101
|
Abstract
Early development in many animals is programmed by maternally inherited messenger RNAs. Many of these mRNAs are translationally dormant in immature oocytes, but are recruited onto polysomes during meiotic maturation, fertilization, or early embryogenesis. In contrast, other mRNAs that are translated in oocytes are released from polysomes during these later stages of development. Recent studies have begun to define the cis and trans elements that regulate both translational repression and translational induction of maternal mRNA. The inhibition of translation of some mRNAs during early development is controlled by discrete sequences residing in the 3' and 5' untranslated regions, respectively. The translation of other RNAs is due to polyadenylation which, at least in oocytes of the frog Xenopus laevis, is regulated by a U-rich cytoplasmic polyadenylation element (CPE). Although similar, the CPE sequences of various mRNAs are sufficiently different to be bound by different proteins. Two of these proteins and their interactions are described here.
Collapse
|
102
|
Hyman LE, Seiler SH, Whoriskey J, Moore CL. Point mutations upstream of the yeast ADH2 poly(A) site significantly reduce the efficiency of 3'-end formation. Mol Cell Biol 1991; 11:2004-12. [PMID: 2005893 PMCID: PMC359886 DOI: 10.1128/mcb.11.4.2004-2012.1991] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The sequences directing formation of mRNA 3' ends in Saccharomyces cerevisiae are not well defined. This is in contrast to the situation in higher eukaryotes in which the sequence AAUAAA is known to be crucial to proper 3'-end formation. The AAUAAA hexanucleotide is found upstream of the poly(A) site in some but not all yeast genes. One of these is the gene coding for alcohol dehydrogenase, ADH2. Deletion or a double point mutation of the AAUAAA has only a small effect on the efficiency of the reaction, and in contrast to the mammalian system, it is most likely not operating as a major processing signal in the yeast cell. However, we isolated point mutations which reveal that a region located approximately 80 nucleotides upstream of the poly(A) site plays a critical role in either transcription termination, polyadenylation, or both. These mutations represent the first point mutations in yeasts which significantly reduce the efficiency of 3'-end formation.
Collapse
Affiliation(s)
- L E Hyman
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111-1800
| | | | | | | |
Collapse
|
103
|
Involvement of long terminal repeat U3 sequences overlapping the transcription control region in human immunodeficiency virus type 1 mRNA 3' end formation. Mol Cell Biol 1991. [PMID: 1996111 DOI: 10.1128/mcb.11.3.1624] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In retroviral proviruses, the poly(A) site is present in both long terminal repeats (LTRs) but used only in the 3' position. One mechanism to account for this selective poly(A) site usage is that LTR U3 sequences, transcribed only from the 3' poly(A) site, are required in the RNA for efficient processing. To test this possibility, mutations were made in the human immunodeficiency virus type 1 (HIV-1) U3 region and the mutated LTRs were inserted into simple and complex transcription units. HIV-1 poly(A) site usage was then quantitated by S1 nuclease analysis following transfection of each construct into human 293 cells. The results showed that U3 sequences confined to the transcription control region were required for efficient usage of the HIV-1 poly(A) site, even when it was placed 1.5 kb from the promoter. Although the roles of U3 in processing and transcription activation were separable, optimal 3' end formation was partly dependent on HIV-1 enhancer and SP1 binding site sequences.
Collapse
|
104
|
Involvement of long terminal repeat U3 sequences overlapping the transcription control region in human immunodeficiency virus type 1 mRNA 3' end formation. Mol Cell Biol 1991; 11:1624-30. [PMID: 1996111 PMCID: PMC369458 DOI: 10.1128/mcb.11.3.1624-1630.1991] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In retroviral proviruses, the poly(A) site is present in both long terminal repeats (LTRs) but used only in the 3' position. One mechanism to account for this selective poly(A) site usage is that LTR U3 sequences, transcribed only from the 3' poly(A) site, are required in the RNA for efficient processing. To test this possibility, mutations were made in the human immunodeficiency virus type 1 (HIV-1) U3 region and the mutated LTRs were inserted into simple and complex transcription units. HIV-1 poly(A) site usage was then quantitated by S1 nuclease analysis following transfection of each construct into human 293 cells. The results showed that U3 sequences confined to the transcription control region were required for efficient usage of the HIV-1 poly(A) site, even when it was placed 1.5 kb from the promoter. Although the roles of U3 in processing and transcription activation were separable, optimal 3' end formation was partly dependent on HIV-1 enhancer and SP1 binding site sequences.
Collapse
|
105
|
Wahle E. Purification and characterization of a mammalian polyadenylate polymerase involved in the 3' end processing of messenger RNA precursors. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49964-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
106
|
Magendzo K, Shirvan A, Cultraro C, Srivastava M, Pollard HB, Burns AL. Alternative splicing of human synexin mRNA in brain, cardiac, and skeletal muscle alters the unique N-terminal domain. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49978-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
107
|
Terns MP, Jacob ST. Potential role of poly(A) polymerase in the assembly of polyadenylation-specific RNP complexes. Nucleic Acids Res 1991; 19:343-51. [PMID: 2014173 PMCID: PMC333600 DOI: 10.1093/nar/19.2.343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To elucidate the mechanism by which poly(A) polymerase functions in the 3'-end processing of pre-mRNAs, polyadenylation-specific RNP complexes were isolated by sedimentation in sucrose density gradients and the fractions were analyzed for the presence of the enzyme. At early stages of the reaction, the RNP complexes were resolved into distinct peaks which sedimented at approximately 18S and 25S. When reactions were carried out under conditions which support cleavage or polyadenylation, the pre-mRNA was specifically assembled into the larger 25S RNP complexes. Polyclonal antibodies raised against the enzyme purified from a rat hepatoma, which have been shown to inhibit cleavage and polyadenylation (Terns, M., and Jacob, S. T., Mol. Cell. Biol. 9:1435-1444, 1989) also prevented assembly of the 25S polyadenylation-specific RNP complexes. Furthermore, formation of these complexes required the presence of a chromatographic fraction containing poly(A) polymerase. UV cross-linking analysis indicated that the purified enzyme could be readily cross-linked to pre-mRNA but in an apparent sequence-independent manner. Reconstitution studies with the fractionated components showed that formation of the 25S RNP complex required the poly(A) polymerase fraction. Although the enzyme has not been directly localized to the specific complexes, the data presented in this report supports the role of poly(A) polymerase as an essential component of polyadenylation-specific complexes which functions both as a structural and enzymatic constituent.
Collapse
Affiliation(s)
- M P Terns
- Department of Pharmacology and Molecular Biology, Chicago Medical School, IL 60064
| | | |
Collapse
|
108
|
Abstract
Inosinic acid (IMP) dehydrogenase (IMPD) catalyzes the conversion of IMP to XMP as the first committed step in GMP biosynthesis de novo. We have isolated a cDNA containing the complete coding region of mouse IMPD by its ability to complement a bacterial mutant lacking IMPD activity. Two independent cDNA clones were isolated by complementation, of which the longest was 1.7 kb in length. Northern analyses, using the IMPD cDNA as a probe, indicated that mature IMPD mRNA was a single species approx. 2.0 kb in size. Mouse IMPD is almost identical to Chinese hamster and human IMPDs and is highly conserved between Escherichia coli and mouse, with a direct amino acid (aa) identity of 39%, which increases to 60% if conserved aa are considered. The leader region of our longest cDNA clone is G + C-rich and contains two tandem copies of a G + C-rich direct repeat.
Collapse
Affiliation(s)
- A A Tiedeman
- Seattle Biomedical Research Institute, WA 98109-1651
| | | |
Collapse
|
109
|
Sanfaçon H, Brodmann P, Hohn T. A dissection of the cauliflower mosaic virus polyadenylation signal. Genes Dev 1991; 5:141-9. [PMID: 1703507 DOI: 10.1101/gad.5.1.141] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mutagenesis analysis of the polyadenylation [poly(A)] signal from the cauliflower mosaic virus (CaMV), a plant pararetrovirus, revealed striking differences to known vertebrate poly(A) signals. Our results show that (1) the AATAAA sequence is necessary for efficient cleavage at the poly(A) site, although the requirement for an authentic AATAAA might be less stringent in plant than in vertebrate cells; (2) surprisingly and in contrast to the majority of vertebrate poly(A) signals, the sequences downstream of the CaMV poly(A) site do not influence processing efficiency drastically although they affect the precision of cleavage; and (3) deletion of sequences upstream of the CaMV AATAAA sequence decreased processing at the CaMV site dramatically, suggesting the presence of one or several positively acting upstream elements. An oligonucleotide consisting of CaMV upstream sequences could induce the recognition of a normally silent exogenous poly(A) signal when inserted upstream of its AATAAA motif.
Collapse
Affiliation(s)
- H Sanfaçon
- Friedrich Miescher Institut, Basel, Switzerland
| | | | | |
Collapse
|
110
|
Maturation-specific polyadenylation and translational control: diversity of cytoplasmic polyadenylation elements, influence of poly(A) tail size, and formation of stable polyadenylation complexes. Mol Cell Biol 1990. [PMID: 1700272 DOI: 10.1128/mcb.10.11.5634] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early embryonic development in Xenopus laevis is programmed in part by maternally derived mRNAs, many of which are translated at the completion of meiosis (oocyte maturation). Polysomal recruitment of at least one of these mRNAs, G10, is regulated by cytoplasmic poly(A) elongation which, in turn, is dependent upon the cytoplasmic polyadenylation element (CPE) UUUUUUAUAAAG and the hexanucleotide AAUAAA (L. L. McGrew, E. Dworkin-Rastl, M. B. Dworkin, and J. D. Richter, Genes Dev. 3:803-815, 1989). We have investigated whether sequences similar to the G10 RNA CPE that are present in other RNAs could also be responsible for maturation-specific polyadenylation. B4 RNA, which encodes a histone H1-like protein, requires a CPE of the sequence UUUUUAAU as well as the polyadenylation hexanucleotide. The 3' untranslated regions of Xenopus c-mos RNA and mouse HPRT RNA also contain U-rich CPEs since they confer maturation-specific polyadenylation when fused to Xenopus B-globin RNA. Polyadenylation of B4 RNA, which occurs very early during maturation, is limited to 150 residues, and it is this number that is required for polysomal recruitment. To investigate the possible diversity of factors and/or affinities that might control polyadenylation, egg extracts that faithfully adenylate exogenously added RNA were used in competition experiments. At least one factor is shared by B4 and G10 RNAs, although it has a much greater affinity for B4 RNA. Additional experiments demonstrate that an intact CPE and hexanucleotide are both required to compete for the polyadenylation apparatus. Gel mobility shift assays show that two polyadenylation complexes are formed on B4 RNA. Optimal complex formation requires an intact CPE and hexanucleotide but not ongoing adenylation. These data, plus additional RNA competition studies, suggest that stable complex formation is enhanced by an interaction of the trans-acting factors that bind the CPE and polyadenylation hexanucleotide.
Collapse
|
111
|
Thomas AW, Carr DA, Carter JM, Lyon JA. Sequence comparison of allelic forms of the Plasmodium falciparum merozoite surface antigen MSA2. Mol Biochem Parasitol 1990; 43:211-20. [PMID: 2090943 DOI: 10.1016/0166-6851(90)90146-d] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MSA2 is a strain variable blood-stage merozoite surface antigen of Plasmodium falciparum. We have derived the MSA2 nucleotide sequence for four cloned parasite isolates. Comparison with three other published sequences suggests that variation may be limited, and that the architecture of the gene can be conveniently described by segregation into four distinct regions. The N and C terminal regions (Regions 1 and 4) are highly conserved in all seven genes. Six of these seven MSA2 genes can be grouped in a single family, within which variation is largely limited to a region characterized by the presence of tandem repeats (Region 2). We have observed two new forms of repeat in a Gly, Ser, Ala-rich block, and noted the absence of repeat in this block of the CAMP strain. The region downstream of the repeat region (Region 3) is highly conserved within this family. Immunochemical analysis reveals that MSA2 is one of the antigens recognized by immune antibodies eluted from intact merozoites. Regions 2 and 3, expressed as recombinant proteins, are recognized by these antibodies, suggesting that these regions are exposed at the surface of the intact merozoite.
Collapse
Affiliation(s)
- A W Thomas
- Department of Immunology, Walter Reed Army Institute of Research, Washington, DC 20307-5100
| | | | | | | |
Collapse
|
112
|
Paris J, Richter JD. Maturation-specific polyadenylation and translational control: diversity of cytoplasmic polyadenylation elements, influence of poly(A) tail size, and formation of stable polyadenylation complexes. Mol Cell Biol 1990; 10:5634-45. [PMID: 1700272 PMCID: PMC361324 DOI: 10.1128/mcb.10.11.5634-5645.1990] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Early embryonic development in Xenopus laevis is programmed in part by maternally derived mRNAs, many of which are translated at the completion of meiosis (oocyte maturation). Polysomal recruitment of at least one of these mRNAs, G10, is regulated by cytoplasmic poly(A) elongation which, in turn, is dependent upon the cytoplasmic polyadenylation element (CPE) UUUUUUAUAAAG and the hexanucleotide AAUAAA (L. L. McGrew, E. Dworkin-Rastl, M. B. Dworkin, and J. D. Richter, Genes Dev. 3:803-815, 1989). We have investigated whether sequences similar to the G10 RNA CPE that are present in other RNAs could also be responsible for maturation-specific polyadenylation. B4 RNA, which encodes a histone H1-like protein, requires a CPE of the sequence UUUUUAAU as well as the polyadenylation hexanucleotide. The 3' untranslated regions of Xenopus c-mos RNA and mouse HPRT RNA also contain U-rich CPEs since they confer maturation-specific polyadenylation when fused to Xenopus B-globin RNA. Polyadenylation of B4 RNA, which occurs very early during maturation, is limited to 150 residues, and it is this number that is required for polysomal recruitment. To investigate the possible diversity of factors and/or affinities that might control polyadenylation, egg extracts that faithfully adenylate exogenously added RNA were used in competition experiments. At least one factor is shared by B4 and G10 RNAs, although it has a much greater affinity for B4 RNA. Additional experiments demonstrate that an intact CPE and hexanucleotide are both required to compete for the polyadenylation apparatus. Gel mobility shift assays show that two polyadenylation complexes are formed on B4 RNA. Optimal complex formation requires an intact CPE and hexanucleotide but not ongoing adenylation. These data, plus additional RNA competition studies, suggest that stable complex formation is enhanced by an interaction of the trans-acting factors that bind the CPE and polyadenylation hexanucleotide.
Collapse
Affiliation(s)
- J Paris
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | |
Collapse
|
113
|
van Mansfeld AD, Mosselman S, Höppener JW, Zandberg J, van Teeffelen HA, Baas PD, Lips CJ, Jansz HS. Islet amyloid polypeptide: structure and upstream sequences of the IAPP gene in rat and man. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1087:235-40. [PMID: 2223885 DOI: 10.1016/0167-4781(90)90210-s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Islet amyloid polypeptide (IAPP) or amylin is a pancreatic islet hormone which was first found in amyloid in insulinomas and in pancreases of patients with type 2 diabetes. In rat a similar polypeptide occurs; however, pancreatic amyloid in this species has not been described. Here we report the structure of the rat and human IAPP gene. Both consist of three exons and two introns which are very similar. The upstream sequence of the rat IAPP gene contains a TATA-box, a CCAAT-sequence and a GT-element, whereas the upstream sequence of the human IAPP gene contains a TATA-box and a rat insulin enhancer-like sequence. This suggests that the rat and human IAPP gene may be controlled differently at the transcriptional level.
Collapse
Affiliation(s)
- A D van Mansfeld
- Laboratory for Physiological Chemistry, University of Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Sheets MD, Ogg SC, Wickens MP. Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic Acids Res 1990; 18:5799-805. [PMID: 2170946 PMCID: PMC332317 DOI: 10.1093/nar/18.19.5799] [Citation(s) in RCA: 423] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Three sequences in the vicinity of poly (A) addition sites are conserved among vertebrate mRNAs. We analyze the effects of single base changes in each position of AAUAAA and in the nucleotide to which poly (A) is added on 3' end formation in vitro. All 18 possible single base changes of the AAUAAA sequence greatly reduce addition of poly (A) to RNAs that end at the poly (A) addition site, and prevent cleavage of RNAs that extend beyond. The magnitude of reduction varies greatly with the position changed and the base introduced. For any given mutation, cleavage and polyadenylation are reduced to similar extents, strongly suggesting that the same factor interacts with AAUAAA in both reactions. Mutations at and near the conserved adenosine to which poly (A) is added disturb the accuracy, but not the efficiency, of 3' end formation. For example, point mutations at the conserved adenosine shift the 3' end of the most abundant 5' half-molecule downstream by a single nucleotide. The mechanism by which these mutations might exert their effects on the precision of 3' end formation are discussed.
Collapse
Affiliation(s)
- M D Sheets
- Cell and Molecular Biology Program, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
115
|
Abstract
Most mRNAs end in a poly(A) tail, the addition of which is catalysed by a poly(A) polymerase in conjunction with a distinct factor that provides specificity for mRNAs. The reaction is dynamic, involving separable initiation, elongation and termination phases. A companion article in next month's TIBS will review the regulation of poly(A) addition and removal during early animal development.
Collapse
Affiliation(s)
- M Wickens
- Department of Biochemistry, Graduate School, College of Agriculture and Life Sciences, University of Wisconsin-Madison 53796
| |
Collapse
|
116
|
RNA processing in vitro produces mature 3' ends of a variety of Saccharomyces cerevisiae mRNAs. Mol Cell Biol 1990. [PMID: 2160581 DOI: 10.1128/mcb.10.6.2599] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ammonium sulfate fractionation of a Saccharomyces cerevisiae whole-cell extract yielded a preparation which carried out correct and efficient endonucleolytic cleavage and polyadenylation of yeast precursor mRNA substrates corresponding to a variety of yeast genes. These included CYC1 (iso-1-cytochrome c), HIS4 (histidine biosynthesis), GAL7 (galactose-1-phosphate uridyltransferase), H2B2 (histone H2B2), PRT2 (a protein of unknown function), and CBP1 (cytochrome b mRNA processing). The reaction processed these pre-mRNAs with varying efficiencies, with cleavage and polyadenylation exceeding 70% in some cases. In each case, the poly(A) tail corresponded to the addition of approximately 60 adenosine residues, which agrees with the usual length of poly(A) tails formed in vivo. Addition of cordycepin triphosphate or substitution of CTP for ATP in these reactions inhibited polyadenylation but not endonucleolytic cleavage and resulted in accumulation of the cleaved RNA product. Although this system readily generated yeast mRNA 3' ends, no processing occurred on a human alpha-globin pre-mRNA containing the highly conserved AAUAAA polyadenylation signal of higher eucaryotes. This sequence and adjacent signals used in mammalian systems are thus not sufficient to direct mRNA 3' end formation in yeast. Despite the lack of a highly conserved nucleotide sequence signal, the same purified fraction processed the 3' ends of a variety of unrelated yeast pre-mRNAs, suggesting that endonuclease cleavage and polyadenylation may produce the mature 3' ends of all mRNAs in S. cerevisiae.
Collapse
|
117
|
|
118
|
Butler JS, Sadhale PP, Platt T. RNA processing in vitro produces mature 3' ends of a variety of Saccharomyces cerevisiae mRNAs. Mol Cell Biol 1990; 10:2599-605. [PMID: 2160581 PMCID: PMC360618 DOI: 10.1128/mcb.10.6.2599-2605.1990] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ammonium sulfate fractionation of a Saccharomyces cerevisiae whole-cell extract yielded a preparation which carried out correct and efficient endonucleolytic cleavage and polyadenylation of yeast precursor mRNA substrates corresponding to a variety of yeast genes. These included CYC1 (iso-1-cytochrome c), HIS4 (histidine biosynthesis), GAL7 (galactose-1-phosphate uridyltransferase), H2B2 (histone H2B2), PRT2 (a protein of unknown function), and CBP1 (cytochrome b mRNA processing). The reaction processed these pre-mRNAs with varying efficiencies, with cleavage and polyadenylation exceeding 70% in some cases. In each case, the poly(A) tail corresponded to the addition of approximately 60 adenosine residues, which agrees with the usual length of poly(A) tails formed in vivo. Addition of cordycepin triphosphate or substitution of CTP for ATP in these reactions inhibited polyadenylation but not endonucleolytic cleavage and resulted in accumulation of the cleaved RNA product. Although this system readily generated yeast mRNA 3' ends, no processing occurred on a human alpha-globin pre-mRNA containing the highly conserved AAUAAA polyadenylation signal of higher eucaryotes. This sequence and adjacent signals used in mammalian systems are thus not sufficient to direct mRNA 3' end formation in yeast. Despite the lack of a highly conserved nucleotide sequence signal, the same purified fraction processed the 3' ends of a variety of unrelated yeast pre-mRNAs, suggesting that endonuclease cleavage and polyadenylation may produce the mature 3' ends of all mRNAs in S. cerevisiae.
Collapse
Affiliation(s)
- J S Butler
- Department of Biochemistry, University of Rochester Medical Center, New York 14642
| | | | | |
Collapse
|
119
|
Polyadenylation of mRNA: minimal substrates and a requirement for the 2' hydroxyl of the U in AAUAAA. Mol Cell Biol 1990. [PMID: 1969611 DOI: 10.1128/mcb.10.4.1705] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mRNA-specific polyadenylation can be assayed in vitro by using synthetic RNAs that end at or near the natural cleavage site. This reaction requires the highly conserved sequence AAUAAA. At least two distinct nuclear components, an AAUAAA specificity factor and poly(A) polymerase, are required to catalyze the reaction. In this study, we identified structural features of the RNA substrate that are critical for mRNA-specific polyadenylation. We found that a substrate that contained only 11 nucleotides, of which the first six were AAUAAA, underwent AAUAAA-specific polyadenylation. This is the shortest substrate we have used that supports polyadenylation: removal of a single nucleotide from either end of this RNA abolished the reaction. Although AAUAAA appeared to be the only strict sequence requirement for polyadenylation, the number of nucleotides between AAUAAA and the 3' end was critical. Substrates with seven or fewer nucleotides beyond AAUAAA received poly(A) with decreased efficiency yet still bound efficiently to specificity factor. We infer that on these shortened substrates, poly(A) polymerase cannot simultaneously contact the specificity factor bound to AAUAAA and the 3' end of the RNA. By incorporating 2'-deoxyuridine into the U of AAUAAA, we demonstrated that the 2' hydroxyl of the U in AAUAAA was required for the binding of specificity factor to the substrate and hence for poly(A) addition. This finding may indicate that at least one of the factors involved in the interaction with AAUAAA is a protein.
Collapse
|
120
|
Sequence requirements for transcriptional arrest in exon 1 of the murine adenosine deaminase gene. Mol Cell Biol 1990. [PMID: 1690842 DOI: 10.1128/mcb.10.4.1484] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that a transcription arrest site near the 5' end of the murine adenosine deaminase (ADA) gene is significantly involved in the regulation of ADA gene expression. To facilitate the analysis of this transcription arrest site, we have analyzed the transcription products from cloned ADA gene fragments injected into Xenopus laevis oocytes. When genomic fragments spanning the 5' end of the ADA gene were injected into oocytes, a 96-nucleotide (nt) ADA RNA was the major transcription product. The 5' end of this RNA mapped to the transcription initiation site for the ADA gene, and its 3' terminus mapped 7 nt downstream of the translation initiation codon within exon 1. A 300-base-pair fragment of genomic DNA spanning the 5' end of the ADA gene was sufficient to generate the 96-nt transcript which accounted for approximately one-half of the transcription products from injected templates. Deletion of a segment of approximately 65 base pairs, located immediately downstream of the 3' terminus of the 96-nt transcript, resulted in a substantial reduction in the synthesis of the 96-nt transcript and a corresponding increase in the production of larger transcripts. These studies show that the transcriptional apparatus of X. laevis oocytes responds to the transcription arrest site associated with exon 1 of the murine ADA gene and that oocyte injections provide a convenient functional assay for additional mechanistic studies.
Collapse
|
121
|
Elson A, Levanon D, Brandeis M, Dafni N, Bernstein Y, Danciger E, Groner Y. The structure of the human liver-type phosphofructokinase gene. Genomics 1990; 7:47-56. [PMID: 2139864 DOI: 10.1016/0888-7543(90)90517-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have isolated the gene for the human liver-type phosphofructokinase, from upstream to the 5' mRNA terminus to beyond the polyadenylation site. The gene is at least 28 kb long and is divided into 22 exons; it contains conventional splice-junction sequences and one polyadenylation signal. Exons and introns are quite rich in G and C residues; some 60% of all nucleotides are either G or C. Five possible sites of polymorphism have been found. The gene structure reveals no signs of internal similarities despite protein sequence evidence which suggests that the PFK molecule is divided into two similar halves. The structure and organization of the human liver-type PFK gene are shown to be extremely similar to those of the rabbit muscle-type PFK.
Collapse
Affiliation(s)
- A Elson
- Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
122
|
Levinson B, Kenwrick S, Lakich D, Hammonds G, Gitschier J. A transcribed gene in an intron of the human factor VIII gene. Genomics 1990; 7:1-11. [PMID: 2110545 DOI: 10.1016/0888-7543(90)90512-s] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have identified a CpG island contained within the largest factor VIII intron. This island is associated with a 1.8-kb transcript and, unlike factor VIII, is produced abundantly in a wide variety of cell types. The nested gene is oriented in a direction opposite to that of factor VIII and contains no intervening sequences. A cDNA of 1739 bases was isolated from a human liver library and found to have a GC-rich, long open reading frame. Two computer-assisted methods (Fickett TESTCODE and Staden-McLachlan codon usage) predict that the gene codes for a protein. Two other copies of this gene are located within 1.1 Mb of the factor VIII gene. Northern blot analysis of RNA isolated from hemophilia patients deleted for factor VIII sequences has shown that both the intron gene and at least one other copy of the gene are transcribed. A homologous, transcribed sequence is also present in mice.
Collapse
Affiliation(s)
- B Levinson
- Howard Hughes Medical Institute, University of California, San Francisco 94143
| | | | | | | | | |
Collapse
|
123
|
Grundmann U, Römisch J, Siebold B, Bohn H, Amann E. Cloning and expression of a cDNA encoding human placental protein 11, a putative serine protease with diagnostic significance as a tumor marker. DNA Cell Biol 1990; 9:243-50. [PMID: 2350438 DOI: 10.1089/dna.1990.9.243] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The placental protein 11 (PP11) can act as a tumor marker because of its specific association with various forms of cancer. A lambda gt11 cDNA library prepared from human placenta was screened with a polyclonal anti-PP11 antiserum. Out of 10(6) independent clones, only one clone reacted with the anti-PP11 antiserum. The isolated cDNA coded only for the carboxy-terminal part of PP11 and was subsequently used to rescreen a lambda gt10 placental cDNA library. Two cDNA clones out of 10(6) screened were identified encoding the entire protein of 369 amino acids, including a typical hydrophobic signal sequence of 18 amino acids. Expression of the PP11 cDNA coding sequence in Escherichia coli resulted in the synthesis of a protein with the expected size which can be specifically immunoprecipitated with anti-PP11 antiserum. Fractionation experiments revealed that two forms of the protein are present in the bacterial cell: a higher-molecular-weight form of approximately 42 kD in the cytoplasm and a smaller-molecular-weight form of approximately 42 kD in the periplasm. This result indicates that PP11 can be synthesized in E. coli and is process by removal of the hydrophobic signal sequence. Both the placental and the processed recombinant PP11 protein exhibit a protease activity.
Collapse
Affiliation(s)
- U Grundmann
- Research Laboratories, Behringwerke AG, Marburg, FRG
| | | | | | | | | |
Collapse
|
124
|
Ramamurthy V, Maa MC, Harless ML, Wright DA, Kellems RE. Sequence requirements for transcriptional arrest in exon 1 of the murine adenosine deaminase gene. Mol Cell Biol 1990; 10:1484-91. [PMID: 1690842 PMCID: PMC362251 DOI: 10.1128/mcb.10.4.1484-1491.1990] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have previously shown that a transcription arrest site near the 5' end of the murine adenosine deaminase (ADA) gene is significantly involved in the regulation of ADA gene expression. To facilitate the analysis of this transcription arrest site, we have analyzed the transcription products from cloned ADA gene fragments injected into Xenopus laevis oocytes. When genomic fragments spanning the 5' end of the ADA gene were injected into oocytes, a 96-nucleotide (nt) ADA RNA was the major transcription product. The 5' end of this RNA mapped to the transcription initiation site for the ADA gene, and its 3' terminus mapped 7 nt downstream of the translation initiation codon within exon 1. A 300-base-pair fragment of genomic DNA spanning the 5' end of the ADA gene was sufficient to generate the 96-nt transcript which accounted for approximately one-half of the transcription products from injected templates. Deletion of a segment of approximately 65 base pairs, located immediately downstream of the 3' terminus of the 96-nt transcript, resulted in a substantial reduction in the synthesis of the 96-nt transcript and a corresponding increase in the production of larger transcripts. These studies show that the transcriptional apparatus of X. laevis oocytes responds to the transcription arrest site associated with exon 1 of the murine ADA gene and that oocyte injections provide a convenient functional assay for additional mechanistic studies.
Collapse
Affiliation(s)
- V Ramamurthy
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas
| | | | | | | | | |
Collapse
|
125
|
Harendza CJ, Johnson LF. Polyadenylylation signal of the mouse thymidylate synthase gene was created by insertion of an L1 repetitive element downstream of the open reading frame. Proc Natl Acad Sci U S A 1990; 87:2531-5. [PMID: 2157203 PMCID: PMC53723 DOI: 10.1073/pnas.87.7.2531] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mouse thymidylate synthase (TS; EC 2.1.1.45) mRNA is unusual in that the poly(A) tail is added at the translation stop codon. To determine the sequence requirements for 3' processing of this mRNA, we constructed TS minigenes with deletion and point mutations in potential regulatory sequences. The minigenes were transiently transfected into cultured cells and the effect on 3' processing was determined by S1 nuclease protection assays. These analyses revealed that at least two elements are required for efficient polyadenylylation at the stop codon. The first is an upstream AUUAAA sequence. When this was changed to AUCAAA, polyadenylylation at the stop codon was blocked. However, when it was changed to the canonical AAUAAA hexanucleotide, the amount of TS mRNA increased severalfold. The second element is a stretch of 14 consecutive uridylate residues 32 nucleotides downstream of the stop codon. This U-rich region is absent from the human TS gene, which explains why the human TS mRNA is not polyadenylylated at the stop codon even though the two genes are otherwise almost identical through this region. The most surprising observation was that the U-rich region corresponds to the 3' end of a 360-nucleotide mouse L1 repetitive element that was inserted in opposite orientation to the gene more than 5 million years ago. Thus the polyadenylylation signal of the present mouse TS gene was created by the transposition of a repetitive element downstream of a cryptic polyadenylylation signal.
Collapse
Affiliation(s)
- C J Harendza
- Department of Biochemistry and Molecular Genetics, Ohio State University, Columbus 43210
| | | |
Collapse
|
126
|
Wigley PL, Sheets MD, Zarkower DA, Whitmer ME, Wickens M. Polyadenylation of mRNA: minimal substrates and a requirement for the 2' hydroxyl of the U in AAUAAA. Mol Cell Biol 1990; 10:1705-13. [PMID: 1969611 PMCID: PMC362276 DOI: 10.1128/mcb.10.4.1705-1713.1990] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
mRNA-specific polyadenylation can be assayed in vitro by using synthetic RNAs that end at or near the natural cleavage site. This reaction requires the highly conserved sequence AAUAAA. At least two distinct nuclear components, an AAUAAA specificity factor and poly(A) polymerase, are required to catalyze the reaction. In this study, we identified structural features of the RNA substrate that are critical for mRNA-specific polyadenylation. We found that a substrate that contained only 11 nucleotides, of which the first six were AAUAAA, underwent AAUAAA-specific polyadenylation. This is the shortest substrate we have used that supports polyadenylation: removal of a single nucleotide from either end of this RNA abolished the reaction. Although AAUAAA appeared to be the only strict sequence requirement for polyadenylation, the number of nucleotides between AAUAAA and the 3' end was critical. Substrates with seven or fewer nucleotides beyond AAUAAA received poly(A) with decreased efficiency yet still bound efficiently to specificity factor. We infer that on these shortened substrates, poly(A) polymerase cannot simultaneously contact the specificity factor bound to AAUAAA and the 3' end of the RNA. By incorporating 2'-deoxyuridine into the U of AAUAAA, we demonstrated that the 2' hydroxyl of the U in AAUAAA was required for the binding of specificity factor to the substrate and hence for poly(A) addition. This finding may indicate that at least one of the factors involved in the interaction with AAUAAA is a protein.
Collapse
Affiliation(s)
- P L Wigley
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706-1569
| | | | | | | | | |
Collapse
|
127
|
A multicomponent complex is required for the AAUAAA-dependent cross-linking of a 64-kilodalton protein to polyadenylation substrates. Mol Cell Biol 1990. [PMID: 2304466 DOI: 10.1128/mcb.10.3.1244] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 64-kilodalton (kDa) polypeptide that is cross-linked by UV light specifically to polyadenylation substrate RNAs containing a functional AAUAAA element has been identified previously. Fractionated HeLa nuclear components that can be combined to regenerate efficient and accurate polyadenylation in vitro have now been screened for the presence of the 64-kDa protein. None of the individual components contained an activity which could generate the 64-kDa species upon UV cross-linking in the presence of substrate RNA. It was necessary to mix two components, cleavage stimulation factor and specificity factor, to reconstitute 64-kDa protein-RNA cross-linking. The addition of cleavage factors to this mixture very efficiently reconstituted the AAUAAA-specific 64-kDa protein-RNA interaction. The 64-kDa protein, therefore, is present in highly purified, reconstituted polyadenylation reactions. However, it is necessary to form a multicomponent complex to efficiently cross-link the protein to a substrate RNA.
Collapse
|
128
|
Wilusz J, Shenk T, Takagaki Y, Manley JL. A multicomponent complex is required for the AAUAAA-dependent cross-linking of a 64-kilodalton protein to polyadenylation substrates. Mol Cell Biol 1990; 10:1244-8. [PMID: 2304466 PMCID: PMC361011 DOI: 10.1128/mcb.10.3.1244-1248.1990] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A 64-kilodalton (kDa) polypeptide that is cross-linked by UV light specifically to polyadenylation substrate RNAs containing a functional AAUAAA element has been identified previously. Fractionated HeLa nuclear components that can be combined to regenerate efficient and accurate polyadenylation in vitro have now been screened for the presence of the 64-kDa protein. None of the individual components contained an activity which could generate the 64-kDa species upon UV cross-linking in the presence of substrate RNA. It was necessary to mix two components, cleavage stimulation factor and specificity factor, to reconstitute 64-kDa protein-RNA cross-linking. The addition of cleavage factors to this mixture very efficiently reconstituted the AAUAAA-specific 64-kDa protein-RNA interaction. The 64-kDa protein, therefore, is present in highly purified, reconstituted polyadenylation reactions. However, it is necessary to form a multicomponent complex to efficiently cross-link the protein to a substrate RNA.
Collapse
Affiliation(s)
- J Wilusz
- Howard Hughes Medical Institute, Department of Biology, Princeton University, New Jersey 08544
| | | | | | | |
Collapse
|
129
|
Molecular cloning of a cDNA encoding a major pathogenic domain of the Heymann nephritis antigen gp330. Proc Natl Acad Sci U S A 1990; 87:1811-5. [PMID: 2408041 PMCID: PMC53573 DOI: 10.1073/pnas.87.5.1811] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Heymann nephritis is an experimental autoimmune disease in rats that is characterized by accumulation of immune deposits (IDs) in kidney glomeruli. The disease is initiated by the binding of circulating antibodies to a membrane glycoprotein, gp330, which is a resident protein of clathrin-coated pits on glomerular epithelial cells (podocytes). We have defined a domain representing about 10% of gp330 that appears to be responsible for the formation of stable glomerular IDs. A cDNA clone (clone 14) was isolated from a rat kidney cDNA expression library by screening with IgG eluted from glomeruli of rats in early stages (3 days) of passive Heymann nephritis. The clone 14 cDNA contains an open reading frame encoding the C-terminal 319 amino acids of gp330. The predicted amino acid sequence contains four internal repeats of 11 amino acids, which are also found in the putative ligand-binding region of carbohydrate-binding lectin-like receptors. An antibody raised against the clone 14 fusion protein recognized gp330 by immunoblotting and induced formation of subepithelial IDs typical of passive Heymann nephritis when injected into normal rats. When the clone 14 fusion protein was used to immunize rats, subepithelial IDs of active Heymann nephritis were found after 12 weeks. No IDs were formed by active or passive immunization of rats with fusion proteins derived from other regions of gp330. These results demonstrate that clone 14 encodes a region of gp330 responsible for antibody binding and ID formation in vivo.
Collapse
|
130
|
Polyadenylation-specific complexes undergo a transition early in the polymerization of a poly(A) tail. Mol Cell Biol 1990. [PMID: 2294406 DOI: 10.1128/mcb.10.1.295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed several properties of the complex that forms between RNAs that end at the poly(A) site of simian virus 40 late mRNA and factors present in a HeLa cell nuclear extract. Formation of this polyadenylation-specific complex requires the sequence AAUAAA and a proximal 3' end. We have observed three changes in the polyadenylation complex early in the addition of the poly(A) tail. First, the complex becomes heparin sensitive after the addition of approximately 10 adenosines. Second, a 68-kilodalton protein present in the complex, which can be cross-linked by UV light to the RNA before polyadenylation has begun, no longer can be cross-linked after approximately 10 adenosines have been added. Third, after 30 adenosines have been added, the AAUAAA sequence becomes accessible to a complementary oligonucleotide and RNase H. This accessibility gradually increases with longer poly(A) tail lengths until, with the addition of 60 A's, all substrates are accessible at AAUAAA. Sheets and Wickens (Genes Dev. 3:1401-1412, 1989) have recently demonstrated two phases in the addition of a poly(A) tail: the first requires AAUAAA, whereas the second is independent of AAUAAA but requires a short oligo(A) primer. The data reported here further support a biphasic model for poly(A) addition and may indicate disengagement of specific factors from AAUAAA after the initiation phase.
Collapse
|
131
|
Timmers HT, Pronk GJ, Bos JL, van der Eb AJ. Analysis of the rat JE gene promoter identifies an AP-1 binding site essential for basal expression but not for TPA induction. Nucleic Acids Res 1990; 18:23-34. [PMID: 2106664 PMCID: PMC330199 DOI: 10.1093/nar/18.1.23] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have cloned the immediate-early serum-reponsive JE gene from the rat in order to study the regulation of this gene. We show that sequences of the JE promoter region confer serum-inducibility to a reporter gene. Analysis of the promoter in transient assays reveals that: i) the -141/-88 region is required for the response to the phorbol ester TPA, ii) the -70/-38 region is essential for basal activity. This latter region harbors the sequence TGACTCC, which resembles the consensus site for AP-1 binding, TGACTCA. DNA-protein binding assays indicate that the JE AP-1 site and the consensus AP-1 site have an overlapping but not identical binding spectrum for AP-1 proteins. Our data suggest that the inability of some AP-1 sites to respond to TPA is caused by subtle differences in affinity for AP-1 proteins.
Collapse
Affiliation(s)
- H T Timmers
- Laboratory for Molecular Carcinogenesis, Sylvius Laboratories, University of Leiden, The Netherlands
| | | | | | | |
Collapse
|
132
|
Bardwell VJ, Wickens M. Polyadenylation-specific complexes undergo a transition early in the polymerization of a poly(A) tail. Mol Cell Biol 1990; 10:295-302. [PMID: 2294406 PMCID: PMC360737 DOI: 10.1128/mcb.10.1.295-302.1990] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have analyzed several properties of the complex that forms between RNAs that end at the poly(A) site of simian virus 40 late mRNA and factors present in a HeLa cell nuclear extract. Formation of this polyadenylation-specific complex requires the sequence AAUAAA and a proximal 3' end. We have observed three changes in the polyadenylation complex early in the addition of the poly(A) tail. First, the complex becomes heparin sensitive after the addition of approximately 10 adenosines. Second, a 68-kilodalton protein present in the complex, which can be cross-linked by UV light to the RNA before polyadenylation has begun, no longer can be cross-linked after approximately 10 adenosines have been added. Third, after 30 adenosines have been added, the AAUAAA sequence becomes accessible to a complementary oligonucleotide and RNase H. This accessibility gradually increases with longer poly(A) tail lengths until, with the addition of 60 A's, all substrates are accessible at AAUAAA. Sheets and Wickens (Genes Dev. 3:1401-1412, 1989) have recently demonstrated two phases in the addition of a poly(A) tail: the first requires AAUAAA, whereas the second is independent of AAUAAA but requires a short oligo(A) primer. The data reported here further support a biphasic model for poly(A) addition and may indicate disengagement of specific factors from AAUAAA after the initiation phase.
Collapse
Affiliation(s)
- V J Bardwell
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | |
Collapse
|
133
|
|
134
|
Nagoshi RN, Baker BS. Regulation of sex-specific RNA splicing at the Drosophila doublesex gene: cis-acting mutations in exon sequences alter sex-specific RNA splicing patterns. Genes Dev 1990; 4:89-97. [PMID: 2155161 DOI: 10.1101/gad.4.1.89] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sex-specific alternative RNA splicing of the doublesex (dsx) pre-mRNA results in sex-specific polypeptides that regulate both male and female somatic sexual differentiation in Drosophila melanogaster. We have molecularly characterized a class of dsx mutations that act in cis to disrupt the regulation of dsx RNA processing, causing the dsx pre-mRNA to be spliced in the male-specific pattern regardless of the chromosomal sex of the fly. These dsx mutations are associated with rearrangements in the female-specific exon just 3' to the female-specific splice acceptor. The mutations do not affect the female-specific splice sites or intron that are identical to wild-type sequences. These results indicate that sequences in the female-specific exon are important for the regulation of sex-specific RNA splicing, perhaps by acting as sites of interaction with trans-acting regulators. Furthermore, the data suggest that female-specific regulation of dsx RNA processing occurs by promoting the usage of the female splice acceptor site, rather than by repressing the usage of the alternative male-specific splice acceptor.
Collapse
Affiliation(s)
- R N Nagoshi
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | |
Collapse
|
135
|
Geraghty DE, Wei XH, Orr HT, Koller BH. Human leukocyte antigen F (HLA-F). An expressed HLA gene composed of a class I coding sequence linked to a novel transcribed repetitive element. J Exp Med 1990; 171:1-18. [PMID: 1688605 PMCID: PMC2187653 DOI: 10.1084/jem.171.1.1] [Citation(s) in RCA: 162] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We describe here the isolation and sequencing of a previously uncharacterized HLA class I gene. This gene, HLA-5.4, is the third non-HLA-A,B,C gene characterized whose sequence shows it encodes an intact class I protein. RNase protection assays with a probe specific for this gene demonstrated its expression in B lymphoblastoid cell lines, in resting T cells, and skin cells, while no mRNA could be detected in the T cell line Molt 4. Consistent with a pattern of expression different from that of other class I genes, DNA sequence comparisons identified potential regulator motifs unique to HLA-5.4 and possibly essential for tissue-specific expression. Protein sequence analysis of human and murine class I antigens has identified 10 highly conserved residues believed to be involved in antigen binding. Five of these are altered in HLA-5.4, and of these, three are nonconservative. In addition, examination of the HLA-5.4 DNA sequence predicts that the cytoplasmic segment of this protein is shorter than that of the classical transplantation antigens. The 3' untranslated region of the HLA-5.4 gene contains one member of a previously undescribed multigene family consisting of at least 30 members. Northern analysis showed that several of these sequences were transcribed, and the most ubiquitous transcript, a 600-nucleotide polyadenylated mRNA, was found in all tissues and cells examined. This sequence is conserved in the mouse genome, where a similar number of copies were found, and one of these sequences was also transcribed, yielding a 600-nucleotide mRNA. The characterization of this unique HLA class I gene and the demonstration of its tissue-specific expression have prompted us to propose that HLA-5.4 be designated HLA-F.
Collapse
Affiliation(s)
- D E Geraghty
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455
| | | | | | | |
Collapse
|
136
|
Nakato H, Toriyama M, Izumi S, Tomino S. Structure and expression of mRNA for a pupal cuticle protein of the silkworm, Bombyx mori. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0020-1790(90)90080-e] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
137
|
Multiple forms of poly(A) polymerases purified from HeLa cells function in specific mRNA 3'-end formation. Mol Cell Biol 1989. [PMID: 2555686 DOI: 10.1128/mcb.9.10.4229] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly(A) polymerases (PAPs) from HeLa cell cytoplasmic and nuclear fractions were extensively purified by using a combination of fast protein liquid chromatography and standard chromatographic methods. Several forms of the enzyme were identified, two from the nuclear fraction (NE PAPs I and II) and one from the cytoplasmic fraction (S100 PAP). NE PAP I had chromatographic properties similar to those of S100 PAP, and both enzymes displayed higher activities in the presence of Mn2+ than in the presence of Mg2+, whereas NE PAP II was chromatographically distinct and had approximately equal levels of activity in the presence of Mn2+ and Mg2+. Each of the enzymes, when mixed with other nuclear fractions containing cleavage or specificity factors, was able to reconstitute efficient cleavage and polyadenylation of pre-mRNAs containing an AAUAAA sequence element. The PAPs alone, however, showed no preference for precursors containing an intact AAUAAA sequence over a mutated one, providing further evidence that the PAPs have no intrinsic ability to recognize poly(A) addition sites. Two additional properties of the three enzymes suggest that they are related: sedimentation in glycerol density gradients indicated that the native size of each enzyme is approximately 50 to 60 kilodaltons, and antibodies against a rat hepatoma PAP inhibited the ability of each enzyme to function in AAUAAA-dependent polyadenylation.
Collapse
|
138
|
Müller WE, Wenger R, Bachmann M, Ugarković D, Courtis NC, Schröder HC. Poly(A) metabolism and aging: a current view. Arch Gerontol Geriatr 1989; 9:231-50. [PMID: 2701047 DOI: 10.1016/0167-4943(89)90043-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polyadenylation of mRNA is a key step in post-transcriptional control of gene expression. Therefore, age-dependent changes in poly(A) synthesis have to play a crucial role in the course of cellular aging. In this review, the importance of the signal sequence, poly(A), in determining mRNA stability and intracellular distribution of mRNA during aging is discussed.
Collapse
Affiliation(s)
- W E Müller
- Institut für Physiologische Chemie, Mainz University, F.R.G
| | | | | | | | | | | |
Collapse
|
139
|
Ryner LC, Takagaki Y, Manley JL. Multiple forms of poly(A) polymerases purified from HeLa cells function in specific mRNA 3'-end formation. Mol Cell Biol 1989; 9:4229-38. [PMID: 2555686 PMCID: PMC362502 DOI: 10.1128/mcb.9.10.4229-4238.1989] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Poly(A) polymerases (PAPs) from HeLa cell cytoplasmic and nuclear fractions were extensively purified by using a combination of fast protein liquid chromatography and standard chromatographic methods. Several forms of the enzyme were identified, two from the nuclear fraction (NE PAPs I and II) and one from the cytoplasmic fraction (S100 PAP). NE PAP I had chromatographic properties similar to those of S100 PAP, and both enzymes displayed higher activities in the presence of Mn2+ than in the presence of Mg2+, whereas NE PAP II was chromatographically distinct and had approximately equal levels of activity in the presence of Mn2+ and Mg2+. Each of the enzymes, when mixed with other nuclear fractions containing cleavage or specificity factors, was able to reconstitute efficient cleavage and polyadenylation of pre-mRNAs containing an AAUAAA sequence element. The PAPs alone, however, showed no preference for precursors containing an intact AAUAAA sequence over a mutated one, providing further evidence that the PAPs have no intrinsic ability to recognize poly(A) addition sites. Two additional properties of the three enzymes suggest that they are related: sedimentation in glycerol density gradients indicated that the native size of each enzyme is approximately 50 to 60 kilodaltons, and antibodies against a rat hepatoma PAP inhibited the ability of each enzyme to function in AAUAAA-dependent polyadenylation.
Collapse
Affiliation(s)
- L C Ryner
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | |
Collapse
|
140
|
Binder R, Hwang SP, Ratnasabapathy R, Williams DL. Degradation of apolipoprotein II mRNA occurs via endonucleolytic cleavage at 5′-AAU-3′/5′-UAA-3′ elements in single-stranded loop domains of the 3′-noncoding region. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84794-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
141
|
Abstract
Complementary DNA (cDNA) and genomic clones encoding chicken glutamine synthetase (Glns) have been isolated. The nucleotide (nt) sequence of the 2728-bp cDNA specifies a 91-nt 5' untranslated sequence, a 1119-nt open reading frame, and a 1518-nt 3' untranslated sequence that contains several A + T-rich regions but lacks a canonical endonucleolytic-cleavage/polyadenylation signal. Based on sequence analysis of the cloned gene, the Glns transcription unit spans 7.0 kb and contains seven exons.
Collapse
Affiliation(s)
- H F Pu
- Department of Chemistry, University of Illinois, Chicago 60680
| | | |
Collapse
|
142
|
Abstract
To determine the role of poly(A) polymerase in 3'-end processing of mRNA, the effect of purified poly(A) polymerase antibodies on endonucleolytic cleavage and polyadenylation was studied in HeLa nuclear extracts, using adenovirus L3 pre-mRNA as the substrate. Both Mg2+- and Mn2+-dependent reactions catalyzing addition of 200 to 250 and 400 to 800 adenylic acid residues, respectively, were inhibited by the antibodies, which suggested that the two reactions were catalyzed by the same enzyme. Anti-poly(A) polymerase antibodies also inhibited the cleavage reaction when the reaction was coupled or chemically uncoupled with polyadenylation. These antibodies also prevented formation of specific complexes between the RNA substrate and components of nuclear extracts during cleavage or polyadenylation, with the concurrent appearance of another, antibody-specific complex. These studies demonstrate that (i) previously characterized poly(A) polymerase is the enzyme responsible for addition of the poly(A) tract at the correct cleavage site and probably for the elongation of poly(A) chains and (ii) the coupling of these two 3'-end processing reactions appears to result from the potential requirement of poly(A) polymerase for the cleavage reaction. The results suggest that the specific endonuclease is associated with poly(A) polymerase in a functional complex.
Collapse
|
143
|
Sequences downstream of AAUAAA signals affect pre-mRNA cleavage and polyadenylation in vitro both directly and indirectly. Mol Cell Biol 1989. [PMID: 2566911 DOI: 10.1128/mcb.9.4.1759] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the role of sequences lying downstream of the conserved AAUAAA hexanucleotide in pre-mRNA cleavage and polyadenylation, deletions or substitutions were constructed in polyadenylation signals from simian virus 40 and adenovirus, and their effects were assayed in both crude and fractionated HeLa cell nuclear extracts. As expected, these sequences influenced the efficiency of both cleavage and polyadenylation as well as the accuracy of the cleavage reaction. Sequences near or upstream of the actual site of poly(A) addition appeared to specify a unique cleavage site, since their deletion resulted, in some cases, in heterogeneous cleavage. Furthermore, the sequences that allowed the simian virus 40 late pre-RNA to be cleaved preferentially by partially purified cleavage activity were also those at the cleavage site itself. Interestingly, sequences downstream of the cleavage site interacted with factors not directly involved in catalyzing cleavage and polyadenylation, since the effects of deletions were substantially diminished when partially purified components were used in assays. In addition, these sequences contained elements that could affect 3'-end formation both positively and negatively.
Collapse
|
144
|
Connelly S, Manley JL. A CCAAT box sequence in the adenovirus major late promoter functions as part of an RNA polymerase II termination signal. Cell 1989; 57:561-71. [PMID: 2720783 DOI: 10.1016/0092-8674(89)90126-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Termination of transcription by RNA polymerase II has been shown in several cases to require a functional poly(A) addition site, although the actual termination event occurs further downstream. To define in more detail the sequences required for termination, we mapped the site at which transcription terminates on a chimeric plasmid template that contains the adenovirus MLP directing transcription of the SV40 early region. Termination in cells transfected with this plasmid occurs within a discrete promoter-proximal region that contains an inverted CCAAT-box sequence. This region of the MLP was also capable of directing termination, in an orientation-dependent manner, when inserted downstream of the poly(A) site in the plasmid template. In addition, in adenovirus-infected cells, transcription initiated from upstream promoters on the adenovirus chromosome terminates within the same MLP promoter-proximal region, both establishing the physiological relevance of the observed CCAAT-box dependent termination, and also suggesting a possible function for transcription termination in adenovirus infection.
Collapse
Affiliation(s)
- S Connelly
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | |
Collapse
|
145
|
Wu SC, Györgyey J, Dudits D. Polyadenylated H3 histone transcripts and H3 histone variants in alfalfa. Nucleic Acids Res 1989; 17:3057-63. [PMID: 2471147 PMCID: PMC317713 DOI: 10.1093/nar/17.8.3057] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Histone H3 mRNAs were found in polyA(+) fractions of total RNA prepared from alfalfa plants, calli and somatic embryos. The sequence analysis of cDNAs revealed the presence of a polyA tail on independent alfalfa H3 mRNAs. A highly conserved sequence motif AAUGAAA identified about 20bp upstream from the 3' ends of the alfalfa H3 cDNAs was suggested to be one of the possible regulatory elements in the 3' end formation and polyadenylation. Three out of the four analysed H3 cDNAs have more than 97% homology with a genomic clone and encode the same protein. While the fourth represents a minor species with only 78.8% homology to the coding region of the genomic clone and encodes a H3 histone with four amino acid replacements. On the basis of compilation analysis we suggest a consensus sequence for plant H3 histones which differs from that of animal's by four amino acid changes.
Collapse
Affiliation(s)
- S C Wu
- Institute of Genetics, Hungarian Academy of Sciences, Szeged
| | | | | |
Collapse
|
146
|
Parmentier M, De Vijlder JJ, Muir E, Szpirer C, Islam MQ, Geurts van Kessel A, Lawson DE, Vassart G. The human calbindin 27-kDa gene: structural organization of the 5' and 3' regions, chromosomal assignment, and restriction fragment length polymorphism. Genomics 1989; 4:309-19. [PMID: 2565876 DOI: 10.1016/0888-7543(89)90335-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The 5' and 3' regions of the human gene coding for calbindin 27 kDa were cloned and sequenced. Structural features of the 5' region included the presence of an Alu repeat and two elements regularly associated with eukaryotic promoters: an alternating purine-pyrimidine element and a homopurine-homopyrimidine box. The 3' region contained a second Alu family member and a degenerate 1.4-kb L1 repeat. A comparison with the chicken promoter was made in order to define regions conserved in evolution and potentially important in gene expression regulation. The greater similarity is located around the TATA box, but strongly conserved elements were not found. The gene was assigned to chromosome 8 by using human-rodent hybrid cell lines. Two restriction fragment length polymorphisms (HindIII and SacI) were detected with a cDNA probe recognizing the 3' end of the gene.
Collapse
Affiliation(s)
- M Parmentier
- IRIBHN, Medical School, Free University of Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Ryner LC, Takagaki Y, Manley JL. Sequences downstream of AAUAAA signals affect pre-mRNA cleavage and polyadenylation in vitro both directly and indirectly. Mol Cell Biol 1989; 9:1759-71. [PMID: 2566911 PMCID: PMC362595 DOI: 10.1128/mcb.9.4.1759-1771.1989] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To investigate the role of sequences lying downstream of the conserved AAUAAA hexanucleotide in pre-mRNA cleavage and polyadenylation, deletions or substitutions were constructed in polyadenylation signals from simian virus 40 and adenovirus, and their effects were assayed in both crude and fractionated HeLa cell nuclear extracts. As expected, these sequences influenced the efficiency of both cleavage and polyadenylation as well as the accuracy of the cleavage reaction. Sequences near or upstream of the actual site of poly(A) addition appeared to specify a unique cleavage site, since their deletion resulted, in some cases, in heterogeneous cleavage. Furthermore, the sequences that allowed the simian virus 40 late pre-RNA to be cleaved preferentially by partially purified cleavage activity were also those at the cleavage site itself. Interestingly, sequences downstream of the cleavage site interacted with factors not directly involved in catalyzing cleavage and polyadenylation, since the effects of deletions were substantially diminished when partially purified components were used in assays. In addition, these sequences contained elements that could affect 3'-end formation both positively and negatively.
Collapse
Affiliation(s)
- L C Ryner
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | |
Collapse
|
148
|
Terns MP, Jacob ST. Role of poly(A) polymerase in the cleavage and polyadenylation of mRNA precursor. Mol Cell Biol 1989; 9:1435-44. [PMID: 2566910 PMCID: PMC362560 DOI: 10.1128/mcb.9.4.1435-1444.1989] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To determine the role of poly(A) polymerase in 3'-end processing of mRNA, the effect of purified poly(A) polymerase antibodies on endonucleolytic cleavage and polyadenylation was studied in HeLa nuclear extracts, using adenovirus L3 pre-mRNA as the substrate. Both Mg2+- and Mn2+-dependent reactions catalyzing addition of 200 to 250 and 400 to 800 adenylic acid residues, respectively, were inhibited by the antibodies, which suggested that the two reactions were catalyzed by the same enzyme. Anti-poly(A) polymerase antibodies also inhibited the cleavage reaction when the reaction was coupled or chemically uncoupled with polyadenylation. These antibodies also prevented formation of specific complexes between the RNA substrate and components of nuclear extracts during cleavage or polyadenylation, with the concurrent appearance of another, antibody-specific complex. These studies demonstrate that (i) previously characterized poly(A) polymerase is the enzyme responsible for addition of the poly(A) tract at the correct cleavage site and probably for the elongation of poly(A) chains and (ii) the coupling of these two 3'-end processing reactions appears to result from the potential requirement of poly(A) polymerase for the cleavage reaction. The results suggest that the specific endonuclease is associated with poly(A) polymerase in a functional complex.
Collapse
Affiliation(s)
- M P Terns
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey 17033
| | | |
Collapse
|
149
|
Hengst JA, Georgoff I, Isom HC, Jacob ST. Association of newly synthesized poly(A) polymerase with four distinct polypeptides. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77628-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
150
|
Yoshihara K, Hashida T, Tanaka Y, Matsunami N, Yamaguchi A, Kamiya T. Mode of enzyme-bound poly(ADP-ribose) synthesis and histone modification by reconstituted poly(ADP-ribose) polymerase-DNA-cellulose complex. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69633-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|