101
|
Abstract
DNA polymerase ε (Pol ε) is one of three replicative DNA polymerases in eukaryotic cells. Pol ε is a multi-subunit DNA polymerase with many functions. For example, recent studies in yeast have suggested that Pol ε is essential during the initiation of DNA replication and also participates during leading strand synthesis. In this chapter, we will discuss the structure of Pol ε, the individual subunits and their function.
Collapse
Affiliation(s)
- Matthew Hogg
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden
| | | |
Collapse
|
102
|
Orlova EV, Saibil HR. Structural analysis of macromolecular assemblies by electron microscopy. Chem Rev 2011; 111:7710-48. [PMID: 21919528 PMCID: PMC3239172 DOI: 10.1021/cr100353t] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Indexed: 12/11/2022]
Affiliation(s)
- E. V. Orlova
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - H. R. Saibil
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| |
Collapse
|
103
|
Zhou K, Kanai R, Lee P, Wang HW, Modis Y. Toll-like receptor 5 forms asymmetric dimers in the absence of flagellin. J Struct Biol 2011; 177:402-9. [PMID: 22173220 DOI: 10.1016/j.jsb.2011.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/23/2011] [Accepted: 12/01/2011] [Indexed: 11/19/2022]
Abstract
The structure of full-length human TLR5 determined by electron microscopy single-particle image reconstruction at 26Å resolution shows that TLR5 forms an asymmetric homodimer via ectodomain interactions. The structure shows that like TLR9, TLR5 dimerizes in the absence of ligand. The asymmetry of the dimer suggests that TLR5 may recognize two flagellin molecules cooperatively to establish an optimal flagellin response threshold. A TLR5 homology model was generated and fitted into the electron microscopy structure. All seven predicted N-linked glycosylation sites are exposed on the molecular surface, away from the dimer interface. Glycosylation at the first five sites was confirmed by tandem mass spectrometry. Two aspartate residues proposed to interact with flagellin (Asp294 and Asp366) are sterically occluded by a glycan at position 342. In contrast, the central region of the ectodomains near the dimer interface is unobstructed by glycans. Ligand binding in this region would be consistent with the ligand binding sites of other TLRs.
Collapse
Affiliation(s)
- Kaifeng Zhou
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
104
|
Parkinson DY, Knoechel C, Yang C, Larabell CA, Le Gros MA. Automatic alignment and reconstruction of images for soft X-ray tomography. J Struct Biol 2011; 177:259-66. [PMID: 22155289 DOI: 10.1016/j.jsb.2011.11.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/17/2011] [Accepted: 11/23/2011] [Indexed: 01/23/2023]
Abstract
Soft X-ray tomography (SXT) is a powerful imaging technique that generates quantitative, 3D images of the structural organization of whole cells in a near-native state. SXT is also a high-throughput imaging technique. At the National Center for X-ray Tomography (NCXT), specimen preparation and image collection for tomographic reconstruction of a whole cell require only minutes. Aligning and reconstructing the data, however, take significantly longer. Here we describe a new component of the high throughput computational pipeline used for processing data at the NCXT. We have developed a new method for automatic alignment of projection images that does not require fiducial markers or manual interaction with the software. This method has been optimized for SXT data sets, which routinely involve full rotation of the specimen. This software gives users of the NCXT SXT instrument a new capability - virtually real-time initial 3D results during an imaging experiment, which can later be further refined. The new code, Automatic Reconstruction 3D (AREC3D), is also fast, reliable, and robust. The fundamental architecture of the code is also adaptable to high performance GPU processing, which enables significant improvements in speed and fidelity.
Collapse
Affiliation(s)
- Dilworth Y Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
105
|
Panaretos VM, Konis K. Sparse approximations of protein structure from noisy random projections. Ann Appl Stat 2011. [DOI: 10.1214/11-aoas479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
106
|
Li M, Xu G, Sorzano COS, Sun F, Bajaj CL. Single-particle reconstruction using L(2)-gradient flow. J Struct Biol 2011; 176:259-67. [PMID: 21864687 PMCID: PMC3215675 DOI: 10.1016/j.jsb.2011.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 08/04/2011] [Accepted: 08/09/2011] [Indexed: 11/16/2022]
Abstract
In this paper, we present an iterative algorithm for reconstructing a three-dimensional density function from a set of two dimensional electron microscopy images. By minimizing an energy functional consisting of a fidelity term and a regularization term, an L(2)-gradient flow is derived. The flow is integrated by a finite element method in the spatial direction and an explicit Euler scheme in the temporal direction. Our method compares favorably with those of the weighted back projection, Fourier method, algebraic reconstruction technique and simultaneous iterative reconstruction technique.
Collapse
Affiliation(s)
- Ming Li
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
107
|
Krokowski D, Gaccioli F, Majumder M, Mullins MR, Yuan CL, Papadopoulou B, Merrick WC, Komar AA, Taylor D, Hatzoglou M. Characterization of hibernating ribosomes in mammalian cells. Cell Cycle 2011; 10:2691-702. [PMID: 21768774 DOI: 10.4161/cc.10.16.16844] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Protein synthesis across kingdoms involves the assembly of 70S (prokaryotes) or 80S (eukaryotes) ribosomes on the mRNAs to be translated. 70S ribosomes are protected from degradation in bacteria during stationary growth or stress conditions by forming dimers that migrate in polysome profiles as 100S complexes. Formation of ribosome dimers in Escherichia coli is mediated by proteins, namely the ribosome modulation factor (RMF), which is induced in the stationary phase of cell growth. It is reported here a similar ribosomal complex of 110S in eukaryotic cells, which forms during nutrient starvation. The dynamic nature of the 110S ribosomal complex (mammalian equivalent of the bacterial 100S) was supported by the rapid conversion into polysomes upon nutrient-refeeding via a mechanism sensitive to inhibitors of translation initiation. Several experiments were used to show that the 110S complex is a dimer of nontranslating ribosomes. Cryo-electron microscopy visualization of the 110S complex revealed that two 80S ribosomes are connected by a flexible, albeit localized, interaction. We conclude that, similarly to bacteria, rat cells contain stress-induced ribosomal dimers. The identification of ribosomal dimers in rat cells will bring new insights in our thinking of the ribosome structure and its function during the cellular response to stress conditions.
Collapse
Affiliation(s)
- Dawid Krokowski
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
RNA editing within the mitochondria of kinetoplastid protozoa is performed by a multicomponent -macromolecular machine known as the editosome. Editosomes are high molecular mass protein assemblies that consist of about 15-25 individual polypeptides. They bind pre-edited transcripts and convert them into translation-competent mRNAs through a biochemical reaction cycle of enzyme-catalyzed steps. At steady-state conditions, several distinct complexes can be purified from mitochondrial detergent lysates. They likely represent RNA editing complexes at different assembly stages or at different functional stages of the processing reaction. Due to their low cellular abundance, single-particle electron microscopy (EM) represents the method of choice for their structural characterization. This chapter describes a set of techniques suitable for the purification and structural characterization of RNA editing complexes by single-particle EM. The RNA editing complexes are isolated from the endogenous pool of mitochondrial complexes by tandem-affinity purification (TAP). Since the TAP procedure results in the isolation of a mixture of different RNA editing complexes, the isolates are further subjected to an isokinetic ultracentrifugation step to separate the complexes based on their sedimentation behavior. The use of the "GraFix" protocol is presented that combines mild chemical cross-linking with ultracentrifugation. Different sample preparation protocols including negative staining, cryo-negative staining, and unstained cryotechniques as well as the single-particle image processing of electron microscopical images are described.
Collapse
|
109
|
Singer A, Shkolnisky Y. Three-Dimensional Structure Determination from Common Lines in Cryo-EM by Eigenvectors and Semidefinite Programming(). SIAM JOURNAL ON IMAGING SCIENCES 2011; 4:543-572. [PMID: 22536457 PMCID: PMC3334316 DOI: 10.1137/090767777] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The cryo-electron microscopy reconstruction problem is to find the three-dimensional (3D) structure of a macromolecule given noisy samples of its two-dimensional projection images at unknown random directions. Present algorithms for finding an initial 3D structure model are based on the "angular reconstitution" method in which a coordinate system is established from three projections, and the orientation of the particle giving rise to each image is deduced from common lines among the images. However, a reliable detection of common lines is difficult due to the low signal-to-noise ratio of the images. In this paper we describe two algorithms for finding the unknown imaging directions of all projections by minimizing global self-consistency errors. In the first algorithm, the minimizer is obtained by computing the three largest eigenvectors of a specially designed symmetric matrix derived from the common lines, while the second algorithm is based on semidefinite programming (SDP). Compared with existing algorithms, the advantages of our algorithms are five-fold: first, they accurately estimate all orientations at very low common-line detection rates; second, they are extremely fast, as they involve only the computation of a few top eigenvectors or a sparse SDP; third, they are nonsequential and use the information in all common lines at once; fourth, they are amenable to a rigorous mathematical analysis using spectral analysis and random matrix theory; and finally, the algorithms are optimal in the sense that they reach the information theoretic Shannon bound up to a constant for an idealized probabilistic model.
Collapse
Affiliation(s)
- A. Singer
- Department of Mathematics and PACM, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000
| | - Y. Shkolnisky
- Department of Applied Mathematics, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
110
|
Miyashita H, Maruyama Y, Isshiki H, Osawa S, Ogura T, Mio K, Sato C, Tomita T, Iwatsubo T. Three-dimensional structure of the signal peptide peptidase. J Biol Chem 2011; 286:26188-97. [PMID: 21636854 DOI: 10.1074/jbc.m111.260273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal peptide peptidase (SPP) is an atypical aspartic protease that hydrolyzes peptide bonds within the transmembrane domain of substrates and is implicated in several biological and pathological functions. Here, we analyzed the structure of human SPP by electron microscopy and reconstructed the three-dimensional structure at a resolution of 22 Å. Enzymatically active SPP forms a slender, bullet-shaped homotetramer with dimensions of 85 × 85 × 130 Å. The SPP complex has four concaves on the rhombus-like sides, connected to a large chamber inside the molecule. Intriguingly, the N-terminal region of SPP is sufficient for the tetrameric assembly. Moreover, overexpression of the N-terminal region inhibited the formation of the endogenous SPP tetramer and the proteolytic activity within cells. These data suggest that the homotetramer is the functional unit of SPP and that its N-terminal region, which works as the structural scaffold, has a novel modulatory function for the intramembrane-cleaving activity of SPP.
Collapse
Affiliation(s)
- Hiroyuki Miyashita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Cotelesage JJH, Osiowy C, Lawrence C, deVarennes SL, Teow S, Beniac DR, Booth TF. Hepatitis B Virus Genotype G forms core-like particles with unique structural properties. J Viral Hepat 2011; 18:443-8. [PMID: 20546498 PMCID: PMC3116152 DOI: 10.1111/j.1365-2893.2010.01330.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have determined the structure of the core capsid of an unusual variant of hepatitis B virus, genotype G (HBV/G) at 14Å resolution, using cryo-electron microscopy. The structure reveals surface features not present in the prototype HBV/A genotype. HBV/G is novel in that it has a unique 36-bp insertion downstream of the core gene start codon. This results in a twelve amino acid insertion at the N-terminal end of the core protein, and two stop codons in the precore region that prevent the expression of HBeAg. HBV/G replication in patients is associated with co-infection with another genotype of HBV, suggesting that HBV/G may have reduced replication efficiency in vivo. We localized the N-terminal insertion in HBV/G and show that it forms two additional masses on the core surface adjacent to each of the dimer-spikes and have modelled the structure of the additional residues within this density. We show that the position of the insertion would not interfere with translocation of nucleic acids through the pores to the core interior compartment. However, the insertion may partially obscure several residues on the core surface that are known to play a role in envelopment and secretion of virions, or that could affect structural rearrangements that may trigger envelopment after DNA second-strand synthesis.
Collapse
Affiliation(s)
- J J H Cotelesage
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of CanadaWinnipeg, Manitoba, Canada
| | - C Osiowy
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of CanadaWinnipeg, Manitoba, Canada,Department of Medical Microbiology, University of ManitobaWinnipeg, Manitoba, Canada
| | - C Lawrence
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of CanadaWinnipeg, Manitoba, Canada,Department of Medical Microbiology, University of ManitobaWinnipeg, Manitoba, Canada
| | - S L deVarennes
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of CanadaWinnipeg, Manitoba, Canada
| | - S Teow
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of CanadaWinnipeg, Manitoba, Canada
| | - D R Beniac
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of CanadaWinnipeg, Manitoba, Canada
| | - T F Booth
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of CanadaWinnipeg, Manitoba, Canada,Department of Medical Microbiology, University of ManitobaWinnipeg, Manitoba, Canada
| |
Collapse
|
112
|
Wang R, Zhong X, Meng X, Koop A, Tian X, Jones PP, Fruen BR, Wagenknecht T, Liu Z, Chen SRW. Localization of the dantrolene-binding sequence near the FK506-binding protein-binding site in the three-dimensional structure of the ryanodine receptor. J Biol Chem 2011; 286:12202-12. [PMID: 21262961 PMCID: PMC3069424 DOI: 10.1074/jbc.m110.194316] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/07/2011] [Indexed: 11/06/2022] Open
Abstract
Dantrolene is believed to stabilize interdomain interactions between the NH2-terminal and central regions of ryanodine receptors by binding to the NH2-terminal residues 590-609 in skeletal ryanodine receptor (RyR1) and residues 601-620 in cardiac ryanodine receptor (RyR2). To gain further insight into the structural basis of dantrolene action, we have attempted to localize the dantrolene-binding sequence in RyR1/RyR2 by using GFP as a structural marker and three-dimensional cryo-EM. We inserted GFP into RyR2 after residues Arg-626 and Tyr-846 to generate GFP-RyR2 fusion proteins, RyR2Arg-626-GFP and RyR2Tyr-846-GFP. Insertion of GFP after residue Arg-626 abolished the binding of a bulky GST- or cyan fluorescent protein-tagged FKBP12.6 but not the binding of a smaller, nontagged FKBP12.6, suggesting that residue Arg-626 and the dantrolene-binding sequence are located near the FKBP12.6-binding site. Using cryo-EM, we have mapped the three-dimensional location of Tyr-846-GFP to domain 9, which is also adjacent to the FKBP12.6-binding site. To further map the three-dimensional location of the dantrolene-binding sequence, we generated 10 FRET pairs based on four known three-dimensional locations (FKBP12.6, Ser-437-GFP, Tyr-846-GFP, and Ser-2367-GFP). Based on the FRET efficiencies of these FRET pairs and the corresponding distance relationships, we mapped the three-dimensional location of Arg-626-GFP or -cyan fluorescent protein, hence the dantrolene-binding sequence, to domain 9 near the FKBP12.6-binding site but distant to the central region around residue Ser-2367. An allosteric mechanism by which dantrolene stabilizes interdomain interactions between the NH2-terminal and central regions is proposed.
Collapse
Affiliation(s)
- Ruiwu Wang
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xiaowei Zhong
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xing Meng
- the Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Andrea Koop
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xixi Tian
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Peter P. Jones
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Bradley R. Fruen
- the Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Terence Wagenknecht
- the Wadsworth Center, New York State Department of Health, Albany, New York 12201
- the Department of Biomedical Sciences, School of Public Health, State University of New York, at Albany, Albany, New York 12201
| | - Zheng Liu
- the Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - S. R. Wayne Chen
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
113
|
Bernecky C, Grob P, Ebmeier CC, Nogales E, Taatjes DJ. Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly. PLoS Biol 2011; 9:e1000603. [PMID: 21468301 PMCID: PMC3066130 DOI: 10.1371/journal.pbio.1000603] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 02/04/2011] [Indexed: 12/21/2022] Open
Abstract
The macromolecular assembly required to initiate transcription of protein-coding genes, known as the Pre-Initiation Complex (PIC), consists of multiple protein complexes and is approximately 3.5 MDa in size. At the heart of this assembly is the Mediator complex, which helps regulate PIC activity and interacts with the RNA polymerase II (pol II) enzyme. The structure of the human Mediator-pol II interface is not well-characterized, whereas attempts to structurally define the Mediator-pol II interaction in yeast have relied on incomplete assemblies of Mediator and/or pol II and have yielded inconsistent interpretations. We have assembled the complete, 1.9 MDa human Mediator-pol II-TFIIF complex from purified components and have characterized its structural organization using cryo-electron microscopy and single-particle reconstruction techniques. The orientation of pol II within this assembly was determined by crystal structure docking and further validated with projection matching experiments, allowing the structural organization of the entire human PIC to be envisioned. Significantly, pol II orientation within the Mediator-pol II-TFIIF assembly can be reconciled with past studies that determined the location of other PIC components relative to pol II itself. Pol II surfaces required for interacting with TFIIB, TFIIE, and promoter DNA (i.e., the pol II cleft) are exposed within the Mediator-pol II-TFIIF structure; RNA exit is unhindered along the RPB4/7 subunits; upstream and downstream DNA is accessible for binding additional factors; and no major structural re-organization is necessary to accommodate the large, multi-subunit TFIIH or TFIID complexes. The data also reveal how pol II binding excludes Mediator-CDK8 subcomplex interactions and provide a structural basis for Mediator-dependent control of PIC assembly and function. Finally, parallel structural analysis of Mediator-pol II complexes lacking TFIIF reveal that TFIIF plays a key role in stabilizing pol II orientation within the assembly.
Collapse
Affiliation(s)
- Carrie Bernecky
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Patricia Grob
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Christopher C. Ebmeier
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Eva Nogales
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Dylan J. Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
114
|
Liu X, Wang HW. Single particle electron microscopy reconstruction of the exosome complex using the random conical tilt method. J Vis Exp 2011:2574. [PMID: 21490573 DOI: 10.3791/2574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Single particle electron microscopy (EM) reconstruction has recently become a popular tool to get the three-dimensional (3D) structure of large macromolecular complexes. Compared to X-ray crystallography, it has some unique advantages. First, single particle EM reconstruction does not need to crystallize the protein sample, which is the bottleneck in X-ray crystallography, especially for large macromolecular complexes. Secondly, it does not need large amounts of protein samples. Compared with milligrams of proteins necessary for crystallization, single particle EM reconstruction only needs several micro-liters of protein solution at nano-molar concentrations, using the negative staining EM method. However, despite a few macromolecular assemblies with high symmetry, single particle EM is limited at relatively low resolution (lower than 1 nm resolution) for many specimens especially those without symmetry. This technique is also limited by the size of the molecules under study, i.e. 100 kDa for negatively stained specimens and 300 kDa for frozen-hydrated specimens in general. For a new sample of unknown structure, we generally use a heavy metal solution to embed the molecules by negative staining. The specimen is then examined in a transmission electron microscope to take two-dimensional (2D) micrographs of the molecules. Ideally, the protein molecules have a homogeneous 3D structure but exhibit different orientations in the micrographs. These micrographs are digitized and processed in computers as "single particles". Using two-dimensional alignment and classification techniques, homogenous molecules in the same views are clustered into classes. Their averages enhance the signal of the molecule's 2D shapes. After we assign the particles with the proper relative orientation (Euler angles), we will be able to reconstruct the 2D particle images into a 3D virtual volume. In single particle 3D reconstruction, an essential step is to correctly assign the proper orientation of each single particle. There are several methods to assign the view for each particle, including the angular reconstitution(1) and random conical tilt (RCT) method(2). In this protocol, we describe our practice in getting the 3D reconstruction of yeast exosome complex using negative staining EM and RCT. It should be noted that our protocol of electron microscopy and image processing follows the basic principle of RCT but is not the only way to perform the method. We first describe how to embed the protein sample into a layer of Uranyl-Formate with a thickness comparable to the protein size, using a holey carbon grid covered with a layer of continuous thin carbon film. Then the specimen is inserted into a transmission electron microscope to collect untilted (0-degree) and tilted (55-degree) pairs of micrographs that will be used later for processing and obtaining an initial 3D model of the yeast exosome. To this end, we perform RCT and then refine the initial 3D model by using the projection matching refinement method(3).
Collapse
Affiliation(s)
- Xueqi Liu
- Molecular Biophysics and Biochemistry, Yale University, USA
| | | |
Collapse
|
115
|
Venturi E, Mio K, Nishi M, Ogura T, Moriya T, Pitt SJ, Okuda K, Kakizawa S, Sitsapesan R, Sato C, Takeshima H. Mitsugumin 23 forms a massive bowl-shaped assembly and cation-conducting channel. Biochemistry 2011; 50:2623-32. [PMID: 21381722 PMCID: PMC3065873 DOI: 10.1021/bi1019447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mitsugumin 23 (MG23) is a 23 kDa transmembrane protein localized to the sarcoplasmic/endoplasmic reticulum and nuclear membranes in a wide variety of cells. Although the characteristics imply the participation in a fundamental function in intracellular membrane systems, the physiological role of MG23 is unknown. Here we report the biochemical and biophysical characterization of MG23. Hydropathicity profile and limited proteolytic analysis proposed three transmembrane segments in the MG23 primary structure. Chemical cross-linking analysis suggested a homo-oligomeric assembly of MG23. Ultrastructural observations detected a large symmetrical particle as the predominant component and a small asymmetric assembly as the second major component in highly purified MG23 preparations. Single-particle three-dimensional reconstruction revealed that MG23 forms a large bowl-shaped complex equipped with a putative central pore, which is considered an assembly of the small asymmetric subunit. After reconstitution into planar phospholipid bilayers, purified MG23 behaved as a voltage-dependent, cation-conducting channel, permeable to both K(+) and Ca(2+). A feature of MG23 gating was that multiple channels always appeared to be gating together in the bilayer. Our observations suggest that the bowl-shaped MG23 can transiently assemble and disassemble. These building transitions may underlie the unusual channel gating behavior of MG23 and allow rapid cationic flux across intracellular membrane systems.
Collapse
Affiliation(s)
- Elisa Venturi
- School of Physiology and Pharmacology, Bristol Heart Institute and Centre for Nanoscience and Quantum Information, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Sander B, Golas MM. Visualization of bionanostructures using transmission electron microscopical techniques. Microsc Res Tech 2010; 74:642-63. [DOI: 10.1002/jemt.20963] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 10/01/2010] [Indexed: 11/10/2022]
|
117
|
Birkedal V, Dong M, Golas MM, Sander B, Andersen ES, Gothelf KV, Besenbacher F, Kjems J. Single molecule microscopy methods for the study of DNA origami structures. Microsc Res Tech 2010; 74:688-98. [PMID: 21698717 DOI: 10.1002/jemt.20962] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 10/01/2010] [Indexed: 11/11/2022]
Abstract
Single molecule microscopy techniques play an important role in the investigation of advanced DNA structures such as those created by the DNA origami method. Three single molecule microscopy techniques are particularly interesting for the investigation of complex self-assembled three-dimensional (3D) DNA nanostructures, namely single molecule fluorescence microscopy, atomic force microscopy (AFM), and cryogenic transmission electron microscopy (cryo-EM). Here we discuss the strengths of these three techniques and demonstrate how their interplay can yield very important and unique new insights into the structure and conformation of advanced biological nanostructures. The applications of the three single molecule microscopy techniques are illustrated by focusing on a self-assembled DNA origami 3D box nanostructure. Its size and structure were studied by AFM and cryo-EM, while the lid opening, which can be controlled by the addition of oligonucleotide keys, was recorded by Förster/fluorescence resonance energy transfer (FRET) spectroscopy.
Collapse
|
118
|
Li M, Xu G, Sorzano COS, Melero R, Bajaj C. Electric-Potential Reconstructions of Single Particles Using L-Gradient Flows. PROCEEDINGS OF THE ... INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS. INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS 2010; 1:213-217. [PMID: 21566727 PMCID: PMC3091820 DOI: 10.1109/bmei.2010.5639445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this paper, we present a stable, reliable and robust method for reconstructing a three dimensional density function from a set of two dimensional electron microscopy images. By minimizing an energy functional consisting of a fidelity term and a regularization term, a L(2)-gradient flow is derived. The flow is integrated by a finite element method in the spatial direction and an explicit Euler scheme in temporal direction. The experimental results show that the proposed method is efficient and effective.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoliang Xu
- State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Carlos O. S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnologia (CSIC) Campus Univ. Autonoma 28049, Cantoblanco - Madrid
| | - Roberto Melero
- Biocomputing Unit, Centro Nacional de Biotecnologia (CSIC) Campus Univ. Autonoma 28049, Cantoblanco - Madrid
| | - Chandrajit Bajaj
- Department of Computer Sciences and Institute of Computational Engineering & Sciences, University of Texas at Austin, Austin TX 78712
| |
Collapse
|
119
|
An approach for de novo structure determination of dynamic molecular assemblies by electron cryomicroscopy. Structure 2010; 18:667-76. [PMID: 20541504 DOI: 10.1016/j.str.2010.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 04/08/2010] [Accepted: 05/04/2010] [Indexed: 11/26/2022]
Abstract
Single-particle electron cryomicroscopy is a powerful method for three-dimensional (3D) structure determination of macromolecular assemblies. Here we address the challenge of determining a 3D structure in the absence of reference models. The 3D structures are determined by alignment and weighted averaging of densities obtained by native cryo random conical tilt (RCT) reconstructions including consideration of missing data. Our weighted averaging scheme (wRCT) offers advantages for potentially heterogeneous 3D densities of low signal-to-noise ratios. Sets of aligned RCT structures can also be analyzed by multivariate statistical analysis (MSA) to provide insights into snapshots of the assemblies. The approach is used to compute 3D structures of the Escherichia coli 70S ribosome and the human U4/U6.U5 tri-snRNP under vitrified unstained cryo conditions, and to visualize by 3D MSA the L7/L12 stalk of the 70S ribosome and states of tri-snRNP. The approach thus combines de novo 3D structure determination with an analysis of compositional and conformational heterogeneity.
Collapse
|
120
|
Opalka N, Brown J, Lane WJ, Twist KAF, Landick R, Asturias FJ, Darst SA. Complete structural model of Escherichia coli RNA polymerase from a hybrid approach. PLoS Biol 2010; 8. [PMID: 20856905 PMCID: PMC2939025 DOI: 10.1371/journal.pbio.1000483] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 08/04/2010] [Indexed: 11/25/2022] Open
Abstract
A combination of structural approaches yields a complete atomic model of the highly biochemically characterized Escherichia coli RNA polymerase, enabling fuller exploitation of E. coli as a model for understanding transcription. The Escherichia coli transcription system is the best characterized from a biochemical and genetic point of view and has served as a model system. Nevertheless, a molecular understanding of the details of E. coli transcription and its regulation, and therefore its full exploitation as a model system, has been hampered by the absence of high-resolution structural information on E. coli RNA polymerase (RNAP). We use a combination of approaches, including high-resolution X-ray crystallography, ab initio structural prediction, homology modeling, and single-particle cryo-electron microscopy, to generate complete atomic models of E. coli core RNAP and an E. coli RNAP ternary elongation complex. The detailed and comprehensive structural descriptions can be used to help interpret previous biochemical and genetic data in a new light and provide a structural framework for designing experiments to understand the function of the E. coli lineage-specific insertions and their role in the E. coli transcription program. Transcription, or the synthesis of RNA from DNA, is one of the most important processes in the cell. The central enzyme of transcription is the DNA-dependent RNA polymerase (RNAP), a large, macromolecular assembly consisting of at least five subunits. Historically, much of our fundamental information on the process of transcription has come from genetic and biochemical studies of RNAP from the model bacterium Escherichia coli. More recently, major breakthroughs in our understanding of the mechanism of action of RNAP have come from high resolution crystal structures of various bacterial, archaebacterial, and eukaryotic enzymes. However, all of our high-resolution bacterial RNAP structures are of enzymes from the thermophiles Thermus aquaticus or T. thermophilus, organisms with poorly characterized transcription systems. It has thus far proven impossible to obtain a high-resolution structure of E. coli RNAP, which has made it difficult to relate the large collection of genetic and biochemical data on RNAP function directly to the available structural information. Here, we used a combination of approaches—high-resolution X-ray crystallography of E. coli RNAP fragments, ab initio structure prediction, homology modeling, and single-particle cryo-electron microscopy—to generate complete atomic models of E. coli RNAP. Our detailed and comprehensive structural models provide the heretofore missing structural framework for understanding the function of the highly characterized E. coli RNAP.
Collapse
Affiliation(s)
- Natacha Opalka
- The Rockefeller University, New York, New York, United States of America
| | - Jesse Brown
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - William J. Lane
- Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts, United States of America
| | | | - Robert Landick
- Departments of Biochemistry and Bacteriology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Francisco J. Asturias
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (FJA); (SAD)
| | - Seth A. Darst
- The Rockefeller University, New York, New York, United States of America
- * E-mail: (FJA); (SAD)
| |
Collapse
|
121
|
Jaitly N, Brubaker MA, Rubinstein JL, Lilien RH. A Bayesian method for 3D macromolecular structure inference using class average images from single particle electron microscopy. Bioinformatics 2010; 26:2406-15. [DOI: 10.1093/bioinformatics/btq456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
122
|
Sanz-García E, Stewart AB, Belnap DM. The random-model method enables ab initio 3D reconstruction of asymmetric particles and determination of particle symmetry. J Struct Biol 2010; 171:216-22. [PMID: 20353825 PMCID: PMC2885456 DOI: 10.1016/j.jsb.2010.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
Abstract
Model-based, 3D reconstruction techniques depend on reliable starting models. We present an extension of the random-model method (RMM) that allows the ab initio generation of suitable starting models directly from un-averaged, experimental images of asymmetric or symmetric particles. Therefore, the asymmetric RMM can also be used to determine point-group symmetry. The procedure is facilitated by the use of (a) variable angular step-sizes during iterative origin and orientation searches, (b) high numbers of particle images, and (c) highly defocused images. The method is inhibited by mixed-handedness orientation assignments and by particles with inconspicuous features. For symmetric particles, symmetric RMMs can overcome these deficiencies.
Collapse
Affiliation(s)
- Eduardo Sanz-García
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Aaron B. Stewart
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - David M. Belnap
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
123
|
Elmlund D, Davis R, Elmlund H. Ab Initio Structure Determination from Electron Microscopic Images of Single Molecules Coexisting in Different Functional States. Structure 2010; 18:777-86. [DOI: 10.1016/j.str.2010.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/06/2010] [Accepted: 06/07/2010] [Indexed: 11/27/2022]
|
124
|
Averaging of electron subtomograms and random conical tilt reconstructions through likelihood optimization. Structure 2010; 17:1563-1572. [PMID: 20004160 DOI: 10.1016/j.str.2009.10.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/02/2009] [Accepted: 10/22/2009] [Indexed: 01/05/2023]
Abstract
The reference-free averaging of three-dimensional electron microscopy (3D-EM) reconstructions with empty regions in Fourier space represents a pressing problem in electron tomography and single-particle analysis. We present a maximum likelihood algorithm for the simultaneous alignment and classification of subtomograms or random conical tilt (RCT) reconstructions, where the Fourier components in the missing data regions are treated as hidden variables. The behavior of this algorithm was explored using tests on simulated data, while application to experimental data was shown to yield unsupervised class averages for subtomograms of groEL/groES complexes and RCT reconstructions of p53. The latter application served to obtain a reliable de novo structure for p53 that may resolve uncertainties about its quaternary structure.
Collapse
|
125
|
Three-dimensional structure of the anthrax toxin pore inserted into lipid nanodiscs and lipid vesicles. Proc Natl Acad Sci U S A 2010; 107:3453-7. [PMID: 20142512 DOI: 10.1073/pnas.1000100107] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A major goal in understanding the pathogenesis of the anthrax bacillus is to determine how the protective antigen (PA) pore mediates translocation of the enzymatic components of anthrax toxin across membranes. To obtain structural insights into this mechanism, we constructed PA-pore membrane complexes and visualized them by using negative-stain electron microscopy. Two populations of PA pores were visualized in membranes, vesicle-inserted and nanodisc-inserted, allowing us to reconstruct two virtually identical PA-pore structures at 22-A resolution. Reconstruction of a domain 4-truncated PA pore inserted into nanodiscs showed that this domain does not significantly influence pore structure. Normal mode flexible fitting of the x-ray crystallographic coordinates of the PA prepore indicated that a prominent flange observed within the pore lumen is formed by the convergence of mobile loops carrying Phe427, a residue known to catalyze protein translocation. Our results have identified the location of a crucial functional element of the PA pore and documented the value of combining nanodisc technology with electron microscopy to examine the structures of membrane-interactive proteins.
Collapse
|
126
|
Abstract
Electron microscopy (EM) has developed into an important method for determining the three-dimensional (3D) structures of biological complexes, in particular of isolated macromolecular complexes in vitrified solution (cryo-EM of "single particles"). One of the consequences of studying complexes in solution rather than in a crystal lattice is that they are less constrained to adopt a single conformation. It is a common problem in single-particle analysis that samples of purified macromolecules can be structurally heterogeneous, with molecules adopting different conformations, corresponding to different functional states. In the case of multisubunit assemblies, there may also be heterogeneity of assembly or ligand binding. Heterogeneity limits the accuracy and resolution of 3D structures, since different conformations will contribute to a single 3D map and variable parts of the structure will be smeared out. Therefore, a new group of image processing methods has been developed to deal with the problems of detecting and sorting structural heterogeneity. The basic problem is to discriminate the source of image variations, and then to separate the images into homogeneous subsets for separate reconstruction. Variations in image features can arise from different particle orientations, variations in conformation and/or ligand binding, and noise fluctuations in the low signal-to-noise ratio images typical of cryo-EM. Here, we present a review of approaches developed to deal with these problems, along with examples of the application of a method based on multivariate statistical analysis to both model and real data. The methods have been used to discriminate small differences in size, conformation and ligand binding, and to obtain high quality, reliable reconstructions of multiple structures from mixed data sets.
Collapse
Affiliation(s)
- Elena V Orlova
- Crystallography and Institute of Structural Molecular Biology, Birkbeck College, London, United Kingdom
| | | |
Collapse
|
127
|
Abstract
As the resolution of cryo-EM reconstructions has improved to the subnanometer range, conformational and compositional heterogeneity have become increasing problems in cryo-EM, limiting the resolution of reconstructions. Since further purification is not feasible, the presence of several conformational states of ribosomal complexes in thermodynamic equilibrium requires methods for separating these states in silico. We describe a procedure for generating subnanometer resolution cryo-EM structures from large sets of projection images of ribosomal complexes. The incremental K-means-like method of unsupervised 3D sorting discussed here allows separation of classes in the dataset by exploiting intrinsic divisions in the data. The classification procedure is described in detail and its effectiveness is illustrated using current examples from our work. Through a good separation of conformational modes, higher resolution reconstructions can be calculated. This increases information gained from single states, while exploiting the coexistence of multiple states to gather comprehensive mechanistic insight into biological processes like ribosomal translocation.
Collapse
Affiliation(s)
- Justus Loerke
- Institut für medizinische Physik und Biophysik, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
128
|
Structural Molecular Insights into SARS Coronavirus Cellular Attachment, Entry and Morphogenesis. MOLECULAR BIOLOGY OF THE SARS-CORONAVIRUS 2010. [PMCID: PMC7176236 DOI: 10.1007/978-3-642-03683-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Coronavirus spikes have the largest mass of any known viral spike molecule. The spike is a type 1 viral fusion protein, a class of trimeric surface glycoprotein proteins from diverse viral families that share many common structural and functional characteristics. Fusion proteins are mainly responsible for host cell receptor recognition and subsequent membrane fusion, and may perform other roles such as virus assembly and release via budding. The conformational changes that occur in the spike of intact SARS coronavirus (SARS-CoV) when it binds to the viral receptor, angiotensin-converting enzyme 2 (ACE2) are described. Clues to the structural/functional relationships of membrane fusion have been made possible by the development of viral purification and inactivation methods, along with cryo-electron microscopy (cryo-EM) and three-dimensional (3D) image processing of many different images containing multiple views of the spikes. These methods have allowed study of the spikes while still attached to virions that are noninfectious, but fusionally competent. The receptor-binding and fusion core domains within the SARS-CoV spike have been precisely localized within the spike. Receptor binding results in structural changes that have been observed in the spike molecule, and these appear to be the initial step in viral membrane fusion. A working model for the stepwise process of receptor binding, and subsequent membrane fusion in SARS-CoV is presented. Uniquely, the large size of the SARS-CoV spike allows structural changes to be observed by cryo-EM in the native state. This provides a useful model for studying the basic process of membrane fusion in general, which forms an essential part of the function of many cellular processes.
Collapse
|
129
|
Abstract
The structure of the human immunodeficiency virus (HIV) and some of its components have been difficult to study in three-dimensions (3D) primarily because of their intrinsic structural variability. Recent advances in cryoelectron tomography (cryo-ET) have provided a new approach for determining the 3D structures of the intact virus, the HIV capsid, and the envelope glycoproteins located on the viral surface. A number of cryo-ET procedures related to specimen preservation, data collection, and image processing are presented in this chapter. The techniques described herein are well suited for determining the ultrastructure of bacterial and viral pathogens and their associated molecular machines in situ at nanometer resolution.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | | | | |
Collapse
|
130
|
Abstract
Three-dimensional (3D) reconstruction of an object mass density from the set of its 2D line projections lies at a core of both single-particle reconstruction technique and electron tomography. Both techniques utilize electron microscope to collect a set of projections of either multiple objects representing in principle the same macromolecular complex in an isolated form, or a subcellular structure isolated in situ. Therefore, the goal of macromolecular electron microscopy is to invert the projection transformation to recover the distribution of the mass density of the original object. The problem is interesting in that in its discrete form it is ill-posed and not invertible. Various algorithms have been proposed to cope with the practical difficulties of this inversion problem and their differ widely in terms of their robustness with respect to noise in the data, completeness of the collected projection dataset, errors in projections orientation parameters, abilities to efficiently handle large datasets, and other obstacles typically encountered in molecular electron microscopy. Here, we review the theoretical foundations of 3D reconstruction from line projections followed by an overview of reconstruction algorithms routinely used in practice of electron microscopy.
Collapse
Affiliation(s)
- Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas, Houston Medical School, Houston, Texas, USA
| |
Collapse
|
131
|
Lyumkis D, Moeller A, Cheng A, Herold A, Hou E, Irving C, Jacovetty EL, Lau PW, Mulder AM, Pulokas J, Quispe JD, Voss NR, Potter CS, Carragher B. Automation in single-particle electron microscopy connecting the pieces. Methods Enzymol 2010; 483:291-338. [PMID: 20888480 DOI: 10.1016/s0076-6879(10)83015-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Throughout the history of single-particle electron microscopy (EM), automated technologies have seen varying degrees of emphasis and development, usually depending upon the contemporary demands of the field. We are currently faced with increasingly sophisticated devices for specimen preparation, vast increases in the size of collected data sets, comprehensive algorithms for image processing, sophisticated tools for quality assessment, and an influx of interested scientists from outside the field who might lack the skills of experienced microscopists. This situation places automated techniques in high demand. In this chapter, we provide a generic definition of and discuss some of the most important advances in automated approaches to specimen preparation, grid handling, robotic screening, microscope calibrations, data acquisition, image processing, and computational infrastructure. Each section describes the general problem and then provides examples of how that problem has been addressed through automation, highlighting available processing packages, and sometimes describing the particular approach at the National Resource for Automated Molecular Microscopy (NRAMM). We contrast the more familiar manual procedures with automated approaches, emphasizing breakthroughs as well as current limitations. Finally, we speculate on future directions and improvements in automated technologies. Our overall goal is to present automation as more than simply a tool to save time. Rather, we aim to illustrate that automation is a comprehensive and versatile strategy that can deliver biological information on an unprecedented scale beyond the scope available with classical manual approaches.
Collapse
Affiliation(s)
- Dmitry Lyumkis
- National Resource for Automated Molecular Microscopy, Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Lu Z, Shaikh TR, Barnard D, Meng X, Mohamed H, Yassin A, Mannella CA, Agrawal RK, Lu TM, Wagenknecht T. Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. J Struct Biol 2009; 168:388-95. [PMID: 19683579 PMCID: PMC2783284 DOI: 10.1016/j.jsb.2009.08.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 07/14/2009] [Accepted: 08/10/2009] [Indexed: 11/19/2022]
Abstract
The goal of time-resolved cryo-electron microscopy is to determine structural models for transient functional states of large macromolecular complexes such as ribosomes and viruses. The challenge of time-resolved cryo-electron microscopy is to rapidly mix reactants, and then, following a defined time interval, to rapidly deposit them as a thin film and freeze the sample to the vitreous state. Here we describe a methodology in which reaction components are mixed and allowed to react, and are then sprayed onto an EM grid as it is being plunged into cryogen. All steps are accomplished by a monolithic, microfabricated silicon device that incorporates a mixer, reaction channel, and pneumatic sprayer in a single chip. We have found that microdroplets produced by air atomization spread to sufficiently thin films on a millisecond time scale provided that the carbon supporting film is made suitably hydrophilic. The device incorporates two T-mixers flowing into a single channel of four butterfly-shaped mixing elements that ensure effective mixing, followed by a microfluidic reaction channel whose length can be varied to achieve the desired reaction time. The reaction channel is flanked by two ports connected to compressed humidified nitrogen gas (at 50 psi) to generate the spray. The monolithic mixer-sprayer is incorporated into a computer-controlled plunging apparatus. To test the mixing performance and the suitability of the device for preparation of biological macromolecules for cryo-EM, ribosomes and ferritin were mixed in the device and sprayed onto grids. Three-dimensional reconstructions of the ribosomes demonstrated retention of native structure, and 30S and 50S subunits were shown to be capable of reassociation into ribosomes after passage through the device.
Collapse
Affiliation(s)
- Zonghuan Lu
- Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Singer A, Coifman RR, Sigworth FJ, Chester DW, Shkolnisky Y. Detecting consistent common lines in cryo-EM by voting. J Struct Biol 2009; 169:312-22. [PMID: 19925867 DOI: 10.1016/j.jsb.2009.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/24/2009] [Accepted: 11/04/2009] [Indexed: 11/17/2022]
Abstract
The single-particle reconstruction problem of electron cryo-microscopy (cryo-EM) is to find the three-dimensional structure of a macromolecule given its two-dimensional noisy projection images at unknown random directions. Ab initio estimates of the 3D structure are often obtained by the "Angular Reconstitution" method, in which a coordinate system is established from three projections, and the orientation of the particle giving rise to each image is deduced from common lines among the images. However, a reliable detection of common lines is difficult due to the low signal-to-noise ratio of the images. In this paper we describe a global self-correcting voting procedure in which all projection images participate to decide the identity of the consistent common lines. The algorithm determines which common line pairs were detected correctly and which are spurious. We show that the voting procedure succeeds at relatively low detection rates and that its performance improves as the number of projection images increases. We demonstrate the algorithm for both simulative and experimental images of the 50S ribosomal subunit.
Collapse
Affiliation(s)
- Amit Singer
- Department of Mathematics and PACM, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA.
| | | | | | | | | |
Collapse
|
134
|
Structural insights into RNA processing by the human RISC-loading complex. Nat Struct Mol Biol 2009; 16:1148-53. [PMID: 19820710 PMCID: PMC2845538 DOI: 10.1038/nsmb.1673] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 08/19/2009] [Indexed: 12/17/2022]
Abstract
Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (siRNA or miRNA) into an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (Ago2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC) necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to Ago2. Here we show, using single-particle electron microscopy analysis, that human Dicer exhibits an L-shaped structure. Withn the RLC Dicer's N-terminal DExH/D domain, located at the short base branch, interacts with TRBP, while its C-terminal catalytic domains in the main body are proximal to Ago2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to Ago2.
Collapse
|
135
|
Spahn CMT, Penczek PA. Exploring conformational modes of macromolecular assemblies by multiparticle cryo-EM. Curr Opin Struct Biol 2009; 19:623-31. [PMID: 19767196 DOI: 10.1016/j.sbi.2009.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 11/16/2022]
Abstract
Single particle cryo-electron microscopy (cryo-EM) is a technique aimed at structure determination of large macromolecular complexes in their unconstrained, physiological conditions. The power of the method has been demonstrated in selected studies where for highly symmetric molecules the resolution attained permitted backbone tracing. However, most molecular complexes appear to exhibit intrinsic conformational variability necessary to perform their functions. Therefore, it is now increasingly recognized that sample heterogeneity constitutes a major methodological challenge for cryo-EM. To overcome it dedicated experimental and particularly computational multiparticle approaches have been developed. Their applications point to the future of cryo-EM as an experimental method uniquely suited to visualize the conformational modes of large macromolecular complexes and machines.
Collapse
Affiliation(s)
- Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charite - Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany.
| | | |
Collapse
|
136
|
Frank J. Single-particle reconstruction of biological macromolecules in electron microscopy--30 years. Q Rev Biophys 2009; 42:139-58. [PMID: 20025794 PMCID: PMC2844734 DOI: 10.1017/s0033583509990059] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This essay gives the autho's personal account on the development of concepts underlying single-particle reconstruction, a technique in electron microscopy of macromolecular assemblies with a remarkable record of achievements as of late. The ribosome proved to be an ideal testing ground for the development of specimen preparation methods, cryo-EM techniques, and algorithms, with discoveries along the way as a rich reward. Increasingly, cryo-EM and single-particle reconstruction, in combination with classification techniques, is revealing dynamic information on functional molecular machines uninhibited by molecular contacts.
Collapse
Affiliation(s)
- Joachim Frank
- The Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
137
|
The eye lens chaperone alpha-crystallin forms defined globular assemblies. Proc Natl Acad Sci U S A 2009; 106:13272-7. [PMID: 19651604 DOI: 10.1073/pnas.0902651106] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alpha-crystallins are molecular chaperones that protect vertebrate eye lens proteins from detrimental protein aggregation. alphaB-Crystallin, 1 of the 2 alpha-crystallin isoforms, is also associated with myopathies and neuropathological diseases. Despite the importance of alpha-crystallins in protein homeostasis, only little is known about their quaternary structures because of their seemingly polydisperse nature. Here, we analyzed the structures of recombinant alpha-crystallins using biophysical methods. In contrast to previous reports, we show that alphaB-crystallin assembles into defined oligomers consisting of 24 subunits. The 3-dimensional (3D) reconstruction of alphaB-crystallin by electron microscopy reveals a sphere-like structure with large openings to the interior of the protein. alphaA-Crystallin forms, in addition to complexes of 24 subunits, also smaller oligomers and large clusters consisting of individual oligomers. This propensity might explain the previously reported polydisperse nature of alpha-crystallin.
Collapse
|
138
|
High-resolution single-particle orientation refinement based on spectrally self-adapting common lines. J Struct Biol 2009; 167:83-94. [DOI: 10.1016/j.jsb.2009.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 11/23/2022]
|
139
|
Scheres SHW, Carazo JM. Introducing robustness to maximum-likelihood refinement of electron-microscopy data. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:672-8. [PMID: 19564687 PMCID: PMC2703573 DOI: 10.1107/s0907444909012049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 03/31/2009] [Indexed: 11/21/2022]
Abstract
An expectation-maximization algorithm for maximum-likelihood refinement of electron-microscopy images is presented that is based on fitting mixtures of multivariate t-distributions. The novel algorithm has intrinsic characteristics for providing robustness against atypical observations in the data, which is illustrated using an experimental test set with artificially generated outliers. Tests on experimental data revealed only minor differences in two-dimensional classifications, while three-dimensional classification with the new algorithm gave stronger elongation factor G density in the corresponding class of a structurally heterogeneous ribosome data set than the conventional algorithm for Gaussian mixtures.
Collapse
Affiliation(s)
- Sjors H W Scheres
- Centro Nacional de Biotecnología-CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|
140
|
Lee JH, Jung HS, Günzl A. Transcriptionally active TFIIH of the early-diverged eukaryote Trypanosoma brucei harbors two novel core subunits but not a cyclin-activating kinase complex. Nucleic Acids Res 2009; 37:3811-20. [PMID: 19386623 PMCID: PMC2699521 DOI: 10.1093/nar/gkp236] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Trypanosoma brucei is a member of the early-diverged, protistan family Trypanosomatidae and a lethal parasite causing African Sleeping Sickness in humans. Recent studies revealed that T. brucei harbors extremely divergent orthologues of the general transcription factors TBP, TFIIA, TFIIB and TFIIH and showed that these factors are essential for initiating RNA polymerase II-mediated synthesis of spliced leader (SL) RNA, a trans splicing substrate and key molecule in trypanosome mRNA maturation. In yeast and metazoans, TFIIH is composed of a core of seven conserved subunits and the ternary cyclin-activating kinase (CAK) complex. Conversely, only four TFIIH subunits have been identified in T. brucei. Here, we characterize the first protistan TFIIH which was purified in its transcriptionally active form from T. brucei extracts. The complex consisted of all seven core subunits but lacked the CAK sub-complex; instead it contained two trypanosomatid-specific subunits, which were indispensable for parasite viability and SL RNA gene transcription. These findings were corroborated by comparing the molecular structures of trypanosome and human TFIIH. While the ring-shaped core domain was surprisingly congruent between the two structures, trypanosome TFIIH lacked the knob-like CAK moiety and exhibited extra densities on either side of the ring, presumably due to the specific subunits.
Collapse
Affiliation(s)
- Ju Huck Lee
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3301, USA
| | | | | |
Collapse
|
141
|
Cai G, Imasaki T, Takagi Y, Asturias FJ. Mediator structural conservation and implications for the regulation mechanism. Structure 2009; 17:559-67. [PMID: 19368889 PMCID: PMC2673807 DOI: 10.1016/j.str.2009.01.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/29/2009] [Accepted: 01/30/2009] [Indexed: 11/27/2022]
Abstract
Mediator, the multisubunit complex that plays an essential role in the regulation of transcription initiation in all eukaryotes, was isolated using an affinity purification protocol that yields pure material suitable for structural analysis. Conformational sorting of yeast Mediator single-particle images characterized the inherent flexibility of the complex and made possible calculation of a cryo-EM reconstruction. Comparison of free and RNA polymerase II (RNAPII) -associated yeast Mediator reconstructions demonstrates that intrinsic flexibility allows structural modules to reorganize and establish a complex network of contacts with RNAPII. We demonstrate that, despite very low sequence homology, the structures of human and yeast Mediators are surprisingly similar and the structural rearrangement that enables interaction of yeast Mediator with RNAPII parallels the structural rearrangement triggered by interaction of human Mediator with a nuclear receptor. This suggests that the topology and structural dynamics of Mediator constitute important elements of a conserved regulation mechanism.
Collapse
Affiliation(s)
- Gang Cai
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA 92037
| | - Tsuyoshi Imasaki
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, John D, Van Nuys Medical Science Building, 635 Barnhill Drive, Indianapolis, Indiana 46202
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, John D, Van Nuys Medical Science Building, 635 Barnhill Drive, Indianapolis, Indiana 46202
| | - Francisco J. Asturias
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA 92037
| |
Collapse
|
142
|
Shatsky M, Hall RJ, Brenner SE, Glaeser RM. A method for the alignment of heterogeneous macromolecules from electron microscopy. J Struct Biol 2009; 166:67-78. [PMID: 19166941 PMCID: PMC2740748 DOI: 10.1016/j.jsb.2008.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 12/13/2008] [Accepted: 12/18/2008] [Indexed: 11/24/2022]
Abstract
We propose a feature-based image alignment method for single-particle electron microscopy that is able to accommodate various similarity scoring functions while efficiently sampling the two-dimensional transformational space. We use this image alignment method to evaluate the performance of a scoring function that is based on the Mutual Information (MI) of two images rather than one that is based on the cross-correlation function. We show that alignment using MI for the scoring function has far less model-dependent bias than is found with cross-correlation based alignment. We also demonstrate that MI improves the alignment of some types of heterogeneous data, provided that the signal-to-noise ratio is relatively high. These results indicate, therefore, that use of MI as the scoring function is well suited for the alignment of class-averages computed from single-particle images. Our method is tested on data from three model structures and one real dataset.
Collapse
Affiliation(s)
- Maxim Shatsky
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| | | | | | | |
Collapse
|
143
|
Maruyama Y, Ogura T, Mio K, Kato K, Kaneko T, Kiyonaka S, Mori Y, Sato C. Tetrameric Orai1 is a teardrop-shaped molecule with a long, tapered cytoplasmic domain. J Biol Chem 2009; 284:13676-13685. [PMID: 19289460 DOI: 10.1074/jbc.m900812200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Ca(2+) release-activated Ca(2+) channel is a principal regulator of intracellular Ca(2+) rise, which conducts various biological functions, including immune responses. This channel, involved in store-operated Ca(2+) influx, is believed to be composed of at least two major components. Orai1 has a putative channel pore and locates in the plasma membrane, and STIM1 is a sensor for luminal Ca(2+) store depletion in the endoplasmic reticulum membrane. Here we have purified the FLAG-fused Orai1 protein, determined its tetrameric stoichiometry, and reconstructed its three-dimensional structure at 21-A resolution from 3681 automatically selected particle images, taken with an electron microscope. This first structural depiction of a member of the Orai family shows an elongated teardrop-shape 150A in height and 95A in width. Antibody decoration and volume estimation from the amino acid sequence indicate that the widest transmembrane domain is located between the round extracellular domain and the tapered cytoplasmic domain. The cytoplasmic length of 100A is sufficient for direct association with STIM1. Orifices close to the extracellular and intracellular membrane surfaces of Orai1 seem to connect outside the molecule to large internal cavities.
Collapse
Affiliation(s)
- Yuusuke Maruyama
- Neuroscience Research Institute and National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba, Ibaraki 305-8568
| | - Toshihiko Ogura
- Neuroscience Research Institute and National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba, Ibaraki 305-8568; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012
| | - Kazuhiro Mio
- Neuroscience Research Institute and National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba, Ibaraki 305-8568; Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba, Ibaraki 305-8568
| | - Kenta Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takeshi Kaneko
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Chikara Sato
- Neuroscience Research Institute and National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba, Ibaraki 305-8568; Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba, Ibaraki 305-8568.
| |
Collapse
|
144
|
Bowl-shaped oligomeric structures on membranes as DegP's new functional forms in protein quality control. Proc Natl Acad Sci U S A 2009; 106:4858-63. [PMID: 19255437 DOI: 10.1073/pnas.0811780106] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the periplasm of Escherichia coli, DegP (also known as HtrA), which has both chaperone-like and proteolytic activities, prevents the accumulation of toxic misfolded and unfolded polypeptides. In solution, upon binding to denatured proteins, DegP forms large cage-like structures. Here, we show that DegP forms a range of bowl-shaped structures, independent of substrate proteins, each with a 4-, 5-, or 6-fold symmetry and all with a DegP trimer as the structural unit, on lipid membranes. These membrane-bound DegP assemblies have the capacity to recruit and process substrates in the bowl chamber, and they exhibit higher proteolytic and lower chaperone-like activities than DegP in solution. Our findings imply that DegP might regulate its dual roles during protein quality control, depending on its assembly state in the narrow bacterial envelope.
Collapse
|
145
|
Mio K, Ogura T, Yamamoto T, Hiroaki Y, Fujiyoshi Y, Kubo Y, Sato C. Reconstruction of the P2X2 Receptor Reveals a Vase-Shaped Structure with Lateral Tunnels above the Membrane. Structure 2009; 17:266-75. [DOI: 10.1016/j.str.2008.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/30/2008] [Accepted: 12/02/2008] [Indexed: 11/28/2022]
|
146
|
Zhang W, Kimmel M, Spahn CM, Penczek PA. Heterogeneity of large macromolecular complexes revealed by 3D cryo-EM variance analysis. Structure 2008; 16:1770-6. [PMID: 19081053 PMCID: PMC2642923 DOI: 10.1016/j.str.2008.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/08/2008] [Indexed: 11/16/2022]
Abstract
Macromolecular structure determination by cryo-electron microscopy (EM) and single-particle analysis are based on the assumption that imaged molecules have identical structure. With the increased size of processed data sets, it becomes apparent that many complexes coexist in a mixture of conformational states or contain flexible regions. We describe an implementation of the bootstrap resampling technique that yields estimates of voxel-by-voxel variance of a structure reconstructed from the set of its projections. We introduce a highly efficient reconstruction algorithm that is based on direct Fourier inversion and that incorporates correction for the transfer function of the microscope, thus extending the resolution limits of variance estimation. We also describe a validation method to determine the number of resampled volumes required to achieve stable estimate of the variance. The proposed bootstrap method was applied to a data set of 70S ribosome complexed with tRNA and the elongation factor G. The proposed method of variance estimation opens new possibilities for single-particle analysis, by extending applicability of the technique to heterogeneous data sets of macromolecules and to complexes with significant conformational variability.
Collapse
Affiliation(s)
- Wei Zhang
- The University of Texas – Houston Medical School, Department of Biochemistry and Molecular Biology, 6431 Fannin, MSB 6.218, Houston, TX 77030, USA
| | - Marek Kimmel
- Rice University, Department of Statistics, 6100 Main St., MS 138, Houston, TX 77005, USA
| | - Christian M.T. Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Ziegelstr. 5-9, 10117 Berlin, Germany
| | - Pawel A. Penczek
- The University of Texas – Houston Medical School, Department of Biochemistry and Molecular Biology, 6431 Fannin, MSB 6.218, Houston, TX 77030, USA
| |
Collapse
|
147
|
Chaban Y, Ezeokonkwo C, Chung WH, Zhang F, Kornberg RD, Maier-Davis B, Lorch Y, Asturias FJ. Structure of a RSC-nucleosome complex and insights into chromatin remodeling. Nat Struct Mol Biol 2008; 15:1272-7. [PMID: 19029894 PMCID: PMC2659406 DOI: 10.1038/nsmb.1524] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/31/2008] [Indexed: 12/21/2022]
Abstract
ATP-dependent chromatin-remodeling complexes, such as RSC, can reposition, evict or restructure nucleosomes. A structure of a RSC-nucleosome complex with a nucleosome determined by cryo-EM shows the nucleosome bound in a central RSC cavity. Extensive interaction of RSC with histones and DNA seems to destabilize the nucleosome and lead to an overall ATP-independent rearrangement of its structure. Nucleosomal DNA appears disordered and largely free to bulge out into solution as required for remodeling, but the structure of the RSC-nucleosome complex indicates that RSC is unlikely to displace the octamer from the nucleosome to which it is bound. Consideration of the RSC-nucleosome structure and published biochemical information suggests that ATP-dependent DNA translocation by RSC may result in the eviction of histone octamers from adjacent nucleosomes.
Collapse
Affiliation(s)
- Yuriy Chaban
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
148
|
JONIĆ S, SORZANO C, BOISSET N. Comparison of single-particle analysis and electron tomography approaches: an overview. J Microsc 2008; 232:562-79. [DOI: 10.1111/j.1365-2818.2008.02119.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
149
|
San Martín C, Glasgow JN, Borovjagin A, Beatty MS, Kashentseva EA, T. Curiel D, Marabini R, Dmitriev IP. Localization of the N-terminus of minor coat protein IIIa in the adenovirus capsid. J Mol Biol 2008; 383:923-34. [PMID: 18786542 PMCID: PMC2652759 DOI: 10.1016/j.jmb.2008.08.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 08/20/2008] [Indexed: 11/24/2022]
Abstract
Minor coat protein IIIa is conserved in all adenoviruses (Ads) and is required for correct viral assembly, but its precise function in capsid organization is unknown. The latest Ad capsid model proposes that IIIa is located underneath the vertex region. To obtain experimental evidence on the location of IIIa and to further define its role, we engineered the IIIa gene to encode heterologous N-terminal peptide extensions. Recombinant Ad variants with IIIa encoding six-histidine (6His) tag, 6His, and FLAG peptides, or with 6His linked to FLAG with a (Gly(4)Ser)(3) linker were rescued and analyzed for virus yield, capsid incorporation of heterologous peptides, and capsid stability. Longer extensions could not be rescued. Western blot analysis confirmed that the modified IIIa proteins were expressed in infected cells and incorporated into virions. In the Ad encoding the 6His-linker-FLAG-IIIa gene, the 6His tag was present in light particles, but not in mature virions. Immunoelectron microscopy of this virus showed that the FLAG epitope is not accessible to antibodies on the viral particles. Three-dimensional electron microscopy and difference mapping located the IIIa N-terminal extension beneath the vertex complex, wedged at the interface between the penton base and peripentonal hexons, therefore supporting the latest proposed model. The position of the IIIa N-terminus and its low tolerance for modification provide new clues for understanding the role of this minor coat protein in Ad capsid assembly and disassembly.
Collapse
Affiliation(s)
- Carmen San Martín
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Joel N. Glasgow
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anton Borovjagin
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew S. Beatty
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Elena A. Kashentseva
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David T. Curiel
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Roberto Marabini
- Escuela Politécnica Superior, Universidad Autónoma de Madrid, Francisco Tomás y Valiente 11, 28049 Madrid, Spain
| | - Igor P. Dmitriev
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
150
|
High-resolution single-particle 3D analysis on GroEL prepared by cryo-negative staining. Micron 2008; 39:934-43. [DOI: 10.1016/j.micron.2007.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 11/23/2022]
|