101
|
RNAi Knockdown of Ape1 Gene in the Differentiation of Mouse Embryonic Stem Cells. Methods Mol Biol 2018. [PMID: 28674806 DOI: 10.1007/978-1-4939-7108-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Murine embryonic stem cells (ES) are pluripotent cells and have the potential to become a wide variety of specialized cell types. Mouse ES cell differentiation can be regarded as a valuable biological tool that has led to major advances in our understanding of cell and developmental biology. In vitro differentiation of mouse ES cells can be directed to a specific lineage formation, such as hematopoietic lineage, by appropriate cytokine and/or growth factor stimulation. To study specific gene function in early developmental events, gene knockout approaches have been traditionally used, however, this is a time-consuming and expensive approach. Recently, we have shown that siRNA is an effective strategy to knock down target gene expression, such as Ape1, during ES cell differentiation, and consequently, one can alter cell fates in ES-derived differentiated cells. This approach will be applicable to test the function of a wide variety of gene products using the ES cell differentiation system.
Collapse
|
102
|
Vertii A, Kaufman PD, Hehnly H, Doxsey S. New dimensions of asymmetric division in vertebrates. Cytoskeleton (Hoboken) 2018; 75:87-102. [DOI: 10.1002/cm.21434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Anastassiia Vertii
- Department of MolecularCell and Cancer Biology University of Massachusetts Medical SchoolWorcester Massachusetts
| | - Paul D. Kaufman
- Department of MolecularCell and Cancer Biology University of Massachusetts Medical SchoolWorcester Massachusetts
| | - Heidi Hehnly
- Department of Cell and Developmental BiologySUNY Upstate Medical UniversitySyracuse New York13210
| | - Stephen Doxsey
- Program in Molecular Medicine University of Massachusetts Medical SchoolWorcester Massachusetts
| |
Collapse
|
103
|
Zhang J, Zhou W, Wang X, Wang L. The CRISPR-Cas9 system: a promising tool for discovering potential approaches to overcome drug resistance in cancer. RSC Adv 2018; 8:33464-33472. [PMID: 35548117 PMCID: PMC9086466 DOI: 10.1039/c8ra04509g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/18/2018] [Indexed: 12/26/2022] Open
Abstract
The CRISPR-Cas system was identified in bacteria as an immune defense mechanism against threats from the external environment. A common form of this system, called CRISPR-Cas9, is now widely used in gene editing, especially in mammalian cells. Through CRISPR-Cas9, gene knock-ins or knock-outs have become more feasible, thus deepening our understanding of the mechanisms of human diseases, including cancers, and suggesting possible treatment strategies. In this review, we discuss how CRISPR-Cas9 can be used as a tool to discover more about drug-resistance in cancers, including both the underlying mechanisms and ways to overcome them. The CRISPR-Cas system was identified in bacteria as an immune defense mechanism against threats from the external environment.![]()
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang
- PR China
| | - Wenlong Zhou
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang
- PR China
| | - Xiaoxuan Wang
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang
- PR China
| | - Lihui Wang
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang
- PR China
| |
Collapse
|
104
|
|
105
|
Han B, Antkowiak KR, Fan X, Rutigliano M, Ryder SP, Griffin EE. Polo-like Kinase Couples Cytoplasmic Protein Gradients in the C. elegans Zygote. Curr Biol 2017; 28:60-69.e8. [PMID: 29276126 DOI: 10.1016/j.cub.2017.11.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/16/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022]
Abstract
Intracellular protein gradients underlie essential cellular and developmental processes, but the mechanisms by which they are established are incompletely understood. During the asymmetric division of the C. elegans zygote, the RNA-binding protein MEX-5 forms an anterior-rich cytoplasmic gradient that causes the RNA-binding protein POS-1 to form an opposing, posterior-rich gradient. We demonstrate that the polo-like kinase PLK-1 mediates the repulsive coupling between MEX-5 and POS-1 by increasing the mobility of POS-1 in the anterior. PLK-1 is enriched in the anterior cytoplasm and phosphorylates POS-1, which is both necessary and sufficient to increase POS-1 mobility. Regulation of POS-1 mobility depends on both the interaction between PLK-1 and MEX-5 and between MEX-5 and RNA, suggesting that MEX-5 may recruit PLK-1 to RNA in the anterior. The low concentration of MEX-5/PLK-1 in the posterior cytoplasm provides a permissive environment for the retention of POS-1, which depends on POS-1 RNA binding. Our findings describe a novel reaction/diffusion mechanism in which the asymmetric distribution of cytoplasmic PLK-1 couples two RNA-binding protein gradients, thereby partitioning the cytoplasm.
Collapse
Affiliation(s)
- Bingjie Han
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Katianna R Antkowiak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xintao Fan
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Mallory Rutigliano
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Erik E Griffin
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
106
|
Sandí MJ, Marshall CB, Balan M, Coyaud É, Zhou M, Monson DM, Ishiyama N, Chandrakumar AA, La Rose J, Couzens AL, Gingras AC, Raught B, Xu W, Ikura M, Morrison DK, Rottapel R. MARK3-mediated phosphorylation of ARHGEF2 couples microtubules to the actin cytoskeleton to establish cell polarity. Sci Signal 2017; 10:10/503/eaan3286. [PMID: 29089450 DOI: 10.1126/scisignal.aan3286] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The PAR-1-MARK pathway controls cell polarity through the phosphorylation of microtubule-associated proteins. Rho-Rac guanine nucleotide exchange factor 2 (ARHGEF2), which activates Ras homolog family member A (RHOA), is anchored to the microtubule network and sequestered in an inhibited state through binding to dynein light chain Tctex-1 type 1 (DYNLT1). We showed in mammalian cells that liver kinase B1 (LKB1) activated the microtubule affinity-regulating kinase 3 (MARK3), which in turn phosphorylated ARHGEF2 at Ser151 This modification disrupted the interaction between ARHGEF2 and DYNLT1 by generating a 14-3-3 binding site in ARHGEF2, thus causing ARHGEF2 to dissociate from microtubules. Phosphorylation of ARHGEF2 by MARK3 stimulated RHOA activation and the formation of stress fibers and focal adhesions, and was required for organized cellular architecture in three-dimensional culture. Protein phosphatase 2A (PP2A) dephosphorylated Ser151 in ARHGEF2 to restore the inhibited state. Thus, we have identified a regulatory switch controlled by MARK3 that couples microtubules to the actin cytoskeleton to establish epithelial cell polarity through ARHGEF2.
Collapse
Affiliation(s)
- María-José Sandí
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada
| | - Marc Balan
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada
| | - Ming Zhou
- Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA
| | - Daniel M Monson
- Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA
| | - Noboru Ishiyama
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada
| | - Arun A Chandrakumar
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - José La Rose
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada
| | - Amber L Couzens
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Wei Xu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Deborah K Morrison
- Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada. .,Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Division of Rheumatology, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
107
|
Lang CF, Munro E. The PAR proteins: from molecular circuits to dynamic self-stabilizing cell polarity. Development 2017; 144:3405-3416. [PMID: 28974638 DOI: 10.1242/dev.139063] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PAR proteins constitute a highly conserved network of scaffolding proteins, adaptors and enzymes that form and stabilize cortical asymmetries in response to diverse inputs. They function throughout development and across the metazoa to regulate cell polarity. In recent years, traditional approaches to identifying and characterizing molecular players and interactions in the PAR network have begun to merge with biophysical, theoretical and computational efforts to understand the network as a pattern-forming biochemical circuit. Here, we summarize recent progress in the field, focusing on recent studies that have characterized the core molecular circuitry, circuit design and spatiotemporal dynamics. We also consider some of the ways in which the PAR network has evolved to polarize cells in different contexts and in response to different cues and functional constraints.
Collapse
Affiliation(s)
- Charles F Lang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.,Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA .,Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
108
|
Abstract
Gene essentiality is a founding concept of genetics with important implications in both fundamental and applied research. Multiple screens have been performed over the years in bacteria, yeasts, animals and more recently in human cells to identify essential genes. A mounting body of evidence suggests that gene essentiality, rather than being a static and binary property, is both context dependent and evolvable in all kingdoms of life. This concept of a non-absolute nature of gene essentiality changes our fundamental understanding of essential biological processes and could directly affect future treatment strategies for cancer and infectious diseases.
Collapse
|
109
|
Root-Securing and Brain-Fortifying Liquid Upregulates Caveolin-1 in Cell Model with Alzheimer's Disease through Inhibiting Tau Phosphorylation. Neurol Res Int 2017; 2017:6248351. [PMID: 29123923 PMCID: PMC5662813 DOI: 10.1155/2017/6248351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 11/28/2022] Open
Abstract
In order to explore the effect of root-securing and brain-fortifying Liquid- (RSBFL-) mediated caveolin-1 (CAV-1) on phosphorylation of Tau protein and to uncover underlying mechanisms of RSBFL for the prevention and treatment of Alzheimer's disease (AD), hippocampal neurons isolated from neonatal SD rats and cultured in DMEM-F12 medium were induced by exogenous Aβ1–42 to establish a cell model with AD. Meanwhile, pEGFP-C1-CAV1 and CAV1-shRNA plasmids were transfected into hippocampal neurons for CAV-1 overexpression and silence, respectively. The serum containing RSBFL was prepared for the intervention of AD model cells. The expression of CAV-1, GSK-3β, and p-Tau in normal hippocampal neurons and AD model cells in the presence of serum containing RSBFL was evaluated. The model hippocampal neurons with AD induced by Aβ1–42 revealed an obvious CAV-1 inhibition, enhanced GSK-3β activity, and abnormal Tau phosphorylation. In contrast, the treatment with serum containing RSBFL could upregulate CAV-1 in AD hippocampal neurons (P < 0.05) with improved p-GSK-3βSer9 and reduced p-GSK-3βTyr216 (P < 0.01), as well as suppressed abnormal phosphorylation of Tau protein. Therefore, RSBFL has an excellent protective effect on hippocampal neurons through increasing CAV-1 expression, inhibiting GSK-3β activity, and reducing excessive abnormal phosphorylation of Tau protein.
Collapse
|
110
|
Darrington M, Dalmay T, Morrison NI, Chapman T. Implementing the sterile insect technique with RNA interference - a review. ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA 2017; 164:155-175. [PMID: 29200471 PMCID: PMC5697603 DOI: 10.1111/eea.12575] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 05/22/2023]
Abstract
We review RNA interference (RNAi) of insect pests and its potential for implementing sterile insect technique (SIT)-related control. The molecular mechanisms that support RNAi in pest species are reviewed in detail, drawing on literature from a range of species including Drosophila melanogaster Meigen and Homo sapiens L. The underlying genes that enable RNAi are generally conserved across taxa, although variance exists in both their form and function. RNAi represents a plausible, non-GM system for targeting populations of insects for control purposes, if RNAi effector molecules can be delivered environmentally (eRNAi). We consider studies of eRNAi from across several insect orders and review to what extent taxonomy, genetics, and differing methods of double-stranded (ds) RNA synthesis and delivery can influence the efficiency of gene knockdown. Several factors, including the secondary structure of the target mRNA and the specific nucleotide sequence of dsRNA effector molecules, can affect the potency of eRNAi. However, taxonomic relationships between insects cannot be used to reliably forecast the efficiency of an eRNAi response. The mechanisms by which insects acquire dsRNA from their environment require further research, but the evidence to date suggests that endocytosis and transport channels both play key roles. Delivery of RNA molecules packaged in intermediary carriers such as bacteria or nanoparticles may facilitate their entry into and through the gut, and enable the evasion of host defence systems, such as toxic pH, that would otherwise attenuate the potential for RNAi.
Collapse
Affiliation(s)
- Michael Darrington
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | - Tamas Dalmay
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | | | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| |
Collapse
|
111
|
Rodriguez J, Peglion F, Martin J, Hubatsch L, Reich J, Hirani N, Gubieda AG, Roffey J, Fernandes AR, St Johnston D, Ahringer J, Goehring NW. aPKC Cycles between Functionally Distinct PAR Protein Assemblies to Drive Cell Polarity. Dev Cell 2017; 42:400-415.e9. [PMID: 28781174 PMCID: PMC5563072 DOI: 10.1016/j.devcel.2017.07.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/19/2017] [Accepted: 07/10/2017] [Indexed: 01/09/2023]
Abstract
The conserved polarity effector proteins PAR-3, PAR-6, CDC-42, and atypical protein kinase C (aPKC) form a core unit of the PAR protein network, which plays a central role in polarizing a broad range of animal cell types. To functionally polarize cells, these proteins must activate aPKC within a spatially defined membrane domain on one side of the cell in response to symmetry-breaking cues. Using the Caenorhabditis elegans zygote as a model, we find that the localization and activation of aPKC involve distinct, specialized aPKC-containing assemblies: a PAR-3-dependent assembly that responds to polarity cues and promotes efficient segregation of aPKC toward the anterior but holds aPKC in an inactive state, and a CDC-42-dependent assembly in which aPKC is active but poorly segregated. Cycling of aPKC between these distinct functional assemblies, which appears to depend on aPKC activity, effectively links cue-sensing and effector roles within the PAR network to ensure robust establishment of polarity.
Collapse
Affiliation(s)
- Josana Rodriguez
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK.
| | | | - Jack Martin
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Jacob Reich
- The Francis Crick Institute, London NW1 1AT, UK
| | | | - Alicia G Gubieda
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jon Roffey
- Cancer Research Technology, Wolfson Institute for Biomedical Research, London WC1E 6BT, UK
| | | | - Daniel St Johnston
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
| | - Julie Ahringer
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
| | - Nathan W Goehring
- The Francis Crick Institute, London NW1 1AT, UK; Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
112
|
Ahrari S, Mogharrab N, Navapour L. Interconversion of inactive to active conformation of MARK2: Insights from molecular modeling and molecular dynamics simulation. Arch Biochem Biophys 2017; 630:66-80. [PMID: 28711359 DOI: 10.1016/j.abb.2017.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022]
Abstract
The Ser/Thr protein kinase MARK2, also known as Par1b, belongs to the highly-conserved family of PAR proteins which regulate cell polarity and partitioning through the animal kingdom. In the current study, inactive and active structures of human MARK2 were constructed by modeling and molecular dynamics simulation, based on available incomplete crystal structures in Protein Data Bank, to investigate local structural changes through which MARK2 switches from inactive to active state. None of the MARK2 wild type inactive crystal structures represent the position of activation segment. So, the contribution of this loop to the formation of inactive state is not clear. In the modeled structure of inactive MARK2, activation segment occludes the enzyme active site and assumes a relatively stable position. We also presented a detailed description of the major structural changes occur through the activation process and proposed a framework on how these deviations might be affected by the phosphorylation of Thr208 or existence of the UBA domain. Inspection of protein active state in the presence of Mg-ATP, demonstrated the precise arrangement of the various parts of enzyme around Mg-ATP and the importance of their stability in localization of the resulting complex. The results also confirmed the alleged mild auto-inhibitory role of the UBA domain and suggested a reason for the necessity of this role, based on structural similarities to other related kinases.
Collapse
Affiliation(s)
- Sajjad Ahrari
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Navid Mogharrab
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Leila Navapour
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
113
|
Hansen AH, Duellberg C, Mieck C, Loose M, Hippenmeyer S. Cell Polarity in Cerebral Cortex Development-Cellular Architecture Shaped by Biochemical Networks. Front Cell Neurosci 2017; 11:176. [PMID: 28701923 PMCID: PMC5487411 DOI: 10.3389/fncel.2017.00176] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/12/2017] [Indexed: 11/15/2022] Open
Abstract
The human cerebral cortex is the seat of our cognitive abilities and composed of an extraordinary number of neurons, organized in six distinct layers. The establishment of specific morphological and physiological features in individual neurons needs to be regulated with high precision. Impairments in the sequential developmental programs instructing corticogenesis lead to alterations in the cortical cytoarchitecture which is thought to represent the major underlying cause for several neurological disorders including neurodevelopmental and psychiatric diseases. In this review article we discuss the role of cell polarity at sequential stages during cortex development. We first provide an overview of morphological cell polarity features in cortical neural stem cells and newly-born postmitotic neurons. We then synthesize a conceptual molecular and biochemical framework how cell polarity is established at the cellular level through a break in symmetry in nascent cortical projection neurons. Lastly we provide a perspective how the molecular mechanisms applying to single cells could be probed and integrated in an in vivo and tissue-wide context.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology AustriaKlosterneuburg, Austria
| | | | - Christine Mieck
- Institute of Science and Technology AustriaKlosterneuburg, Austria
| | - Martin Loose
- Institute of Science and Technology AustriaKlosterneuburg, Austria
| | | |
Collapse
|
114
|
Small LE, Dawes AT. PAR proteins regulate maintenance-phase myosin dynamics during Caenorhabditis elegans zygote polarization. Mol Biol Cell 2017; 28:2220-2231. [PMID: 28615321 PMCID: PMC5531737 DOI: 10.1091/mbc.e16-04-0263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/30/2017] [Accepted: 06/06/2017] [Indexed: 11/11/2022] Open
Abstract
Establishment of anterior-posterior polarity in the Caenorhabditis elegans zygote requires two different processes: mechanical activity of the actin-myosin cortex and biochemical activity of partitioning-defective (PAR) proteins. Here we analyze how PARs regulate the behavior of the cortical motor protein nonmuscle myosin (NMY-2) to complement recent efforts that investigate how PARs regulate the Rho GTPase CDC-42, which in turn regulates the actin-myosin cortex. We find that PAR-3 and PAR-6 concentrate CDC-42-dependent NMY-2 in the anterior cortex, whereas PAR-2 inhibits CDC-42-dependent NMY-2 in the posterior domain by inhibiting PAR-3 and PAR-6. In addition, we find that PAR-1 and PAR-3 are necessary for inhibiting movement of NMY-2 across the cortex. PAR-1 protects NMY-2 from being moved across the cortex by forces likely originating in the cytoplasm. Meanwhile, PAR-3 stabilizes NMY-2 against PAR-2 and PAR-6 dynamics on the cortex. We find that PAR signaling fulfills two roles: localizing NMY-2 to the anterior cortex and preventing displacement of the polarized cortical actin-myosin network.
Collapse
Affiliation(s)
- Lawrence E Small
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Adriana T Dawes
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210 .,Department of Mathematics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
115
|
Affiliation(s)
- Sen Chai
- Management Department, ESSEC Business School, Cergy Pontoise CEDEX 95021, France
| |
Collapse
|
116
|
A Macro View of MicroRNAs: The Discovery of MicroRNAs and Their Role in Hematopoiesis and Hematologic Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:99-175. [PMID: 28838543 DOI: 10.1016/bs.ircmb.2017.03.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (MiRNAs) are a class of endogenously encoded ~22 nucleotide, noncoding, single-stranded RNAs that contribute to development, body planning, stem cell differentiation, and tissue identity through posttranscriptional regulation and degradation of transcripts. Given their importance, it is predictable that dysregulation of MiRNAs, which target a wide variety of transcripts, can result in malignant transformation. In this review, we explore the discovery of MiRNAs, their mechanism of action, and the tools that aid in their discovery and study. Strikingly, many of the studies that have expanded our understanding of the contributions of MiRNAs to normal physiology and in the development of diseases have come from studies in the hematopoietic system and hematologic malignancies, with some of the earliest identified functions for mammalian MiRNAs coming from observations made in leukemias. So, with a special focus on the hematologic system, we will discuss how MiRNAs contribute to differentiation of stem cells and how dysregulation of MiRNAs contributes to the development of malignancy, by providing examples of specific MiRNAs that function as oncogenes or tumor suppressors, as well as of defects in MiRNA processing. Finally, we will discuss the promise of MiRNA-based therapeutics and challenges for the future study of disease-causing MiRNAs.
Collapse
|
117
|
Adeola OA. Treatment of Influenza: Prospects of Post-Transcriptional Gene Silencing Through Synthetic siRNAs. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2017; 2:1-2. [DOI: 10.14218/erhm.2016.00013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
118
|
Braukmann F, Jordan D, Miska E. Artificial and natural RNA interactions between bacteria and C. elegans. RNA Biol 2017; 14:415-420. [PMID: 28332918 DOI: 10.1080/15476286.2017.1297912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nineteen years after Lisa Timmons and Andy Fire first described RNA transfer from bacteria to C. elegans in an experimental setting 48 the biologic role of this trans-kingdom RNA-based communication remains unknown. Here we summarize our current understanding on the mechanism and potential role of such social RNA.
Collapse
Affiliation(s)
- Fabian Braukmann
- a Gurdon Institute, University of Cambridge , Cambridge , UK.,b Department of Genetics , University of Cambridge , Cambridge , UK
| | - David Jordan
- a Gurdon Institute, University of Cambridge , Cambridge , UK.,b Department of Genetics , University of Cambridge , Cambridge , UK
| | - Eric Miska
- a Gurdon Institute, University of Cambridge , Cambridge , UK.,b Department of Genetics , University of Cambridge , Cambridge , UK.,c Wellcome Trust Sanger Institute , Wellcome Trust Genome Campus, Cambridge , UK
| |
Collapse
|
119
|
Polymers in the Delivery of siRNA for the Treatment of Virus Infections. Top Curr Chem (Cham) 2017; 375:38. [PMID: 28324594 PMCID: PMC7100576 DOI: 10.1007/s41061-017-0127-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 01/13/2023]
Abstract
Viral diseases remain a major cause of death worldwide. Despite advances in vaccine and antiviral drug technology, each year over three million people die from a range of viral infections. Predominant viruses include human immunodeficiency virus, hepatitis viruses, and gastrointestinal and respiratory viruses. Now more than ever, robust, easily mobilised and cost-effective antiviral strategies are needed to combat both known and emerging disease threats. RNA interference and small interfering (si)RNAs were initially hailed as a “magic bullet”, due to their ability to inhibit the synthesis of any protein via the degradation of its complementary messenger RNA sequence. Of particular interest was the potential for attenuating viral mRNAs contributing to the pathogenesis of disease that were not able to be targeted by vaccines or antiviral drugs. However, it was soon discovered that delivery of active siRNA molecules to the infection site in vivo was considerably more difficult than anticipated, due to a number of physiological barriers in the body. This spurred a new wave of investigation into nucleic acid delivery vehicles which could facilitate safe, targeted and effective administration of the siRNA as therapy. Amongst these, cationic polymer delivery vehicles have emerged as a promising candidate as they are low-cost and easy to produce at an industrial scale, and bind to the siRNA by non-specific electrostatic interactions. These nanoparticles (NPs) can be functionally designed to target the infection site, improve uptake in infected cells, release the siRNA inside the endosome and facilitate delivery into the cell cytoplasm. They may also have the added benefit of acting as adjuvants. This chapter provides a background around problems associated with the translation of siRNA as antiviral treatments, reviews the progress made in nucleic acid therapeutics and discusses current methods and progress in overcoming these challenges. It also addresses the importance of combining physicochemical characterisation of the NPs with in vitro and in vivo data.
Collapse
|
120
|
Yang S, Han X, Tohsato Y, Kyoda K, Onami S, Nishikawa I, Chen Y. Phenotype Analysis Method for Identification of Gene Functions Involved in Asymmetric Division of Caenorhabditis elegans. J Comput Biol 2017; 24:436-446. [PMID: 28177654 DOI: 10.1089/cmb.2016.0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In gene function analysis, it is arduous to identify gene function individually, and the way to screen out all involved genes according to a particular phenotype or disease usually shows us little information for a specific problem. We present a data-driven analysis system based on wild type (WT) embryos to study the concrete function of each gene associated with certain category of abnormal phenotypes. It can be applied to genes with very few RNAi embryos. Instead of presupposing the particular function of a gene, its function is confirmed by the statistical testing of built models. The scheme includes the following five: first, verify the to be detected genes and determine related recognized features according to the given category; second, compute the value of each feature based on WT embryos and merge them by principal component analysis (PCA); third, for each of the selected components of PCA, build a normal distribution and verify its normality; fourth, project the RNAi embryos to each component and probe them; and finally, analyze the more detailed functions of each gene based on the physical or biological meaning of each component. Choosing the first-round asymmetric division process of Caenorhabditis elegans as the phenotype, experimental results show that on the different aspects of the asymmetric division process, par-2, par-3, and let-754 are related to scalar differences; dcn-1 and mcm-5 are associated with the divergences of scalar variation, which may reflect the disaccord in development; and dcn-1, par-2, and par-3 are involved with morphological discrepancies.
Collapse
Affiliation(s)
- Sihai Yang
- 1 Graduate School of Information Science and Engineering, Ritsumeikan University , Kusatsu, Shiga, Japan .,2 College of Computer Science and Technology, Huaqiao University , Xiamen, Fujian, China
| | - Xianhua Han
- 1 Graduate School of Information Science and Engineering, Ritsumeikan University , Kusatsu, Shiga, Japan
| | - Yukako Tohsato
- 3 Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center , Kobe, Hyogo, Japan
| | - Koji Kyoda
- 3 Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center , Kobe, Hyogo, Japan
| | - Shuichi Onami
- 3 Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center , Kobe, Hyogo, Japan
| | - Ikuko Nishikawa
- 1 Graduate School of Information Science and Engineering, Ritsumeikan University , Kusatsu, Shiga, Japan
| | - Yenwei Chen
- 1 Graduate School of Information Science and Engineering, Ritsumeikan University , Kusatsu, Shiga, Japan
| |
Collapse
|
121
|
McRae R, Lapierre LA, Manning EH, Goldenring JR. Rab11-FIP1 phosphorylation by MARK2 regulates polarity in MDCK cells. CELLULAR LOGISTICS 2017; 7:e1271498. [PMID: 28396819 DOI: 10.1080/21592799.2016.1271498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
MARK2/Par1b/EMK1, a serine/threonine kinase, is required for correct apical/basolateral membrane polarization in epithelial cells. However, the specific substrates mediating MARK2 action are less well understood. We have now found that MARK2 phosphorylates Rab11-FIP1B/C at serine 234 in a consensus site similar to that previously identified in Rab11-FIP2. In MDCK cells undergoing repolarization after a calcium switch, antibodies specific for pS234-Rab11-FIP1 or pS227-Rab11-FIP2 demonstrate that the spatial and temporal activation of Rab11-FIP1 phosphorylation is distinct from that for Rab11-FIP2. Phosphorylation of Rab11-FIP1 persists through calcium switch and remains high after polarity has been reestablished whereas FIP2 phosphorylation is highest early in reestablishment of polarity but significantly reduced once polarity has been re-established. MARK2 colocalized with FIP1B/C/D and p(S234)-FIP1 in vivo. Overexpression of GFP-Rab11-FIP1C wildtype or non-phosphorylatable GFP-Rab11-FIP1C(S234A) induced two significant phenotypes following calcium switch. Overexpression of FIP1C wildtype and FIP1C(S234A) caused a psuedo-stratification of cells in early time points following calcium switch. At later time points most prominently observed in cells expressing FIP1C(S234A) a significant lateral lumen phenotype was observed, where F-actin-rich lateral lumens appeared demarcated by a ring of ZO1 and also containing ezrin, syntaxin 3 and podocalyxin. In contrast, p120 and E-Cadherin were excluded from the new apical surface at the lateral lumens and now localized to the new lateral surface oriented toward the media. GFP-FIP1C(S234A) localized to membranes deep to the lateral lumens, and immunostaining demonstrated the reorientation of the centrosome and the Golgi apparatus toward the lateral lumen. These results suggest that both Rab11-FIP1B/C and Rab11-FIP2 serve as critical substrates mediating aspects of MARK2 regulation of epithelial polarity.
Collapse
Affiliation(s)
- Rebecca McRae
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lynne A Lapierre
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA; Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Nashville VA Medical Center, Nashville, TN, USA
| | - Elizabeth H Manning
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA; Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Nashville VA Medical Center, Nashville, TN, USA
| | - James R Goldenring
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Nashville VA Medical Center, Nashville, TN, USA; Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
122
|
Bilgi V, Fosu-Nyarko J, Jones MGK. Using Vital Dyes to Trace Uptake of dsRNA by Green Peach Aphid Allows Effective Assessment of Target Gene Knockdown. Int J Mol Sci 2017; 18:E80. [PMID: 28054949 PMCID: PMC5297714 DOI: 10.3390/ijms18010080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/21/2016] [Accepted: 12/19/2016] [Indexed: 11/29/2022] Open
Abstract
RNA interference (RNAi) is an effective tool to study gene function. For in vitro studies of RNAi in insects, microinjection of double-stranded (ds)RNA may cause stress. Non-persuasive oral delivery of dsRNA to trigger RNAi is a better mode of delivery for delicate insects such as aphids because it mimics natural feeding. However, when insects feed ad libitum, some individuals may not feed. For accurate measurement of gene knockdown, analysis should only include insects that have ingested dsRNA. The suitability of eleven dyes was assessed to trace ingestion of dsRNA in an artificial feeding system for green peach aphids (GPA, Myzus persicae). Non-toxic levels of neutral red and acridine orange were suitable tracers: they were visible in the stylet and gut after feeding for 24 h, and may also attract aphids to feed. Nymphs stained with neutral red (0.02%) were analysed for target gene expression after feeding on sucrose with dsRNA (V-ATPase, vha-8). There was a greater reduction in vha-8 expression and reproduction compared to nymphs fed the diet without dye. The results confirm the importance of identifying aphids that have ingested dsRNA, and also provide evidence that the vha-8 gene is a potential target for control of GPAs.
Collapse
Affiliation(s)
- Vineeta Bilgi
- Plant Biotechnology Research Group, Western Australia State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA 6150, Australia.
| | - John Fosu-Nyarko
- Plant Biotechnology Research Group, Western Australia State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA 6150, Australia.
| | - Michael G K Jones
- Plant Biotechnology Research Group, Western Australia State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA 6150, Australia.
| |
Collapse
|
123
|
Zhang Z, Lim YW, Zhao P, Kanchanawong P, Motegi F. ImaEdge: a platform for the quantitative analysis of cortical proteins spatiotemporal dynamics during cell polarization. J Cell Sci 2017; 130:4200-4212. [DOI: 10.1242/jcs.206870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/01/2017] [Indexed: 11/20/2022] Open
Abstract
Cell polarity involves the compartmentalization of the cell cortex. The establishment of cortical compartments arises from the spatial bias in the activity and concentration of cortical proteins. The mechanistic dissection of cell polarity requires the accurate detection of dynamic changes in cortical proteins, but the fluctuations of cell shape and the inhomogeneous distributions of cortical proteins greatly complicate the quantitative extraction of their global and local changes during cell polarization. To address these problems, we introduce an open-source software package, ImaEdge, which automates the segmentation of the cortex from time-lapse movies, and enables quantitative extraction of cortical protein intensities. We demonstrate that ImaEdge enables efficient and rigorous analysis of the dynamic evolution of cortical PAR proteins during C. elegans embryogenesis. It is also capable of accurate tracking of varying levels of transgene expression and discontinuous signals of the actomyosin cytoskeleton during multiple rounds of cell division. ImaEdge provides a unique resource for the quantitative studies of cortical polarization, with the potential for application to many types of polarized cells.
Collapse
Affiliation(s)
- Zhen Zhang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Yen Wei Lim
- Temasek Life-sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore
| | - Peng Zhao
- Temasek Life-sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical engineering, National University of Singapore, Singapore
| | - Fumio Motegi
- Mechanobiology Institute, National University of Singapore, Singapore
- Temasek Life-sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
124
|
Bornert O, Peking P, Bremer J, Koller U, van den Akker PC, Aartsma-Rus A, Pasmooij AMG, Murauer EM, Nyström A. RNA-based therapies for genodermatoses. Exp Dermatol 2017; 26:3-10. [PMID: 27376675 PMCID: PMC5593095 DOI: 10.1111/exd.13141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 12/14/2022]
Abstract
Genetic disorders affecting the skin, genodermatoses, constitute a large and heterogeneous group of diseases, for which treatment is generally limited to management of symptoms. RNA-based therapies are emerging as a powerful tool to treat genodermatoses. In this review, we discuss in detail RNA splicing modulation by antisense oligonucleotides and RNA trans-splicing, transcript replacement and genome editing by in vitro-transcribed mRNAs, and gene knockdown by small interfering RNA and antisense oligonucleotides. We present the current state of these therapeutic approaches and critically discuss their opportunities, limitations and the challenges that remain to be solved. The aim of this review was to set the stage for the development of new and better therapies to improve the lives of patients and families affected by a genodermatosis.
Collapse
Affiliation(s)
- Olivier Bornert
- Department of Dermatology, Medical Center – University of
Freiburg, Freiburg, Germany
| | - Patricia Peking
- EB House Austria, Research Program for Molecular Therapy of
Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus
Medical University, Salzburg, Austria
| | - Jeroen Bremer
- Department of Dermatology, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of
Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus
Medical University, Salzburg, Austria
| | - Peter C. van den Akker
- Department of Dermatology, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center,
Leiden, The Netherlands
| | - Anna M. G. Pasmooij
- Department of Dermatology, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
| | - Eva M. Murauer
- EB House Austria, Research Program for Molecular Therapy of
Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus
Medical University, Salzburg, Austria
| | - Alexander Nyström
- Department of Dermatology, Medical Center – University of
Freiburg, Freiburg, Germany
| |
Collapse
|
125
|
Pacquelet A. Asymmetric Cell Division in the One-Cell C. elegans Embryo: Multiple Steps to Generate Cell Size Asymmetry. Results Probl Cell Differ 2017; 61:115-140. [PMID: 28409302 DOI: 10.1007/978-3-319-53150-2_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first division of the one-cell C. elegans embryo has been a fundamental model in deciphering the mechanisms underlying asymmetric cell division. Polarization of the one-cell zygote is induced by a signal from the sperm centrosome and results in the asymmetric distribution of PAR proteins. Multiple mechanisms then maintain PAR polarity until the end of the first division. Once asymmetrically localized, PAR proteins control several essential aspects of asymmetric division, including the position of the mitotic spindle along the polarity axis. Coordination of the spindle and cytokinetic furrow positions is the next essential step to ensure proper asymmetric division. In this chapter, I review the different mechanisms underlying these successive steps of asymmetric division. Work from the last 30 years has revealed the existence of multiple and redundant regulatory pathways which ensure division robustness. Besides the essential role of PAR proteins, this work also emphasizes the importance of both microtubules and actomyosin throughout the different steps of asymmetric division.
Collapse
Affiliation(s)
- Anne Pacquelet
- CNRS, UMR6290, Rennes, France. .,Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes, France. .,CNRS UMR6290-IGDR, 2 avenue du Professeur Léon Bernard, 35043, Rennes Cedex, France.
| |
Collapse
|
126
|
Mathupala SP, Guthikonda M, Sloan AE. RNAi Based Approaches to the Treatment of Malignant Glioma. Technol Cancer Res Treat 2016; 5:261-9. [PMID: 16700622 DOI: 10.1177/153303460600500313] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
RNA interference (RNAi) is a recently discovered, powerful molecular mechanism that can be harnessed to engineer gene-specific silencing in mammalian tissues. A mechanism, where short double-stranded RNA (dsRNA) molecules, when introduced into cells elicit specific “knock-down” of gene expression via degradation of targeted messenger RNA, has lately become the technique of choice for analysis of gene function in oncology research. Thus, RNAi is currently being extensively evaluated as a potential therapeutic strategy against malignant gliomas, since surgical, radiological, and chemotherapeutic interventions during the past few decades have done little to improve the poor prognosis rate for patients with these dreaded tumors. This review summarizes the pre-clinical studies that are currently underway to test the validity of RNAi as a potential therapeutic strategy against malignant gliomas, and discusses the potential technical Hurdles that remain to be overcome before the technique can become a promising clinical therapy to combat this frequently lethal disease.
Collapse
Affiliation(s)
- Saroj P Mathupala
- Department of Neurological Surgery, Karmanos Cancer Institute, Wayne State University School of Medicine, 808 HWCRC, 4100 John R. Road, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
127
|
Abstract
PAR-1/MARK kinases are conserved serine/threonine kinases that are essential regulators of cell polarity. PAR-1/MARK kinases localize and function in opposition to the anterior PAR proteins to control the asymmetric distribution of factors in a wide variety polarized cells. In this review, we discuss the mechanisms that control the localization and activity of PAR-1/MARK kinases, including their antagonistic interactions with the anterior PAR proteins. We focus on the role PAR-1 plays in the asymmetric division of the Caenorhabditis elegans zygote, in the establishment of the anterior/posterior axis in the Drosophila oocyte and in the control of microtubule dynamics in mammalian neurons. In addition to conserved aspects of PAR-1 biology, we highlight the unique ways in which PAR-1 acts in these distinct cell types to orchestrate their polarization. Finally, we review the connections between disruptions in PAR-1/MARK function and Alzheimer's disease and cancer.
Collapse
Affiliation(s)
- Youjun Wu
- Dartmouth College, Hanover, NH, United States
| | | |
Collapse
|
128
|
Molecular determinants of KA1 domain-mediated autoinhibition and phospholipid activation of MARK1 kinase. Biochem J 2016; 474:385-398. [PMID: 27879374 DOI: 10.1042/bcj20160792] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/11/2016] [Accepted: 11/22/2016] [Indexed: 11/17/2022]
Abstract
Protein kinases are frequently regulated by intramolecular autoinhibitory interactions between protein modules that are reversed when these modules bind other 'activating' protein or membrane-bound targets. One group of kinases, the MAP/microtubule affinity-regulating kinases (MARKs) contain a poorly understood regulatory module, the KA1 (kinase associated-1) domain, at their C-terminus. KA1 domains from MARK1 and several related kinases from yeast to humans have been shown to bind membranes containing anionic phospholipids, and peptide ligands have also been reported. Deleting or mutating the C-terminal KA1 domain has been reported to activate the kinase in which it is found - also suggesting an intramolecular autoinhibitory role. Here, we show that the KA1 domain of human MARK1 interacts with, and inhibits, the MARK1 kinase domain. Using site-directed mutagenesis, we identify residues in the KA1 domain required for this autoinhibitory activity, and find that residues involved in autoinhibition and in anionic phospholipid binding are the same. We also demonstrate that a 'mini' MARK1 becomes activated upon association with vesicles containing anionic phospholipids, but only if the protein is targeted to these vesicles by a second signal. These studies provide a mechanistic basis for understanding how MARK1 and its relatives may require more than one signal at the membrane surface to control their activation at the correct location and time. MARK family kinases have been implicated in a plethora of disease states including Alzheimer's, cancer, and autism, so advancing our understanding of their regulatory mechanisms may ultimately have therapeutic value.
Collapse
|
129
|
Walck-Shannon E, Lucas B, Chin-Sang I, Reiner D, Kumfer K, Cochran H, Bothfeld W, Hardin J. CDC-42 Orients Cell Migration during Epithelial Intercalation in the Caenorhabditis elegans Epidermis. PLoS Genet 2016; 12:e1006415. [PMID: 27861585 PMCID: PMC5127194 DOI: 10.1371/journal.pgen.1006415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/10/2016] [Indexed: 12/22/2022] Open
Abstract
Cell intercalation is a highly directed cell rearrangement that is essential for animal morphogenesis. As such, intercalation requires orchestration of cell polarity across the plane of the tissue. CDC-42 is a Rho family GTPase with key functions in cell polarity, yet its role during epithelial intercalation has not been established because its roles early in embryogenesis have historically made it difficult to study. To circumvent these early requirements, in this paper we use tissue-specific and conditional loss-of-function approaches to identify a role for CDC-42 during intercalation of the Caenorhabditis elegans dorsal embryonic epidermis. CDC-42 activity is enriched in the medial tips of intercalating cells, which extend as cells migrate past one another. Moreover, CDC-42 is involved in both the efficient formation and orientation of cell tips during cell rearrangement. Using conditional loss-of-function we also show that the PAR complex functions in tip formation and orientation. Additionally, we find that the sole C. elegans Eph receptor, VAB-1, functions during this process in an Ephrin-independent manner. Using epistasis analysis, we find that vab-1 lies in the same genetic pathway as cdc-42 and is responsible for polarizing CDC-42 activity to the medial tip. Together, these data establish a previously uncharacterized role for polarized CDC-42, in conjunction with PAR-6, PAR-3 and an Eph receptor, during epithelial intercalation. As embryos develop, tissues must change shape to establish an animal’s form. One key form-shaping movement, cell intercalation, often occurs when a tissue elongates in a preferred direction. How cells in epithelial sheets can intercalate while maintaining tissue integrity is not well understood. Here we use the dorsal epidermis in embryos of the nematode worm, C. elegans, to study cell intercalation. As cells begin to intercalate, they form highly polarized tips that lead their migration. While some mechanisms that polarize intercalating cells have been established in other systems, our work identifies a new role for CDC-42—a highly conserved, highly regulated protein that controls the actin cytoskeleton. We previously established that a related protein, Rac, is involved in tip extension during dorsal intercalation. CDC-42 also contributes to this process in addition to helping orient the extending tip. CDC-42 appears to work in conjunction with two other known cell polarity proteins, PAR-3 and PAR-6, and the cell surface receptor, VAB-1. Our work identifies a novel pathway involving proteins conserved from worms to humans that regulates a ubiquitous process during animal development.
Collapse
Affiliation(s)
- Elise Walck-Shannon
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bethany Lucas
- Program in Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - David Reiner
- Center for Translational Cancer Research, Institute of Biosciences and Technology and Department of Medical Physiology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Kraig Kumfer
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hunter Cochran
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - William Bothfeld
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeff Hardin
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
130
|
Abrieux A, Chiu JC. Oral delivery of dsRNA by microbes: Beyond pest control. Commun Integr Biol 2016; 9:e1236163. [PMID: 28042376 PMCID: PMC5193050 DOI: 10.1080/19420889.2016.1236163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) by oral delivery of dsRNA in insects has great potential as a tool for integrated pest management (IPM), especially with respect to addressing the need to reduce off-target effect and slow down resistance development to chemical insecticides. Employing the natural association existing between insect and yeast, we developed a novel method to enable the knock down of vital genes in the pest insect Drosophila suzukii through oral delivery of species-specific dsRNA using genetically modified Saccharomyces cerevisae. D. suzukii that were fed with our “yeast biopesticide” showed a significant decrease in fitness. In this perspective article, we postulate that this approach could be adapted to a large number of species, given the great diversity of symbiotic interactions involving microorganisms and host species. Furthermore, we speculate that beyond its application as biopesticide, dsRNA delivery by genetically modified microbes can also serve to facilitate reverse genetic applications, specifically in non-model organisms.
Collapse
Affiliation(s)
- Antoine Abrieux
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California , Davis, CA, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California , Davis, CA, USA
| |
Collapse
|
131
|
Coffman VC, McDermott MBA, Shtylla B, Dawes AT. Stronger net posterior cortical forces and asymmetric microtubule arrays produce simultaneous centration and rotation of the pronuclear complex in the early Caenorhabditis elegans embryo. Mol Biol Cell 2016; 27:3550-3562. [PMID: 27733624 PMCID: PMC5221587 DOI: 10.1091/mbc.e16-06-0430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023] Open
Abstract
Experimental and theoretical approaches are used to demonstrate the importance of asymmetries in microtubule arrays and cortical pulling forces mediated by dynein in positioning the pronuclear complex before nuclear envelope breakdown in the early Caenorhabditis elegans embryo. Positioning of microtubule-organizing centers (MTOCs) incorporates biochemical and mechanical cues for proper alignment of the mitotic spindle and cell division site. Current experimental and theoretical studies in the early Caenorhabditis elegans embryo assume remarkable changes in the origin and polarity of forces acting on the MTOCs. These changes must occur over a few minutes, between initial centration and rotation of the pronuclear complex and entry into mitosis, and the models do not replicate in vivo timing of centration and rotation. Here we propose a model that incorporates asymmetry in the microtubule arrays generated by each MTOC, which we demonstrate with in vivo measurements, and a similar asymmetric force profile to that required for posterior-directed spindle displacement during mitosis. We find that these asymmetries are capable of and important for recapitulating the simultaneous centration and rotation of the pronuclear complex observed in vivo. The combination of theoretical and experimental evidence provided here offers a unified framework for the spatial organization and forces needed for pronuclear centration, rotation, and spindle displacement in the early C. elegans embryo.
Collapse
Affiliation(s)
- Valerie C Coffman
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | | | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA 91711
| | - Adriana T Dawes
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210 .,Department of Mathematics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
132
|
Gervais EM, Sequeira SJ, Wang W, Abraham S, Kim JH, Leonard D, DeSantis KA, Larsen M. Par-1b is required for morphogenesis and differentiation of myoepithelial cells during salivary gland development. Organogenesis 2016; 12:194-216. [PMID: 27841695 PMCID: PMC5198941 DOI: 10.1080/15476278.2016.1252887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/24/2016] [Accepted: 10/21/2016] [Indexed: 01/14/2023] Open
Abstract
The salivary epithelium initiates as a solid mass of epithelial cells that are organized into a primary bud that undergoes morphogenesis and differentiation to yield bilayered acini consisting of interior secretory acinar cells that are surrounded by contractile myoepithelial cells in mature salivary glands. How the primary bud transitions into acini has not been previously documented. We document here that the outer epithelial cells subsequently undergo a vertical compression as they express smooth muscle α-actin and differentiate into myoepithelial cells. The outermost layer of polarized epithelial cells assemble and organize the basal deposition of basement membrane, which requires basal positioning of the polarity protein, Par-1b. Whether Par-1b is required for the vertical compression and differentiation of the myoepithelial cells is unknown. Following manipulation of Par-1b in salivary gland organ explants, Par-1b-inhibited explants showed both a reduced vertical compression of differentiating myoepithelial cells and reduced levels of smooth muscle α-actin. Rac1 knockdown and inhibition of Rac GTPase function also inhibited branching morphogenesis. Since Rac regulates cellular morphology, we investigated a contribution for Rac in myoepithelial cell differentiation. Inhibition of Rac GTPase activity showed a similar reduction in vertical compression and smooth muscle α-actin levels while decreasing the levels of Par-1b protein and altering its basal localization in the outer cells. Inhibition of ROCK, which is required for basal positioning of Par-1b, resulted in mislocalization of Par-1b and loss of vertical cellular compression, but did not significantly alter levels of smooth muscle α-actin in these cells. Overexpression of Par-1b in the presence of Rac inhibition restored basement membrane protein levels and localization. Our results indicate that the basal localization of Par-1b in the outer epithelial cells is required for myoepithelial cell compression, and Par-1b is required for myoepithelial differentiation, regardless of its localization.
Collapse
Affiliation(s)
- Elise M. Gervais
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
- Graduate Program in Molecular, Cellular, Developmental, and Neural Biology, University at Albany, State University of New York, Albany, NY, USA
| | - Sharon J. Sequeira
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Weihao Wang
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Stanley Abraham
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Janice H. Kim
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Daniel Leonard
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Kara A. DeSantis
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
- Graduate Program in Molecular, Cellular, Developmental, and Neural Biology, University at Albany, State University of New York, Albany, NY, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
133
|
Duan M, Xiong J, Lu D, Wang G, Ai H. Transcriptome Sequencing Analysis and Functional Identification of Sex Differentiation Genes from the Mosquito Parasitic Nematode, Romanomermis wuchangensis. PLoS One 2016; 11:e0163127. [PMID: 27662191 PMCID: PMC5035087 DOI: 10.1371/journal.pone.0163127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 09/03/2016] [Indexed: 11/25/2022] Open
Abstract
Mosquito-transmitted diseases like malaria and dengue fever are global problem and an estimated 50–100 million of dengue or dengue hemorrhagic fever cases are reported worldwide every year. The mermithid nematode Romanomermis wuchangensis has been successfully used as an ecosystem-friendly biocontrol agent for mosquito prevention in laboratory studies. However, this nematode can not undergo sex differentiation in vitro culture, which has seriously affected their application of biocontrol in the field. In this study, based on transcriptome sequencing analysis of R. wuchangensis, Rwucmab-3, Rwuclaf-1 and Rwuctra-2 were cloned and used to investigate molecular regulatory function of sex differentiation. qRT-PCR results demonstrated that the expression level of Rwucmab-3 between male and female displayed obvious difference on the 3rd day of parasitic stage, which was earlier than Rwuclaf-1 and Rwuctra-2, highlighting sex differentiation process may start on the 3rd day of parasitic stage. Besides, FITC was used as a marker to test dsRNA uptake efficiency of R. wuchangensis, which fluorescence intensity increased with FITC concentration after 16 h incubation, indicating this nematode can successfully ingest soaking solution via its cuticle. RNAi results revealed the sex ratio of R. wuchangensis from RNAi treated groups soaked in dsRNA of Rwucmab-3 was significantly higher than gfp dsRNA treated groups and control groups, highlighting RNAi of Rwumab-3 may hinder the development of male nematodes. These results suggest that Rwucmab-3 mainly involves in the initiation of sex differentiation and the development of male sexual dimorphism. Rwuclaf-1 and Rwuctra-2 may play vital role in nematode reproductive and developmental system. In conclusion, transcript sequences presented in this study could provide more bioinformatics resources for future studies on gene cloning and other molecular regulatory mechanism in R. wuchangensis. Moreover, identification and functional analysis of sex differentiation genes may clarify the sex differentiation mechanism of R. wuchangensis, which are helpful to solve the uncompleted sex differentiation problem in vitro culture and the potential large-scale field application controlling the larvae of C. quinquefasciatus, A. aegypti and A. albopictus.
Collapse
Affiliation(s)
- Mingyue Duan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jinfeng Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Dandan Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Guoxiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- * E-mail: (HA); (GW)
| | - Hui Ai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- * E-mail: (HA); (GW)
| |
Collapse
|
134
|
Lee ZY, Prouteau M, Gotta M, Barral Y. Compartmentalization of the endoplasmic reticulum in the early C. elegans embryos. J Cell Biol 2016; 214:665-76. [PMID: 27597753 PMCID: PMC5021094 DOI: 10.1083/jcb.201601047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
Abstract
Lee et al. show that the ER in the C. elegans embryo is continuous, but its membrane is compartmentalized, as found in budding yeast and mouse NSCs. This compartmentalization plays a potential role in the polarity of the early embryo. The one-cell Caenorhabditis elegans embryo is polarized to partition fate determinants between the cell lineages generated during its first division. Using fluorescence loss in photobleaching, we find that the endoplasmic reticulum (ER) of the C. elegans embryo is physically continuous throughout the cell, but its membrane is compartmentalized shortly before nuclear envelope breakdown into an anterior and a posterior domain, indicating that a diffusion barrier forms in the ER membrane between these two domains. Using mutants with disorganized ER, we show that ER compartmentalization is independent of the morphological transition that the ER undergoes in mitosis. In contrast, compartmentalization takes place at the position of the future cleavage plane in a par-3–dependent manner. Together, our data indicate that the ER membrane is compartmentalized in cells as diverse as budding yeast, mouse neural stem cells, and the early C. elegans embryo.
Collapse
Affiliation(s)
- Zuo Yen Lee
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology Zürich, CH-8093 Zürich, Switzerland
| | - Manoël Prouteau
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Yves Barral
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
135
|
The entangled history of animal and plant microRNAs. Funct Integr Genomics 2016; 17:127-134. [PMID: 27549410 DOI: 10.1007/s10142-016-0513-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs (sRNAs) that regulate gene expression in development and adaptive responses to the environment. The early days in the sRNA field was one of the most exciting and promising moments in modern biology, attracting large investments to the understanding of the underlining mechanisms and their applications, such as in gene therapy. miRNAs and other sRNAs have since been extensively studied in animals and plants, and are currently well established as an important part of most gene regulatory processes in animals and as master regulators in plants. Here, this review presents the critical discoveries and early misconceptions that shaped our current understanding of RNA silencing by miRNAs in most eukaryotes, with a focus on plant miRNAs. The presentation and language used are simple to facilitate a clear comprehension by researchers and students from various backgrounds. Hence, this is a valuable teaching tool and should also draw attention to the discovery processes themselves, such that scientists from various fields can gain insights from the successful and rapidly evolving miRNA field.
Collapse
|
136
|
Wang K, Li Y, Huang X, Wang DW, Xu CL, Xie H. The cathepsin S cysteine proteinase of the burrowing nematode Radopholus similis is essential for the reproduction and invasion. Cell Biosci 2016; 6:39. [PMID: 27293544 PMCID: PMC4901441 DOI: 10.1186/s13578-016-0107-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nematode Radopholus similis is an important migratory endoparasite of plants. Cysteine proteinases such as cathepsin S (CPS) play key roles during embryonic development, invasion, and pathogenesis in nematodes and many other animal parasites. This study was designed to investigate the molecular characterization and functions of a cathepsin S protease in R. similis and to find new targets for its control. RESULTS Rs-CPS of R. similis, Hg-CPS of Heterodera glycines and Ha-CPS of H. avenae are closely genetically related and share the same branch of the phylogenetic tree. Rs-cps is a multi-copy gene that is expressed in the esophageal glands, ovaries, testes, vas deferens, and eggs of R. similis. Rs-cps mRNA transcripts are expressed at varying levels during all developmental stages of R. similis. Rs-cps expression was highest in females. The neurostimulant octopamine did not significantly enhance the ingestion of the dsRNA soaking solution by R. similis but instead had a detrimental effect on nematode activity. The dsRNA soaking solution diffused into the body of R. similis not only through the esophageal lumen but also through the amphids, excretory duct, vagina, anus and cloacal orifice. We confirmed that RNAi significantly suppressed the expression level of Rs-cps and reproductive capability and pathogenicity of R. similis. CONCLUSIONS Our results demonstrate that Rs-cps plays important roles in the reproduction, parasitism and pathogenesis of R. similis and could be used as a new potential target for controlling plant parasitic nematodes.
Collapse
Affiliation(s)
- Ke Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Yu Li
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China.,Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xin Huang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Dong-Wei Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Chun-Ling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
137
|
Phosphorylation of FEZ1 by Microtubule Affinity Regulating Kinases regulates its function in presynaptic protein trafficking. Sci Rep 2016; 6:26965. [PMID: 27247180 PMCID: PMC4887895 DOI: 10.1038/srep26965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/11/2016] [Indexed: 12/28/2022] Open
Abstract
Adapters bind motor proteins to cargoes and therefore play essential roles in Kinesin-1 mediated intracellular transport. The regulatory mechanisms governing adapter functions and the spectrum of cargoes recognized by individual adapters remain poorly defined. Here, we show that cargoes transported by the Kinesin-1 adapter FEZ1 are enriched for presynaptic components and identify that specific phosphorylation of FEZ1 at its serine 58 regulatory site is mediated by microtubule affinity-regulating kinases (MARK/PAR-1). Loss of MARK/PAR-1 impairs axonal transport, with adapter and cargo abnormally co-aggregating in neuronal cell bodies and axons. Presynaptic specializations are markedly reduced and distorted in FEZ1 and MARK/PAR-1 mutants. Strikingly, abnormal co-aggregates of unphosphorylated FEZ1, Kinesin-1 and its putative cargoes are present in brains of transgenic mice modelling aspects of Alzheimer's disease, a neurodegenerative disorder exhibiting impaired axonal transport and altered MARK activity. Our findings suggest that perturbed FEZ1-mediated synaptic delivery of proteins arising from abnormal signalling potentially contributes to the process of neurodegeneration.
Collapse
|
138
|
Chang NC, Chevalier FP, Rudnicki MA. Satellite Cells in Muscular Dystrophy - Lost in Polarity. Trends Mol Med 2016; 22:479-496. [PMID: 27161598 PMCID: PMC4885782 DOI: 10.1016/j.molmed.2016.04.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022]
Abstract
Recent findings employing the mdx mouse model for Duchenne muscular dystrophy (DMD) have revealed that muscle satellite stem cells play a direct role in contributing to disease etiology and progression of DMD, the most common and severe form of muscular dystrophy. Lack of dystrophin expression in DMD has critical consequences in satellite cells including an inability to establish cell polarity, abrogation of asymmetric satellite stem-cell divisions, and failure to enter the myogenic program. Thus, muscle wasting in dystrophic mice is not only caused by myofiber fragility but is exacerbated by intrinsic satellite cell dysfunction leading to impaired regeneration. Despite intense research and clinical efforts, there is still no effective cure for DMD. In this review we highlight recent research advances in DMD and discuss the current state of treatment and, importantly, how we can incorporate satellite cell-targeted therapeutic strategies to correct satellite cell dysfunction in DMD.
Collapse
Affiliation(s)
- Natasha C Chang
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Fabien P Chevalier
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
139
|
Akchurin O, Du Z, Ramkellawan N, Dalal V, Han SH, Pullman J, Müsch A, Susztak K, Reidy KJ. Partitioning-Defective 1a/b Depletion Impairs Glomerular and Proximal Tubule Development. J Am Soc Nephrol 2016; 27:3725-3737. [PMID: 27185860 DOI: 10.1681/asn.2014111124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/30/2016] [Indexed: 12/21/2022] Open
Abstract
The kidney is a highly polarized epithelial organ that develops from undifferentiated mesenchyme, although the mechanisms that regulate the development of renal epithelial polarity are incompletely understood. Partitioning-defective 1 (Par1) proteins have been implicated in cell polarity and epithelial morphogenesis; however, the role of these proteins in the developing kidney has not been established. Therefore, we studied the contribution of Par1a/b to renal epithelial development. We examined the renal phenotype of newborn compound mutant mice carrying only one allele of Par1a or Par1b. Loss of three out of four Par1a/b alleles resulted in severe renal hypoplasia, associated with impaired ureteric bud branching. Compared with kidneys of newborn control littermates, kidneys of newborn mutant mice exhibited dilated proximal tubules and immature glomeruli, and the renal proximal tubular epithelia lacked proper localization of adhesion complexes. Furthermore, Par1a/b mutants expressed low levels of renal Notch ligand Jag1, activated Notch2, and Notch effecter Hes1. Together, these data demonstrate that Par1a/b has a key role in glomerular and proximal tubule development, likely via modulation of Notch signaling.
Collapse
Affiliation(s)
- Oleh Akchurin
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Zhongfang Du
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Nadira Ramkellawan
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Vidhi Dalal
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Seung Hyeok Han
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James Pullman
- Department of Pathology, Montefiore Medical Center, Bronx, New York; and
| | - Anne Müsch
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kimberly J Reidy
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York; .,Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
140
|
Abstract
The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT) dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans the dual leucine zipper kinase (DLK) promotes axon regeneration, whereas the exchange factor for Arf6 (EFA-6) inhibits axon regeneration. Both DLK and EFA-6 respond to injury and control axon regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are related is a topic of active investigation, as is the mechanism by which EFA-6 responds to axonal injury. We evaluate potential candidates, such as the MT affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT dynamics in regeneration.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrew D Chisholm
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
141
|
Zacharias AL, Murray JI. Combinatorial decoding of the invariant C. elegans embryonic lineage in space and time. Genesis 2016; 54:182-97. [PMID: 26915329 PMCID: PMC4840027 DOI: 10.1002/dvg.22928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/19/2022]
Abstract
Understanding how a single cell, the zygote, can divide and differentiate to produce the diverse animal cell types is a central goal of developmental biology research. The model organism Caenorhabditis elegans provides a system that enables a truly comprehensive understanding of this process across all cells. Its invariant cell lineage makes it possible to identify all of the cells in each individual and compare them across organisms. Recently developed methods automate the process of cell identification, allowing high-throughput gene expression characterization and phenotyping at single cell resolution. In this Review, we summarize the sequences of events that pattern the lineage including establishment of founder cell identity, the signaling pathways that diversify embryonic fate, and the regulators involved in patterning within these founder lineages before cells adopt their terminal fates. We focus on insights that have emerged from automated approaches to lineage tracking, including insights into mechanisms of robustness, context-specific regulation of gene expression, and temporal coordination of differentiation. We suggest a model by which lineage history produces a combinatorial code of transcription factors that act, often redundantly, to ensure terminal fate.
Collapse
Affiliation(s)
- Amanda L. Zacharias
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| |
Collapse
|
142
|
Fakhr E, Zare F, Teimoori-Toolabi L. Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther 2016; 23:73-82. [DOI: 10.1038/cgt.2016.4] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
|
143
|
The Unaimed Arrow Never Misses. Curr Top Dev Biol 2016. [PMID: 26970640 DOI: 10.1016/bs.ctdb.2015.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In this assay, Raphael Kopan argues that focused emphasis on disease and translation stifles innovation, and outline the reasons why, in my opinion, developmental biologists are more likely to produce new and important discoveries than their more "focused" colleagues.
Collapse
|
144
|
Wu JC, Espiritu EB, Rose LS. The 14-3-3 protein PAR-5 regulates the asymmetric localization of the LET-99 spindle positioning protein. Dev Biol 2016; 412:288-297. [PMID: 26921457 DOI: 10.1016/j.ydbio.2016.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 01/03/2023]
Abstract
PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in Caenorhabditis elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization.
Collapse
Affiliation(s)
- Jui-Ching Wu
- Department of Molecular and Cellular Biology, University of California, Davis, USA
| | - Eugenel B Espiritu
- Department of Molecular and Cellular Biology, University of California, Davis, USA
| | - Lesilee S Rose
- Department of Molecular and Cellular Biology, University of California, Davis, USA
| |
Collapse
|
145
|
Di Giorgio E, Brancolini C. Regulation of class IIa HDAC activities: it is not only matter of subcellular localization. Epigenomics 2016; 8:251-69. [DOI: 10.2217/epi.15.106] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In response to environmental cues, enzymes that influence the functions of proteins, through reversible post-translational modifications supervise the coordination of cell behavior like orchestral conductors. Class IIa histone deacetylases (HDACs) belong to this category. Even though in vertebrates these deacetylases have discarded the core enzymatic activity, class IIa HDACs can assemble into multiprotein complexes devoted to transcriptional reprogramming, including but not limited to epigenetic changes. Class IIa HDACs are subjected to variegated and interconnected layers of regulation, which reflect the wide range of biological responses under the scrutiny of this gene family. Here, we discuss about the key mechanisms that fine tune class IIa HDACs activities.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medical & Biological Sciences, Università degli Studi di Udine., P.le Kolbe 4 - 33100 Udine, Italy
| | - Claudio Brancolini
- Department of Medical & Biological Sciences, Università degli Studi di Udine., P.le Kolbe 4 - 33100 Udine, Italy
| |
Collapse
|
146
|
Dynamic Opposition of Clustered Proteins Stabilizes Cortical Polarity in the C. elegans Zygote. Dev Cell 2016; 35:131-42. [PMID: 26460948 DOI: 10.1016/j.devcel.2015.09.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/05/2015] [Accepted: 09/10/2015] [Indexed: 12/13/2022]
Abstract
Dynamic maintenance of cell polarity is essential for development and physiology. Here we combine experiments and modeling to elucidate mechanisms that maintain cortical polarity in the C. elegans zygote. We show that polarity is dynamically stabilized by two coupled cross-inhibitory feedback loops: one involves the oligomeric scaffold PAR-3 and the kinase PAR-1, and the other involves CDC-42 and its putative GAP CHIN-1. PAR-3 and CDC-42 are both required locally to recruit PAR-6/PKC-3, which inhibits PAR-1 (shown previously) and inhibits local growth/accumulation of CHIN-1 clusters. Conversely, PAR-1 inhibits local accumulation of PAR-3 oligomers, while CHIN-1 inhibits CDC-42 (shown previously), such that either PAR-1 or CHIN-1 can prevent recruitment of PAR-6/PKC-3, but loss of both causes complete loss of polarity. Ultrasensitive dependence of CHIN-1 cluster growth on PAR-6/PKC-3 endows this core circuit with bistable dynamics, while transport of CHIN-1 clusters by cortical flow can stabilize the AP boundary against diffusive spread of PAR-6/PKC-3.
Collapse
|
147
|
Influence of Bxpel1 Gene Silencing by dsRNA Interference on the Development and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus. Int J Mol Sci 2016; 17:ijms17010125. [PMID: 26797602 PMCID: PMC4730366 DOI: 10.3390/ijms17010125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/29/2022] Open
Abstract
As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. The pectate lyase gene is essential for successful invasion of their host plants by plant-parasitic nematodes. To demonstrate the role of pectate lyase gene in the PWD process, RNA interference (RNAi) is used to analyze the function of the pectate lyase 1 gene in B. xylophilus (Bxpel1). The efficiency of RNAi was detected by real-time PCR. The result demonstrated that the quantity of B. xylophilus propagated with control solution treatment was 62 times greater than that soaking in double-stranded RNA (dsRNA) after B. xylophilus inoculation in Botrytiscinerea for the first generation (F1). The number of B. xylophilus soaking in control solution was doubled compared to that soaking in Bxpel1 dsRNA four days after inoculation in Pinusthunbergii. The quantity of B. xylophilus was reduced significantly (p < 0.001) after treatment with dsRNAi compared with that using a control solution treatment. Bxpel1 dsRNAi reduced the migration speed and reproduction of B. xylophilus in pine trees. The pathogenicity to P. thunbergii seedling of B. xylophilus was weaker after soaking in dsRNA solution compared with that after soaking in the control solution. Our results suggest that Bxpel1 gene is a significant pathogenic factor in the PWD process and this basic information may facilitate a better understanding of the molecular mechanism of PWD.
Collapse
|
148
|
Good ME, Begandt D, DeLalio LJ, Johnstone SR, Isakson BE. Small Interfering RNA-Mediated Connexin Gene Knockdown in Vascular Endothelial and Smooth Muscle Cells. Methods Mol Biol 2016; 1437:71-82. [PMID: 27207287 DOI: 10.1007/978-1-4939-3664-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Global knockout of vascular connexins can result in premature/neonatal death, severe developmental complications, or compensatory up-regulation of different connexin isoforms. Thus, specific connexin gene knockdown using RNAi-mediated technologies is a technique that allows investigators to efficiently monitor silencing effects of single or multiple connexin gene products. The present chapter describes the transient knockdown of connexins in vitro and ex vivo for cells of the blood vessel wall. In detail, different transfection methods for primary endothelial cells and ex vivo thoracodorsal arteries are described. Essential controls for validating transfection efficiency as well as targeted gene knockdown are explained. These protocols provide researchers with the ability to modify connexin gene expression levels in a multitude of experimental setups.
Collapse
Affiliation(s)
- Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Daniela Begandt
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Leon J DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Scott R Johnstone
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
149
|
Ajduk A, Zernicka-Goetz M. Polarity and cell division orientation in the cleavage embryo: from worm to human. Mol Hum Reprod 2015; 22:691-703. [PMID: 26660321 PMCID: PMC5062000 DOI: 10.1093/molehr/gav068] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
Cleavage is a period after fertilization, when a 1-cell embryo starts developing into a multicellular organism. Due to a series of mitotic divisions, the large volume of a fertilized egg is divided into numerous smaller, nucleated cells—blastomeres. Embryos of different phyla divide according to different patterns, but molecular mechanism of these early divisions remains surprisingly conserved. In the present paper, we describe how polarity cues, cytoskeleton and cell-to-cell communication interact with each other to regulate orientation of the early embryonic division planes in model animals such as Caenorhabditis elegans, Drosophila and mouse. We focus particularly on the Par pathway and the actin-driven cytoplasmic flows that accompany it. We also describe a unique interplay between Par proteins and the Hippo pathway in cleavage mammalian embryos. Moreover, we discuss the potential meaning of polarity, cytoplasmic dynamics and cell-to-cell communication as quality biomarkers of human embryos.
Collapse
Affiliation(s)
- Anna Ajduk
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
150
|
Moorhouse KS, Gudejko HF, McDougall A, Burgess DR. Influence of cell polarity on early development of the sea urchin embryo. Dev Dyn 2015; 244:1469-84. [PMID: 26293695 PMCID: PMC4715636 DOI: 10.1002/dvdy.24337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Establishment and maintenance of cell polarity is critical for normal embryonic development. Previously, it was thought that the echinoderm embryo remained relatively unpolarized until the first asymmetric division at the 16-cell stage. Here, we analyzed roles of the cell polarity regulators, the PAR complex proteins, and how their disruption in early development affects later developmental milestones. RESULTS We found that PAR6, aPKC, and CDC42 localize to the apical cortex as early as the 2-cell stage and that this localization is retained through the gastrula stage. Of interest, PAR1 also colocalizes with these apical markers through the gastrula stage. Additionally, PAR1 was found to be in complex with aPKC, but not PAR6. PAR6, aPKC, and CDC42 are anchored in the cortical actin cytoskeleton by assembled myosin. Furthermore, assembled myosin was found to be necessary to maintain proper PAR6 localization through subsequent cleavage divisions. Interference with myosin assembly prevented the embryos from reaching the blastula stage, while transient disruptions of either actin or microtubules did not have this effect. CONCLUSIONS These observations suggest that disruptions of the polarity in the early embryo can have a significant impact on the ability of the embryo to reach later critical stages in development.
Collapse
Affiliation(s)
- Kathleen S. Moorhouse
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
- Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Heather F.M. Gudejko
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
- Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Alex McDougall
- UMR 7009, UPMC Sorbonne Universités, Centre National de la Recherche (CNRS), Observatoire Océanologique, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - David R. Burgess
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
- Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|