101
|
Picard M, Ritchie D, Thomas MM, Wright KJ, Hepple RT. Alterations in intrinsic mitochondrial function with aging are fiber type-specific and do not explain differential atrophy between muscles. Aging Cell 2011; 10:1047-55. [PMID: 21933339 DOI: 10.1111/j.1474-9726.2011.00745.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To determine whether mitochondrial dysfunction is causally related to muscle atrophy with aging, we examined respiratory capacity, H(2) O(2) emission, and function of the mitochondrial permeability transition pore (mPTP) in permeabilized myofibers prepared from four rat muscles that span a range of fiber type and degree of age-related atrophy. Muscle atrophy with aging was greatest in fast-twitch gastrocnemius (Gas) muscle (-38%), intermediate in both the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (Sol) muscles (-21%), and non-existent in adductor longus (AL) muscle (+47%). In contrast, indices of mitochondrial dysfunction did not correspond to this differential degree of atrophy. Specifically, despite higher protein expression for oxidative phosphorylation (oxphos) system in fast Gas and EDL, state III respiratory capacity per myofiber wet weight was unchanged with aging, whereas the slow Sol showed proportional decreases in oxphos protein, citrate synthase activity, and state III respiration. Free radical leak (H(2) O(2) emission per O(2) flux) under state III respiration was higher with aging in the fast Gas, whereas state II free radical leak was higher in the slow AL. Only the fast muscles had impaired mPTP function with aging, with lower mitochondrial calcium retention capacity in EDL and shorter time to mPTP opening in Gas and EDL. Collectively, our results underscore that the age-related changes in muscle mitochondrial function depend largely upon fiber type and are unrelated to the severity of muscle atrophy, suggesting that intrinsic changes in mitochondrial function are unlikely to be causally involved in aging muscle atrophy.
Collapse
Affiliation(s)
- Martin Picard
- Department of Kinesiology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
102
|
Holley AK, Bakthavatchalu V, Velez-Roman JM, St. Clair DK. Manganese superoxide dismutase: guardian of the powerhouse. Int J Mol Sci 2011; 12:7114-62. [PMID: 22072939 PMCID: PMC3211030 DOI: 10.3390/ijms12107114] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/28/2011] [Accepted: 10/08/2011] [Indexed: 12/18/2022] Open
Abstract
The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS) production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component.
Collapse
Affiliation(s)
- Aaron K. Holley
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| | - Vasudevan Bakthavatchalu
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| | - Joyce M. Velez-Roman
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| | - Daret K. St. Clair
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| |
Collapse
|
103
|
Signorile A, Sardaro N, De Rasmo D, Scacco S, Papa F, Borracci P, Carratù MR, Papa S. Rat embryo exposure to all-trans retinoic acid results in postnatal oxidative damage of respiratory complex I in the cerebellum. Mol Pharmacol 2011; 80:704-13. [PMID: 21752959 DOI: 10.1124/mol.111.073353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The results of the present work show that the exposure of pregnant rats to low doses of all-trans-retinoic acid (ATRA) (2.5 mg/kg body weight) results in postnatal dysfunction of complex I of the respiratory chain in the cerebellum of the offspring. ATRA had no effect on the postnatal expression of complex I and did not exert any direct inhibitory effect on the enzymatic activity of the complex. The ATRA embryonic exposure resulted, however, in a marked increase in the level of carbonylated proteins in the mitochondrial fraction of the cerebellum, in particular of complex I subunits. The postnatal increase of the carbonylated proteins correlated directly with the inhibition of the activity of complex I. ATRA had, on the other hand, no effect on oxygen free-radical scavengers. It is proposed that embryonic exposure to ATRA results in impairment of protein surveillance in the cerebellum, which persists after birth and results in accumulation of oxidatively damaged complex I.
Collapse
Affiliation(s)
- Anna Signorile
- Department of Medical Biochemistry, Biology and Physics, University of Bari Aldo Moro, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Hartmann N, Reichwald K, Wittig I, Dröse S, Schmeisser S, Lück C, Hahn C, Graf M, Gausmann U, Terzibasi E, Cellerino A, Ristow M, Brandt U, Platzer M, Englert C. Mitochondrial DNA copy number and function decrease with age in the short-lived fish Nothobranchius furzeri. Aging Cell 2011; 10:824-31. [PMID: 21624037 DOI: 10.1111/j.1474-9726.2011.00723.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Among vertebrates that can be kept in captivity, the annual fish Nothobranchius furzeri possesses the shortest known lifespan. It also shows typical signs of aging and is therefore an ideal model to assess the role of different physiological and environmental parameters on aging and lifespan determination. Here, we used Nothobranchius furzeri to study whether aging is associated with mitochondrial DNA (mtDNA) alterations and changes in mitochondrial function. We sequenced the complete mitochondrial genome of N. furzeri and found an extended control region. Large-scale mtDNA deletions have been frequently described to accumulate in other organisms with age, but there was no evidence for the presence of detectable age-related mtDNA deletions in N. furzeri. However, mtDNA copy number significantly decreased with age in skeletal muscle, brain, liver, skin and dorsal fin. Consistent with this finding, expression of Pgc-1α that encodes a transcriptional coactivator of mitochondrial biogenesis and expression of Tfam and mtSsbp both encoding mtDNA binding factors was downregulated with age. The investigation of possible changes in mitochondrial function revealed that the content of respiratory chain complexes III and IV was reduced in skeletal muscle with age. In addition, ADP-stimulated and succinate-dependent respiration was decreased in mitochondria of old fish. These findings suggest that despite the short lifespan, aging in N. furzeri is associated with a decline in mtDNA copy number, the downregulation of mtDNA-associated genes and an impairment of mitochondrial function.
Collapse
MESH Headings
- Aging/genetics
- Aging/metabolism
- Aging/physiology
- Animals
- Cell Respiration
- Cyprinodontiformes/genetics
- Cyprinodontiformes/metabolism
- Cyprinodontiformes/physiology
- DNA Copy Number Variations
- DNA, Mitochondrial/analysis
- DNA, Mitochondrial/genetics
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Regulation, Developmental
- Genome, Mitochondrial
- Longevity
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/physiology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Models, Theoretical
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Nils Hartmann
- Department of Molecular Genetics, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Suski JM, Karkucinska-Wieckowska A, Lebiedzinska M, Giorgi C, Szczepanowska J, Szabadkai G, Duszynski J, Pronicki M, Pinton P, Wieckowski MR. p66Shc aging protein in control of fibroblasts cell fate. Int J Mol Sci 2011; 12:5373-89. [PMID: 21954365 PMCID: PMC3179172 DOI: 10.3390/ijms12085373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/02/2011] [Accepted: 08/15/2011] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are wieldy accepted as one of the main factors of the aging process. These highly reactive compounds modify nucleic acids, proteins and lipids and affect the functionality of mitochondria in the first case and ultimately of the cell. Any agent or genetic modification that affects ROS production and detoxification can be expected to influence longevity. On the other hand, genetic manipulations leading to increased longevity can be expected to involve cellular changes that affect ROS metabolism. The 66-kDa isoform of the growth factor adaptor Shc (p66Shc) has been recognized as a relevant factor to the oxygen radical theory of aging. The most recent data indicate that p66Shc protein regulates life span in mammals and its phosphorylation on serine 36 is important for the initiation of cell death upon oxidative stress. Moreover, there is strong evidence that apart from aging, p66Shc may be implicated in many oxidative stress-associated pathologies, such as diabetes, mitochondrial and neurodegenerative disorders and tumorigenesis. This article summarizes recent knowledge about the role of p66Shc in aging and senescence and how this protein can influence ROS production and detoxification, focusing on studies performed on skin and skin fibroblasts.
Collapse
Affiliation(s)
- Jan M. Suski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland; E-Mails: (J.M.S.); (M.L.); (J.S.); (J.D.)
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and LTTA Center, University of Ferrara, Ferrara 9-44121, Italy; E-Mails: (C.G.); (P.P.)
| | | | - Magdalena Lebiedzinska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland; E-Mails: (J.M.S.); (M.L.); (J.S.); (J.D.)
| | - Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and LTTA Center, University of Ferrara, Ferrara 9-44121, Italy; E-Mails: (C.G.); (P.P.)
| | - Joanna Szczepanowska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland; E-Mails: (J.M.S.); (M.L.); (J.S.); (J.D.)
| | - Gyorgy Szabadkai
- University College London, Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, London WC1E 6BT, UK; E-Mail:
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland; E-Mails: (J.M.S.); (M.L.); (J.S.); (J.D.)
| | - Maciej Pronicki
- Department of Pathology, The Children’s Memorial Health Institute, Warsaw 04-730, Poland; E-Mails: (A.K.-W.); (M.P.)
| | - Paolo Pinton
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and LTTA Center, University of Ferrara, Ferrara 9-44121, Italy; E-Mails: (C.G.); (P.P.)
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland; E-Mails: (J.M.S.); (M.L.); (J.S.); (J.D.)
| |
Collapse
|
106
|
|
107
|
Gelfi C, Vasso M, Cerretelli P. Diversity of human skeletal muscle in health and disease: contribution of proteomics. J Proteomics 2011; 74:774-95. [PMID: 21414428 DOI: 10.1016/j.jprot.2011.02.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/22/2011] [Accepted: 02/26/2011] [Indexed: 12/25/2022]
Abstract
Muscle represents a large fraction of the human body mass. It is an extremely heterogeneous tissue featuring in its contractile structure various proportions of heavy- and light-chain slow type 1 and fast types 2A and 2X myosins, actins, tropomyosins, and troponin complexes as well as metabolic proteins (enzymes and most of the players of the so-called excitation-transcription coupling). Muscle is characterized by wide plasticity, i.e. capacity to adjust size and functional properties in response to endogenous and exogenous influences. Over the last decade, proteomics has become a crucial technique for the assessment of muscle at the molecular level and the investigation of its functional changes. Advantages and shortcomings of recent techniques for muscle proteome analysis are discussed. Data from differential proteomics applied to healthy individuals in normal and unusual environments (hypoxia and cold), in exercise, immobilization, aging and to patients with neuromuscular hereditary disorders (NMDs), inclusion body myositis and insulin resistance are summarized, critically discussed and, when required, compared with homologous data from pertinent animal models. The advantages as well as the limits of proteomics in view of the identification of new biomarkers are evaluated.
Collapse
Affiliation(s)
- Cecilia Gelfi
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Milano, Milan, Italy.
| | | | | |
Collapse
|
108
|
Tranah GJ. Mitochondrial-nuclear epistasis: implications for human aging and longevity. Ageing Res Rev 2011; 10:238-52. [PMID: 20601194 PMCID: PMC2995012 DOI: 10.1016/j.arr.2010.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 12/22/2022]
Abstract
There is substantial evidence that mitochondria are involved in the aging process. Mitochondrial function requires the coordinated expression of hundreds of nuclear genes and a few dozen mitochondrial genes, many of which have been associated with either extended or shortened life span. Impaired mitochondrial function resulting from mtDNA and nuclear DNA variation is likely to contribute to an imbalance in cellular energy homeostasis, increased vulnerability to oxidative stress, and an increased rate of cellular senescence and aging. The complex genetic architecture of mitochondria suggests that there may be an equally complex set of gene interactions (epistases) involving genetic variation in the nuclear and mitochondrial genomes. Results from Drosophila suggest that the effects of mtDNA haplotypes on longevity vary among different nuclear allelic backgrounds, which could account for the inconsistent associations that have been observed between mitochondrial DNA (mtDNA) haplogroups and survival in humans. A diversity of pathways may influence the way mitochondria and nuclear-mitochondrial interactions modulate longevity, including: oxidative phosphorylation; mitochondrial uncoupling; antioxidant defenses; mitochondrial fission and fusion; and sirtuin regulation of mitochondrial genes. We hypothesize that aging and longevity, as complex traits having a significant genetic component, are likely to be controlled by nuclear gene variants interacting with both inherited and somatic mtDNA variability.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco Coordinating Center, UCSF, 94107-1728, USA.
| |
Collapse
|
109
|
Desler C, Marcker ML, Singh KK, Rasmussen LJ. The importance of mitochondrial DNA in aging and cancer. J Aging Res 2011; 2011:407536. [PMID: 21584235 PMCID: PMC3092560 DOI: 10.4061/2011/407536] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/31/2011] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dysfunction has been implicated in premature aging, age-related diseases, and tumor initiation and progression. Alterations of the mitochondrial genome accumulate both in aging tissue and tumors. This paper describes our contemporary view of mechanisms by which alterations of the mitochondrial genome contributes to the development of age- and tumor-related pathological conditions. The mechanisms described encompass altered production of mitochondrial ROS, altered regulation of the nuclear epigenome, affected initiation of apoptosis, and a limiting effect on the production of ribonucleotides and deoxyribonucleotides.
Collapse
Affiliation(s)
- Claus Desler
- Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | | | | |
Collapse
|
110
|
Salway KD, Page MM, Faure PA, Burness G, Stuart JA. Enhanced protein repair and recycling are not correlated with longevity in 15 vertebrate endotherm species. AGE (DORDRECHT, NETHERLANDS) 2011; 33:33-47. [PMID: 20567926 PMCID: PMC3063641 DOI: 10.1007/s11357-010-9157-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 05/31/2010] [Indexed: 05/25/2023]
Abstract
Previous studies have shown that longevity is associated with enhanced cellular stress resistance. This observation supports the disposable soma theory of aging, which suggests that the investment made in cellular maintenance will be proportional to selective pressures to extend lifespan. Maintenance of protein homeostasis is a critical component of cellular maintenance and stress resistance. To test the hypothesis that enhanced protein repair and recycling activities underlie longevity, we measured the activities of the 20S/26S proteasome and two protein repair enzymes in liver, heart and brain tissues of 15 different mammalian and avian species with maximum lifespans (MLSP) ranging from 3 to 30 years. The data set included Snell dwarf mice, in which lifespan is increased by ∼50% compared to their normal littermates. None of these activities in any of the three tissues correlated positively with MLSP. In liver, 20S/26S proteasome and thioredoxin reductase (TrxR) activities correlated negatively with body mass. In brain tissue, TrxR was also negatively correlated with body mass. Glutaredoxin (Grx) activity in brain was negatively correlated with MLSP and this correlation remained after residual analysis to remove the effects of body mass, but was lost when the data were analysed using Felsenstein's independent contrasts. Snell dwarf mice had marginally lower 20S proteasome, TrxR and Grx activities than normal controls in brain, but not heart tissue. Thus, increased longevity is not associated with increased protein repair or proteasomal degradation capacities in vertebrate endotherms.
Collapse
Affiliation(s)
- Kurtis D. Salway
- Department of Biological Sciences, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1 Canada
| | - Melissa M. Page
- Department of Biological Sciences, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1 Canada
| | - Paul A. Faure
- Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
| | - Gary Burness
- Department of Biology, Trent University, Peterborough, ON K9J 7B8 Canada
| | - Jeffrey A. Stuart
- Department of Biological Sciences, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1 Canada
| |
Collapse
|
111
|
Cho S, Hwang ES. Fluorescence-based detection and quantification of features of cellular senescence. Methods Cell Biol 2011; 103:149-88. [PMID: 21722803 DOI: 10.1016/b978-0-12-385493-3.00007-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular senescence is a spontaneous organismal defense mechanism against tumor progression which is raised upon the activation of oncoproteins or other cellular environmental stresses that must be circumvented for tumorigenesis to occur. It involves growth-arrest state of normal cells after a number of active divisions. There are multiple experimental routes that can drive cells into a state of senescence. Normal somatic cells and cancer cells enter a state of senescence upon overexpression of oncogenic Ras or Raf protein or by imposing certain kinds of stress such as cellular tumor suppressor function. Both flow cytometry and confocal imaging analysis techniques are very useful in quantitative analysis of cellular senescence phenomenon. They allow quantitative estimates of multiple different phenotypes expressed in multiple cell populations simultaneously. Here we review the various types of fluorescence methodologies including confocal imaging and flow cytometry that are frequently utilized to study a variety of senescence. First, we discuss key cell biological changes occurring during senescence and review the current understanding on the mechanisms of these changes with the goal of improving existing protocols and further developing new ones. Next, we list specific senescence phenotypes associated with each cellular trait along with the principles of their assay methods and the significance of the assay outcomes. We conclude by selecting appropriate references that demonstrate a typical example of each method.
Collapse
Affiliation(s)
- Sohee Cho
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | | |
Collapse
|
112
|
Bronnikov GE, Kulagina TP, Aripovsky AV. Dietary supplementation of old rats with hydrogenated peanut oil restores activities of mitochondrial respiratory complexes in skeletal muscles. BIOCHEMISTRY (MOSCOW) 2010; 75:1491-7. [DOI: 10.1134/s0006297910120102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
113
|
Abstract
The impact of ageing on mitochondrial function and the deterministic role of mitochondria on senescence continue to be topics of vigorous debate. Many studies report that skeletal muscle mitochondrial content and function are reduced with ageing and metabolic diseases associated with insulin resistance. However, an accumulating body of literature suggests that physical inactivity typical of ageing may be a more important determinant of mitochondrial function than chronological age, per se. Reports of age-related declines in mitochondrial function have spawned a vast body of literature devoted to understanding the underlying mechanisms. These mechanisms include decreased abundance of mtDNA, reduced mRNA levels, as well as decreased synthesis and expression of mitochondrial proteins, ultimately resulting in decreased function of the whole organelle. Effective therapies to prevent, reverse or delay the onset of the aforementioned mitochondrial changes, regardless of their inevitability or precise underlying causes, require an intimate understanding of the processes that regulate mitochondrial biogenesis, which necessitates the coordinated regulation of nuclear and mitochondrial genomes. Herein we review the current thinking on regulation of mitochondrial biogenesis by transcription factors and transcriptional co-activators and the role of hormones and exercise in initiating this process. We review how exercise may help preserve mitochondrial content and functionality across the lifespan, and how physical inactivity is emerging as a major determinant of many age-associated changes at the level of the mitochondrion. We also review evidence that some mitochondrial changes with ageing are independent of exercise or physical activity and appear to be inevitable consequences of old age.
Collapse
Affiliation(s)
- I R Lanza
- Endocrinology Research Unit, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
114
|
Evidence of mitochondrial dysfunction in fragile X-associated tremor/ataxia syndrome. Biochem J 2010; 429:545-52. [PMID: 20513237 DOI: 10.1042/bj20091960] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FXTAS (fragile X-associated tremor/ataxia syndrome) is a late-onset neurodegenerative disorder that affects individuals who are carriers of premutation expansions (55-200 CGG repeats) in the 5' untranslated region of the FMR1 (fragile X mental retardation 1) gene. The role of MD (mitochondrial dysfunction) in FXTAS was evaluated in fibroblasts and brain samples from premutation carriers with and without FXTAS symptoms, with a range of CGG repeats. This study resulted in several important conclusions: (i) decreased NAD- and FAD-linked oxygen uptake rates and uncoupling between electron transport and synthesis of ATP were observed in fibroblasts from premutation carriers; (ii) a lower expression of mitochondrial proteins preceded both in age and in CGG repeats the appearance of overt clinical involvement; (iii) the CGG repeat size required for altered mitochondrial protein expression was also smaller than that required to produce brain intranuclear inclusions from individuals with the premutation who died, suggesting that MD is an incipient pathological process occurring in individuals who do not display overt features of FXTAS; and (iv) on the basis of the CGG repeats, MD preceded the increase in oxidative/nitrative stress damage, indicating that the latter is a late event. MD in carriers of small CGG repeats, even when the allele size is not sufficient to produce FXTAS, may predispose them to other disorders (e.g. Parkinson's disease) that are likely to involve MD, and to environmental stressors, which may trigger the development of FXTAS symptoms. Detection of MD is of critical importance to the management of FXTAS, since it opens up additional treatment options for this disorder.
Collapse
|
115
|
Kim YM, Shin HT, Seo YH, Byun HO, Yoon SH, Lee IK, Hyun DH, Chung HY, Yoon G. Sterol regulatory element-binding protein (SREBP)-1-mediated lipogenesis is involved in cell senescence. J Biol Chem 2010; 285:29069-77. [PMID: 20615871 DOI: 10.1074/jbc.m110.120386] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Increased cell mass is one of the characteristics of senescent cells, but this event has not been clearly defined. When subcellular organellar mass was estimated with organelle-specific fluorescence dyes, we observed that most membranous organelles progressively increase in mass during cell senescence. This increase was accompanied by an increase in membrane lipids and augmented expression of lipogenic enzymes, such as fatty acid synthase (FAS), ATP citrate lyase, and acetyl-CoA carboxylase. The mature form of sterol regulatory element-binding protein (SREBP)-1 was also elevated. Increased expression of these lipogenic effectors was further observed in the liver tissues of aging Fischer 344 rats. Ectopic expression of mature form of SREBP-1 in both Chang cells and primary young human diploid fibroblasts was enough to induce senescence. Blocking lipogenesis with FAS inhibitors (cerulenin and C75) and via siRNA-mediated silencing of SREBP-1 and ATP citrate lyase significantly attenuated H(2)O(2)-induced senescence. Finally, old human diploid fibroblasts were effectively reversed to young-like cells by challenging with FAS inhibitors. Our results suggest that enhanced lipogenesis is not only a common event, but also critically involved in senescence via SREBP-1 induction, thereby contributing to the increase in organelle mass (as a part of cell mass), a novel indicator of senescence.
Collapse
Affiliation(s)
- You-Mie Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Ajou University, Suwon 443-721, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Safdar A, Hamadeh MJ, Kaczor JJ, Raha S, deBeer J, Tarnopolsky MA. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS One 2010; 5:e10778. [PMID: 20520725 PMCID: PMC2875392 DOI: 10.1371/journal.pone.0010778] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/01/2010] [Indexed: 02/07/2023] Open
Abstract
The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; female symbol = male symbol). We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mazen J. Hamadeh
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Jan J. Kaczor
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Sandeep Raha
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Justin deBeer
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Mark A. Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
117
|
Bratic I, Trifunovic A. Mitochondrial energy metabolism and ageing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:961-7. [PMID: 20064485 DOI: 10.1016/j.bbabio.2010.01.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 10/20/2022]
Abstract
Ageing can be defined as "a progressive, generalized impairment of function, resulting in an increased vulnerability to environmental challenge and a growing risk of disease and death". Ageing is likely a multifactorial process caused by accumulated damage to a variety of cellular components. During the last 20 years, gerontological studies have revealed different molecular pathways involved in the ageing process and pointed out mitochondria as one of the key regulators of longevity. Increasing age in mammals correlates with increased levels of mitochondrial DNA (mtDNA) mutations and a deteriorating respiratory chain function. Experimental evidence in the mouse has linked increased levels of somatic mtDNA mutations to a variety of ageing phenotypes, such as osteoporosis, hair loss, graying of the hair, weight reduction and decreased fertility. A mosaic respiratory chain deficiency in a subset of cells in various tissues, such as heart, skeletal muscle, colonic crypts and neurons, is typically found in aged humans. It has been known for a long time that respiratory chain-deficient cells are more prone to undergo apoptosis and an increased cell loss is therefore likely of importance in the age-associated mitochondrial dysfunction. In this review, we would like to point out the link between the mitochondrial energy balance and ageing, as well as a possible connection between the mitochondrial metabolism and molecular pathways important for the lifespan extension.
Collapse
Affiliation(s)
- Ivana Bratic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, D-50674 Cologne, Germany
| | | |
Collapse
|
118
|
Chan SL, Wei Z, Chigurupati S, Tu W. Compromised respiratory adaptation and thermoregulation in aging and age-related diseases. Ageing Res Rev 2010; 9:20-40. [PMID: 19800420 DOI: 10.1016/j.arr.2009.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 02/04/2023]
Abstract
Mitochondrial dysfunction and reactive oxygen species (ROS) production are at the heart of the aging process and are thought to underpin age-related diseases. Mitochondria are not only the primary energy-generating system but also the dominant cellular source of metabolically derived ROS. Recent studies unravel the existence of mechanisms that serve to modulate the balance between energy metabolism and ROS production. Among these is the regulation of proton conductance across the inner mitochondrial membrane that affects the efficiency of respiration and heat production. The field of mitochondrial respiration research has provided important insight into the role of altered energy balance in obesity and diabetes. The notion that respiration and oxidative capacity are mechanistically linked is making significant headway into the field of aging and age-related diseases. Here we review the regulation of cellular energy and ROS balance in biological systems and survey some of the recent relevant studies that suggest that respiratory adaptation and thermodynamics are important in aging and age-related diseases.
Collapse
|
119
|
Lanza IR, Nair KS. Mitochondrial function as a determinant of life span. Pflugers Arch 2009; 459:277-89. [PMID: 19756719 PMCID: PMC2801852 DOI: 10.1007/s00424-009-0724-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 08/26/2009] [Indexed: 12/31/2022]
Abstract
Average human life expectancy has progressively increased over many decades largely due to improvements in nutrition, vaccination, antimicrobial agents, and effective treatment/prevention of cardiovascular disease, cancer, etc. Maximal life span, in contrast, has changed very little. Caloric restriction (CR) increases maximal life span in many species, in concert with improvements in mitochondrial function. These effects have yet to be demonstrated in humans, and the duration and level of CR required to extend life span in animals is not realistic in humans. Physical activity (voluntary exercise) continues to hold much promise for increasing healthy life expectancy in humans, but remains to show any impact to increase maximal life span. However, longevity in Caenorhabditis elegans is related to activity levels, possibly through maintenance of mitochondrial function throughout the life span. In humans, we reported a progressive decline in muscle mitochondrial DNA abundance and protein synthesis with age. Other investigators also noted age-related declines in muscle mitochondrial function, which are related to peak oxygen uptake. Long-term aerobic exercise largely prevented age-related declines in mitochondrial DNA abundance and function in humans and may increase spontaneous activity levels in mice. Notwithstanding, the impact of aerobic exercise and activity levels on maximal life span is uncertain. It is proposed that age-related declines in mitochondrial content and function not only affect physical function, but also play a major role in regulation of life span. Regular aerobic exercise and prevention of adiposity by healthy diet may increase healthy life expectancy and prolong life span through beneficial effects at the level of the mitochondrion.
Collapse
Affiliation(s)
- Ian R Lanza
- Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | |
Collapse
|
120
|
Hwang ES, Yoon G, Kang HT. A comparative analysis of the cell biology of senescence and aging. Cell Mol Life Sci 2009; 66:2503-24. [PMID: 19421842 PMCID: PMC11115533 DOI: 10.1007/s00018-009-0034-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/02/2009] [Accepted: 04/15/2009] [Indexed: 01/10/2023]
Abstract
Various intracellular organelles, such as lysosomes, mitochondria, nuclei, and cytoskeletons, change during replicative senescence, but the utility of these changes as general markers of senescence and their significance with respect to functional alterations have not been comprehensively reviewed. Furthermore, the relevance of these alterations to cellular and functional changes in aging animals is poorly understood. In this paper, we review the studies that report these senescence-associated changes in various aging cells and their underlying mechanisms. Changes associated with lysosomes and mitochondria are found not only in cells undergoing replicative or induced senescence but also in postmitotic cells isolated from aged organisms. In contrast, other changes occur mainly in cells undergoing in vitro senescence. Comparison of age-related changes and their underlying mechanisms in in vitro senescent cells and aged postmitotic cells would reveal the relevance of replicative senescence to the physiological processes occurring in postmitotic cells as individuals age.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemungu, Jeonnongdong 90, Seoul 130-743, Republic of Korea.
| | | | | |
Collapse
|
121
|
Lombardi A, Silvestri E, Cioffi F, Senese R, Lanni A, Goglia F, de Lange P, Moreno M. Defining the transcriptomic and proteomic profiles of rat ageing skeletal muscle by the use of a cDNA array, 2D- and Blue native-PAGE approach. J Proteomics 2009; 72:708-21. [PMID: 19268720 DOI: 10.1016/j.jprot.2009.02.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/21/2009] [Accepted: 02/19/2009] [Indexed: 11/28/2022]
Abstract
We defined the transcriptomic and proteomic profiles of rat ageing skeletal muscle using a combined cDNA array, 2D- and Blue native-PAGE approach. This was allowed to obtain an overview of the interrelated events leading to the transcriptome/proteome/mitoproteome changes likely to underlie the structural/metabolic features of aged skeletal muscle. The main differences were found in genes/proteins related to energy metabolism, mitochondrial pathways, myofibrillar filaments, and detoxification. Concerning the abundance of mitochondrial OXPHOS complexes as well as their supramolecular organization and activity, mitochondria from old rats, when compared with those from young rats, contained significantly lower amounts of complex I (NADH:ubiquinone oxidoreductase), V (FoF1-ATP synthase), and III (ubiquinol:cytochrome c oxidoreductase). The same mitochondria contained a significantly larger amount of complex II (succinate:ubiquinone oxidoreductase), but an unchanged amount of complex IV (cytochrome c oxidase, COX). When comparing the supercomplex profiles between young and old muscle mitochondria, the densitometric analysis revealed that lighter supercomplexes were significantly reduced in older mitochondria, and that in the older group the major supercomplex bands were those representing heavier supercomplexes, likely suggesting a compensatory mechanism that, in ageing muscle, is functionally directed towards substrate channeling and catalytic enhancement advantaging the respirosome.
Collapse
Affiliation(s)
- A Lombardi
- Dipartimento delle Scienze Biologiche, Sezione Fisiologia, Università degli Studi di Napoli Federico II, Via Mezzocannone 8, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Gao X, Campian JL, Qian M, Sun XF, Eaton JW. Mitochondrial DNA damage in iron overload. J Biol Chem 2008; 284:4767-75. [PMID: 19095657 DOI: 10.1074/jbc.m806235200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic iron overload has slow and insidious effects on heart, liver, and other organs. Because iron-driven oxidation of most biologic materials (such as lipids and proteins) is readily repaired, this slow progression of organ damage implies some kind of biological "memory." We hypothesized that cumulative iron-catalyzed oxidant damage to mtDNA might occur in iron overload, perhaps explaining the often lethal cardiac dysfunction. Real time PCR was used to examine the "intactness" of mttDNA in cultured H9c2 rat cardiac myocytes. After 3-5 days exposure to high iron, these cells exhibited damage to mtDNA reflected by diminished amounts of near full-length 15.9-kb PCR product with no change in the amounts of a 16.1-kb product from a nuclear gene. With the loss of intact mtDNA, cellular respiration declined and mRNAs for three electron transport chain subunits and 16 S rRNA encoded by mtDNA decreased, whereas no decrements were found in four subunits encoded by nuclear DNA. To examine the importance of the interactions of iron with metabolically generated reactive oxygen species, we compared the toxic effects of iron in wild-type and rho(o) cells. In wild-type cells, elevated iron caused increased production of reactive oxygen species, cytostasis, and cell death, whereas the rho(o) cells were unaffected. We conclude that long-term damage to cells and organs in iron-overload disorders involves interactions between iron and mitochondrial reactive oxygen species resulting in cumulative damage to mtDNA, impaired synthesis of respiratory chain subunits, and respiratory dysfunction.
Collapse
Affiliation(s)
- Xueshan Gao
- Department of Oncology, University of Linköping, Linköping 58185, Sweden
| | | | | | | | | |
Collapse
|
123
|
Choksi KB, Nuss JE, DeFord JH, Papaconstantinou J. Age-related alterations in oxidatively damaged proteins of mouse skeletal muscle mitochondrial electron transport chain complexes. Free Radic Biol Med 2008; 45:826-38. [PMID: 18598756 PMCID: PMC2873767 DOI: 10.1016/j.freeradbiomed.2008.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 05/09/2008] [Accepted: 06/04/2008] [Indexed: 11/18/2022]
Abstract
Age-associated mitochondrial dysfunction is a major source of reactive oxygen species (ROS) and oxidative modification to proteins. Mitochondrial electron transport chain (ETC) complexes I and III are the sites of ROS production and we hypothesize that proteins of the ETC complexes are primary targets of ROS-mediated modification which impairs their structure and function. The pectoralis, primarily an aerobic red muscle, and quadriceps, primarily an anaerobic white muscle, have different rates of respiration and oxygen-carrying capacity, and hence, different rates of ROS production. This raises the question of whether these muscles exhibit different levels of oxidative protein modification. Our studies reveal that the pectoralis shows a dramatic age-related decline in almost all complex activities that correlates with increased oxidative modification. Similar complex proteins were modified in the quadriceps, at a significantly lower level with less change in enzyme and ETC coupling function. We postulate that mitochondrial ROS causes damage to specific ETC subunits which increases with age and leads to further mitochondrial dysfunction. We conclude that physiological characteristics of the pectoralis vs quadriceps may play a role in age-associated rate of mitochondrial dysfunction and in the decline in tissue function.
Collapse
Affiliation(s)
- Kashyap B. Choksi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Mail Route 0643, Galveston, TX 77555-0643, USA
| | - Jonathan E. Nuss
- Adlyse Inc., 9430 Key West Avenue, Suite 210, Rockville, MD 20850, USA
| | - James H. DeFord
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Mail Route 0643, Galveston, TX 77555-0643, USA
| | - John Papaconstantinou
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Mail Route 0643, Galveston, TX 77555-0643, USA
| |
Collapse
|
124
|
Solomon TPJ, Marchetti CM, Krishnan RK, Gonzalez F, Kirwan JP. Effects of aging on basal fat oxidation in obese humans. Metabolism 2008; 57:1141-7. [PMID: 18640394 PMCID: PMC2528955 DOI: 10.1016/j.metabol.2008.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 03/07/2008] [Indexed: 01/06/2023]
Abstract
Basal fat oxidation decreases with age. In obesity, it is not known whether this age-related process occurs independently of changes in body composition and insulin sensitivity. Therefore, body composition, resting energy expenditure, basal substrate oxidation, and maximal oxygen consumption (VO(2)max) were measured in 10 older (age, 60 +/- 4 years; mean +/- SEM) and 10 younger (age, 35 +/- 4 years) body mass index-matched, obese, normal glucose-tolerant individuals. Fasting blood samples were also collected. Older subjects had slightly elevated fat mass (32.2 +/- 7.1 vs 36.5 +/- 6.7 kg, P = .16); however, waist circumference was not different between groups (104.3 +/- 10.3 vs 102.1 +/- 12.6 cm, P = .65). Basal fat oxidation was 22% lower (1.42 +/- 0.14 vs 1.17 +/- 0.22 mg/kg fat-free mass per minute, P = .03) in older subjects. The VO(2)max was also decreased in older individuals (44.6 +/- 7.1 vs 38.3 +/- 6.0 mL/kg fat-free mass per minute, P = .03); but insulin sensitivity, lipemia, and leptinemia were not different between groups (P > .05). Fat oxidation was most related to age (r = -0.61, P = .003) and VO(2)max (r = 0.52, P = .01). These data suggest that aging per se is responsible for reduced basal fat oxidation and maximal oxidative capacity in older obese individuals, independent of changes in insulin resistance, body mass, and abdominal fat. This indicates that age, in addition to obesity, is an independent risk factor for weight gain and for the metabolic complications of elevated body fat.
Collapse
Affiliation(s)
- Thomas P. J. Solomon
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Christine M. Marchetti
- Schwartz Center for Metabolism and Nutrition, MetroHealth Medical Center, Cleveland, Ohio
| | - Raj K. Krishnan
- Schwartz Center for Metabolism and Nutrition, MetroHealth Medical Center, Cleveland, Ohio
| | - Frank Gonzalez
- Department of Obstetrics & Gynecology, Mayo Clinic, Rochester, Minnesota
| | - John P. Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Schwartz Center for Metabolism and Nutrition, MetroHealth Medical Center, Cleveland, Ohio
- Department of Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
125
|
Affiliation(s)
- Ying Liang
- Department of Internal Medicine, Markey Cancer Center, Division of Hematology/Oncology, University of Kentucky, Lexington, Kentucky, United States
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Gary Van Zant
- Department of Internal Medicine, Markey Cancer Center, Division of Hematology/Oncology, University of Kentucky, Lexington, Kentucky, United States
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
126
|
Johnston AP, De Lisio M, Parise G. Resistance training, sarcopenia, and the mitochondrial theory of aging. Appl Physiol Nutr Metab 2008; 33:191-9. [DOI: 10.1139/h07-141] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Skeletal muscle aging is associated with a significant loss of muscle mass, strength, function, and quality of life. In addition, the healthcare cost of aging and age-related disease is growing, and will continue to grow as a larger proportion of our population reaches retirement age and beyond. The mitochondrial theory of aging has been identified as a leading explanation of the aging process and describes a path leading to cellular senescence that includes electron transport chain deficiency, reactive oxygen species production, and the accumulation of mitochondrial DNA deletions and mutations. It is also quite clear that regular resistance exercise is a potent and effective countermeasure for skeletal muscle aging. In this review, we discuss age-related sarcopenia, the mitochondrial theory of aging, and how resistance exercise may directly affect key components of the mitochondrial theory. It is clear from the data discussed that regular resistance training can effectively disturb processes that contribute to the progression of aging as it pertains to the mitochondrial theory.
Collapse
Affiliation(s)
- Adam P.W. Johnston
- Department of Kinesiology, McMaster University, Hamilton, ON L8N 3Z5
- Medical Physics and Applied Radiation Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5
| | - Michael De Lisio
- Department of Kinesiology, McMaster University, Hamilton, ON L8N 3Z5
- Medical Physics and Applied Radiation Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, ON L8N 3Z5
- Medical Physics and Applied Radiation Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5
| |
Collapse
|
127
|
Gurd BJ, Peters SJ, Heigenhauser GJF, LeBlanc PJ, Doherty TJ, Paterson DH, Kowalchuk JM. O2uptake kinetics, pyruvate dehydrogenase activity, and muscle deoxygenation in young and older adults during the transition to moderate-intensity exercise. Am J Physiol Regul Integr Comp Physiol 2008; 294:R577-84. [DOI: 10.1152/ajpregu.00537.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adaptation of pulmonary O2uptake (V̇o2p) kinetics is slowed in older compared with young adults during the transition to moderate-intensity exercise. In this study, we examined the relationship between V̇o2pkinetics and mitochondrial pyruvate dehydrogenase (PDH) activity in young ( n = 7) and older ( n = 6) adults. Subjects performed cycle exercise to a work rate corresponding to ∼90% of estimated lactate threshold. Phase 2 V̇o2pkinetics were slower ( P < 0.05) in older (τ = 40 ± 17 s) compared with young (τ = 21 ± 6 s) adults. Relative phosphocreatine (PCr) breakdown was greater ( P < 0.05) at 30 s in older compared with young adults. Absolute PCr breakdown at 6 min was greater ( P < 0.05) in older compared with young adults. In young adults, PDH activity increased ( P < 0.05) from baseline to 30 s, with no further change observed at 6 min. In older adults, PDH activity during baseline exercise was similar to that seen in young adults. During the exercise transition, PDH activity did not increase ( P > 0.05) at 30 s of exercise but was elevated ( P < 0.05) after 6 min. The change in deoxyhemoglobin (HHb) was greater for a given V̇o2pin older adults, and there was a similar time course of HHb accompanying the slower V̇o2pkinetics in the older adults, suggesting a slower adaptation of bulk O2delivery in older adults. In conclusion, the slower adaptation of V̇o2pin older adults is likely a result of both an increased metabolic inertia and lower O2availability.
Collapse
|
128
|
Abstract
Aging is due to the accumulation of damage over time that affects the function and survival of the organism; however, it has proven difficult to infer the relative importance of the many processes that contribute to aging. To address this, here we outline an approach that may prove useful in analyzing aging. In this approach, the function of the organism is described as a set of interacting physiological systems. Degradation of their outputs leads to functional decline and death as a result of aging. In turn, degradation of the system outputs is attributable to changes at the next hierarchical level down, the cell, through changes in cell number or function, which are in turn a consequence of the metabolic history of the cell. Within this framework, we then adapt the methods of metabolic control analysis (MCA) to determine which modifications are important for aging. This combination of a hierarchical framework and the methodologies of MCA may prove useful both for thinking about aging and for analyzing it experimentally.
Collapse
Affiliation(s)
- Michael P. Murphy
- Medical Research Council, Dunn Human Nutrition Unit, Cambridge CB2 0XY, United Kingdom;
| | - Linda Partridge
- Centre for Research on Aging, University College London, Department of Biology, London WC1E 6BT, United Kingdom;
| |
Collapse
|
129
|
Lu B, Poirier C, Gaspar T, Gratzke C, Harrison W, Busija D, Matzuk MM, Andersson KE, Overbeek PA, Bishop CE. A mutation in the inner mitochondrial membrane peptidase 2-like gene (Immp2l) affects mitochondrial function and impairs fertility in mice. Biol Reprod 2007; 78:601-10. [PMID: 18094351 DOI: 10.1095/biolreprod.107.065987] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mitochondrion is involved in energy generation, apoptosis regulation, and calcium homeostasis. Mutations in genes involved in mitochondrial processes often result in a severe phenotype or embryonic lethality, making the study of mitochondrial involvement in aging, neurodegeneration, or reproduction challenging. Using a transgenic insertional mutagenesis strategy, we generated a mouse mutant, Immp2lTg(Tyr)979Ove, with a mutation in the inner mitochondrial membrane peptidase 2-like (Immp2l) gene. The mutation affected the signal peptide sequence processing of mitochondrial proteins cytochrome c1 and glycerol phosphate dehydrogenase 2. The inefficient processing of mitochondrial membrane proteins perturbed mitochondrial function so that mitochondria from mutant mice manifested hyperpolarization, higher than normal superoxide ion generation, and higher levels of ATP. Homozygous Immp2lTg(Tyr)979Ove females were infertile due to defects in folliculogenesis and ovulation, whereas mutant males were severely subfertile due to erectile dysfunction. The data suggest that the high superoxide ion levels lead to a decrease in the bioavailability of nitric oxide and an increase in reactive oxygen species stress, which underlies these reproductive defects. The results provide a novel link between mitochondrial dysfunction and infertility and suggest that superoxide ion targeting agents may prove useful for treating infertility in a subpopulation of infertile patients.
Collapse
Affiliation(s)
- Baisong Lu
- Institute for Regenerative Medicine, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Li J, Feuers RJ, Desai VG, Lewis SM, Duffy PH, Mayhugh MA, Cowan G, Buffington CK. Surgical caloric restriction ameliorates mitochondrial electron transport dysfunction in obese females. Obes Surg 2007; 17:800-8. [PMID: 17879581 DOI: 10.1007/s11695-007-9146-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The authors examine the mitochondrial electron transport system (ETS) with regard to caloric restriction and body size in humans. METHODS The study population included 59 morbidly obese (MO) female subjects with mean body mass index (BMI) 49.6 +/- 1.7 and 40 age-matched previously morbidly obese patients with surgically-induced caloric restriction (SCR) and mean BMI 28.9 +/- 1.1. ETS function in the 2 study groups were made by measuring their lymphocyte mitochondrial ETS complexes I-IV activities and complex III binding kinetics. Linear regression analyses were used to analyze the interactions between ETS function and BMI, energy intake, and metabolic status. RESULTS The MO, as compared to SCR, subjects had significantly (P < 0.01) higher ETS complexes II-IV activities (complex II = 20.4 +/- 1.9 vs 15.3 +/- 1.1, complex III = 129.4 +/- 10.1 vs 72.3 +/- 4.9, complex IV = 3.1 +/- 0.3 vs 1.4 +/- 0.1 nmol/mg/min for the MO vs SCR, respectively). ETS complexes activities were positively and significantly correlated with subjects' BMI, carbohydrate caloric intake, and fasting plasma insulin levels. Michaelis-Menten kinetic analysis showed that the Km for ubiquinol-2 in complex III of MO patients was 2-fold greater than SCR values, reflecting an apparent reduction in substrate binding capacities producing a resistance to electron flow in the MO population. Caloric consumption, carbohydrate calories, insulin levels, and BMI were also each significantly (P < 0.05) and positively correlated with the Km of Complex III. CONCLUSIONS ETS function and efficiency are compromised by increasing BMI and caloric consumption in morbidly obese women, and caloric restriction may reduce the potential for excessive oxidative free radical generation via the ETS.
Collapse
Affiliation(s)
- Jing Li
- Guangzhou Institute of Respiratory Disease, Guangzhou, PR. China
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Chang J, Cornell JE, Van Remmen H, Hakala K, Ward WF, Richardson A. Effect of aging and caloric restriction on the mitochondrial proteome. J Gerontol A Biol Sci Med Sci 2007; 62:223-34. [PMID: 17389719 DOI: 10.1093/gerona/62.3.223] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rat mitochondrial proteome was analyzed using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), and proteins altered by age or caloric restriction (CR) were identified using mass spectrometry. Of 2061 mitochondrial proteins analyzed in the three tissues, a significant change with age occurred in 25 liver proteins (19 increased, 6 decreased), 3 heart proteins (1 increased, 2 decreased), and 5 skeletal muscle proteins (all increased). CR prevented the age-related change in the level of one liver mitochondrial protein, altered the levels of four proteins (one increased, three decreased) from heart, and one protein (decreased) from skeletal muscle. Identification of the proteins that changed with age or CR revealed that they were varied among the three tissues, that is, not one mitochondrial protein was changed, in common, by age or CR in any tissue studied. Thus, the effect of age on the mitochondrial proteome appears to be tissue-specific, and CR has a minor effect on age-related protein changes.
Collapse
Affiliation(s)
- Jinsook Chang
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
132
|
Liu YX, Guo YM, Wang Z. Effect of magnesium on reactive oxygen species production in the thigh muscles of broiler chickens. Br Poult Sci 2007; 48:84-9. [PMID: 17364545 DOI: 10.1080/00071660601148187] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. The objective of the present study was to investigate the effect of magnesium (Mg) on reactive oxygen species (ROS) production in the thigh muscles of broiler chickens. A total of 96 1-d-old male Arbor Acre broiler chickens were randomly allocated into two groups, fed either on low-Mg or control diets containing about 1.2 g/kg or 2.4 g Mg/kg dry matter. 2. The low-Mg diet significantly increased malondialdehyde (MDA) concentration and decreased glutathione (GSH) in the thigh muscles of broiler chickens. ROS production in the thigh muscle homogenate was significantly higher in the low-Mg group than in the control group. Compared with the control, muscle Mg concentration of broiler chickens from the low-Mg group decreased by 9.5%. 3. Complex II and III activities of the mitochondrial electron transport chain in broilers on low-Mg diet increased by 23 and 35%, respectively. Significant negative correlations between ROS production and the activities of mitochondrial electron transport chain (ETC) complexes were observed. 4. The low-Mg diet did not influence contents of iron (Fe) or calcium (Ca) in the thigh muscles of broiler chickens and did not influence unsaturated fatty acid composition (except C18:2) in the thigh muscles. 5. A low-Mg diet decreased Mg concentration in the thigh muscles of broiler chickens and then induced higher activities of mitochondrial ETC, consequently increasing ROS production. These results suggest that Mg modulates the oxidation-anti-oxidation system of the thigh muscles at least partly through affecting ROS production.
Collapse
Affiliation(s)
- Y X Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | |
Collapse
|
133
|
Aging thyroarytenoid and limb skeletal muscle: lessons in contrast. J Voice 2007; 22:430-50. [PMID: 17241767 DOI: 10.1016/j.jvoice.2006.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 11/29/2006] [Indexed: 01/07/2023]
Abstract
Voice production is vital throughout life because it allows for the communication of basic needs as well as the pursuit and enjoyment of social encounters. Unfortunately, for many older individuals the ability to produce voice is altered. Structural and functional declines in the neuromuscular system occur with aging and likely contribute to the modification of voice. One specific target of the aging process is the thyroarytenoid (TA) muscle, the primary muscle of voice production. The objectives of this overview article are to (1) share current findings related to the aging of limb skeletal muscle, (2) identify age-related morphological and physiological features of TA muscle, (3) compare and contrast age-related changes in TA with those in limb skeletal muscle, and (4) describe therapies for reversing sarcopenia in limb muscle and consider the applicability of these therapies for addressing vocal fold atrophy and age-related voice changes. The article shares current knowledge from the basic sciences related to skeletal muscle aging and compares/contrasts typical muscle aging to TA aging. Current evidence suggests that (1) the TA muscle undergoes notable remodeling with age, (2) aging of the TA is multifactorial, resulting from a myriad of neurologic, metabolic, and hormonal changes, many of which are distinct from the age-related processes of typical limb skeletal muscle, (3) investigation of the aging of the TA and its role in the aging of voice is in its infancy, and (4) potential behavioral and nonbehavioral therapies for reversing aging of the TA must be further examined.
Collapse
|
134
|
Wiesner RJ, Zsurka G, Kunz WS. Mitochondrial DNA damage and the aging process: facts and imaginations. Free Radic Res 2007; 40:1284-94. [PMID: 17090418 DOI: 10.1080/10715760600913168] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mitochondrial DNA (mtDNA) is a circular double-stranded molecule organized in nucleoids and covered by the histone-like protein mitochondrial transcription factor A (TFAM). Even though mtDNA repair capacity appears to be adequate the accumulation of mtDNA mutations has been shown to be at least one important molecular mechanism of human aging. Reactive oxygen species (ROS), which are generated at the FMN moiety of mitochondrial respiratory chain (RC) complex I, should be considered to be important at least for the generation of age-dependent mtDNA deletions. However, the accumulation of acquired mutations to functionally relevant levels in aged tissues seems to be a consequence of clonal expansions of single founder molecules and not of ongoing mutational events.
Collapse
Affiliation(s)
- Rudolf J Wiesner
- Faculty of Medicine, Institute of Vegetative Physiology, University of Köln, Köln, Germany.
| | | | | |
Collapse
|
135
|
Kimura K, Tanaka N, Nakamura N, Takano S, Ohkuma S. Knockdown of mitochondrial heat shock protein 70 promotes progeria-like phenotypes in caenorhabditis elegans. J Biol Chem 2006; 282:5910-8. [PMID: 17189267 DOI: 10.1074/jbc.m609025200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mitochondrial heat shock protein 70 (mthsp70) functions as a mitochondrial import motor and is essential in mitochondrial biogenesis and energy generation in eukaryotic cells. HSP-6 (hsp70F) is a nematode orthologue of mthsp70. Knockdown of HSP-6 by RNA interference in young adult nematodes caused a reduction in the levels of ATP-2, HSP-60 and CLK-1, leading to abnormal mitochondrial morphology and lower ATP levels. As a result, RNA interference-treated worms had lower motility, defects in oogenesis, earlier accumulation of autofluorescent material, and a shorter life span. These are the major phenotypes observed during the aging of worms, suggesting that the reduction of HSP-6 causes early aging or progeria-like phenotypes. The amount of HSP-6 became dramatically reduced at the expected mean life span in not only wild-type but also in long and short life span mutant worms (wild-type, daf-2, and daf-16). Mitochondrial HSP-60 and ATP-2 were also reduced following the reduction of HSP-6 during aging. These results suggest that the reduction of HSP-6 causes defects in mitochondrial function at the final stage of aging, leading to mortality.
Collapse
Affiliation(s)
- Kenji Kimura
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
136
|
Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 2006; 292:C670-86. [PMID: 17020935 DOI: 10.1152/ajpcell.00213.2006] [Citation(s) in RCA: 492] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aged mammalian tissues show a decreased capacity to produce ATP by oxidative phosphorylation due to dysfunctional mitochondria. The mitochondrial content of rat brain and liver is not reduced in aging and the impairment of mitochondrial function is due to decreased rates of electron transfer by the selectively diminished activities of complexes I and IV. Inner membrane H(+) impermeability and F(1)-ATP synthase activity are only slightly affected by aging. Dysfunctional mitochondria in aged rodents are characterized, besides decreased electron transfer and O(2) uptake, by an increased content of oxidation products of phospholipids, proteins and DNA, a decreased membrane potential, and increased size and fragility. Free radical-mediated oxidations are determining factors of mitochondrial dysfunction and turnover, cell apoptosis, tissue function, and lifespan. Inner membrane enzyme activities, such as those of complexes I and IV and mitochondrial nitric oxide synthase, decrease upon aging and afford aging markers. The activities of these three enzymes in mice brain are linearly correlated with neurological performance, as determined by the tightrope and the T-maze tests. The same enzymatic activities correlated positively with mice survival and negatively with the mitochondrial content of lipid and protein oxidation products. Conditions that increase survival, as vitamin E dietary supplementation, caloric restriction, high spontaneous neurological activity, and moderate physical exercise, ameliorate mitochondrial dysfunction in aged brain and liver. The pleiotropic signaling of mitochondrial H(2)O(2) and nitric oxide diffusion to the cytosol seems modified in aged animals and to contribute to the decreased mitochondrial biogenesis in old animals.
Collapse
Affiliation(s)
- Ana Navarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Plaza Fragela 9, 11003 Cádiz, Spain.
| | | |
Collapse
|
137
|
Abstract
Mitochondria are the primary energy-generating system in most eukaryotic cells. Additionally, they participate in intermediary metabolism, calcium signaling, and apoptosis. Given these well-established functions, it might be expected that mitochondrial dysfunction would give rise to a simple and predictable set of defects in all tissues. However, mitochondrial dysfunction has pleiotropic effects in multicellular organisms. Clearly, much about the basic biology of mitochondria remains to be understood. Here we discuss recent work that suggests that the dynamics (fusion and fission) of these organelles is important in development and disease.
Collapse
Affiliation(s)
- David C Chan
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
138
|
Butler-Browne G, Bigard AX. Caractéristiques du vieillissement musculaire et effets préventifs de l'exercice régulier. Sci Sports 2006. [DOI: 10.1016/j.scispo.2006.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
139
|
Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpaster BH. Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 2006; 61:534-40. [PMID: 16799133 PMCID: PMC1540458 DOI: 10.1093/gerona/61.6.534] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle mitochondria are implicated with age-related loss of function and insulin resistance. We examined the effects of exercise on skeletal muscle mitochondria in older (age = 67.3 +/- 0.6 years) men (n = 5) and women (n = 3). Similar increases in (p <.01) cardiolipin (88.2 +/- 9.0 to 130.6 +/- 7.5 microg/mU creatine kinase activity [CK]) and the total mitochondrial DNA (1264 +/- 170 to 1895 +/- 273 copies per diploid of nuclear genome) reflected increased mitochondria content. Succinate oxidase activity, complexes 2-4 of the electron transport chain (ETC), increased from 0.13 +/- 0.02 to 0.20 +/- 0.02 U/mU CK (p <.01). This improvement was more pronounced (p <.05) in subsarcolemmal (127 +/- 48%) compared to intermyofibrillar (56 +/- 12%) mitochondria. NADH oxidase activity, representing total ETC activity, increased from 0.51 +/- 0.09 to 1.00 +/- 0.09 U/mU CK (p <.01). In conclusion, exercise enhances mitochondria ETC activity in older human skeletal muscle, particularly in subsarcolemmal mitochondria, which is likely related to the concomitant increases in mitochondrial biogenesis.
Collapse
Affiliation(s)
- Elizabeth V. Menshikova
- Division of Endocrinology and Metabolism, Department of Medicine; University of Pittsburgh School of Medicine, and the
| | - Vladimir B. Ritov
- Division of Endocrinology and Metabolism, Department of Medicine; University of Pittsburgh School of Medicine, and the
| | - Liane Fairfull
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh; Pittsburgh, PA
| | - Robert E. Ferrell
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh; Pittsburgh, PA
| | - David E. Kelley
- Division of Endocrinology and Metabolism, Department of Medicine; University of Pittsburgh School of Medicine, and the
| | - Bret H. Goodpaster
- Division of Endocrinology and Metabolism, Department of Medicine; University of Pittsburgh School of Medicine, and the
- Address for Correspondence: Bret H. Goodpaster, PhD, University of Pittsburgh, 3459 Fifth Avenue, MUH N807, Pittsburgh, PA 15213.
| |
Collapse
|
140
|
El-Sokkary GH, Khidr BM, Younes HA. Role of melatonin in reducing hypoxia-induced oxidative stress and morphological changes in the liver of male mice. Eur J Pharmacol 2006; 540:107-14. [PMID: 16730703 DOI: 10.1016/j.ejphar.2006.04.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/08/2006] [Accepted: 04/18/2006] [Indexed: 11/21/2022]
Abstract
Oxygen deficiency during critical illness may cause profound changes in cellular metabolism and subsequent tissue and organ dysfunction. Thus, the present study was designed to determine the effects of hypoxia and reoxygenation on the levels of lipid peroxidation and the morphological changes in the liver of male mice as well as the protective role of melatonin as an antioxidant. Two experiments were carried out in this study. Experiment I includes three groups of mice (control, hypoxic, and hypoxic+melatonin) while the experiment II includes two groups (reoxygenated and reoxygenated+melatonin). The levels of oxidized lipids were measured and the morphological changes were investigated using light and electron microscopy. In experiment I, hypoxia strongly stimulated lipid peroxidation levels (88%) while melatonin administration inhibited this increase (69%). Severe morphological changes (necrosis, dilated congested blood vessels, collection of inflammatory cells, condensed heterochromatic with irregular outlines nuclei, and mitochondrial degeneration) were detected in the liver of hypoxic mice. In experiment II, reoxygenation inhibited the levels of oxidized lipids (42%) versus hypoxic mice and some morphological changes were detected. When melatonin was given before reoxygenation, it inhibited the levels of lipid peroxidation by 66% versus hypoxic mice. Also, melatonin enhanced the recovery profile by 41% when compared with mice that reoxygenated with room air only. All morphological alterations that detected in both hypoxic and reoxygenated mice were repaired when melatonin administered. These results indicate that hypoxia and reoxygenation induce severe alterations in the liver and that melatonin exerts beneficial role in restoring tissue alterations after subjection to hypoxia.
Collapse
Affiliation(s)
- Gamal H El-Sokkary
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | | | | |
Collapse
|
141
|
Ferguson M, Mockett R, Shen Y, Orr W, Sohal R. Age-associated decline in mitochondrial respiration and electron transport in Drosophila melanogaster. Biochem J 2006; 390:501-11. [PMID: 15853766 PMCID: PMC1198930 DOI: 10.1042/bj20042130] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The principal objective of the present study was to identify specific alterations in mitochondrial respiratory functions during the aging process. Respiration rates and the activities of electron transport chain complexes were measured at various ages in mitochondria isolated from thoraces of the fruit fly, Drosophila melanogaster, which consist primarily of flight muscles. The rates of state 3 respiration (ADP-stimulated), RCRs (respiratory control ratios) and uncoupled respiration rates decreased significantly as a function of age, using either NAD+- or FAD-linked substrates; however, there were no differences in state 4 respiration (ADP-depleted) rates. There was also a significant age-related decline in the activity of cytochrome c oxidase (complex IV), but not of the other mitochondrial oxidoreductases examined. Exposure of mitochondria isolated from young flies to low doses of KCN or NaAz (sodium azide), complex IV inhibitors, decreased cytochrome c oxidase activity and increased the production of H2O2. Collectively, these results support the hypothesis that impairment of mitochondrial respiration may be a causal factor in the aging process, and that such impairment may result from and contribute to increased H2O2 production in vivo.
Collapse
Affiliation(s)
- Melissa Ferguson
- *Department of Molecular Pharmacology and Toxicology, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, U.S.A
| | - Robin J. Mockett
- *Department of Molecular Pharmacology and Toxicology, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, U.S.A
| | - Yi Shen
- *Department of Molecular Pharmacology and Toxicology, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, U.S.A
| | - William C. Orr
- †Department of Biological Sciences, Dedman Life Sciences Building, Southern Methodist University, Dallas, TX 75275, U.S.A
| | - Rajindar S. Sohal
- *Department of Molecular Pharmacology and Toxicology, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
142
|
Mansouri A, Muller FL, Liu Y, Ng R, Faulkner J, Hamilton M, Richardson A, Huang TT, Epstein CJ, Van Remmen H. Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging. Mech Ageing Dev 2006; 127:298-306. [PMID: 16405961 DOI: 10.1016/j.mad.2005.11.004] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 09/21/2005] [Accepted: 11/16/2005] [Indexed: 11/26/2022]
Abstract
Mitochondrial function, hydrogen peroxide generation and oxidative damage were measured in hind-limb skeletal muscle from young (6-8 month) and old (27-29 month) wildtype and heterozygous Mn-superoxide dismutase (MnSOD) knockout mice (Sod2(+/-)). The reduction in MnSOD activity in the Sod2(+/-) mice makes these mice a good model to examine the implications of life-long elevated endogenous mitochondrial oxidative stress on mitochondrial function. ATP production was reduced approximately 30% with age in skeletal muscle mitochondria isolated from wildtype mice, and reduced 40-45% in mitochondria from both young and old Sod2(+/-) mice compared to the young wildtype mice. Release of hydrogen peroxide from skeletal muscle mitochondria increased 40-50% with age in both wildtype and Sod2(+/-) but was not higher in mitochondria from Sod2(+/-) mice. Activities of electron transport Complexes I and V were decreased 25-30% in both young and old Sod2(+/-) mice compared to wildtype mice, and were 25-30% lower in mitochondria from old wildtype and old Sod2(+/-) mice. DNA oxidative damage (oxo8dG levels) increased more than 45% with age and over 130% in the young Sod2(+/-) mice compared to the wildtype mice. These data show that mitochondrial oxidative stress in mouse skeletal muscle is increased with age, leading to alterations in mitochondrial function. In addition, increased oxidative stress generated by reduced activity of MnSOD does not exacerbate these alterations during aging.
Collapse
Affiliation(s)
- Abdellah Mansouri
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3901, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Smigrodzki RM, Khan SM. Mitochondrial microheteroplasmy and a theory of aging and age-related disease. Rejuvenation Res 2005; 8:172-98. [PMID: 16144471 DOI: 10.1089/rej.2005.8.172] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We implicate a recently described form of mitochondrial mutation, mitochondrial microheteroplasmy, as a candidate for the principal component of aging. Microheteroplasmy is the presence of hundreds of independent mutations in one organism, with each mutation usually found in 1-2% of all mitochondrial genomes. Despite the low abundance of single mutations, the vast majority of mitochondrial genomes in all adults are mutated. This mutational burden includes inherited mutations, de novo germline mutations, as well as somatic mutations acquired either during early embryonic development or later in adult life. We postulate that microheteroplasmy is sufficient to explain the pathomechanism of several age-associated diseases, especially in conditions with known mitochondrial involvement, such as diabetes (DM), cardiovascular disease, Parkinson's disease (PD), and Alzheimer's disease (AD) and cancer. The genetic properties of microheteroplasmy reconcile the results of disease models (cybrids, hypermutable PolG variants and mitochondrial toxins), with the relatively low levels of maternal inheritance in the aforementioned diseases, and provide an explanation of their delayed, progressive course.
Collapse
|
144
|
Parise G, Phillips SM, Kaczor JJ, Tarnopolsky MA. Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radic Biol Med 2005; 39:289-95. [PMID: 15964520 DOI: 10.1016/j.freeradbiomed.2005.03.024] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 03/21/2005] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
Cellular antioxidant capacity and oxidative stress are postulated to be critical factors in the aging process. The effects of resistance exercise training on the level of skeletal muscle oxidative stress and antioxidant capacity have not previously been examined in older adults. Muscle biopsies from both legs were obtained from the vastus lateralis muscle of 12 men 71 +/- 7 years of age. Subjects then engaged in a progressive resistance exercise-training program with only one leg for 12 weeks. After 12 weeks, the nontraining leg underwent an acute bout of exercise (exercise session identical to that of the trained leg at the same relative intensity) at the same time as the last bout of exercise in the training leg. Muscle biopsies were collected from the vastus lateralis of both legs 48 h after the final exercise bout. Electron transport chain enzyme activity was unaffected by resistance training and acute resistance exercise (p < 0.05). Training resulted in a significant increase in CuZnSOD (pre--7.2 +/- 4.2, post--12.6 +/- 5.6 U.mg protein(-1); p = 0.02) and catalase (pre--8.2 +/- 2.3, post--14.9 +/- 7.6 micromol.min(-1).mg protein(-1); p = 0.02) but not MnSOD activity, whereas acute exercise had no effect on the aforementioned antioxidant enzyme activities. Furthermore, basal muscle total protein carbonyl content did not change as a result of exercise training or acute exercise. In conclusion, unilateral resistance exercise training is effective in enhancing the skeletal muscle cellular antioxidant capacity in older adults. The potential long-term benefits of these adaptations remain to be evaluated.
Collapse
Affiliation(s)
- Gianni Parise
- Department of Kinesiology, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | | | | | | |
Collapse
|
145
|
Chabi B, Mousson de Camaret B, Chevrollier A, Boisgard S, Stepien G. Random mtDNA deletions and functional consequence in aged human skeletal muscle. Biochem Biophys Res Commun 2005; 332:542-9. [PMID: 15896715 DOI: 10.1016/j.bbrc.2005.04.153] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 04/27/2005] [Indexed: 11/25/2022]
Abstract
Mitochondrial respiratory chain deteriorates with age, mostly in tissues with high energy requirements. Damage to mitochondrial DNA (mtDNA) by reactive oxygen species is thought to contribute primarily to this impairment. However, the overall extent of random mtDNA mutations has still not been evaluated. We carried out molecular and biochemical analyses in muscle biopsies from healthy young and aged subjects. Deleted mtDNA accumulation was followed by both quantitative PCR analysis to quantify total mtDNA, and Southern-blotting, to determine deleted to full length mtDNA ratio. Enzymatic activities of the mitochondrial respiratory chain were measured in all subjects. Randomly deleted mtDNA appeared mainly in the oldest subjects (beyond 80 years old), affecting up to 70% of mtDNA molecules. The activities of complexes III and IV of the respiratory chain, complexes with mtDNA encoded subunits, are lower in the aged subjects. Physical activity could be one major parameter modulating the mitochondrial respiratory chain activity in aged muscle.
Collapse
Affiliation(s)
- Béatrice Chabi
- INRA U1019,Université d'Auvergne, Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|
146
|
Vázquez-Memije ME, Cárdenas-Méndez MJ, Tolosa A, Hafidi ME. Respiratory chain complexes and membrane fatty acids composition in rat testis mitochondria throughout development and ageing. Exp Gerontol 2005; 40:482-90. [PMID: 15972255 DOI: 10.1016/j.exger.2005.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 03/11/2005] [Accepted: 03/11/2005] [Indexed: 01/22/2023]
Abstract
Throughout the maturation of germ cells, a morphological, biochemical and functional differentiation of mitochondria has been shown to occur. Ageing is known to cause changes involved in energy metabolism. These changes have been related to molecular and functional alterations in the properties of biological membranes. Variations in membrane lipid composition and lipid-protein interactions occur with ageing in several tissues. The present paper describes the relationship between these membrane alterations and the activities of lipid-dependent enzymes of isolated testis mitochondria in rats of from 10 days of age to 24 months. The specific activities of these enzymes are lower in preparations from adult and aged rats as compared to those from young rats. Temperature breaks of Arrhenius plots show age-dependent shifts to higher temperatures for the NADH-dehydrogenase, succinate-dehydrogenase, cytochrome c oxidase, and ATPase in senescent animals. Analysis of the membrane fatty acid composition reveals a distinct age-dependent fall in the content of polyunsaturated fatty acids accompanied by an increase in the proportion of saturated fatty acids and a decrease in polyunsaturated fatty acid percentage. The results suggest that during spermatogenesis and the ageing process some changes in the composition of the fatty acids in the surrounding membrane affect the protein-lipid interactions, producing a decrease in mitochondrial enzyme activities.
Collapse
Affiliation(s)
- Martha E Vázquez-Memije
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Genética Humana, Centro Médico Nacional Siglo XXI-IMSS. Apdo Postal 73-032, México, DF CP 06725, Mexico.
| | | | | | | |
Collapse
|
147
|
Philipp E, Pörtner HO, Abele D. Mitochondrial ageing of a polar and a temperate mud clam. Mech Ageing Dev 2005; 126:610-9. [PMID: 15811430 DOI: 10.1016/j.mad.2005.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 01/24/2005] [Accepted: 02/02/2005] [Indexed: 12/01/2022]
Abstract
We investigated mitochondrial ageing in a temperate (Mya arenaria) and an Antarctic (Laternula elliptica) mud clam, with similar lifestyle (benthic filter feeders) but different maximum life spans (MLSP), 13 and 36 years, respectively. The short-lived temperate M. arenaria showed a more pronounced decrease in mitochondrial function (respiration, respiratory control ratio, proton leak, membrane potential) with age than the long-lived Antarctic L. elliptica. H2O2 generation rates at habitat temperature were far higher in the short-lived M. arenaria compared to L. elliptica. Reactive oxygen species (ROS) production as proportion of the mitochondrial oxygen consumption rate (%H2O2/O2) increased significantly with age in M. arenaria, whereas in L. elliptica the proportion remained unchanged. Lower rates of mitochondrial H2O2 generation were presumably due to mild uncoupling as L. elliptica mitochondria showed higher proton leak compared to M. arenaria mitochondria. The results are discussed in to the light of the "Free Radical-Rate of Living theory", (Pearl, R., 1928. The Rate of Living. Alfred Knopf, New York; Harman, D., 1956. Aging: a theory based on free radical and radiation biology. J. Gerontol. 11, 298-300) and the "Uncoupling to Survive" hypothesis (Brand, M.D., 2000. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp. Gerontol. 35, 811-820).
Collapse
Affiliation(s)
- Eva Philipp
- Alfred-Wegener-Institut für Polar- und Meeresforschung, Okophysiologie, D-27568 Bremerhaven, Germany
| | | | | |
Collapse
|
148
|
Kärppä M, Herva R, Moslemi AR, Oldfors A, Kakko S, Majamaa K. Spectrum of myopathic findings in 50 patients with the 3243A>G mutation in mitochondrial DNA. Brain 2005; 128:1861-9. [PMID: 15857931 DOI: 10.1093/brain/awh515] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Myopathy is a typical clinical finding among patients with the 3243A>G mutation in mitochondrial DNA (mtDNA), but the variability in such findings has not been properly established. We have previously determined the prevalence of patients with 3243A>G in a defined population in northern Finland and characterized a group of patients who represent a good approximation to a population-based cohort. We report here on examinations performed on patients belonging to this cohort in order to determine the frequency of myopathy and to evaluate the clinical, histological, ultrastructural and single fibre mtDNA variability in muscle involvement. Fifty patients with 3243A>G underwent a thorough structured interview and clinical examination. Muscle histology, ultrastructure and single fibre analysis were examined in a subset of patients. A clinical diagnosis of myopathy was made in 50% of cases [95% confidence interval (CI), 36-64] and abnormalities in muscle histology were found in 72% (95% CI, 55-86). Moderate limb weakness leading to functional impairment was the most common myopathic sign, but mild weakness, ptosis and external ophthalmoplegia could also be found. The presence of intramitochondrial crystals and cytochrome c oxidase (COX)-negative fibres and variation in mitochondrial size and shape were more common in the muscles of the myopathic patients. Longitudinal variations in mutation heteroplasmy were examined in single muscle fibres from two severely affected patients. Although the total variation in mutation heteroplasmy along four ragged red fibres (RRFs) was small, the mutation heteroplasmy in five 10 microm segments was clearly lower (median 68%, range 64-74%) than that in the neighbouring segments. There were also segments with deviant mutation load in histologically normal fibres in one patient. The highest incidence of myopathy was in the fifth decade of life, but, apart from age, no other clinical variables such as gender, muscle heteroplasmy, physical inactivity or diabetes were associated with an increased risk of myopathy. The clinical presentation of myopathy is highly variable in patients with 3243A>G.
Collapse
Affiliation(s)
- Mikko Kärppä
- Department of Neurology, University of Oulu, Finland
| | | | | | | | | | | |
Collapse
|
149
|
Cocco T, Sgobbo P, Clemente M, Lopriore B, Grattagliano I, Di Paola M, Villani G. Tissue-specific changes of mitochondrial functions in aged rats: effect of a long-term dietary treatment with N-acetylcysteine. Free Radic Biol Med 2005; 38:796-805. [PMID: 15721990 DOI: 10.1016/j.freeradbiomed.2004.11.034] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 09/13/2004] [Accepted: 11/29/2004] [Indexed: 12/16/2022]
Abstract
The understanding of the involvement of mitochondrial oxidative phosphorylation (OXPHOS) in the aging process has often been biased by the different methodological approaches as well as the choice of the biological material utilized by the various groups. In the present paper, we have carried out a detailed analysis of several bioenergetic parameters and oxidative markers in brain and heart mitochondria from young (2 months) and old (28 months) rats. This analysis has revealed an age-related decrease in respiratory fluxes in brain but not in heart mitochondria. The age-related decrease in respiratory rate (-43%) by NAD-dependent substrates was associated with a consistent decline (-40%) of complex I activity in brain mitochondria. On the other hand, heart mitochondria showed an age-related decline of complex II activity. Both tissues showed, however, an age-associated accumulation of oxidative damage. We have then performed the same analysis on old (28 months) rats subjected to a long-term (16 months) diet containing the antioxidant N-acetylcysteine (NAC). The treated old rats showed a slight brain-specific improvement of mitochondrial energy production efficiency, mostly with NAD-dependent substrates, together with a decrease in carbonyl protein content and an increase in the amount of protein thiols of brain cytosolic fraction. A full recovery of complex II activity was detected in heart mitochondria from NAC-treated old rats. The present work documents the marked tissue specificity of the decline of bioenergetic functions in isolated mitochondria from aged rats and provides the first data on the effects of a long-term treatment with N-acetylcysteine.
Collapse
Affiliation(s)
- Tiziana Cocco
- Department of Medical Biochemistry & Biology, University of Bari, Piazza G. Cesare, 70124 Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
AIMS Mitochondria are responsible for meeting the majority of the energetic demand of most tissues. They also play a major role in regulating cell survival. These dual roles of mitochondria place them at the centre of many pathologies leading to tissue degeneration and disruption of energy balance. The prominent role of mitochondria in ageing and disease has led to a tremendous growth in mitochondrial research at the cellular and molecular level. We describe below a new non-invasive approach to measure mitochondrial function that will bridge the gap between our understanding of mitochondrial function in vitro and that in the intact organism. METHODS AND RESULTS This approach uses optical and magnetic resonance spectroscopy to measure in vivo O2 consumption and ATP synthesis rates, respectively, from skeletal muscle. These values lead to a quantitative assessment of the mitochondrial ATP/O2 or P/O. The P/O represents the efficiency of coupling between phosphorylation and oxygen consumption in the mitochondria, which is a measure of mitochondrial dysfunction. CONCLUSIONS This work represents a significant advance in research on the role of mitochondria in degenerative disease and ageing because it allows a quantitative measure of mitochondrial pathology in vivo. The non-invasive nature of this approach also enables repeated measures of mitochondrial function on the same individual, thereby making this a potentially useful diagnostic technique. The results from this work have led to insights into the coupling of ATP synthesis to oxidation and the regulation of oxidative phosphorylation by intracellular PO2.
Collapse
Affiliation(s)
- D J Marcinek
- Department of Radiology, University of Washington Medical Center, Seattle, WA 98195, USA
| |
Collapse
|