromosome transgenes. Deletion of DXPas34 eliminates both Xist expression and antisense transcription present in this region in undifferentiated ES cells. It also leads to nonrandom inactivation of the deleted transgene upon differentiation. DXPas34 thus appears to be a critical regulator of Xist activity and X inactivation. The expression pattern of DXPas34 during early embryonic development, which we report here, further suggests that it could be implicated in the regulation of imprinted Xist expression.
Collapse
Affiliation(s)
- E Debrand
- Unité de Génétique Moléculaire Murine, URA CNRS 1947, Institut Pasteur, Paris 75015, France
| | | | | | | | | |
Collapse
|
131
|
Takada S, Kamiya M, Arima T, Kagebayashi H, Shibata H, Muramatsu M, Chapman VM, Wake N, Hayashizaki Y, Takagi N. Detection and cloning of an X-linked locus associated with a NotI site that is not methylated on mouse inactivated X chromosome by the RLGS-M method. Genomics 1999; 61:92-100. [PMID: 10512684 DOI: 10.1006/geno.1999.5944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In looking for genes that escape X chromosome inactivation, we scanned the methylation status of genomic DNA from XX, X0, and XY mice using the method of restriction landmark genomic scanning using methylation-sensitive endonuclease. We detected and cloned a candidate locus and identified the Orf1 gene. Orf1 has sequence similarities to the B2 repetitive element and human CXORF4 (formerly called EXLM1), which escapes X inactivation. The B2 element spans the 3' terminus of the ORF and the 3' UTR of Orf1. The Orf1 gene encompasses 18.5 kb of genomic DNA including 11 exons and 10 introns. Taking advantage of genomic polymorphisms present between MSM and C3H/He, we showed that murine Orf1 is mapped to the proximal region of the X chromosome. Despite the unmethylation of the NotI site, Orf1 is subject to X inactivation.
Collapse
Affiliation(s)
- S Takada
- Graduate School of Environmental Earth Science, Hokkaido University, North 10 West 5 Kita-ku, Sapporo, 060-0810, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Heard E, Mongelard F, Arnaud D, Chureau C, Vourc'h C, Avner P. Human XIST yeast artificial chromosome transgenes show partial X inactivation center function in mouse embryonic stem cells. Proc Natl Acad Sci U S A 1999; 96:6841-6. [PMID: 10359800 PMCID: PMC22003 DOI: 10.1073/pnas.96.12.6841] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Initiation of X chromosome inactivation requires the presence, in cis, of the X inactivation center (XIC). The Xist gene, which lies within the XIC region in both human and mouse and has the unique property of being expressed only from the inactive X chromosome in female somatic cells, is known to be essential for X inactivation based on targeted deletions in the mouse. Although our understanding of the developmental regulation and function of the mouse Xist gene has progressed rapidly, less is known about its human homolog. To address this and to assess the cross-species conservation of X inactivation, a 480-kb yeast artificial chromosome containing the human XIST gene was introduced into mouse embryonic stem (ES) cells. The human XIST transcript was expressed and could coat the mouse autosome from which it was transcribed, indicating that the factors required for cis association are conserved in mouse ES cells. Cis inactivation as a result of human XIST expression was found in only a proportion of differentiated cells, suggesting that the events downstream of XIST RNA coating that culminate in stable inactivation may require species-specific factors. Human XIST RNA appears to coat mouse autosomes in ES cells before in vitro differentiation, in contrast to the behavior of the mouse Xist gene in undifferentiated ES cells, where an unstable transcript and no chromosome coating are found. This may not only reflect important species differences in Xist regulation but also provides evidence that factors implicated in Xist RNA chromosome coating may already be present in undifferentiated ES cells.
Collapse
Affiliation(s)
- E Heard
- Unité de Génétique Moléculaire Murine, Institut Pasteur, 25 rue du Docteur Roux, F-75724 Paris Cedex 15, France.
| | | | | | | | | | | |
Collapse
|
133
|
Affiliation(s)
- M F Lyon
- Medical Research Council, Mammalian Genetics Unit, Harwell, Didcot, Oxon, UK
| |
Collapse
|
134
|
Mise N, Goto Y, Nakajima N, Takagi N. Molecular cloning of antisense transcripts of the mouse Xist gene. Biochem Biophys Res Commun 1999; 258:537-41. [PMID: 10329421 DOI: 10.1006/bbrc.1999.0681] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior to X-inactivation, Xist is transcribed in unstable form. The initiation of X-inactivation is associated with the appearance of stable Xist transcripts which coat the X chromosome to be inactivated. Using strand specific RT-PCR analysis of the 5' region of Xist, we have detected antisense transcripts (Xist AS) in undifferentiated embryonic stem (ES) cells, but not in female somatic cells. Screening of a female ES cell cDNA library allowed us to isolate one poly(A)-tailed cDNA clone corresponding to this RNA. 5' RACE analysis showed that XistAS and the P1 sense product of Xist overlap by at least 707 bp. Expression of XistAS was also detected in early mouse embryos before random X-inactivation in the epiblast lineage. Although XistAS is low in abundance, it may be involved in destabilizing Xist mRNA in undifferentiated ES cells.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cloning, Molecular
- DNA Primers
- DNA, Complementary
- Dosage Compensation, Genetic
- Female
- Gene Expression Regulation, Developmental
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- RNA, Antisense/genetics
- RNA, Long Noncoding
- RNA, Messenger/genetics
- RNA, Untranslated
- Transcription Factors/genetics
- X Chromosome
Collapse
Affiliation(s)
- N Mise
- Department of Molecular Biology, Biomolecular Engineering Research Institute (BERI), 6-2-3, Fruedai, Osaka, Suita, 565-0874, Japan.
| | | | | | | |
Collapse
|
135
|
O'Neill LP, Keohane AM, Lavender JS, McCabe V, Heard E, Avner P, Brockdorff N, Turner BM. A developmental switch in H4 acetylation upstream of Xist plays a role in X chromosome inactivation. EMBO J 1999; 18:2897-907. [PMID: 10329635 PMCID: PMC1171370 DOI: 10.1093/emboj/18.10.2897] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have investigated the role of histone acetylation in X chromosome inactivation, focusing on its possible involvement in the regulation of Xist, an essential gene expressed only from the inactive X (Xi). We have identified a region of H4 hyperacetylation extending up to 120 kb upstream from the Xist somatic promoter P1. This domain includes the promoter P0, which gives rise to the unstable Xist transcript in undifferentiated cells. The hyperacetylated domain was not seen in male cells or in female XT67E1 cells, a mutant cell line heterozygous for a partially deleted Xist allele and in which an increased number of cells fail to undergo X inactivation. The hyperacetylation upstream of Xist was lost by day 7 of differentiation, when X inactivation was essentially complete. Wild-type cells differentiated in the presence of the histone deacetylase inhibitor Trichostatin A were prevented from forming a normally inactivated X, as judged by the frequency of underacetylated X chromosomes detected by immunofluorescence microscopy. Mutant XT67E1 cells, lacking hyperacetylation upstream of Xist, were less affected. We propose that (i) hyperacetylation of chromatin upstream of Xist facilitates the promoter switch that leads to stabilization of the Xist transcript and (ii) that the subsequent deacetylation of this region is essential for the further progression of X inactivation.
Collapse
Affiliation(s)
- L P O'Neill
- Chromatin and Gene Expression Group, University of Birmingham Medical School, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Jong MT, Carey AH, Caldwell KA, Lau MH, Handel MA, Driscoll DJ, Stewart CL, Rinchik EM, Nicholls RD. Imprinting of a RING zinc-finger encoding gene in the mouse chromosome region homologous to the Prader-Willi syndrome genetic region. Hum Mol Genet 1999; 8:795-803. [PMID: 10196368 DOI: 10.1093/hmg/8.5.795] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel locus in the human Prader-Willi syndrome (PWS) region encodes the imprinted ZNF127 and antisense ZNF127AS genes. Here, we show that the mouse ZNF127 ortholog, Zfp127, encodes a homologous putative zinc-finger polypeptide, with a RING (C3HC4) and three C3H zinc-finger domains that suggest function as a ribonucleoprotein. By the use of RT-PCR across an in-frame hexamer tandem repeat and RNA from a Mus musculus x M.spretus F1interspecific cross, we show that Zfp127 is expressed only from the paternal allele in brain, heart and kidney. Similarly, Zfp127 is expressed in differentiated cells derived from androgenetic embryonic stem cells and normal embryos but not those from parthogenetic embryonic stem cells. We hypothesize that the gametic imprint may be set, at least in part, by the transcriptional activity of Zfp127 in pre- and post-meiotic male germ cells. Therefore, Zfp127 is a novel imprinted gene that may play a role in the imprinted phenotype of mouse models of PWS.
Collapse
Affiliation(s)
- M T Jong
- Department of Genetics, Case Western Reserve University School of Medicine and Center for Human Genetics, University Hospitals of Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106-4955, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Brown AL, Kay GF. Bex1, a gene with increased expression in parthenogenetic embryos, is a member of a novel gene family on the mouse X chromosome. Hum Mol Genet 1999; 8:611-9. [PMID: 10072429 DOI: 10.1093/hmg/8.4.611] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Parthenogenetic and normal blastocysts were compared using differential display analysis as a means to identify new imprinted genes. A single gene was identified with increased expression in parthenogenetic blastocysts, suggesting it might be an imprinted gene expressed from the maternally inherited allele. The gene, named Bex1 (brainexpressedX-linked gene), maps near Plp on the mouse X chromosome and to Xq22 in humans. Database homology searches revealed two additional uncharacterized cDNAs similar to Bex1 that were named Bex2 and Bex3. Allele-specific expression analysis of Bex1 using F1 blastocysts indicated an excess of transcript expressed from the maternally inherited allele compared with the paternally inherited allele. This excess level of transcript derived from the maternally inherited allele may be due to imprinted X inactivation of the paternally inherited allele in the extraembryonic lineages of female embryos rather than a result of genomic imprinting.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Chromosome Mapping
- DNA Primers
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Dosage Compensation, Genetic
- Embryo, Mammalian/metabolism
- Embryonic and Fetal Development
- Female
- Gene Expression Regulation, Developmental
- Genes/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Molecular Sequence Data
- Muridae
- Nerve Tissue Proteins/genetics
- Parthenogenesis
- RNA/genetics
- RNA/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- X Chromosome/genetics
Collapse
Affiliation(s)
- A L Brown
- QCF Transgenic Laboratory, Joint Experimental Oncology Program, The Queensland Institute of Medical Research and The University of Queensland, PO Royal Brisbane Hospital, Queensland 4029, Australia
| | | |
Collapse
|
138
|
Heard E, Mongelard F, Arnaud D, Avner P. Xist yeast artificial chromosome transgenes function as X-inactivation centers only in multicopy arrays and not as single copies. Mol Cell Biol 1999; 19:3156-66. [PMID: 10082582 PMCID: PMC84109 DOI: 10.1128/mcb.19.4.3156] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
X-chromosome inactivation in female mammals is controlled by the X-inactivation center (Xic). This locus is required for inactivation in cis and is thought to be involved in the counting process which ensures that only a single X chromosome remains active per diploid cell. The Xist gene maps to the Xic region and has been shown to be essential for inactivation in cis. Transgenesis represents a stringent test for defining the minimal region that can carry out the functions attributed to the Xic. Although YAC and cosmid Xist-containing transgenes have previously been reported to be capable of cis inactivation and counting, the transgenes were all present as multicopy arrays and it was unclear to what extent individual copies are functional. Using two different yeast artificial chromosomes (YACs), we have found that single-copy transgenes, unlike multicopy arrays, can induce neither inactivation in cis nor counting. These results demonstrate that despite their large size and the presence of Xist, the YACs that we have tested lack sequences critical for autonomous function with respect to X inactivation.
Collapse
Affiliation(s)
- E Heard
- Unité de Génétique Moléculaire Murine, CNRS URA 1968, Institut Pasteur, F-75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
139
|
Lee JT, Lu N, Han Y. Genetic analysis of the mouse X inactivation center defines an 80-kb multifunction domain. Proc Natl Acad Sci U S A 1999; 96:3836-41. [PMID: 10097124 PMCID: PMC22381 DOI: 10.1073/pnas.96.7.3836] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dosage compensation in mammals occurs by X inactivation, a silencing mechanism regulated in cis by the X inactivation center (Xic). In response to developmental cues, the Xic orchestrates events of X inactivation, including chromosome counting and choice, initiation, spread, and establishment of silencing. It remains unclear what elements make up the Xic. We previously showed that the Xic is contained within a 450-kb sequence that includes Xist, an RNA-encoding gene required for X inactivation. To characterize the Xic further, we performed deletional analysis across the 450-kb region by yeast-artificial-chromosome fragmentation and phage P1 cloning. We tested Xic deletions for cis inactivation potential by using a transgene (Tg)-based approach and found that an 80-kb subregion also enacted somatic X inactivation on autosomes. Xist RNA coated the autosome but skipped the Xic Tg, raising the possibility that X chromosome domains escape inactivation by excluding Xist RNA binding. The autosomes became late-replicating and hypoacetylated on histone H4. A deletion of the Xist 5' sequence resulted in the loss of somatic X inactivation without abolishing Xist expression in undifferentiated cells. Thus, Xist expression in undifferentiated cells can be separated genetically from somatic silencing. Analysis of multiple Xic constructs and insertion sites indicated that long-range Xic effects can be generalized to different autosomes, thereby supporting the feasibility of a Tg-based approach for studying X inactivation.
Collapse
Affiliation(s)
- J T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | |
Collapse
|
140
|
De La Fuente R, Hahnel A, Basrur PK, King WA. X inactive-specific transcript (Xist) expression and X chromosome inactivation in the preattachment bovine embryo. Biol Reprod 1999; 60:769-75. [PMID: 10026129 DOI: 10.1095/biolreprod60.3.769] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Expression of the X inactive-specific transcript (Xist) is thought to be essential for the initiation of X chromosome inactivation and dosage compensation during female embryo development. In the present study, we analyzed the patterns of Xist transcription and the onset of X chromosome inactivation in bovine preattachment embryos. Reverse transcription-polymerase chain reaction (RT-PCR) revealed the presence of Xist transcripts in all adult female somatic tissues evaluated. In contrast, among the male tissues examined, Xist expression was detected only in testis. No evidence for Xist transcription was observed after a single round of RT-PCR from pools of in vitro-derived embryos at the 2- to 4-cell stage. Xist transcripts were detected as a faint amplicon at the 8-cell stage initially, and consistently thereafter in all stages examined up to and including the expanded blastocyst stage. Xist transcripts, however, were subsequently detected from the 2-cell stage onward after nested RT-PCR. Preferential [3H]thymidine labeling indicative of late replication of one of the X chromosomes was noted in female embryos of different developmental ages as follows: 2 of 7 (28.5%) early blastocysts, 6 of 13 (46.1%) blastocysts, 8 of 11 (72.1%) expanded blastocysts, and 14 of 17 (77.7%) hatched blastocysts. These results suggest that Xist expression precedes the onset of late replication in the bovine embryo, in a pattern compatible with a possible role of bovine Xist in the initiation of X chromosome inactivation.
Collapse
Affiliation(s)
- R De La Fuente
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph,Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
141
|
Rogan DF, Cousins DJ, Staynov DZ. Intergenic transcription occurs throughout the human IL-4/IL-13 gene cluster. Biochem Biophys Res Commun 1999; 255:556-61. [PMID: 10049749 DOI: 10.1006/bbrc.1999.0241] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent experiments have shown that the previously identified elements in the proximal promoter of IL-4 are not sufficient to fully explain the regulation of its transcription. Consequently we examined another aspect of transcriptional regulation, intergenic transcription, which has been observed throughout the prototypic gene cluster of human beta-globin. These intergenic transcripts are nuclear and it is possible that they play an important functional role in the beta-globin locus. Here we show that intergenic transcription also occurs in the IL-4/IL-13 gene cluster. Intergenic transcription occurs when the surrounding genes are not transcriptionally active; it also occurs in the promoters of these genes; the transcripts are polyadenylated and they remain in the nucleus. We also show that, in HeLa cells which do not express IL-4 or IL-13, intergenic transcription is absent from the region immediately surrounding the genes. This suggests a role for intergenic transcription in the regulation of the IL-4/IL-13 gene cluster.
Collapse
Affiliation(s)
- D F Rogan
- Department of Respiratory Medicine and Allergy, King's College London, Guy's Campus, London, SE1 9RT, United Kingdom
| | | | | |
Collapse
|
142
|
Abstract
Genomic imprinting in mammals results in the differential expression of maternal and paternal alleles of certain genes. Recent observations have revealed that the regulation of imprinted genes is only partially determined by epigenetic modifications imposed on the two parental genomes during gametogenesis. Additional modifications mediated by factors in the ooplasm, early embryo, or developing embryonic tissues appear to be involved in establishing monoallelic expression for a majority of imprinted genes. As a result, genomic imprinting effects may be manifested in a stage-specific or cell type-specific manner. The developmental aspects of imprinting are reviewed here, and the available molecular data that address the mechanism of allele silencing for three specific imprinted gene domains are considered within the context of explaining how the imprinted gene silencing may be controlled developmentally.
Collapse
Affiliation(s)
- K E Latham
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| |
Collapse
|
143
|
X-Chromosome Inactivation. Development 1999. [DOI: 10.1007/978-3-642-59828-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
144
|
McDonald LE, Paterson CA, Kay GF. Bisulfite genomic sequencing-derived methylation profile of the xist gene throughout early mouse development. Genomics 1998; 54:379-86. [PMID: 9878240 DOI: 10.1006/geno.1998.5570] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Differential epigenetic modification by methylation of CpG dinucleotides is a candidate mechanism that may identify the alleles of imprinted genes and result in monoallelic expression of either the maternal or the paternal allele. Determination of the allelic methylation status of imprinted genes in the gametes and during early development is constrained by the limiting quantities of genomic DNA available from these early developmental stages. To circumvent this problem we have used bisulfite genomic sequencing to determine the allelic methylation status of the minimal promoter and a 1-kb region within the Xist gene during preimplantation development. We find that the parental Xist alleles are not differentially methylated in these regions. Our findings are discussed in the context of previous conflicting data obtained using methylation-sensitive restriction enzyme digestion followed by PCR amplification to assay for methylation.
Collapse
Affiliation(s)
- L E McDonald
- QCF Transgenic Laboratory, Joint Experimental Oncology Program, The Queensland Institute of Medical Research and The University of Queensland, Brisbane, Queensland, 4029, Australia
| | | | | |
Collapse
|
145
|
Cunningham DB, Segretain D, Arnaud D, Rogner UC, Avner P. The mouse Tsx gene is expressed in Sertoli cells of the adult testis and transiently in premeiotic germ cells during puberty. Dev Biol 1998; 204:345-60. [PMID: 9882475 DOI: 10.1006/dbio.1998.9004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tsx is a gene of unknown function that was previously shown to be expressed specifically in the testis. In order to gain insight into the function of Tsx its pattern of expression was characterized with regard to both timing and cell type in the testis. Northern blot analysis of early postnatal testes showed not only that Tsx message was detectable shortly after birth, but that it increased substantially between 7 and 12 days postpartum (dpp), roughly coincident with the onset of meiosis in the mouse. Alternative Tsx transcripts, detected by RT-PCR, included a spliced form that first appeared at around 12 dpp. In situ hybridization revealed Tsx signal in the somatic Sertoli cells of the adult testis. Consistent with the data from Northern blots, in situ hybridization signal was first detectable in normal pubertal testes at 12 dpp. An anti-Tsx polyclonal antiserum specifically stained premeiotic germ cells in addition to Sertoli cells of pubertal testes at 16, 19, and 27 dpp. Tsx immunostaining in germ cells was nuclear, while Sertoli cells displayed signal throughout the cytoplasm and nucleus. In the adult, Tsx was detected exclusively in Sertoli cells. In contrast, in the adult testis of the oligotriche (olt) mutant, where spermatogenesis is blocked after meiosis, Tsx protein was still present in the spermatogonial nuclei of a subset of tubules. Taken together, these results demonstrate that Tsx expression is induced in both premeiotic germ cells and Sertoli cells during the first wave of spermatogenesis, but that expression is maintained at a detectable level only in Sertoli cells of the normal adult. The persistence of Tsx expression seen in spermatogonia of the adult olt mutant supports the hypothesis that during the first wave of normal spermatogenesis, the advent of a late-stage cell type, either elongating spermatid or spermatozoan, is responsible for extinguishing expression in spermatogonia in normal adult testis. To our knowledge, Tsx is the first gene to show a pattern of germ cell expression that is apparently specific to the pubertal testis.
Collapse
Affiliation(s)
- D B Cunningham
- Unité de Génétique Moléculaire Murine, Institut Pasteur, 25 rue du Dr. Roux, Paris, 75015, France
| | | | | | | | | |
Collapse
|
146
|
Johnston CM, Nesterova TB, Formstone EJ, Newall AE, Duthie SM, Sheardown SA, Brockdorff N. Developmentally regulated Xist promoter switch mediates initiation of X inactivation. Cell 1998; 94:809-17. [PMID: 9753327 DOI: 10.1016/s0092-8674(00)81739-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Developmental regulation of the mouse Xist gene at the onset of X chromosome inactivation is mediated by RNA stabilization. Here, we show that alternate promoter usage gives rise to distinct stable and unstable RNA isoforms. Unstable Xist transcript initiates at a novel upstream promoter, whereas stable Xist RNA is transcribed from the previously identified promoter and from a novel downstream promoter. Analysis of cells undergoing X inactivation indicates that a developmentally regulated promoter switch mediates stabilization and accumulation of Xist RNA on the inactive X chromosome.
Collapse
Affiliation(s)
- C M Johnston
- MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
A number of recent studies have provided new insights into mechanisms that regulate genomic imprinting in the mammalian genome. Regions of allele-specific differential methylation (DMRs) are present in all imprinted genes examined. Differential methylation is erased in germ cells at an early stage of their development, and germ-line-specific methylation imprints in DMRs are reestablished around the time of birth. After fertilization, differential methylation is retained in core DMRs despite genome-wide demethylation and de novo methylation during preimplantation and early postimplantation stages. Direct repeats near CG-rich DMRs may be involved in the establishment and maintenance of allele-specific methylation patterns. Imprinted genes tend to be clustered; one important component of clustering is enhancer competition, whereby promoters of linked imprinted genes compete for access to enhancers. Regional organization and spreading of the epigenotype during development is also important and depends on DMRs and imprinting centers. The mechanism of cis spreading of DNA methylation is not known, but precedent is provided by the Xist RNA, which results in X chromosome inactivation in cis. Reading of the somatic imprints could be carried out by transcription factors that are sensitive to methylation, or by methyl-cytosine-binding proteins that are involved in transcriptional repression through chromatin remodeling.
Collapse
Affiliation(s)
- M Constância
- Programme in Developmental Genetics, The Babraham Institute, Cambridge CB2 4AT, UK
| | | | | | | |
Collapse
|
148
|
Macleod D, Ali RR, Bird A. An alternative promoter in the mouse major histocompatibility complex class II I-Abeta gene: implications for the origin of CpG islands. Mol Cell Biol 1998; 18:4433-43. [PMID: 9671453 PMCID: PMC109029 DOI: 10.1128/mcb.18.8.4433] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nonmethylated CpG islands are generally located at the 5' ends of genes, but a CpG island in the mouse major histocompatibility complex class II I-Abeta gene is remote from the promoter and covers exon 2. We have found that this CpG island includes a novel intronic promoter that is active in embryonic and germ cells. The resulting transcript potentially encodes a severely truncated protein which would lack the signal peptide and external beta1 domains. The functional significance of the internal CpG island may be to facilitate gene conversion, thereby sustaining the high level of polymorphism seen at exon 2. Deletions of the I-Abeta CpG island promoter reduce transcription and frequently lead to methylation of the CpG island in a transgenic mouse assay. These and other results support the idea that all CpG islands arise at promoters that are active in early embryonic cells.
Collapse
Affiliation(s)
- D Macleod
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland.
| | | | | |
Collapse
|
149
|
Zuccotti M, Giorgi Rossi P, Fiorillo E, Garagna S, Forabosco A, Redi CA. Timing of gene expression and oolemma localization of mouse alpha6 and beta1 integrin subunits during oogenesis. Dev Biol 1998; 200:27-34. [PMID: 9698453 DOI: 10.1006/dbio.1998.8923] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sperm antigen fertilin alpha/beta and the integrin complex alpha6beta1 present on the oolemma are two of the most promising candidates to mediate gamete interaction. During growth, the plasma membrane of both hamster and mouse zona-free oocytes acquires the capacity to fuse with acrosome-reacted sperm when oocytes reach the size of 25-30 microm in diameter, suggesting changes in the membrane molecular composition. The present study has two aims: to determine the timing of (1) gene expression of alpha6 and beta1 integrins and (2) localization of these integrin subunits on the plasma membrane in primordial germ cells and in oocytes during oogenesis. We found that both alpha6 and beta1 genes are expressed in female germ cells during all the stages of development analyzed, from 10.5 to 18.5 d.p. c., during oocyte growth, and in ovulated eggs. The alternatively spliced isoform alpha6B is expressed from 10.5 d.p.c., whereas alpha6A begins to be expressed at 12.5 d.p.c., suggesting a different role for the two variants. In situ immunodetection of alpha6 or beta1 shows a ring of fluorescence on the female germ cell plasma membrane for both integrins at 10.5 d.p.c., then the fluorescent signal becomes undetectable at 12.5 d.p.c. to reappear again, this time with a patchy distribution, at 18.5 d.p.c. This pattern of localization is maintained in oocytes isolated from newborn individuals and only when oocytes during growth reach the size of about 25-30 microm in diameter does the fluorescence become homogenous all around the whole oocyte surface. These data, although not conclusive, support the hypothesis of an involvement of alpha6 and beta1 integrins in sperm-egg fusion.
Collapse
Affiliation(s)
- M Zuccotti
- Laboratorio Biologia dello Sviluppo, Universita' degli Studi di Pavia, Piazza Botta 9, Pavia, 27100, Italy
| | | | | | | | | | | |
Collapse
|
150
|
Abstract
Three models have been proposed to explain the imprinting of the mouse Igf2 gene on the maternal chromosome. We ruled out the importance of DNA methylation at Igf2 by showing that silencing of Igf2 accompanying the loss of DNA methylation could be overcome by a mutation at the neighboring H19 gene that activates Igf2. By replacing the H19 structural gene with a protein-coding gene, we have ruled out a role for H19 RNA in the imprinting of Igf2. This replacement resulted in sporadic activation of the H19 promoter on the paternal chromosome without affecting the level of expression of Igf2, a finding that is inconsistent with strict promoter competition between the genes. We conclude that a transcriptional model involving access to a common set of enhancers shared between Igf2 and H19 is the most likely explanation for Igf2 imprinting.
Collapse
Affiliation(s)
- B K Jones
- Howard Hughes Medical Institute and Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544 USA
| | | | | |
Collapse
|