101
|
Huysmans G, Ranquin A, Wyns L, Steyaert J, Van Gelder P. Encapsulation of therapeutic nucleoside hydrolase in functionalised nanocapsules. J Control Release 2005; 102:171-9. [PMID: 15653143 DOI: 10.1016/j.jconrel.2004.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 10/01/2004] [Indexed: 11/26/2022]
Abstract
Liposomes are introduced as encapsulating carrier for prodrug activating enzymes. Inosineã-adenosineã-guanosine preferring nucleoside hydrolase of Trypanosoma vivax, a potential prodrug activating enzyme, was encapsulated in porin functionalized dioleyl-phosphatidylglycerol/egg-phosphatidylglycerol (DOPC/EPG) liposomes. Reactors had radiuses in the nanometer scale. First, transport of nucleosides through general diffusion porins OmpF and PhoE was measured in swelling assays, after which fully functional nanoreactors were developed. Enzyme catalysis of p-nitrophenylriboside, a substrate analogue for nucleoside hydrolases, was significantly higher in permeabilized vesicles than in control vesicles without porins. Residual activity of control vesicles possibly resides in an interaction between the enzyme and the liposomes. This interaction was not of electrostatic nature, since it remained unaffected after the addition of high salt or after perturbation of liposome surface charge and charge density. With these vesicles, we have introduced a new strategy for prodrug therapy, combining the benefits of ADEPT and liposome targeting strategies.
Collapse
Affiliation(s)
- Gerard Huysmans
- Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology (VIB) and Free University Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | |
Collapse
|
102
|
Farajnia S, Alimohammadian MH, Reiner NE, Karimi M, Ajdari S, Mahboudi F. Molecular characterization of a novel amastigote stage specific Class I nuclease from Leishmania major. Int J Parasitol 2004; 34:899-908. [PMID: 15217728 DOI: 10.1016/j.ijpara.2004.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 03/01/2004] [Accepted: 03/05/2004] [Indexed: 11/23/2022]
Abstract
Leishmania parasites like other kinetoplastids are unable to synthesize purines de novo and so are reliant on a salvage pathway for recycling ribonucleotides. A stage specific class one nuclease enzyme, 3'-Nucleotidase/nuclease, has been implicated in salvage of preformed purines in Leishmania insect stage promastigote via hydrolysis of 3'-nucleotides and nucleic acids. Although a similar activity is known to exist in amastigotes which reside in infected mammalian cells, the homologous gene and the corresponding protein responsible for carrying out this function have not been well characterized. Using primers specific for conserved regions of trypanosomatid class one nucleases, a gene encoding a novel class one nuclease from amastigotes of Leishmania major (LmaC1N) was cloned and sequenced. The coding sequence consists of 951 bp encoding a 316 amino acid protein with a predicted molecular mass of 35,300 Da. Analysis of the deduced amino acid sequence showed that LmaC1N is highly homologous to other class I nucleases and contains all five conserved regions reported for promastigotes 3'-Nucleotidase/nuclease. Analysis by reverse transcriptase polymerase chain reaction and Western blotting demonstrated that expression of LmaC1N gene is regulated in a stage-specific manner. Whereas the gene appeared to be silenced in promastigotes, high level expression in amastigotes implied an important function in support of parasite survival and multiplication in the mammalian cells.
Collapse
Affiliation(s)
- S Farajnia
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | | | | | | | | | | |
Collapse
|
103
|
Giabbai B, Degano M. Crystal Structure to 1.7 Å of the Escherichia coli Pyrimidine Nucleoside Hydrolase YeiK, a Novel Candidate for Cancer Gene Therapy. Structure 2004; 12:739-49. [PMID: 15130467 DOI: 10.1016/j.str.2004.03.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 02/18/2004] [Accepted: 03/10/2004] [Indexed: 11/18/2022]
Abstract
Enzymes with nucleoside hydrolase (NH) activity are crucial for salvaging nucleic acid components in purine auxotrophic protozoan parasites, but are also present in prokaryotes and higher eukaryotes. Here we analyze the distribution of genes encoding for putative NH proteins and characterize the yeiK gene product from Escherichia coli as a pyrimidine-specific NH. The crystal structure of YeiK to 1.7 A defines the structural basis for its substrate specificity and identifies residues involved in the catalytic mechanism that differ from both nonspecific and purine-specific NHs. Large differences in the tetrameric quaternary structure compared to nonspecific protozoan NHs are brought forth by minor differences in the interacting surfaces. The first structural and functional characterization of a nonparasitic, pyrimidine nucleoside-specific NH suggests a possible role for these enzymes in the metabolism of tRNA nucleosides. The high catalytic efficiency of YeiK toward 5-fluorouridine could be exploited for suicide gene therapy in cancer treatment.
Collapse
Affiliation(s)
- Barbara Giabbai
- Biocrystallography Unit, DIBIT, San Raffaele Scientific Institute, via Olgettina 58, I-20132 Milan, Italy
| | | |
Collapse
|
104
|
Evans GB. The Synthesis of N-Ribosyl Transferase Inhibitors Based on a Transition State Blueprint. Aust J Chem 2004. [DOI: 10.1071/ch04112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A quarter of a century ago transition state analysis and transition state analogue design promised the prospect of extraordinarily potent enzyme inhibitors. The present overview describes the transition state analysis of a variety of N-ribosyl transferases, the design and synthesis of extremely powerful transition state analogue inhibitors of these nucleoside processing enzymes, and their current therapeutic uses and potentials.
Collapse
|
105
|
Abstract
Nucleoside hydrolases cleave the N-glycosidic bond of ribonucleosides. Because of their vital role in the protozoan purine salvage pathway, nucleoside hydrolases from parasitic protozoa in particular have been studied extensively by X-ray crystallography, kinetic methods and site-directed mutagenesis. An elaborate network of conserved interactions between the metalloenzyme and the ribose enables steric and electrostatic stabilisation of the oxocarbenium-ion-like transition state. Activation of the leaving group by protonation before the formation of the transition state is a recurring catalytic strategy of enzymes that cleave N-glycosidic bonds. However, the mechanisms underlying leaving group activation are still the subject of debate for the nucleoside hydrolases.
Collapse
Affiliation(s)
- Wim Versées
- Department of Ultrastructure, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| | | |
Collapse
|
106
|
Abstract
Parasites are responsible for a wide variety of infectious diseases in human as well as in domestic and wild animals, causing an enormous health and economical blight. Current containment strategies are not entirely successful and parasitic infections are on the rise. In the absence of availability of antiparasitic vaccines, chemotherapy remains the mainstay for the treatment of most parasitic diseases. However, there is an urgent need for new drugs to prevent or combat some major parasitic infections because of lack of a single effective approach for controlling the parasites (e.g., trypanosomiasis) or because some serious parasitic infections developed resistance to presently available drugs (e.g., malaria). The rational design of a drug is usually based on biochemical and physiological differences between pathogens and host. Some of the most striking differences between parasites and their mammalian host are found in purine metabolism. Purine nucleotides can be synthesized by the de novo and/or the so-called "salvage" pathways. Unlike their mammalian host, most parasites studied lack the pathways for de novo purine biosynthesis and rely on the salvage pathways to meet their purine demands. Moreover, because of the great phylogenic separation between the host and the parasite, there are in some cases sufficient distinctions between corresponding enzymes of the purine salvage from the host and the parasite that can be exploited to design specific inhibitors or "subversive substrates" for the parasitic enzymes. Furthermore, the specificities of purine transport, the first step in purine salvage, diverge significantly between parasites and their mammalian host. This review highlights the unique transporters and enzymes responsible for the salvage of purines in parasites that could constitute excellent potential targets for the design of safe and effective antiparasitic drugs.
Collapse
Affiliation(s)
- Mahmoud H el Kouni
- Department of Pharmacology and Toxicology, Center for AIDS Research, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
107
|
Severino EA, Costenaro ER, Garcia ALL, Correia CRD. Probing the stereoselectivity of the Heck arylation of endocyclic enecarbamates with diazonium salts. Concise syntheses of (2S,5R)-phenylproline methyl ester and Schramm's C-azanucleoside. Org Lett 2003; 5:305-8. [PMID: 12556178 DOI: 10.1021/ol027268a] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] The diastereoselectivity of the Heck arylation of several chiral, nonracemic, five-membered endocyclic enecarbamates with aryldiazonium tetrafluoroborates was evaluated. The cis selectivity observed for some enecarbamates bearing coordinating groups was explored in the concise synthesis of the (2S,5R)-(+)-phenylproline methyl ester, a scaffold for the nonpeptide cholecystokinin antagonist (+)-RP 66803, and in the synthesis of Schramm's potent antiprotozoan C-azanucleoside.
Collapse
Affiliation(s)
- Elias A Severino
- Instituto de Química, Universidade Estadual de Campinas, C P 6154, 13084-971, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
108
|
Mazumder D, Bruice TC. Exploring nucleoside hydrolase catalysis in silico: molecular dynamics study of enzyme-bound substrate and transition state. J Am Chem Soc 2002; 124:14591-600. [PMID: 12465969 DOI: 10.1021/ja021088e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of action of inosine-uridine nucleoside hydrolase has been investigated by long-term molecular dynamics (MD) simulation in TIP3P water using stochastic boundary conditions. Five MD studies have been performed with enzyme substrate complex (E.S), enzyme substrate complex with protonated His241 (EH.S), enzyme transition state complex (E.TS), enzyme transition state complex with protonated His241 (EH.TS), and His241Ala transition state complex E(H241A).TS. Special attention has been given to the role of His241, which has been considered as the general acid catalyst to assist departure of the leaving nucleobase on the basis of its location in the active site in the X-ray crystal structure (). Yet on the basis of the location in the active site, Tyr229 is closer to the aniline ring of pAPIR as compared to His241. On initiation of MD simulations, His241 does not approach the nucleobase in the structures of EH.S, E.S, EH.TS, and E.TS. In the solvated enzyme, Tyr229, which is a member of the hydrogen bonding network inosine O2'.Asp14.His241.Tyr229.inosine N7, serves as a proton source to the leaving nucleobase. The loss of significant activity of His241Ala mutant is shown to be related to the disruption of the above hydrogen bonded network and the distancing of Tyr229 from inosine N7. The structures of the enzyme complexes with substrate or TS are not visibly altered on protonation of His241, a most unusual outcome. The bell-shaped pH dependence upon pK(app)'s of 7.1 and 9.1 may be attributed to the necessity of the dissociation of Asp10 or Asp15 and the acid form of Tyr229, respectively. In TS, the residue Ile81 migrated closer, whereas Arg233 moved away from the nucleobase. The probability of ribooxocarbenium ion stabilization by Asn168 and Asp14 is discussed. The Asp14-CO(2)(-) is hydrogen bonded to the ribose 2'-OH for 96% of the MD simulation time. Nucleophilic addition of water138 to ribooxocarbenium ion is suggested to be assisted by the proton shuttle from water138 --> Asp10 --> Asp15 --> water pool. An anticorrelation motion between Tyr229-OH and Asn168-OD1 in EH.S and E.S is observed. The relationship of this anticorrelated motion to mechanism, if any, deserves further exploration, perhaps the formation of a near attack conformation.
Collapse
Affiliation(s)
- Devleena Mazumder
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | | |
Collapse
|
109
|
Baldwin J, Farajallah AM, Malmquist NA, Rathod PK, Phillips MA. Malarial dihydroorotate dehydrogenase. Substrate and inhibitor specificity. J Biol Chem 2002; 277:41827-34. [PMID: 12189151 DOI: 10.1074/jbc.m206854200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The malarial parasite relies on de novo pyrimidine biosynthesis to maintain its pyrimidine pools, and unlike the human host cell it is unable to scavenge preformed pyrimidines. Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate (DHO) to produce orotate, a key step in pyrimidine biosynthesis. The enzyme is located in the outer membrane of the mitochondria of the malarial parasite. To characterize the biochemical properties of the malarial enzyme, an N-terminally truncated version of P. falciparum DHODH has been expressed as a soluble, active enzyme in E. coli. The recombinant enzyme binds 0.9 molar equivalents of the cofactor FMN and it has a pH maximum of 8.0 (k(cat) 8 s(-1), K(m)(app) DHO (40-80 microm)). The substrate specificity of the ubiquinone cofactor (CoQ(n)) that is required for the oxidation of FMN in the second step of the reaction was also determined. The isoprenoid (n) length of CoQ(n) was a determinant of reaction efficiency; CoQ(4), CoQ(6) and decylubiquinone (CoQ(D)) were efficiently utilized in the reaction, however cofactors lacking an isoprenoid tail (CoQ(0) and vitamin K(3)) showed decreased catalytic efficiency resulting from a 4 to 7-fold increase in K(m)(app). Five potent inhibitors of mammalian DHODH, Redoxal, dichloroallyl lawsone (DCL), and three analogs of A77 1726 were tested as inhibitors of the malarial enzyme. All five compounds were poor inhibitors of the malarial enzyme, with IC(50)'s ranging from 0.1-1.0 mm. The IC(50) values for inhibition of the malarial enzyme are 10(2)-10(4)-fold higher than the values reported for the mammalian enzyme, demonstrating that inhibitor binding to DHODH is species specific. These studies provide direct evidence that the malarial DHODH active site is different from the host enzyme, and that it is an attractive target for the development of new anti-malarial agents.
Collapse
Affiliation(s)
- Jeffrey Baldwin
- Department of Pharmacology, The University of Texas Southwestern Medical Center at Dallas, 75390-9041, USA
| | | | | | | | | |
Collapse
|
110
|
Shi W, Sarver AE, Wang CC, Tanaka KSE, Almo SC, Schramm VL. Closed site complexes of adenine phosphoribosyltransferase from Giardia lamblia reveal a mechanism of ribosyl migration. J Biol Chem 2002; 277:39981-8. [PMID: 12171925 DOI: 10.1074/jbc.m205596200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenine phosphoribosyltransferase (APRTase) from Giardia lamblia was co-crystallized with 9-deazaadenine and sulfate or with 9-deazaadenine and Mg-phosphoribosylpyrophosphate. The complexes were solved and refined to 1.85 and 1.95 A resolution. Giardia APRTase is a symmetric homodimer with the monomers built around Rossman fold cores, an element common to all known purine phosphoribosyltransferases. The catalytic sites are capped with a small hood domain that is unique to the APRTases. These structures reveal several features relevant to the catalytic function of APRTase: 1) a non-proline cis peptide bond (Glu(61)-Ser(62)) is required to form the pyrophosphate binding site in the APRTase.9dA.MgPRPP complex but is a trans peptide bond in the absence of pyrophosphate group, as observed in the APRTase.9dA.SO4 complex; 2) a catalytic site loop is closed and fully ordered in both complexes, with Glu(100) from the catalytic loop acting as the acid/base for protonation/deprotonation of N-7 of the adenine ring; 3) the pyrophosphoryl charge is neutralized by a single Mg2+ ion and Arg(63), in contrast to the hypoxanthine-guanine phosphoribosyltransferases, which use two Mg2+ ions; and 4) the nearest structural neighbors to APRTases are the orotate phosphoribosyltransferases, suggesting different paths of evolution for adenine relative to other purine PRTases. An overlap comparison of AMP and 9-deazaadenine plus Mg-PRPP at the catalytic sites of APRTases indicated that reaction coordinate motion involves a 2.1-A excursion of the ribosyl anomeric carbon, whereas the adenine ring and the 5-phosphoryl group remained fixed. G. lamblia APRTase therefore provides another example of nucleophilic displacement by electrophile migration.
Collapse
Affiliation(s)
- Wuxian Shi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
111
|
Mazumder D, Kahn K, Bruice TC. Computer simulations of trypanosomal nucleoside hydrolase: determination of the protonation state of the bound transition-state analogue. J Am Chem Soc 2002; 124:8825-33. [PMID: 12137535 DOI: 10.1021/ja020312x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inosine-uridine nucleoside hydrolase (IU-NH) catalyzes the hydrolysis of nucleosides into base and ribose moieties via a ribooxocarbenium ion transition state, which has been characterized using kinetic isotope effects. Protozoan parasites lack de novo purine and pyrimidine biosynthesis and depend on the purine salvage from the host. Vern Schramm and co-workers characterized p-aminophenyliminoribitol (pAPIR) to be a potent inhibitor of IU-NH from Crithidia fasciculata with K(d) of 30 nM. The cyclic amine function of the iminoribitol ring can be either protonated (pAPIRH(+)) or unprotonated (pAPIR). pAPIRH(+) resembles the charge and geometry of the ribooxocarbenium ion transition state and can be looked upon as a transition-state analogue inhibitor; however, it is known that the pAPIR species is initially bound to the enzyme. We have characterized the pAPIRH(+) species as resident of the active site using ab initio calculations and molecular dynamics simulations. This is a novel use of molecular dynamics to investigate the protonation state of the bound ligand to the active site. Nanosecond molecular dynamics simulations reveal a short hydrogen-bonding network between pAPIRH(+)-O2'-Asp14-His241 triad, which is not seen in the crystal structure. Other features discussed are: hydrogen bonding between pAPIRH(+) and Asn168, unusual geometry of the iminoribitol ring, and hydrophobic interactions.
Collapse
Affiliation(s)
- Devleena Mazumder
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
112
|
Wallace LJM, Candlish D, De Koning HP. Different substrate recognition motifs of human and trypanosome nucleobase transporters. Selective uptake of purine antimetabolites. J Biol Chem 2002; 277:26149-56. [PMID: 12004061 DOI: 10.1074/jbc.m202835200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The therapeutic index of antimetabolites such as purine analogues is in large part determined by the extent to which it is selectively accumulated by the target cell. In the current study we have compared the transport of purine nucleobase analogues by the H2 transporter of bloodstream form Trypanosoma brucei brucei and the equilibrative nucleobase transporter of human erythrocytes. The H2 transporter forms hydrogen bonds with hypoxanthine at positions N3, N7, N(1)H, and N(9)H of the purine ring, with apparent Delta G(0) of 7.7-12.6 kJ/mol. The transporter also appears to H-bond with the amine group of adenine. The human transporter forms hydrogen bonds that form to (6)NH(2) and N1 of adenine. An H-bond is also formed with N3 and the 6-keto and amine groups of guanine but not with the protonated N1, thus explaining the low affinity for hypoxanthine. N7 and N9 do not directly interact with the human transporter in the form of H-bonds, and it is proposed that pi-pi stacking interactions contribute significantly to permeant binding. The potential for selective uptake of antimetabolites by the parasite transporter was demonstrated.
Collapse
Affiliation(s)
- Lynsey J M Wallace
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | |
Collapse
|
113
|
Sanchez MA, Tryon R, Green J, Boor I, Landfear SM. Six related nucleoside/nucleobase transporters from Trypanosoma brucei exhibit distinct biochemical functions. J Biol Chem 2002; 277:21499-504. [PMID: 11937511 DOI: 10.1074/jbc.m202319200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Purine nucleoside and nucleobase transporters are of fundamental importance for Trypanosoma brucei and related kinetoplastid parasites because these protozoa are not able to synthesize purines de novo and must salvage the compounds from their hosts. In the studies reported here, we have identified a family of six clustered genes in T. brucei that encode nucleoside/nucleobase transporters. These genes, TbNT2/927, TbNT3, TbNT4, TbNT5, TbNT6, and TbNT7, have predicted amino acid sequences that show high identity to each other and to TbNT2, a P1 type nucleoside transporter recently identified in our laboratory. Expression in Xenopus laevis oocytes revealed that TbNT2/927, TbNT5, TbNT6, and TbNT7 are high affinity adenosine/inosine transporters with K(m) values of <5 microm. In addition, TbNT5, and to a limited degree TbNT6 and TbNT7, also mediate the uptake of the nucleobase hypoxanthine. Ribonuclease protection assays showed that mRNA from all of the six members of this gene family are expressed in the bloodstream stage of the T. brucei life cycle but that TbNT2/927 and TbNT5 mRNAs are also expressed in the insect stage of the life cycle. These results demonstrate that T. brucei expresses multiple purine transporters with distinct substrate specificities and different patterns of expression during the parasite life cycle.
Collapse
Affiliation(s)
- Marco A Sanchez
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon 97201, USA.
| | | | | | | | | |
Collapse
|
114
|
Versées W, Decanniere K, Van Holsbeke E, Devroede N, Steyaert J. Enzyme-substrate interactions in the purine-specific nucleoside hydrolase from Trypanosoma vivax. J Biol Chem 2002; 277:15938-46. [PMID: 11854281 DOI: 10.1074/jbc.m111735200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoside hydrolases are key enzymes in the purine salvage pathway of Trypanosomatidae and are considered as targets for drug design. We previously reported the first x-ray structure of an inosine-adenosine-guanosine preferring nucleoside hydrolase (IAG-NH) from Trypanosoma vivax (). Here we report the 2.0-A crystal structure of the slow D10A mutant in complex with the inhibitor 3-deaza-adenosine and the 1.6-A crystal structure of the same enzyme in complex with a genuine substrate inosine. The enzyme-substrate complex shows the substrate bound to the enzyme in a different conformation from 3-deaza-adenosine and provides a snapshot along the reaction coordinate of the enzyme-catalyzed reaction. The chemical groups on the substrate important for binding and catalysis are mapped. The 2'-OH, 3'-OH, and 5'-OH contribute 4.6, 7.5, and 5.4 kcal/mol to k(cat)/K(m), respectively. Specific interactions with the exocyclic groups on the purine ring are not required for catalysis. Site-directed mutagenesis indicates that the purine specificity of the IAG-NHs is imposed by a parallel aromatic stacking interaction involving Trp(83) and Trp(260). The pH profiles of k(cat) and k(cat)/K(m) indicate the existence of one or more proton donors, possibly involved in leaving group activation. However, mutagenesis of the active site residues around the nucleoside base and an alanine scan of a flexible loop near the active site fail to identify this general acid. The parallel aromatic stacking seems to provide the most likely alternative mechanism for leaving group activation.
Collapse
Affiliation(s)
- Wim Versées
- Department of Ultrastructure, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint-Genesius-Rode, Belgium
| | | | | | | | | |
Collapse
|
115
|
Ouellette M, Drummelsmith J, El-Fadili A, Kündig C, Richard D, Roy G. Pterin transport and metabolism in Leishmania and related trypanosomatid parasites. Int J Parasitol 2002; 32:385-98. [PMID: 11849635 DOI: 10.1016/s0020-7519(01)00346-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The folate metabolic pathway has been exploited successfully for the development of antimicrobial and antineoplasic agents. Inhibitors of this pathway, however, are not useful against Leishmania and other trypanosomatids. Work on the mechanism of methotrexate resistance in Leishmania has dramatically increased our understanding of folate and pterin metabolism in this organism. The metabolic and cellular functions of the reduced form of folates and pterins are beginning to be established and this work has led to several unexpected findings. Moreover, the currently ongoing sequencing efforts on trypanosomatid genomes are suggesting the presence of several gene products that are likely to require folates and pterins. A number of the properties of folate and pterin metabolism are unique suggesting that these pathways are valid and worthwhile targets for drug development.
Collapse
Affiliation(s)
- Marc Ouellette
- Centre de recherche en Infectiologie du CHUL, 2705, boul. Laurier, QC, Sainte-Foy, Canada GIV 4G2.
| | | | | | | | | | | |
Collapse
|
116
|
Sopwith WF, Debrabant A, Yamage M, Dwyer DM, Bates PA. Developmentally regulated expression of a cell surface class I nuclease in Leishmania mexicana. Int J Parasitol 2002; 32:449-59. [PMID: 11849641 DOI: 10.1016/s0020-7519(01)00372-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leishmania mexicana, like other trypanosomatid parasites, is a purine auxotroph and must obtain these essential nutrients from its sandfly and mammalian hosts. A single copy gene encoding its unique externally oriented, surface membrane, purine salvage enzyme 3'-nucleotidase/nuclease, was isolated. Structural features of the deduced protein included: an endoplasmic reticulum-directed signal peptide, several conserved class I catalytic and metal co-factor (Zn(2+)) binding domains, transmembrane anchor sequence and a C-terminal cytoplasmic tail. 3'-Nucleotidase/nuclease gene (mRNA) and protein (enzyme activity) expression were examined in three different L. mexicana developmental forms: procyclic promastigotes, metacyclic promastigotes and amastigotes. Results of both approaches demonstrated that the 3'-nucleotidase/nuclease was a stage-specific enzyme, being expressed by promastigote forms (stages restricted to the insect vector), but not by amastigotes (which produce disease in mammalian hosts). Starvation of these parasites for purines resulted in the significant up-regulation of both 3'-nucleotidase/nuclease mRNA and enzyme activity in promastigotes, but not in amastigotes. These results underscore the critical role that the 3'-nucleotidase/nuclease must play in purine salvage during the rapid multiplicative expansion of the parasite population within its insect vector. To our knowledge, the L. mexicana 3'-nucleotidase/nuclease is the first example of a nutrient-induced and developmentally regulated enzyme in any parasitic protozoan.
Collapse
Affiliation(s)
- William F Sopwith
- Division of Molecular Biology and Immunology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | | | | | | | | |
Collapse
|
117
|
Mitterbauer R, Karl T, Adam G. Saccharomyces cerevisiae URH1 (encoding uridine-cytidine N-ribohydrolase): functional complementation by a nucleoside hydrolase from a protozoan parasite and by a mammalian uridine phosphorylase. Appl Environ Microbiol 2002; 68:1336-43. [PMID: 11872485 PMCID: PMC123776 DOI: 10.1128/aem.68.3.1336-1343.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleoside hydrolases catalyze the cleavage of N-glycosidic bonds in nucleosides, yielding ribose and the respective bases. While nucleoside hydrolase activity has not been detected in mammalian cells, many protozoan parasites rely on nucleoside hydrolase activity for salvage of purines and/or pyrimidines from their hosts. In contrast, uridine phosphorylase is the key enzyme of pyrimidine salvage in mammalian hosts and many other organisms. We show here that the open reading frame (ORF) YDR400w of Saccharomyces cerevisiae carries the gene encoding uridine hydrolase (URH1). Disruption of this gene in a conditionally pyrimidine-auxotrophic S. cerevisiae strain, which is also deficient in uridine kinase (urk1), leads to the inability of the mutant to utilize uridine as the sole source of pyrimidines. Protein extracts of strains overexpressing YDR400w show increased hydrolase activity only with uridine and cytidine, but no activity with inosine, adenosine, guanosine, and thymidine as substrates, demonstrating that ORF YDR400w encodes a uridine-cytidine N-ribohydrolase. Expression of a homologous cDNA from a protozoan parasite (Crithidia fasciculata) in a ura3 urk1 urh1 mutant is sufficient to restore growth on uridine. Growth can also be restored by expression of a human uridine phosphorylase cDNA. Yeast strains expressing protozoan N-ribohydrolases or host phosphorylases could therefore become useful tools in drug screens for specific inhibitors.
Collapse
Affiliation(s)
- Rudolf Mitterbauer
- Center of Applied Genetics, University of Agricultural Sciences, Muthgasse 18/5/66, A-1190 Vienna, Austria
| | | | | |
Collapse
|
118
|
Versées W, Decanniere K, Pellé R, Depoorter J, Brosens E, Parkin DW, Steyaert J. Structure and function of a novel purine specific nucleoside hydrolase from Trypanosoma vivax. J Mol Biol 2001; 307:1363-79. [PMID: 11292348 DOI: 10.1006/jmbi.2001.4548] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purine salvage pathway of parasitic protozoa is currently considered as a target for drug development because these organisms cannot synthesize purines de novo. Insight into the structure and mechanism of the involved enzymes can aid in the development of potent inhibitors, leading to new curative drugs. Nucleoside hydrolases are key enzymes in the purine salvage pathway of Trypanosomatidae, and they are especially attractive because they have no equivalent in mammalian cells. We cloned, expressed and purified a nucleoside hydrolase from Trypanosoma vivax. The substrate activity profile establishes the enzyme to be a member of the inosine-adenosine-guanosine-preferring nucleoside hydrolases (IAG-NH). We solved the crystal structure of the enzyme at 1.6 A resolution using MAD techniques. The complex of the enzyme with the substrate analogue 3-deaza-adenosine is presented. These are the first structures of an IAG-NH reported in the literature. The T. vivax IAG-NH is a homodimer, with each subunit consisting of ten beta-strands, 12 alpha-helices and three small 3(10)-helices. Six of the eight strands of the central beta-sheet form a motif resembling the Rossmann fold. Superposition of the active sites of this IAG-NH and the inosine-uridine-preferring nucleoside hydrolase (IU-NH) of Crithidia fasciculata shows the molecular basis of the different substrate specificity distinguishing these two classes of nucleoside hydrolases. An "aromatic stacking network" in the active site of the IAG-NH, absent from the IU-NH, imposes the purine specificity. Asp10 is the proposed general base in the reaction mechanism, abstracting a proton from a nucleophilic water molecule. Asp40 (replaced by Asn39 in the IU-NH) is positioned appropriately to act as a general acid and to protonate the purine leaving group. The second general acid, needed for full enzymatic activity, is probably part of a flexible loop located in the vicinity of the active site.
Collapse
Affiliation(s)
- W Versées
- Dienst Ultrastructuur, Vlaams Interuniversitair instituut voor Biotechnologie, Vrije Universiteit Brussel, Paardenstraat 65, Sint-Genesius-Rode, B-1640, Belgium
| | | | | | | | | | | | | |
Collapse
|
119
|
Debrabant A, Bastien P, Dwyer DM. A unique surface membrane anchored purine-salvage enzyme is conserved among a group of primitive eukaryotic human pathogens. Mol Cell Biochem 2001; 220:109-16. [PMID: 11451370 DOI: 10.1023/a:1010809420104] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previously, we isolated and characterized the gene encoding the 3'-Nucleotidase/Nuclease (Ld3'NT/NU) from the human pathogen, Leishmania donovani. This unique cell surface enzyme has been shown to be involved in the salvage of host-derived purines, which are essential for the survival of this important protozoan parasite. In this report, we assessed whether the 3'-Nucleotidase/Nuclease was conserved amongst other pathogenic Leishmania and related trypanosomatid parasites. Results of pulsed field gel electrophoresis and Southern blotting showed that a Ld3'NT/NU gene homolog was present in each of the visceral and cutaneous Leishmania species tested (i.e. isolates of L. donovani, L. infantum, L. tropica, L. major and L. mexicana, respectively). Further, results of colorimetric assays using 3'-adenosine monophosphate as substrate demonstrated that each of these organisms also expressed significant levels of 3'-nucleotidase enzyme activity. In addition, we showed that a Ld3'NT/NU gene homolog was expressed in each of these Leishmania species as a > 40 kDa 3'-nucleotidase enzyme activity. A Ld3'NT/NU gene homolog was also identified in two Crithidia species (C. fasciculata and C. luciliae) and Leptomonas seymouri but was only marginally detectable in Trypanosoma brucei, Trypanosoma cruzi and Phytomonas serpens. Cumulatively, results of this study showed that an Ld3'NT/NU homolog was conserved amongst pathogenic Leishmania sp. which suggests that this enzyme must play an critical role in purine salvage for all members of this group of human pathogens.
Collapse
Affiliation(s)
- A Debrabant
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | | | | |
Collapse
|
120
|
Goldberg B, Rattendi D, Lloyd D, Sufrin JR, Bacchi CJ. In situ kinetic characterization of methylthioadenosine transport by the adenosine transporter (P2) of the African Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. Biochem Pharmacol 2001; 61:449-57. [PMID: 11226379 DOI: 10.1016/s0006-2952(00)00560-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
African trypanosomes are parasitic flagellates that live in the connective tissues of the host. Trypanosomes must obtain from their host adenine/adenosine and other nucleosides that can be salvaged through enzymatic cleavage. Methylthioadenosine (MTA) is a byproduct of polyamine metabolism, formed from the donation of an aminopropyl moiety by decarboxylated S-adenosylmethionine (dcAdoMet) to form spermidine. MTA is then cleaved phosphorolytically by MTA phosphorylase to methylthioribose-1-phosphate (MTR-1-P) and adenine. The uptake of MTA was compared with that of adenosine in two strains: Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. The K(m) values for MTA and adenosine (with 5 mM inosine) transport by T. b. brucei were 1.4 and 0.175 mM, and the V(max) values were 70 and 7.8 micromol/L/min, respectively. The K(m) values for T. b. rhodesiense MTA and adenosine (with 5 mM inosine) transport were 1.2 and 0.11 mM, and the V(max) values were 52.6 and 2.9 micromol/L/min, respectively. Since MTA was not competitive with either AdoMet (100 microM), inosine (100 microM), or the methionine precursor ketomethylthiobutyrate (100 microM), it appears that MTA enters through the P(2) (adenosine/adenine) transport site. From this study and our previous work, we determined that these organisms transport adenylated intermediates of methionine metabolism found in sera for purine salvage and as an ancillary source of methionine. The significant ability of African trypanosomes to transport MTA and related intermediates is an important consideration in the design and development of selective chemotherapeutic agents.
Collapse
Affiliation(s)
- B Goldberg
- Department of Biology, St. Francis College, 180 Remsen Street, Brooklyn Heights, 11201, Brooklyn, NY, USA.
| | | | | | | | | |
Collapse
|
121
|
Kar S, Soong L, Colmenares M, Goldsmith-Pestana K, McMahon-Pratt D. The immunologically protective P-4 antigen of Leishmania amastigotes. A developmentally regulated single strand-specific nuclease associated with the endoplasmic reticulum. J Biol Chem 2000; 275:37789-97. [PMID: 10969068 DOI: 10.1074/jbc.m002149200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purified membrane-associated Leishmania pifanoi amastigote protein P-4 has been shown to induce protective immunity against infection and to elicit preferentially a T helper 1-like response in peripheral blood mononuclear cells of patients with American cutaneous leishmaniasis. As this molecule is potentially important for future vaccine studies, the L. pifanoi gene encoding the P-4 membrane protein was cloned and sequenced. Southern blot analyses indicate the presence of six tandemly arrayed copies of the P-4 gene in L. pifanoi; homologues of the P-4 gene are found in all other species of the genus Leishmania examined. DNA-derived protein sequence data indicated an identity to the P1 zinc-dependent nuclease of Penicillium citrinum (20.8%) and the C-terminal domain of the 3' nucleotidase of Leishmania donovani (33.7%). Consistent with these sequence analyses, purified L. pifanoi P-4 protein possesses single strand nuclease (DNA and RNA) and phosphomonoesterase activity, with a preference for UMP > TMP > AMP >> CMP. Double-labeling immunofluorescence microscopic analyses employing anti-binding protein antibodies revealed that the P-4 protein is localized in the endoplasmic reticulum of the amastigote. Northern blot analyses indicated that the gene is selectively expressed in the intracellular amastigote stage (mammalian host) but not in the promastigote stage (insect) of the parasite. Based upon its subcellular localization and single-stranded specific nuclease activity, possible roles of the P-4 nuclease in the amastigote in RNA stability (gene expression) or DNA repair are discussed.
Collapse
Affiliation(s)
- S Kar
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06510-8034, USA
| | | | | | | | | |
Collapse
|
122
|
Yamage M, Debrabant A, Dwyer DM. Molecular characterization of a hyperinducible, surface membrane-anchored, class I nuclease of a trypanosomatid parasite. J Biol Chem 2000; 275:36369-79. [PMID: 10945983 DOI: 10.1074/jbc.m004036200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 3'-nucleotidase/nuclease (3'-NT/NU) is a surface enzyme unique to trypanosomatid parasites. These organisms lack the pathway for de novo purine biosynthesis and thus are entirely dependent upon their hosts to supply this nutrient for their survival, growth, and multiplication. The 3'-NT/NU is involved in the salvage of preformed purines via the hydrolysis of either 3'-nucleotides or nucleic acids. In Crithidia luciliae, this enzyme is highly inducible. For example, in these organisms purine starvation triggers an approximately 1000-fold up-expression of 3'-NT/NU activity. In the present study, we cloned and characterized a gene encoding this intriguing enzyme from C. luciliae (Cl). Sequence analysis showed that the Cl 3'-NT/NU deduced protein possessed five regions, which we defined here as being characteristic of members of the class I nuclease family. Further, we demonstrated that the Cl 3'-NT/NU-expressed protein possessed both 3'-nucleotidase and nuclease activities. Moreover, we showed that the dramatic up-expression of 3'-NT/NU activity in response to purine starvation of C. luciliae was concomitant with the approximately 100-fold elevation in steady-state mRNA specific for this gene. Finally, results of our nuclear run-on analyses demonstrated that such up-regulation in 3'-NT/NU enzyme activity was mediated at the posttranscriptional level.
Collapse
Affiliation(s)
- M Yamage
- Cell Biology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| | | | | |
Collapse
|
123
|
Nara T, Hshimoto T, Aoki T. Evolutionary implications of the mosaic pyrimidine-biosynthetic pathway in eukaryotes. Gene 2000; 257:209-22. [PMID: 11080587 DOI: 10.1016/s0378-1119(00)00411-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The de-novo pyrimidine biosynthetic pathway involves six enzymes, in order from the first to the sixth step, carbamoyl-phosphate synthetase II (CPS II) comprising glutamine amidotransferase (GAT) and carbamoyl-phosphate synthetase (CPS) domains or subunits, aspartate carbamoyltransferase (ACT), dihydroorotase (DHO), dihydroorotate dehydrogenase (DHOD), orotate phosphoribosyltransferase (OPRT), and orotidine-5'-monophosphate decarboxylase (OMPDC). In contrast with reports on molecular evolution of the individual enzymes, we attempted to draw an evolutionary picture of the whole pathway using the protein phylogeny. We demonstrate highly mosaic organizations of the pyrimidine biosynthetic pathway in eukaryotes. During evolution of the eukaryotic pathway, plants and fungi (or their ancestors) in particular may have secondarily acquired the characteristic enzymes. This is consistent with the fact that the organization of plant enzymes is highly chimeric: (1) two subunits of CPS II, GAT and CPS, cluster with a clade including cyanobacteria and red algal chloroplasts, (2) ACT not with a cyanobacterium, Synechocystis spp., irrespective of its putative signal sequence targeting into chloroplasts, and (3) DHO with a clade of proteobacteria. In fungi, DHO and OPRT cluster respectively with the corresponding proteobacterial counterparts. The phylogenetic analyses of DHOD and OMPDC also support the implications of the mosaic pyrimidine biosynthetic pathway in eukaryotes. The potential importance of the horizontal gene transfer(s) and endosymbiosis in establishing the mosaic pathway is discussed.
Collapse
Affiliation(s)
- T Nara
- Department of Parasitology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, 113-8421, Tokyo, Japan
| | | | | |
Collapse
|
124
|
Braunheim BB, Schwartz SD. Neural network methods for identification and optimization of quantum mechanical features needed for bioactivity. J Theor Biol 2000; 206:27-45. [PMID: 10968935 DOI: 10.1006/jtbi.2000.2098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper presents a new approach to the discovery and design of bioactive compounds. The focus of this application will be on the analysis of enzymatic inhibitors. At present the discovery of enzymatic inhibitors for therapeutic use is often accomplished through random searches. The first phase of discovery is a random search through a large pre-fabricated chemical library. Many molecules are tested with refined enzyme for signs of inhibition. Once a group of lead compounds have been discovered the chemical intuition of biochemists is used to find structurally related compounds that are more effective. This step requires new molecules to be conceived and synthesized, and it is the most time-consuming and expensive step. The development of computational and theoretical methods for prediction of the molecular structure that would bind most tightly prior to synthesis and testing, would facilitate the design of novel inhibitors. In the past, our work has focused on solving the problem of predicting the bioactivity of a molecule prior to synthesis. We used a neural network trained with the bioactivity of known compounds to predict the bioactivity of unknown compounds. In our current work, we use a separate neural network in conjunction with a trained neural network in an attempt to gain insight as to how to modify existing compounds and increase their bioactivity.
Collapse
Affiliation(s)
- B B Braunheim
- The Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
125
|
Synthesis of Transition State Analogue Inhibitors for Purine Nucleoside Phosphorylase and N-Riboside Hydrolases. Tetrahedron 2000. [DOI: 10.1016/s0040-4020(00)00194-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
126
|
Abstract
Purines and pyrimidines play a key role in nucleic acid and nucleotide metabolism of all cells. In addition, they can be used as nitrogen sources in plants and many microorganisms. Transport of nucleobases across biological membranes is mediated by specific transmembrane transport proteins. Nucleobase transporters have been identified genetically and/or physiologically in bacteria, fungi, protozoa, algae, plants and mammals. A limited number of bacterial and fungal transporter genes have been cloned and analysed in great detail at the molecular level. Very recently, nucleobase transporters have been identified in plants. In other systems, with less accessible genetics, such as vertebrates and protozoa, no nucleobase transporter genes have been identified, and the transporters have been characterized and classified by physiological and biochemical approaches instead. In this review, it is shown that nucleobase transporters and similar sequences of unknown function present in databases constitute three basic families, which will be designated NAT, PRT and PUP. The first includes members from archea, eubacteria, fungi, plants and metazoa, the second is restricted to prokaryotes and fungi, and the last one is only found in plants. Interestingly, mammalian ascorbate transporters are homologous to NAT sequences. The function of different nucleobase transporters is also described, as is how their expression is regulated and what is currently known about their structure-function relationships. Common features emerging from these studies are expected to prove critical in understanding what governs nucleobase transporter specificity and in selecting proper model microbial systems for cloning and studying plant, protozoan and mammalian nucleobase transporters of agricultural, pharmacological and medical importance.
Collapse
Affiliation(s)
- H de Koning
- Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | |
Collapse
|
127
|
de Koning HP, Watson CJ, Sutcliffe L, Jarvis SM. Differential regulation of nucleoside and nucleobase transporters in Crithidia fasciculata and Trypanosoma brucei brucei. Mol Biochem Parasitol 2000; 106:93-107. [PMID: 10743614 DOI: 10.1016/s0166-6851(99)00203-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The regulation of the activity of purine transporters in two protozoan species, Crithidia fasciculata and Trypanosoma brucei brucei, was investigated in relation to purine availability and growth cycle. In C. fasciculata, two high-affinity purine nucleoside transporters were identified. The first, designated CfNT1, displayed a K(m) of 9.4 +/- 2.8 microM for adenosine and was inhibited by pyrimidine nucleosides as well as adenosine analogues; a second C. fasciculata nucleoside transporter (CfNT2) recognized inosine (K(m) = 0.38 +/- 0.06 microM) and guanosine but not adenosine. The activity of both transporters increased in cells at mid-logarithmic growth, as compared to cells in the stationary phase, and was also stimulated 5-15-fold following growth in purine-depleted medium. These increased rates were due to increased Vmax values (K(m) remained unchanged) and inhibited by cycloheximide (10 microM). In the procyclic forms of T. b. brucei, adenosine transport by the P1 transporter was upregulated by purine starvation but only after 48 h, whereas hypoxanthine transport was maximally increased after 24 h. The latter effect was due to the expression of an additional hypoxanthine transporter, H2, that is normally absent from procyclic forms of T. b. brucei and was characterised by its high affinity for hypoxanthine (K(m) approximately 0.2 microM) and its sensitivity to inhibition by guanosine. The activity of the H1 hypoxanthine transporter (K(m) approximately 10 microM) was unchanged. These results show that regulation of the capacity of the purine transporters is common in different protozoa, and that, in T. b. brucei, various purine transporters are under differential control.
Collapse
Affiliation(s)
- H P de Koning
- Research School of Biosciences, University of Kent at Canterbury, UK.
| | | | | | | |
Collapse
|
128
|
Capelluto DG, Hellman U, Cazzulo JJ, Cannata JJ. Purification and some properties of serine hydroxymethyltransferase from Trypanosoma cruzi. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:712-9. [PMID: 10651807 DOI: 10.1046/j.1432-1327.2000.01047.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A single form of serine hydroxymethyltransferase (SHMT) was detected in epimastigotes of Trypanosoma cruzi, in contrast to the three isoforms of the enzyme characterized from another trypanosomatid, Crithidia fasciculata [Capelluto D.G.S., Hellman U., Cazzulo J.J. & Cannata J.J.B. (1999) Mol. Biochem. Parasitol. 98, 187-201]. The T. cruzi SHMT was found to be highly unstable in crude extracts. In the presence of the cysteine proteinase inhibitors N-alpha-p-tosyl-L-lysine chloromethyl ketone and Ltrans-3-carboxyoxiran-2-carbonyl-L-leucylagmatine, however, the enzyme could be purified to homogeneity. Digitonin treatment of intact cells suggested that the enzyme is cytosolic. T. cruzi SHMT presents a monomeric structure shown by the apparent molecular masses of 69 kDa (native) and 55 kDa (subunit) determined by Sephadex G-200 gel filtration and SDS/PAGE, respectively. This is in contrast to the tetrameric SHMTs described in C. fasciculata and other eukaryotes. The enzyme was pyridoxal phosphate-dependent after L-cysteine and hydroxylamine treatments and it was strongly inhibited by the substrate analog folate, which was competitive towards tetrahydrofolate and noncompetitive towards L-serine. Partial sequencing of tryptic internal peptides of the enzyme indicate considerable similarity with other SHMTs, particularly from those of plant origin.
Collapse
Affiliation(s)
- D G Capelluto
- Centro de Investigaciones Bioenergéticas, Facultad de Medicina-CONICET, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
129
|
Gero AM, Kang EW, Harvey JE, Schofield PJ, Clinch K, Furneaux RH. Trichomonas vaginalis: detection of nucleoside hydrolase activity as a potential screening procedure. Exp Parasitol 2000; 94:125-8. [PMID: 10673349 DOI: 10.1006/expr.1999.4484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- A M Gero
- School of Biochemistry and Molecular Genetics, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | | | | | | | | | | |
Collapse
|
130
|
Cotrim PC, Garrity LK, Beverley SM. Isolation of genes mediating resistance to inhibitors of nucleoside and ergosterol metabolism in Leishmania by overexpression/selection. J Biol Chem 1999; 274:37723-30. [PMID: 10608831 DOI: 10.1074/jbc.274.53.37723] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We tested a general method for the identification of drug resistance loci in the trypanosomatid protozoan parasite Leishmania major. Genomic libraries in a multicopy episomal cosmid vector were transfected into susceptible parasites, and drug selections of these transfectant libraries yielded parasites bearing cosmids mediating resistance. Tests with two antifolates led to the recovery of cosmids encoding DHFR-TS or PTR1, two known resistance genes. Overexpression/selection using the toxic nucleoside tubercidin similarly yielded the TOR (toxic nucleoside resistance) locus, as well as a new locus (TUB2) conferring collateral hypersensitivity to allopurinol. Leishmania synthesize ergosterol rather than cholesterol, making this pathway attractive as a chemotherapeutic target. Overexpression/selection using the sterol synthesis inhibitors terbinafine (TBF, targeting squalene epoxidase) and itraconazole (ITZ, targeting lanosterol C(14)-demethylase) yielded nine new resistance loci. Several conferred resistance to both drugs; several were drug-specific, and two TBF-resistant cosmids induced hypersensitivity to ITZ. One TBF-resistant cosmid encoded squalene synthase (SQS1), which is located upstream of the sites of TBF and ITZ action in the ergosterol biosynthetic pathway. This suggests that resistance to "downstream" inhibitors can be mediated by increased expression of ergosterol biosynthetic intermediates. Our studies establish the feasibility of overexpression/selection in parasites and suggest that many Leishmania drug resistance loci are amenable to identification in this manner.
Collapse
Affiliation(s)
- P C Cotrim
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
131
|
Furneaux RH, Schramm VL, Tyler PC. Transition state analogue inhibitors of protozoan nucleoside hydrolases. Bioorg Med Chem 1999; 7:2599-606. [PMID: 10632070 DOI: 10.1016/s0968-0896(99)00210-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Protozoan parasites are unable to synthesize purines de novo and must rely on purine salvage pathways for their requirements. Nucleoside hydrolases, which are not found in mammals, function as key enzymes in purine salvage in protozoa. Inhibition of these enzymes may disrupt purine supply and specific inhibitors are potential therapeutic agents for the control of protozoan infections. A series of 1,4-dideoxy-1,4-imino-D-ribitols bearing C-bonded aromatic substituents at C-1 have been synthesized, following carbanion additions to the imine 2, and tested as potential nucleoside hydrolase inhibitors. Nucleoside analogues 8, 11, 14, 17, 20, 24-26, 28 exhibit Ki values in the range 0.2-22 microM against two representative isozymes of protozoan nucleoside hydrolases.
Collapse
Affiliation(s)
- R H Furneaux
- Carbohydrate Chemistry, Industrial Research Limited, Lower Hutt, New Zealand
| | | | | |
Collapse
|
132
|
Braunheim BB, Schwartz SD. Computational methods for transition state and inhibitor recognition. Methods Enzymol 1999; 308:398-426. [PMID: 10507012 DOI: 10.1016/s0076-6879(99)08017-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- B B Braunheim
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
133
|
Shi W, Schramm VL, Almo SC. Nucleoside hydrolase from Leishmania major. Cloning, expression, catalytic properties, transition state inhibitors, and the 2.5-å crystal structure. J Biol Chem 1999; 274:21114-20. [PMID: 10409664 DOI: 10.1074/jbc.274.30.21114] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protozoan parasites lack the pathway of the de novo synthesis of purines and depend on host-derived nucleosides and nucleotides to salvage purines for DNA and RNA synthesis. Nucleoside hydrolase is a central enzyme in the purine salvage pathway and represents a prime target for the development of anti-parasitic drugs. The full-length cDNA for nucleoside hydrolase from Leishmania major was cloned and sequence analysis revealed that the L. major nucleoside hydrolase shares 78% sequence identity with the nonspecific nucleoside hydrolase from Crithidia fasciculata. The L. major enzyme was overexpressed in Escherichia coli and purified to over 95% homogeneity. The L. major nucleoside hydrolase was identified as a nonspecific nucleoside hydrolase since it demonstrates the characteristics: 1) efficient utilization of p-nitrophenyl beta-D-ribofuranoside as a substrate; 2) recognition of both inosine and uridine nucleosides as favored substrates; and 3) significant activity with all of the naturally occurring purine and pyrimidine nucleosides. The crystal structure of the L. major nucleoside hydrolase revealed a bound Ca(2+) ion in the active site with five oxygen ligands from Asp-10, Asp-15 (bidentate), Thr-126 (carbonyl), and Asp-241. The structure is similar to the C. fasciculata IU-nucleoside hydrolase apoenzyme. Despite the similarities, the catalytic specificities differ substantially. Relative values of k(cat) for the L. major enzyme with inosine, adenosine, guanosine, uridine, and cytidine as substrates are 100, 0.5, 0.5, 27 and 0.3; while those for the enzyme from C. fasciculata are 100, 15, 14, 510, and 36 for the same substrates. Iminoribitol analogues of the transition state are nanomolar inhibitors. The results provide new information for purine and pyrimidine salvage pathways in Leishmania.
Collapse
Affiliation(s)
- W Shi
- Albert Einstein College of Medicine, Department of Biochemistry, Bronx, New York 10461, USA
| | | | | |
Collapse
|
134
|
Capelluto DG, Hellman U, Cazzulo JJ, Cannata JJ. Purification and partial characterization of three isoforms of serine hydroxymethyltransferase from Crithidia fasciculata. Mol Biochem Parasitol 1999; 98:187-201. [PMID: 10080388 DOI: 10.1016/s0166-6851(98)00166-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Three molecular forms of serine hydroxymethyltransferase (SHMT) have been detected in choanomastigotes of Crithidia fasciculata by DEAE-cellulose chromatography. The three isoforms (named SHMT I, II, and III) presented small differences in charge and molecular weight. Digitonin treatment of intact cells suggested that SHMT III is cytosolic, whereas the other two isoforms are particle bound, one being mitochondrial (SHMT I) and the other one very likely glycosomal (SHMT II). The three SHMT isoforms were purified to homogeneity, and their physicochemical and kinetic properties studied. Determination of their native and subunit molecular masses revealed that all of them have a tetrameric structure. The three isoforms were shown to be PLP-dependent enzymes after L-cysteine and hydroxylamine hydrochloride treatments. They showed similar pH optima, bimodal kinetics for L-serine and Michaelis-Menten kinetics for THF.
Collapse
Affiliation(s)
- D G Capelluto
- Centro de Investigaciones Bioenergéticas, Facultad de Medicina-CONICET, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
135
|
Abstract
All chemical transformations pass through an unstable structure called the transition state, which is poised between the chemical structures of the substrates and products. The transition states for chemical reactions are proposed to have lifetimes near 10(-13) sec, the time for a single bond vibration. No physical or spectroscopic method is available to directly observe the structure of the transition state for enzymatic reactions. Yet transition state structure is central to understanding catalysis, because enzymes function by lowering activation energy. An accepted view of enzymatic catalysis is tight binding to the unstable transition state structure. Transition state mimics bind tightly to enzymes by capturing a fraction of the binding energy for the transition state species. The identification of numerous transition state inhibitors supports the transition state stabilization hypothesis for enzymatic catalysis. Advances in methods for measuring and interpreting kinetic isotope effects and advances in computational chemistry have provided an experimental route to understand transition state structure. Systematic analysis of intrinsic kinetic isotope effects provides geometric and electronic structure for enzyme-bound transition states. This information has been used to compare transition states for chemical and enzymatic reactions; determine whether enzymatic activators alter transition state structure; design transition state inhibitors; and provide the basis for predicting the affinity of enzymatic inhibitors. Enzymatic transition states provide an understanding of catalysis and permit the design of transition state inhibitors. This article reviews transition state theory for enzymatic reactions. Selected examples of enzymatic transition states are compared to the respective transition state inhibitors.
Collapse
Affiliation(s)
- V L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA.
| |
Collapse
|
136
|
de Koning HP, Watson CJ, Jarvis SM. Characterization of a nucleoside/proton symporter in procyclic Trypanosoma brucei brucei. J Biol Chem 1998; 273:9486-94. [PMID: 9545276 DOI: 10.1074/jbc.273.16.9486] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenosine transport at 22 degrees C in procyclic forms of Trypanosoma brucei brucei was investigated using an oil-inhibitor stop procedure for determining initial rates of adenosine uptake in suspended cells. Adenosine influx was mediated by a single high affinity transporter (Km 0.26 +/- 0.02 microM, Vmax 0.63 +/- 0.18 pmol/10(7) cells s-1). Purine nucleosides, with the exception of tubercidin (7-deazaadenosine), and dipyridamole inhibited adenosine influx (Ki 0.18-5.2 microM). Purine nucleobases and pyrimidine nucleosides and nucleobases had no effect on adenosine transport. This specificity of the transporter appears to be similar to the previously described P1 adenosine transporter in bloodstream forms of trypanosomes. Uptake of adenosine was Na+-independent, but ionophores reducing the membrane potential and/or the transmembrane proton gradient (monitored with the fluorescent probes bis-(1,3-diethylthiobarbituric acid)-trimethine oxonol and 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein acetoxymethyl ester, respectively) inhibited adenosine transport. Similarly, an increase in extracellular pH from 7.3 to 8.0 reduced adenosine influx by 30%. A linear correlation was demonstrated between the rate of adenosine transport and the protonmotive force. Adenosine uptake was accompanied by a proton influx in base-loaded cells and was also shown to be electrogenic. These combined results indicate that transport of adenosine in T. brucei brucei procyclics is protonmotive force-driven and strongly suggest that the adenosine transporter functions as an H+ symporter.
Collapse
Affiliation(s)
- H P de Koning
- Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | | | |
Collapse
|
137
|
Pellé R, Schramm VL, Parkin DW. Molecular cloning and expression of a purine-specific N-ribohydrolase from Trypanosoma brucei brucei. Sequence, expression, and molecular analysis. J Biol Chem 1998; 273:2118-26. [PMID: 9442052 DOI: 10.1074/jbc.273.4.2118] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
N-Ribohydrolases, including the inosine-adenosine-guanosine-preferring (IAG) nucleoside hydrolase, have been proposed to be involved in the nucleoside salvage pathway of protozoan parasites and may constitute rational therapeutic targets for the treatment of these diseases. Reported is the complete sequence of the Trypanosoma brucei brucei iagnh gene, which encodes IAG-nucleoside hydrolase. The 1.4-kilobase iagnh cDNA contains an open reading frame of 981 base pairs, corresponding to 327 amino acids. The iagnh gene is present as one copy/haploid genome and is located on the size-polymorphic pair of chromosome III or IV in the genome of T. b. brucei. In Southern blot analysis, the iagnh probe hybridized strongly with Trypanosoma brucei gambiense, Trypanosoma brucei rhodesiense, Trypanosoma evansi, Trypanosoma congolense, and Trypanosoma vivax and, to a lesser extent, with Trypanosoma cruzi genomic DNA. The iagnh gene is expressed in blood-stream forms and procyclic (insect) life-cycle stages of T. b. brucei. There are no close amino acid homologues of IAG-nucleoside hydrolase outside bacterial, yeast, or parasitic organisms. Low amino acid sequence similarity is seen with the inosine-uridine-preferring nucleoside hydrolase isozyme from Crithidia fasciculata. The T. b. brucei iagnh open reading frame was cloned into Escherichia coli BL21 (DE3), and a soluble recombinant IAG-nucleoside hydrolase was expressed and purified to > 97% homogeneity. The molecular weights of the recombinant IAG-nucleoside hydrolase, based on the amino acid sequence and observed mass, were 35,735 and 35,737, respectively. The kinetic parameters of the recombinant IAG-nucleoside hydrolase are experimentally identical to the native IAG-nucleoside hydrolase.
Collapse
Affiliation(s)
- R Pellé
- International Livestock Research Institute, Nairobi, Kenya
| | | | | |
Collapse
|
138
|
de Koning HP, Jarvis SM. Purine nucleobase transport in bloodstream forms of Trypanosoma brucei is mediated by two novel transporters. Mol Biochem Parasitol 1997; 89:245-58. [PMID: 9364969 DOI: 10.1016/s0166-6851(97)00129-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanism and inhibitor sensitivity of hypoxanthine transport by bloodstream forms of Trypanosoma brucei brucei was investigated. The dose response curve for the inhibition of hypoxanthine transport (1 microM) by guanosine was biphasic; approximately 90% of transport activity was inhibited with a Ki value of 10.8 +/- 1.8 microM, but 10% of the activity remained insensitive to concentrations as high as 2 mM. These two components of hypoxanthine transport are defined as guanosine-sensitive (H2) and guanosine-insensitive (H3). Hypoxanthine influx by both components was saturable, but there was a marked difference in their Km values (123 +/- 15 nM and 4.7 +/- 0.9 microM for H2 and H3, respectively) although the Vmax values (1.1 +/- 0.2 and 1.1 +/- 0.1 pmol (10[7] cells)[-1] s[-1], n = 3) were similar. Hypoxanthine uptake via the H2 carrier was inhibited by purine bases and analogues as well as by some pyrimidine bases and one nucleoside (guanosine), whereas the H3 transporter was sensitive only to inhibition by purine nucleobases. H2-mediated hypoxanthine uptake was inhibited by ionophores, ion exchangers and the potential H+-ATPase inhibitors, N,N'-dicyclohexylcarbodiimide (DCCD) and N-ethylmaleimide (NEM). Measurements of the intracellular pH and membrane potential of bloodstream trypanosomes in the presence and absence of these agents established a linear correlation between protonmotive force and rate of [3H]hypoxanthine (30 nM) uptake. We conclude that hypoxanthine transport in bloodstream forms of T. b. brucei occurs by two transport systems with different affinities and substrate specificities, one of which, H2, appears to function as a H+-/hypoxanthine symporter.
Collapse
Affiliation(s)
- H P de Koning
- Research School of Biosciences, University of Kent at Canterbury, UK
| | | |
Collapse
|
139
|
Eakin AE, Guerra A, Focia PJ, Torres-Martinez J, Craig SP. Hypoxanthine phosphoribosyltransferase from Trypanosoma cruzi as a target for structure-based inhibitor design: crystallization and inhibition studies with purine analogs. Antimicrob Agents Chemother 1997; 41:1686-92. [PMID: 9257742 PMCID: PMC163986 DOI: 10.1128/aac.41.8.1686] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The hypoxanthine phosphoribosyltransferase (HPRT) from Trypanosoma cruzi is a potential target for enzyme structure-based inhibitor design, based on previous studies which indicate that these parasites lack the metabolic enzymes required for de novo synthesis of purine nucleotides. By using a bacterial complement selection system, 59 purine analogs were assayed for their interaction with the HPRTs from T. cruzi and Homo sapiens. Eight compounds were identified from the bacterial assay to have an affinity for the trypanosomal enzyme. Inhibition constants for four of these compounds against purified recombinant trypanosomal and human HPRTs were determined and compared. The results confirm that the recombinant system can be used to identify compounds which have affinity for the trypanosomal HPRT. Furthermore, the results provide evidence for the importance of chemical modifications at positions 6 and 8 of the purine ring in the binding of these compounds to the HPRTs. An accurate three-dimensional structure of the trypanosomal enzyme will greatly enhance our understanding of the interactions between HPRTs and these compounds. Toward this end, crystallization conditions for the trypanosomal HPRT and preliminary analysis of X-ray diffraction data to a resolution of 2 A is reported. These results represent significant progress toward a structure-based approach to the design of inhibitors of the HPRT of trypanosomes with the long-range goal of developing new drugs for the treatment of Chagas' disease.
Collapse
Affiliation(s)
- A E Eakin
- Division of Medicinal Chemistry, School of Pharmacy, University of North Carolina at Chapel Hill, 27599-7360, USA.
| | | | | | | | | |
Collapse
|
140
|
de Koning HP, Jarvis SM. Hypoxanthine uptake through a purine-selective nucleobase transporter in Trypanosoma brucei brucei procyclic cells is driven by protonmotive force. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1102-10. [PMID: 9288936 DOI: 10.1111/j.1432-1033.1997.01102.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanism of purine nucleobase transport in procyclic cells of the protozoan parasite Trypanosoma brucei brucei was investigated. Hypoxanthine uptake at 22 degrees C was rapid and saturable, exhibiting an apparent Km of 9.3 +/- 2.0 microM and a Vmax of 4.5 +/- 0.8 pmol x (10(7) cells)(-1) x s(-1). All the natural purine nucleobases tested (Ki 1.8-7.2 microM), as well as the purine analogues oxypurinol and allopurinol, inhibited hypoxanthine influx in a manner consistent with the presence of a single high-affinity carrier. Nucleosides and pyrimidine nucleobases had little or no effect on hypoxanthine influx. The uptake process was independent of extracellular sodium, but inhibited by ionophores inducing cytosolic acidification (carbonyl cyanide chlorophenylhydrazone, nigericin, valinomycin) or membrane depolarisation (gramicidin) as well as by the adenosine triphosphatase inhibitors N-ethylmaleimide and N,N'-dicyclohexylcarbodiimide. Using the fluorescent dyes bisoxonol and 2',7'-bis-(carboxyethyl)-5,6-carboxy-fluorescein to determine membrane potential and intracellular pH (pHi), the rate of hypoxanthine uptake was shown to be directly proportional to the protonmotive force. Similarly, under alkaline extracellular conditions hypoxanthine uptake was reversibly inhibited alongside a reduction in protonmotive force. In addition, hypoxanthine accelerated the rate of pH, recovery to pH 7 after base-loading with NH4Cl, indicative of a proton influx concurrent with hypoxanthine transport. Finally, after pretreatment of cells with N-ethylmaleimide, hypoxanthine induced a slow membrane depolarisation, demonstrating that hypoxanthine transport is electrogenic. These data show that hypoxanthine uptake in T. b. brucei procyclic cells is dependent on the protonmotive force, and are consistent with a nucleobase/H+-symporter model for this transporter.
Collapse
Affiliation(s)
- H P de Koning
- Research School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | |
Collapse
|
141
|
Buckner FS, Wilson AJ, Van Voorhis WC. Trypanosoma cruzi: use of herpes simplex virus-thymidine kinase as a negative selectable marker. Exp Parasitol 1997; 86:171-80. [PMID: 9225767 DOI: 10.1006/expr.1997.4163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Trypanosoma cruzi, the protozoan that causes Chagas' disease, was transfected with a fusion gene of hygromycin phosphotransferase and herpes simplex virus-thymidine kinase, HyTK. Transfectants selected in hygromycin had thymidine kinase activity, whereas controls did not. In vitro growth of the mammalian life-stage forms, amastigotes and trypomastigotes, was inhibited 98% by the nucleoside analogue ganciclovir (5 micrograms/ml). Growth of the insect-stage form, epimastigotes, was not inhibited by ganciclovir (up to 250 micrograms/ml) or other nucleoside analogues. Intracellular uptake of ganciclovir by epimastigotes was found to be 10-fold less than that by amastigotes. Mice infected with the HyTK-expressing parasites and treated with ganciclovir had a statistically significant reduction of parasitemia by 57%; however, complete eradication of parasites was not achieved. The parasites recovered from the treated mice continued to be susceptible to ganciclovir in vitro. Parasite clones with higher expression of thymidine kinase were more sensitive to ganciclovir, suggesting that greater expression of the thymidine kinase gene may lead to parasites that can be fully eradicated from infected experimental animals.
Collapse
Affiliation(s)
- F S Buckner
- Department of Medicine, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
142
|
Gero AM, Day RE, Hall ST. Stimulated transport of adenosine, guanosine and hypoxanthine in Crithidia luciliae: metabolic machinery in which the parasite has a distinct advantage over the host. Int J Parasitol 1997; 27:241-9. [PMID: 9088994 DOI: 10.1016/s0020-7519(96)00153-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nutritional insufficiency is a common environmental extreme to which parasitic protozoa are routinely exposed. In this study of purine salvage mechanisms we illustrate some successful adaptations of the parasite Crithidia luciliae to its environment, particularly in the case of purine stress. In purine-depleted conditions, the insect trypanosome C. luciliae has the ability to increase the rates of transport of adenosine, guanosine and hypoxanthine and the activity of the exoenzyme 3'nucleotidase (3'NTase) during the growth cycle. The dramatic increase in these activities appears after a 72-h period in culture. The increased activity of the purine transporters and 3'NTase could be suppressed by addition to the medium of a purine supplement such as adenosine or hypoxanthine (100 microM). Under conditions where the concentration of purines in the medium could be closely regulated, C. luciliae grown in purine-replete medium (> or = 75 microM purine) exhibited low rates of purine transport and activity of 3'NTase. In comparison, parasites transferred to medium with a low purine source (< or = 7.5 microM adenosine) had levels of adenosine, guanosine and hypoxanthine transport elevated 25-40-fold. The results link the simultaneous increase in activity of the nucleoside and base transporters, 3'NTase activity and a general increase in the purine salvage of C. luciliae to the concentration of purines available at any time to the parasite.
Collapse
Affiliation(s)
- A M Gero
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
143
|
|
144
|
Ullman B, Carter D. Molecular and biochemical studies on the hypoxanthine-guanine phosphoribosyltransferases of the pathogenic haemoflagellates. Int J Parasitol 1997; 27:203-13. [PMID: 9088991 DOI: 10.1016/s0020-7519(96)00150-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
All genera of protozoan parasites are auxotrophic for purines, and thus, purine acquisition from the host is a nutritional necessity for the survival and growth of these pathogens. Many of these parasites, including Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp., access host purines by phosphoribosylating purine bases via purine phosphoribosyltransferase (PRT) enzymes. The trypanosomatid hypoxanthine-guanine phosphoribosyltransferase (HGPRT) enzyme has been implicated as a critical enzyme of purine salvage in members of the Trypanosomatidae family. Moreover, the HGPRT enzymes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. can also initiate the metabolism of certain cytotoxic purine base analogs that have little effect on the mammalian host. This implies that either inhibitors or substrates of HGPRT might serve as efficacious and selective agents for the treatment of diseases for which trypanosomatids are the etiologic agent. The hgprt genes from Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani have all been cloned, sequenced and overexpressed in E. coli, and the recombinant proteins have all been purified to homogeneity and characterized with respect to kinetic parameters and physicochemical properties. This paper presents an overview of recent molecular and biochemical studies on trypanosomatid HGPRT proteins and future efforts to validate HGPRT as a rational target for the chemotherapeutic manipulation of African sleeping sickness, Chagas disease and leishmaniasis.
Collapse
Affiliation(s)
- B Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201-3098, USA.
| | | |
Collapse
|
145
|
Virtanen A, Aström J. Function and characterization of poly(A)-specific 3' exoribonucleases. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1997; 18:199-220. [PMID: 8994266 DOI: 10.1007/978-3-642-60471-3_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- A Virtanen
- Department of Medical Genetics, Uppsala University, Sweden
| | | |
Collapse
|
146
|
|
147
|
Mazzella LJ, Parkin DW, Tyler PC, Furneaux RH, Schramm VL. Mechanistic Diagnoses of N-Ribohydrolases and Purine Nucleoside Phosphorylase. J Am Chem Soc 1996. [DOI: 10.1021/ja953537z] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- L. John Mazzella
- Department of Biochemistry Albert Einstein College of Medicine Bronx, New York 10461, Industrial Research Limited P.O. Box 31-310, Lower Hutt, New Zealand
| | - David W. Parkin
- Department of Biochemistry Albert Einstein College of Medicine Bronx, New York 10461, Industrial Research Limited P.O. Box 31-310, Lower Hutt, New Zealand
| | - Peter C. Tyler
- Department of Biochemistry Albert Einstein College of Medicine Bronx, New York 10461, Industrial Research Limited P.O. Box 31-310, Lower Hutt, New Zealand
| | - Richard H. Furneaux
- Department of Biochemistry Albert Einstein College of Medicine Bronx, New York 10461, Industrial Research Limited P.O. Box 31-310, Lower Hutt, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry Albert Einstein College of Medicine Bronx, New York 10461, Industrial Research Limited P.O. Box 31-310, Lower Hutt, New Zealand
| |
Collapse
|
148
|
Alleman MM, Gottlieb M. Enhanced acquisition of purine nucleosides and nucleobases by purine-starved Crithidia luciliae. Mol Biochem Parasitol 1996; 76:279-87. [PMID: 8920013 DOI: 10.1016/0166-6851(96)02566-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of purine starvation on the ability of the trypanosomatid Crithidia luciliae to accumulate purines were determined. Kinetic studies showed that the uptake of the nucleoside adenosine by purine-starved organisms was approximately 7-fold faster than by nutrient-replete cells. Further, these studies demonstrated that purine-starved organisms accumulated the nucleobases hypoxanthine and adenine at a rate > 100-fold faster than organisms cultivated under replete conditions. Activities of several intracellular purine-salvage enzymes were measured in organisms from both culture conditions. Of those measured, the activities of adenine deaminase and hypoxanthine phosphoribosyltransferase were elevated approximately 4-fold and approximately 11-fold, respectively, in purine-starved organisms. Competitive substrate specificity studies suggested that these elevated enzyme activities were not responsible for the increased rates of uptake by purine-starved cells. The results are consistent with the induction of novel surface membrane purine transporters expressed in response to purine starvation. These studies using C. luciliae may provide insights into the mechanisms of trypanosomatid adaptation to altered environments encountered during the course of the life cycle.
Collapse
Affiliation(s)
- M M Alleman
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
149
|
Callens M, Hannaert V. The rational design of trypanocidal drugs: selective inhibition of the glyceraldehyde-3-phosphate dehydrogenase in Trypanosomatidae. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 1995; 89 Suppl 1:23-30. [PMID: 8745924 DOI: 10.1080/00034983.1995.11813011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Within the framework of a project aimed at the structure-based design of drugs for use against sleeping sickness, selective inhibitors were designed, synthesised and tested. The target protein was glycosomal glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the adenosine part of the NAD cofactor was chosen as lead. After one design cycle and exploiting the selectivity cleft in trypanosomal GAPDH near the C2 of the adenosine ribose, a selective inhibitor, 2'-deoxy-2'-(3-methoxybenzamido)adenosine, was obtained. This compound inhibits human GAPDH only marginally, whereas the enzymes from Trypanosoma brucei and Leishmania mexicana are inhibited by 50% at 2.2 and 0.3 mM, respectively. Moreover, the inhibition of the parasite enzyme is 45-fold (T. brucei) or 170-fold (L. mexicana) greater with this substituted analogue than that produced with adenosine.
Collapse
Affiliation(s)
- M Callens
- Research Unit for Tropical Diseases, International Institute of Cellular and Molecular Pathology, Brussels, Belgium
| | | |
Collapse
|
150
|
ORAL COMMUNICATIONS. Br J Pharmacol 1995. [DOI: 10.1111/j.1476-5381.1995.tb17200.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|