101
|
Du Y, Weed SA, Xiong WC, Marshall TD, Parsons JT. Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Mol Cell Biol 1998; 18:5838-51. [PMID: 9742101 PMCID: PMC109170 DOI: 10.1128/mcb.18.10.5838] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/1998] [Accepted: 06/18/1998] [Indexed: 01/07/2023] Open
Abstract
Cortactin is an actin-binding protein that contains several potential signaling motifs including a Src homology 3 (SH3) domain at the distal C terminus. Translocation of cortactin to specific cortical actin structures and hyperphosphorylation of cortactin on tyrosine have been associated with the cortical cytoskeleton reorganization induced by a variety of cellular stimuli. The function of cortactin in these processes is largely unknown in part due to the lack of information about cellular binding partners for cortactin. Here we report the identification of a novel cortactin-binding protein of approximately 180 kDa by yeast two-hybrid interaction screening. The interaction of cortactin with this 180-kDa protein was confirmed by both in vitro and in vivo methods, and the SH3 domain of cortactin was found to direct this interaction. Since this protein represents the first reported natural ligand for the cortactin SH3 domain, we designated it CortBP1 for cortactin-binding protein 1. CortBP1 contains two recognizable sequence motifs within its C-terminal region, including a consensus sequence for cortactin SH3 domain-binding peptides and a sterile alpha motif. Northern and Western blot analysis indicated that CortBP1 is expressed predominately in brain tissue. Immunofluorescence studies revealed colocalization of CortBP1 with cortactin and cortical actin filaments in lamellipodia and membrane ruffles in fibroblasts expressing CortBP1. Colocalization of endogenous CortBP1 and cortactin was also observed in growth cones of developing hippocampal neurons, implicating CortBP1 and cortactin in cytoskeleton reorganization during neurite outgrowth.
Collapse
Affiliation(s)
- Y Du
- Department of Microbiology and Cancer Center, University of Virginia Health Science Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
102
|
Small JV, Rottner K, Kaverina I, Anderson KI. Assembling an actin cytoskeleton for cell attachment and movement. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1404:271-81. [PMID: 9739149 DOI: 10.1016/s0167-4889(98)00080-9] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- J V Small
- Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria
| | | | | | | |
Collapse
|
103
|
Abstract
The sprouting of axon collateral branches is important in the establishment and refinement of neuronal connections during both development and regeneration. Collateral branches are initiated by the appearance of localized filopodial activity along quiescent axonal shafts. We report here that sensory neuron axonal shafts rapidly sprout filopodia at sites of contact with nerve growth factor-coated polystyrene beads. Some sprouts can extend up to at least 60 micro(m) through multiple bead contacts. Axonal filopodial sprouts often contained microtubules and exhibited a debundling of axonal microtubules at the site of bead-axon contact. Cytochalasin treatment abolished the filopodial sprouting, but not the accumulation of actin filaments at sites of bead-axon contact. The axonal sprouting response is mediated by the trkA receptor and likely acts through a phosphoinositide-3 kinase-dependent pathway, in a manner independent of intracellular Ca2+ fluctuations. These findings implicate neurotrophins as local cues that directly stimulate the formation of collateral axon branches.
Collapse
|
104
|
Hirose M, Ishizaki T, Watanabe N, Uehata M, Kranenburg O, Moolenaar WH, Matsumura F, Maekawa M, Bito H, Narumiya S. Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J Cell Biol 1998; 141:1625-36. [PMID: 9647654 PMCID: PMC2133015 DOI: 10.1083/jcb.141.7.1625] [Citation(s) in RCA: 402] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A critical role for the small GTPase Rho and one of its targets, p160ROCK (a Rho-associated coiled coil-forming protein kinase), in neurite remodeling was examined in neuroblastoma N1E-115 cells. Using wild-type and a dominant-negative form of p160ROCK and a p160ROCK-specific inhibitor, Y-27632, we show here that p160ROCK activation is necessary and sufficient for the agonist-induced neurite retraction and cell rounding. The neurite retraction was accompanied by elevated phosphorylation of myosin light chain and the disassembly of the intermediate filaments and microtubules. Y-27632 blocked both neurite retraction and the elevation of myosin light chain phosphorylation in a similar concentration-dependent manner. On the other hand, suppression of p160ROCK activity by expression of a dominant-negative form of p160ROCK induced neurites in the presence of serum by inducing the reassembly of the intermediate filaments and microtubules. The neurite outgrowth by the p160ROCK inhibition was blocked by coexpression of dominant-negative forms of Cdc42 and Rac, indicating that p160ROCK constitutively and negatively regulates neurite formation at least in part by inhibiting activation of Cdc42 and Rac. The assembly of microtubules and intermediate filaments to form extended processes by inhibitors of the Rho-ROCK pathway was also observed in Swiss 3T3 cells. These results indicate that Rho/ROCK-dependent tonic inhibition of cell process extension is exerted via activation of the actomysin-based contractility, in conjunction with a suppression of assembly of intermediate filaments and microtubules in many cell types including, but not exclusive to, neuronal cells.
Collapse
Affiliation(s)
- M Hirose
- Department of Pharmacology, Kyoto University Faculty of Medicine, Sakyo, Kyoto 606-8315, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Dent EW, Meiri KF. Distribution of phosphorylated GAP-43 (neuromodulin) in growth cones directly reflects growth cone behavior. JOURNAL OF NEUROBIOLOGY 1998; 35:287-99. [PMID: 9622012 DOI: 10.1002/(sici)1097-4695(19980605)35:3<287::aid-neu6>3.0.co;2-v] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phosphorylation of GAP-43 (neuromodulin) by protein kinase C (PKC) occurs at a single site, serine41. In vivo, phosphorylation is induced after initiation of axonogenesis and is confined to distal axons and growth cones. Within individual growth cones, phosphorylation is nonuniformly distributed. Here, we have used high-resolution video-enhanced microscopy of cultured dorsal root ganglia neurons together with immunocytochemistry with a monoclonal antibody that recognizes PKC-phosphorylated GAP-43 to correlate the distribution of phosphorylated GAP-43 with growth cone behavior. In "quiescent," nontranslocating growth cones, phosphorylated GAP-43 was confined to the proximal neurite and the central organelle-rich region, and was low in organelle-poor lamellae. However, levels in lamellae were elevated when they became motile. Conversely, levels of phosphorylated GAP-43 were low in either lamellae that were actively retracting or in the central organelle-rich region and proximal neurite of growth cones that had totally collapsed. The results suggest a mechanism whereby phosphorylation of GAP-43 by PKC, potentially in response to extracellular signals, could direct the functional behavior of the growth cone.
Collapse
Affiliation(s)
- E W Dent
- Department of Pharmacology, SUNY Health Science Center, Syracuse, New York 13210, USA
| | | |
Collapse
|
106
|
Gitler D, Spira ME. Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation. Neuron 1998; 20:1123-35. [PMID: 9655501 DOI: 10.1016/s0896-6273(00)80494-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The emergence of a neuronal growth cone from a transected axon is a necessary step in the sequence of events that leads to successful regeneration. Yet, the molecular mechanisms underlying its formation after axotomy are unknown. In this study, we show by real time imaging of the free intracellular Ca2+ concentration, of proteolytic activity, and of growth cone formation that the activation of localized and transient Ca2+-dependent proteolysis is a necessary step in the cascade of events that leads to growth cone formation. Inhibition of this proteolytic activity by calpeptin, a calpain inhibitor, abolishes growth cone formation. We suggest that calpain plays a central role in the reorganization of the axon's cytoskeleton during its transition from a stable differentiated structure into a dynamically extending growth cone.
Collapse
Affiliation(s)
- D Gitler
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
107
|
|
108
|
Daniels RH, Hall PS, Bokoch GM. Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J 1998; 17:754-64. [PMID: 9451000 PMCID: PMC1170424 DOI: 10.1093/emboj/17.3.754] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rho-family GTPases regulate cytoskeletal dynamics in various cell types. p21-activated kinase 1 (PAK1) is one of the downstream effectors of Rac and Cdc42 which has been implicated as a mediator of polarized cytoskeletal changes in fibroblasts. We show here that the extension of neurites induced by nerve growth factor (NGF) in the neuronal cell line PC12 is inhibited by dominant-negative Rac2 and Cdc42, indicating that these GTPases are required components of the NGF signaling pathway. While cytoplasmically expressed PAK1 constructs do not cause efficient neurite outgrowth from PC12 cells, targeting of these constructs to the plasma membrane via a C-terminal isoprenylation sequence induced PC12 cells to extend neurites similar to those stimulated by NGF. This effect was independent of PAK1 ser/thr kinase activity but was dependent on structural domains within both the N- and C-terminal portions of the molecule. Using these regions of PAK1 as dominant-negative inhibitors, we were able to effectively inhibit normal neurite outgrowth stimulated by NGF. Taken together with the requirement for Rac and Cdc42 in neurite outgrowth, these data suggest that PAK(s) may be acting downstream of these GTPases in a signaling system which drives polarized outgrowth of the actin cytoskeleton in the developing neurite.
Collapse
Affiliation(s)
- R H Daniels
- Departments of Immunology and Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
109
|
Ziv NE, Spira ME. Induction of growth cone formation by transient and localized increases of intracellular proteolytic activity. J Cell Biol 1998; 140:223-32. [PMID: 9425169 PMCID: PMC2132593 DOI: 10.1083/jcb.140.1.223] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The formation of a growth cone at the tip of a transected axon is a crucial step in the subsequent regeneration of the amputated axon. During this process, the transected axon is transformed from a static segment into a motile growth cone. Despite the importance of this process for regeneration of the severed axon, little is known about the mechanisms underlying this transformation. Recent studies have suggested that Ca2+-activated proteinases underlay the morphological remodeling of neurons after injury. However, this hypothesis was never tested directly. Here we tested the ability of transient and localized increases in intracellular proteolytic activity to induce growth cone formation and neuritogenesis. Minute amounts of the proteinase trypsin were microinjected into intact axonal segments or somata of cultured Aplysia neurons, transiently elevating the intracellular protease concentration to 13-130 nM in the vicinity of the injection site. Such microinjections were followed by the formation of ectopic growth cones and irreversible neuritogenesis. Growth cones were not formed after external application of trypsin, microinjection of the carrier solution, or inactivated trypsin. Growth cone formation was not preceded by increases in free intracellular Ca2+ or changes in passive membrane properties, and was blocked by inhibitors of actin and tubulin polymerization. Trypsin-induced neuritogenesis was associated with ultrastructural alterations similar to those observed by us after axotomy. We conclude that local and transient elevations of cytoplasmic proteolytic activity can induce growth cone formation and neuritogenesis, and suggest that localized proteolytic activity plays a role in growth cone formation after axotomy.
Collapse
Affiliation(s)
- N E Ziv
- Interuniversity Institute for Marine Science, Eilat, Israel.
| | | |
Collapse
|
110
|
Gallo G, Pollack ED. Temporal regulation of growth cone lamellar protrusion and the influence of target tissue. JOURNAL OF NEUROBIOLOGY 1997; 33:929-44. [PMID: 9407014 DOI: 10.1002/(sici)1097-4695(199712)33:7<929::aid-neu5>3.0.co;2-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Guided nerve fiber growth depends upon the activities of the neuronal growth cone lamellae and filopodia. Defining the dynamics of growth cone remodeling and the influences that act on it may lead to greater understanding of guided axonal growth. While there were differences in the remodeling of growth cones of nerve fibers extended from spinal cord explants and from dorsal root ganglia of Rana pipiens larvae, both types exhibited fluctuations in lamellar expanse over time to produce "lamellar cycles." We now show that these cycles are characterized by the temporal regulation of lamellar protrusion rate, the percentage of the lamellar perimeter undergoing protrusion, and invariant lamellar retraction with respect to time. Since axotomies did not abolish the lamellar cycles, the mechanism underlying cycling appears to reside at the level of the nerve fiber terminus. The previously demonstrated effects of the target tissue on growth cone remodeling appear to be due to target tissue-released factors that bind to the culture substratum, as evidenced by experiments using target tissue-conditioned medium. Further, the target tissue attenuated the fluctuations in lamellar protrusion rate during cycling, which resulted in changes in growth cone remodeling and morphology. These alterations may be related to the chemokinetic and chemotropic effects of the target on the nerve fiber extension. Thus, the process of remodeling of growth cone lamellar structures is the result of intrinsically controlled modifications in lamellar protrusion and target-based influences.
Collapse
Affiliation(s)
- G Gallo
- Department of Biological Sciences, University of Illinois at Chicago 60607, USA
| | | |
Collapse
|
111
|
Nakanishi H, Obaishi H, Satoh A, Wada M, Mandai K, Satoh K, Nishioka H, Matsuura Y, Mizoguchi A, Takai Y. Neurabin: a novel neural tissue-specific actin filament-binding protein involved in neurite formation. J Biophys Biochem Cytol 1997; 139:951-61. [PMID: 9362513 PMCID: PMC2139968 DOI: 10.1083/jcb.139.4.951] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We purified from rat brain a novel actin filament (F-actin)-binding protein of approximately 180 kD (p180), which was specifically expressed in neural tissue. We named p180 neurabin (neural tissue-specific F-actin- binding protein). We moreover cloned the cDNA of neurabin from a rat brain cDNA library and characterized native and recombinant proteins. Neurabin was a protein of 1,095 amino acids with a calculated molecular mass of 122,729. Neurabin had one F-actin-binding domain at the NH2-terminal region, one PSD-95, DlgA, ZO-1-like domain at the middle region, a domain known to interact with transmembrane proteins, and domains predicted to form coiled-coil structures at the COOH-terminal region. Neurabin bound along the sides of F-actin and showed F-actin-cross-linking activity. Immunofluorescence microscopic analysis revealed that neurabin was highly concentrated in the synapse of the developed neurons. Neurabin was also concentrated in the lamellipodia of the growth cone during the development of neurons. Moreover, a study on suppression of endogenous neurabin in primary cultured rat hippocampal neurons by treatment with an antisense oligonucleotide showed that neurabin was involved in the neurite formation. Neurabin is a candidate for key molecules in the synapse formation and function.
Collapse
Affiliation(s)
- H Nakanishi
- Takai Biotimer Project, ERATO, Japan Science and Technology Corporation, c/o JCR Pharmaceuticals Co., Ltd., Nishi-ku, Kobe 651-22, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Mangoura D. mu-Opioids activate tyrosine kinase focal adhesion kinase and regulate cortical cytoskeleton proteins cortactin and vinculin in chick embryonic neurons. J Neurosci Res 1997; 50:391-401. [PMID: 9364324 DOI: 10.1002/(sici)1097-4547(19971101)50:3<391::aid-jnr5>3.0.co;2-d] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have investigated the signal transduction pathway of the G-protein mu-opioid receptor upstream of phospholipase D (PLD) and protein kinase C-epsilon (PKC-epsilon) activation in postmitotic E6CH chick embryo cortical neurons. The mu-opioid receptor and PLD-PKC-epsilon functional coupling depends on upstream tyrosine kinase activation. We now report that the mu-opioid agonists specifically stimulated tyrosine phosphorylation and activation of the focal adhesion kinase (FAK) in a time-dependent manner. We also demonstrate that met-enkephalin, a mu-opioid agonist in E6CH cultures, significantly increases tyrosine phosphorylation of another Src kinase substrate, the cytoskeletal protein cortactin. Tyrosine phosphorylation of cortactin led to drastic changes in subcellular localization, an estimated 2-fold enrichment in the cytosol. Similarly, opioids stimulated a sustained tyrosine phosphorylation of vinculin, a protein enriched in focal adhesion sites. These data provide novel evidence that opioid receptor intracellular signaling engages the specific activation of tyrosine kinase FAK and regulates the neuronal cytoskeleton during central nervous system morphogenesis.
Collapse
Affiliation(s)
- D Mangoura
- Department of Pediatrics, University of Chicago, IL 60637, USA.
| |
Collapse
|
113
|
Abstract
To identify the cellular cues that guide zebrafish neuronal growth cones to their targets, we examined interactions between identified motor growth cones and identified muscle fibers and tested whether these fibers were required for growth cone navigation. Caudal primary motoneurons (CaPs) and middle primary motoneurons (MiPs) are identified motoneurons that innervate cell-specific regions of the myotome. Growth cones of both cells initially extend along a common pathway and then pause at a set of identified muscle fibers, called muscle pioneers, before diverging along cell-specific pathways. Muscle pioneers are intermediate targets of both CaP and MiP (Westerfield et al., 1986; Liu and Westerfield, 1990); both motoneurons extend their growth cones directly to the muscle pioneers on which the first functional neuromuscular contacts form, suggesting that muscle pioneers may provide guidance information to these growth cones. We tested this idea by ablating muscle pioneers and observing the resulting motor axonal trajectories. Both CaP and MiP ultimately formed normal axonal arbors after muscle pioneer ablation, showing that muscle pioneers are unnecessary for formation of correct axonal trajectories; however, although final cellular morphology was correct in the absence of muscle pioneers, MiP growth cones branched abnormally or extended ventrally beyond the common pathway. Ablation of CaP and the muscle pioneers together increased the aberrant behavior of the MiP growth cone. Our results provide evidence that an intermediate target, the muscle pioneers, affects motor axonal extension without altering target choice, suggesting that other cues also contribute to proper pathway navigation.
Collapse
|
114
|
Mandai K, Nakanishi H, Satoh A, Obaishi H, Wada M, Nishioka H, Itoh M, Mizoguchi A, Aoki T, Fujimoto T, Matsuda Y, Tsukita S, Takai Y. Afadin: A novel actin filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction. J Biophys Biochem Cytol 1997; 139:517-28. [PMID: 9334353 PMCID: PMC2139800 DOI: 10.1083/jcb.139.2.517] [Citation(s) in RCA: 397] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel actin filament (F-actin)-binding protein with a molecular mass of approximately 205 kD (p205), which was concentrated at cadherin-based cell-to-cell adherens junction (AJ), was isolated and characterized. p205 was purified from rat brain and its cDNA was cloned from a rat brain cDNA library. p205 was a protein of 1,829 amino acids (aa) with a calculated molecular mass of 207,667 kD. p205 had one F-actin-binding domain at 1,631-1,829 aa residues and one PDZ domain at 1,016- 1,100 aa residues, a domain known to interact with transmembrane proteins. p205 was copurified from rat brain with another protein with a molecular mass of 190 kD (p190). p190 was a protein of 1,663 aa with a calculated molecular mass of 188,971 kD. p190 was a splicing variant of p205 having one PDZ domain at 1,009-1,093 aa residues but lacking the F-actin-binding domain. Homology search analysis revealed that the aa sequence of p190 showed 90% identity over the entire sequence with the product of the AF-6 gene, which was found to be fused to the ALL-1 gene, known to be involved in acute leukemia. p190 is likely to be a rat counterpart of human AF-6 protein. p205 bound along the sides of F-actin but hardly showed the F-actin-cross-linking activity. Northern and Western blot analyses showed that p205 was ubiquitously expressed in all the rat tissues examined, whereas p190 was specifically expressed in brain. Immunofluorescence and immunoelectron microscopic studies revealed that p205 was concentrated at cadherin-based cell-to-cell AJ of various tissues. We named p205 l-afadin (a large splicing variant of AF-6 protein localized at adherens junction) and p190 s-afadin (a small splicing variant of l-afadin). These results suggest that l-afadin serves as a linker of the actin cytoskeleton to the plasma membrane at cell-to-cell AJ.
Collapse
Affiliation(s)
- K Mandai
- Takai Biotimer Project, ERATO, Japan Science and Technology Corporation, c/o JCR Pharmaceuticals Co., Ltd., Kobe 651-22, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Wiederkehr A, Staple J, Caroni P. The motility-associated proteins GAP-43, MARCKS, and CAP-23 share unique targeting and surface activity-inducing properties. Exp Cell Res 1997; 236:103-16. [PMID: 9344590 DOI: 10.1006/excr.1997.3709] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Local regulation of the cortical cytoskeleton controls cell surface dynamics. GAP-43 and MARCKS are two abundant cytosolic protein kinase C substrates that are anchored to the cell membrane via acyl groups and interact with the cortical cytoskeleton. Each of them has been implicated in several forms of motility involving the cell surface. Although their primary sequences do not reveal significant homologies, GAP-43, MARCKS, and the cortical cytoskeleton-associated protein CAP-23 (in the following, the three proteins will be abbreviated as GMC) share a number of characteristic biochemical and biophysical properties and an unusual amino acid composition. In this study we determined whether GMC may be related functionally. In double-labeling immunocytochemistry experiments GMC accumulated at unique surface-associated structures, where they codistributed. In transfected cells GMC induced the same range of characteristic changes in cell morphology and cell surface activities, including prominent blebs and filopodia. These activities correlated with local accumulation of transgene and had characteristic features of locally elevated actin dynamics, including loss of stress fiber structures, accumulation of beta-(cytosolic) actin at cell surface protrusions, and dynamic blebbing activity. Analysis of appropriate deletion and fusion constructs revealed that the surface accumulation pattern and cell surface activities were correlated and that minimal structural requirements included acylation-mediated targeting to the cell membrane and the presence of a predominantly GMC-type sequence composition. Based on these experiments and on the results of previous studies on GAP-43, MARCKS, and CAP-23, we propose that GMC may define a class of functionally related proteins whose local accumulation promotes actin dynamics and the formation of dynamic structures at the cell periphery. Superimposed on these general properties, differences in the regulation of membrane association and binding properties of effector domains would confer individual properties to each of these proteins.
Collapse
Affiliation(s)
- A Wiederkehr
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
116
|
Mundel P, Heid HW, Mundel TM, Krüger M, Reiser J, Kriz W. Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J Cell Biol 1997; 139:193-204. [PMID: 9314539 PMCID: PMC2139823 DOI: 10.1083/jcb.139.1.193] [Citation(s) in RCA: 483] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Synaptopodin is an actin-associated protein of differentiated podocytes that also occurs as part of the actin cytoskeleton of postsynaptic densities (PSD) and associated dendritic spines in a subpopulation of exclusively telencephalic synapses. Amino acid sequences determined in purified rat kidney and forebrain synaptopodin and derived from human and mouse brain cDNA clones show no significant homology to any known protein. In particular, synaptopodin does not contain functional domains found in receptor-clustering PSD proteins. The open reading frame of synaptopodin encodes a polypeptide with a calculated Mr of 73.7 kD (human)/74.0 kD (mouse) and an isoelectric point of 9.38 (human)/9. 27 (mouse). Synaptopodin contains a high amount of proline ( approximately 20%) equally distributed along the protein, thus virtually excluding the formation of any globular domain. Sequence comparison between human and mouse synaptopodin revealed 84% identity at the protein level. In both brain and kidney, in vivo and in vitro, synaptopodin gene expression is differentiation dependent. During postnatal maturation of rat brain, synaptopodin is first detected by Western blot analysis at day 15 and reaches maximum expression in the adult animal. The exclusive synaptopodin synthesis in the telencephalon has been confirmed by in situ hybridization, where synaptopodin mRNA is only found in perikarya of the olfactory bulb, cerebral cortex, striatum, and hippocampus, i.e., the expression is restricted to areas of high synaptic plasticity. From these results and experiments with cultured cells we conclude that synaptopodin represents a novel kind of proline-rich, actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and podocyte foot processes.
Collapse
Affiliation(s)
- P Mundel
- Department of Anatomy and Cell Biology, University of Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
117
|
Abstract
Nerve processes elongate, branch and form synaptic contacts in a highly regulated and specific manner. Long-distance axon elongation is restricted to the main phase of axon formation during development, but can be reinduced upon lesions in the adult (regeneration). It correlates with the expression of defined genes, including proteins involved in signalling (e.g. src, NCAM, integrins), transcription factors (e.g. c-jun) and structural proteins (e.g. actin and tubulin isoforms). Activation of an exon elongation program may require bcl-2. The formation and growth of local branches (sprouting) is controlled by mechanisms in the target region. In addition, the expression of growth-associated proteins such as GAP-43 and CAP-23 in neurons lowers the threshold for nerve sprouting and potentiates its vigour. Recent studies suggest that nerve sprouting and long-distance elongation depend on the expression of different intrinsic components in neurons. One implication of these findings is that the differential expression of genes facilitating local branching may affect structural plasticity in the intact adult nervous system.
Collapse
Affiliation(s)
- P Caroni
- Friedrich Miescher Institute, Basel, Switzerland
| |
Collapse
|
118
|
Abstract
We have developed an in vitro system for studying the interaction of chick dorsal root ganglion neuronal growth cones with a localized source of nerve growth factor (NGF) covalently conjugated to polystyrene beads. Growth cones rapidly turned and migrated under NGF-coated beads in a process that involved the initial formation of persistent contact with a bead, followed by directed flow of cytoplasm toward the point of contact. A role for the local activation of the high-affinity NGF receptor trkA was suggested by a strong inhibition of the turning response by (1) the addition of an antibody against the extracellular portion of trkA, (2) the elevation of the background concentration of NGF to saturate trkA, or (3) the presence of a concentration of the drug K252a that inhibits trkA activation. NGF binding to the pan-neurotrophin receptor p75 is also involved but is not required for turning. These data show a new role for both the trkA and the p75 receptors: the mediation of local events in the guidance of nerve growth cones.
Collapse
|
119
|
Localized and transient elevations of intracellular Ca2+ induce the dedifferentiation of axonal segments into growth cones. J Neurosci 1997. [PMID: 9133380 DOI: 10.1523/jneurosci.17-10-03568.1997] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation of a growth cone at the tip of a severed axon is a key step in its successful regeneration. This process involves major structural and functional alterations in the formerly differentiated axonal segment. Here we examined the hypothesis that the large, localized, and transient elevation in the free intracellular calcium concentration ([Ca2+]i) that follows axotomy provides a signal sufficient to trigger the dedifferentiation of the axonal segment into a growth cone. Ratiometric fluorescence microscopy and electron microscopy were used to study the relations among spatiotemporal changes in [Ca2+]i, growth cone formation, and ultrastructural alterations in axotomized and intact Aplysia californica neurons in culture. We report that, in neurons primed to grow, a growth cone forms within 10 min of axotomy near the tip of the transected axon. The nascent growth cone extends initially from a region in which peak intracellular Ca2+ concentrations of 300-500 microM are recorded after axotomy. Similar [Ca2+]i transients, produced in intact axons by focal applications of ionomycin, induce the formation of ectopic growth cones and subsequent neuritogenesis. Electron microscopy analysis reveals that the ultrastructural alterations associated with axotomy and ionomycin-induced growth cone formation are practically identical. In both cases, growth cones extend from regions in which sharp transitions are observed between axoplasm with major ultrastructural alterations and axoplasm in which the ultrastructure is unaltered. These findings suggest that transient elevations of [Ca2+]i to 300-500 microM, such as those caused by mechanical injury, may be sufficient to induce the transformation of differentiated axonal segments into growth cones.
Collapse
|
120
|
Modulation of actin filament behavior by GAP-43 (neuromodulin) is dependent on the phosphorylation status of serine 41, the protein kinase C site. J Neurosci 1997. [PMID: 9133376 DOI: 10.1523/jneurosci.17-10-03515.1997] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Synthesis of GAP-43 (also known as neuromodulin) in neurons is induced during axon growth, and high concentrations (estimated between 50 and 100 microM) accumulate in the growth cone. GAP-43 is tightly associated with the growth cone membrane skeleton, the structure that transduces extracellular guidance cues into alterations in morphology by spatially regulating polymerization of actin filaments, thereby causing directional changes in axon growth. GAP-43 cosediments with actin filaments, and its phosphorylation on serine 41 by PKC, too, is spatially regulated so that phosphorylated GAP-43 is found in areas where growth cones make productive, stable contacts with other cells. In contrast, unphosphorylated GAP-43, which binds calmodulin, is always found in parts of the growth cone that are retracting. Here we have used a cell-free assay to investigate how the phosphorylation status of GAP-43 affects its interactions with actin and show that both phosphorylated and unphosphorylated GAP-43 have different, independent effects on actin filament structure. Phosphorylated GAP-43 stabilizes long actin filaments (Kd = 161 nM), and antibodies to phosphorylated GAP-43 inhibit binding of actin to phalloidin, implying a lateral interaction with filaments. In contrast, unphosphorylated GAP-43 reduces filament length distribution (Kd = 1.2 microM) and increases the critical concentration for polymerization. Prebinding calmodulin potentiates this effect. The results show that spatially regulated post-translational modifications of GAP-43 within the growth cone, which can be regulated in response to extracellular signals, have the ability to directly influence the structure of the actin cytoskeleton.
Collapse
|
121
|
Abstract
Growth cone turning is an important mechanism for changing the direction of neurite elongation during development of the nervous system. Our previous study indicated that actin filament bundles at the leading margin direct the distal microtubular cytoskeleton as growth cones turn to avoid substratum-bound chondroitin sulfate proteoglycan. Here, we investigated the role of microtubule dynamics in growth cone turning by using low doses of vinblastine and taxol, treatments that reduce dynamic growth and shrinkage of microtubule ends. We used time-lapse phase-contrast videomicroscopy to observe embryonic chick dorsal root ganglion neuronal growth cones as they encountered a border between fibronectin and chondroitin sulfate proteoglycan in the presence and absence of 4 nM vinblastine or 7 nM taxol. Growth cones were fixed and immunocytochemically labeled to identify actin filaments and microtubules containing tyrosinated and detyrosinated alpha-tubulin. Our results show that after contact with substratum-bound chondroitin sulfate proteoglycan, vinblastine- and taxol-treated growth cones did not turn, as did controls; instead, they stopped or sidestepped. Even before drug-treated growth cones contacted a chondroitin sulfate proteoglycan border, they were narrower than controls, and the distal tyrosinated microtubules were less splayed and were closer to the leading edges of the growth cones. We conclude that the splayed dynamic distal ends of microtubules play a key role in the actin filament-mediated steering of growth cone microtubules to produce growth cone turning.
Collapse
|
122
|
Desai CJ, Krueger NX, Saito H, Zinn K. Competition and cooperation among receptor tyrosine phosphatases control motoneuron growth cone guidance in Drosophila. Development 1997; 124:1941-52. [PMID: 9169841 DOI: 10.1242/dev.124.10.1941] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neural receptor tyrosine phosphatases DPTP69D, DPTP99A and DLAR are involved in motor axon guidance in the Drosophila embryo. Here we analyze the requirements for these three phosphatases in growth cone guidance decisions along the ISN and SNb motor pathways. Any one of the three suffices for the progression of ISN pioneer growth cones beyond their first intermediate target in the dorsal muscle field. DLAR or DPTP69D can facilitate outgrowth beyond a second intermediate target, and DLAR is uniquely required for formation of a normal terminal arbor. A different pattern of partial redundancy among the three phosphatases is observed for the SNb pathway. Any one of the three suffices to allow SNb axons to leave the common ISN pathway at the exit junction. When DLAR is not expressed, however, SNb axons sometimes bypass their ventrolateral muscle targets after leaving the common pathway, instead growing out as a separate bundle adjacent to the ISN. This abnormal guidance decision can be completely suppressed by also removing DPTP99A, suggesting that DLAR turns off or counteracts a DPTP99A signal that favors the bypass axon trajectory. Our results show that the relationships among the tyrosine phosphatases are complex and dependent on cellular context. At growth cone choice points along one nerve, two phosphatases cooperate, while along another nerve these same phosphatases can act in opposition to one another.
Collapse
Affiliation(s)
- C J Desai
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | | | |
Collapse
|
123
|
López R, López-Gallardo M, Medina JI, Ramos M, Ramírez G, Prada C. A Streptomyces fradiae protease dissociates structurally preserved neurons and glial cells from the embryonic and adult central nervous system of vertebrates. J Neurosci Methods 1997; 73:9-16. [PMID: 9130673 DOI: 10.1016/s0165-0270(96)02205-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nerve cell dissociation has become a key procedural tool in the implementation of a number of techniques in cellular and molecular neurobiology. We report that a protease preparation from Streptomyces fradiae (henceforth SF-protease) dissociates viable and morphologically identifiable embryonic and mature neurons and glial cells from the central nervous system of chick and rat, when used under strictly controlled conditions. Typical dendritic and axonal growth cones, with their lamellipodia and filopodia, are seen in many neuroblast types - growth cones in the case of embryonic glial cells and even the thinnest processes of some cells, such as the microvilli of adult chick retinal Müller (glial) cells, or the cilia of photoreceptors appear intact. Our results suggest that the SF-protease releases cells from tissue in a way that ensures the continuity of the plasma membrane and cuts through the transmembrane attachment systems (either cell-cell or cell-extracellular matrix) without compromising the cytoskeletal integrity underlying native cell shape.
Collapse
Affiliation(s)
- R López
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
124
|
Growth cone form is behavior-specific and, consequently, position-specific along the retinal axon pathway. J Neurosci 1997. [PMID: 8994063 DOI: 10.1523/jneurosci.17-03-01086.1997] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Video time-lapse microscopy has made it possible to document growth cone motility during axon navigation in the intact brain. This approach prompted us to reanalyze the hypothesis, originally derived from observations of fixed tissue, that growth cone form is position-specific. The behaviors of Dil-labeled retinal axon growth cones were tracked from retina through the optic tract in mouse brain at embryonic day (E) 15-17, and these behaviors were matched with different growth cone forms. Patterns of behavior were then analyzed in the different locales from the retina through the optic tract. Throughout the pathway, episodes of advance were punctuated by pauses in extension. Irrespective of locale, elongated streamlined growth cones mediated advance and complex forms developed during pauses. The rate of advance and the duration of pauses were surprisingly similar in different parts of the pathway. In contrast, the duration of periods of advance was more brief in the chiasm compared to those in the optic nerve and tract. Consequently, in the chiasm, growth cones spent relatively more time pausing and less time advancing than in the optic nerve or tract. Thus, because growth cone form is behavior-specific and certain behaviors predominate in particular loci, growth cone form appears to be position-specific in static preparations, due to the fraction of time spent in a given state in different locales.
Collapse
|
125
|
Lamoureux P, Altun-Gultekin ZF, Lin C, Wagner JA, Heidemann SR. Rac is required for growth cone function but not neurite assembly. J Cell Sci 1997; 110 ( Pt 5):635-41. [PMID: 9092945 DOI: 10.1242/jcs.110.5.635] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent work has suggested that rac1 and other members of the rho family of small GTP-binding proteins play an important role in the formation of neural processes. We have explored the mechanism of this effect by comparing the spontaneous, growth cone-mediated growth and experimental tension-induced growth of axons in normal PC12 cells and in mutant cells expressing a dominant negative form of rac. PC12 that have been primed by exposure to NGF, but not naive PC12 cells, initiate a microtubule-rich process de novo in response to tension applied to cell body. As in chick sensory neurons, neurite elongation rate is proportional to applied tension above a threshold. Addition of cyclic AMP, which has been shown to rapidly augment NGF-induced neurite outgrowth in PC12, causes a rapid increase in the rate of neurite elongation at a given tension level. Expression of a dominant negative form of rac1 inhibits spontaneous, growth cone-mediated neurite elongation in response to NGF, but does not substantially affect tension-induced neurite elongation. That is, rac-deficient cells show a normal linear relationship between applied tension and elongation rate and the elongations contain a normal density of axial microtubules by immunofluorescent assay. Thus, rac1 is apparently required for the mechanisms that normally generate tension in an elongating neurite, but if this tension is provided from an outside source, then axonal elongation can proceed normally in rac1-deficient cells. We conclude that rac1 is required for the adhesive and motile function of growth cones rather than the assembly of neurites per se.
Collapse
Affiliation(s)
- P Lamoureux
- Department of Physiology, Michigan State University, East Lansing 48824, USA
| | | | | | | | | |
Collapse
|
126
|
Affiliation(s)
- A Varela-Echavarría
- Department of Development Neurobiology, United Medical and Dental School (UMDS), Guy's Hospital, London, UK
| | | |
Collapse
|
127
|
Kozma R, Sarner S, Ahmed S, Lim L. Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 1997; 17:1201-11. [PMID: 9032247 PMCID: PMC231845 DOI: 10.1128/mcb.17.3.1201] [Citation(s) in RCA: 515] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rho family GTPases have been assigned important roles in the formation of actin-based morphologies in nonneuronal cells. Here we show that microinjection of Cdc42Hs and Rac1 promoted formation of filopodia and lamellipodia in N1E-115 neuroblastoma growth cones and along neurites. These actin-containing structures were also induced by injection of Clostridium botulinum C3 exoenzyme, which abolishes RhoA-mediated functions such as neurite retraction. The C3 response was inhibited by coinjection with the dominant negative mutant Cdc42Hs(T17N), while the Cdc42Hs response could be competed by coinjection with RhoA. We also demonstrate that the neurotransmitter acetylcholine (ACh) can induce filopodia and lamellipodia on neuroblastoma growth cones via muscarinic ACh receptor activation, but only when applied in a concentration gradient. ACh-induced formation of filopodia and lamellipodia was inhibited by preinjection with the dominant negative mutants Cdc42Hs(T17N) and Rac1(T17N), respectively. Lysophosphatidic acid (LPA)-induced neurite retraction, which is mediated by RhoA, was inhibited by ACh, while C3 exoenzyme-mediated neurite outgrowth was inhibited by injection with Cdc42Hs(T17N) or Rac1(T17N). Together these results suggest that there is competition between the ACh- and LPA-induced morphological pathways mediated by Cdc42Hs and/or Rac1 and by RhoA, leading to either neurite development or collapse.
Collapse
Affiliation(s)
- R Kozma
- Department of Neurochemistry, Institute of Neurology, London, United Kingdom
| | | | | | | |
Collapse
|
128
|
Abstract
Rho family GTP-binding proteins regulate various aspects of the actin cytoskeleton in a wide variety of organisms. Recent evidence suggests that they may also be important components of the signalling pathways that link the reception of extracellular cues to the regulation of the cytoskeleton in neuronal growth cones.
Collapse
Affiliation(s)
- L Luo
- Howard Hughes Medical Institute, Department of Physiology, University of California at San Francisco, California 94143, USA.
| | | | | |
Collapse
|
129
|
Rösner H, Fischer H. In growth cones of rat cerebral neurons and human neuroblastoma cells, activation of protein kinase C causes a shift from filopodial to lamellipodial actin dynamics. Neurosci Lett 1996; 219:175-8. [PMID: 8971808 DOI: 10.1016/s0304-3940(96)13201-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In cultures of rat cerebral neurons addition of the protein kinase C (PKC) activator 1,2-dioctanoyl-s,n-glycerol (diC8; 5 microM) induces a transient elongation of filopodia which is followed by a striking enhancement of lamellar protrusions. After 30-40 min, lamellipodia are slowly retracted, filopodia reappear and become predominant again. The reappearance of filopodia is accelerated by addition of the potent PKC-inhibitor RO-31-8220 (2 microM). A similar transient promotion of lamellar protrusive activity is obtained in SH-SY5Y neuroblastoma cells upon stimulation by acetylcholine or diC8. Immunostainings showed that the new space created by extending actin-driven lamellipodia is rapidly entered by microtubules. Preincubation with or permanent presence of RO-31-8220 totally inhibits both filopodial and lamellipodial protrusive activity. The data suggest that both filopodial and lamellipodial protrusion require active PKC, however of different levels of activation.
Collapse
Affiliation(s)
- H Rösner
- Institute of Zoology, University of Hohenheim-Stuttgart, Germany
| | | |
Collapse
|
130
|
Stevens GR, Zhang C, Berg MM, Lambert MP, Barber K, Cantallops I, Routtenberg A, Klein WL. CNS neuronal focal adhesion kinase forms clusters that co-localize with vinculin. J Neurosci Res 1996; 46:445-55. [PMID: 8950704 DOI: 10.1002/(sici)1097-4547(19961115)46:4<445::aid-jnr6>3.0.co;2-g] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that appears to play a central role in integrin-mediated signal transduction in non-neuronal cells, linking the extracellular matrix to the actin-based cytoskeleton at focal adhesion contacts. Biochemical analysis has revealed the presence of FAK immunoreactivity in cells of neuronal lineage (Zhang et al., 1994) and in the CNS (Burgaya et al. 1995; Grant et al., 1995). In the current work, we have examined the immunodistribution of FAK in nerve cell cultures and tissue sections from the rat CNS. Cultures of B103 CNS neuroblastoma cells and primary cultures of hippocampal neurons both showed abundant FAK immunoreactivity in nerve cell bodies. Immunoreactivity also extended into neurites and growth cones. The most striking feature of FAK distribution was the presence of short, punctate clusters of high FAK concentration. These FAK clusters were maintained in triton-extracted cell ghosts, indicating association with the cytoskeleton. Double-label confocal imaging showed that clusters of FAK coincided with clusters of vinculin, another actin-associated signal transduction molecule implicated in control of growth cone motility. Data from hippocampal sections verified the presence of FAK in adult neurons where it was enriched in somato-dendritic domains and showed a non-uniform distribution. Quantitative FAK immunoprecipitation to compare adult with embryonic brain showed a 7-fold developmental down-regulation of FAK and a 21-fold down-regulation of FAK TyrP. The data suggest that neuronal FAK may participate in signal transduction complexes relevant to neuronal morphogenesis and plasticity.
Collapse
Affiliation(s)
- G R Stevens
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Davenport RW, Dou P, Mills LR, Kater SB. Distinct calcium signaling within neuronal growth cones and filopodia. JOURNAL OF NEUROBIOLOGY 1996; 31:1-15. [PMID: 9120430 DOI: 10.1002/(sici)1097-4695(199609)31:1<1::aid-neu1>3.0.co;2-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous findings indicate that spatial restriction of intracellular calcium levels within growth cones can regulate growth cone behavior at many levels, ranging from filopodial disposition to neurite extension. By combining techniques for focal stimulation of growth cones with those for measurement of filopodia and for capturing low intensity calcium signals, we demonstrate that filopodia on individual growth cones can respond to imposed stimuli independently from one another. Moreover, filopodia and their parent growth cones appear to represent functionally and morphologically distinct domains of calcium regulation, possessing distinct calcium sources and sinks. Both are sensitive to calcium influx; however, application of the calcium ionophore A23187 to cells in calcium-free medium demonstrated the presence of potential intracellular calcium pools in the growth cone proper, but not in isolated filopodia. Thapsigargin significantly reduced the rise in growth cone calcium levels associated with excitatory neurotransmitters, further implicating release from calcium pools as one component of growth cone calcium regulation. The relative contributions of these pools were examined in response to excitatory neurotransmitters by quantitative calcium measurements made in both growth cones and isolated filopodia. Striking differences were observed; filopodia were sensitive to a low concentration of dopamine and serotonin, while growth cones displayed an amplified rise at a higher concentration. The spatial distribution of organelles that could serve as morphological correlates to such calcium amplification was examined using confocal microscopy. While the majority of organelles were located in the central core of the growth cone proper, peripheral organelles were detected at the base of a subset of filopodia. The distinctive distribution of calcium regulation within motile growth cones suggests one mechanism by which growth cones may regulate their complex behavior.
Collapse
Affiliation(s)
- R W Davenport
- Program in Neuronal Growth and Development, Colorado State University, Fort Collins 80523, USA.
| | | | | | | |
Collapse
|
132
|
Challacombe JF, Snow DM, Letourneau PC. Actin filament bundles are required for microtubule reorientation during growth cone turning to avoid an inhibitory guidance cue. J Cell Sci 1996; 109 ( Pt 8):2031-40. [PMID: 8856499 DOI: 10.1242/jcs.109.8.2031] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The extracellular matrix through which growth cones navigate contains molecules, such as chondroitin sulfate proteoglycan, that can inhibit growth cone advance and induce branching and turning. Growth cone turning is accompanied by rearrangement of the cytoskeleton. To identify changes in the organization of actin filaments and microtubules that occur as growth cones turn, we used time-lapse phase contrast videomicroscopy to observe embryonic chick dorsal root ganglion neuronal growth cones at a substratum border between fibronectin and chondroitin sulfate proteoglycan, in the presence and absence of cytochalasin B. Growth cones were fixed and immunocytochemically labeled to identify actin filaments and dynamic and stable microtubules. Our results suggest that microtubules are rearranged within growth cones to accomplish turning to avoid chondroitin sulfate proteoglycan. Compared to growth cones migrating on fibronectin, turning growth cones were more narrow, and they contained dynamic microtubules that were closer to the leading edge and were more bundled. Cytochalasin B-treated growth cones sidestepped laterally along the border instead of turning, and in sidestepping growth cones, microtubules were not bundled and aligned. We conclude that actin filament bundles are required for microtubule reorientation and growth cone turning to avoid chondroitin sulfate proteoglycan.
Collapse
Affiliation(s)
- J F Challacombe
- University of Minnesota, Department of Cell Biology and Neuroanatomy, Minneapolis 55455, USA
| | | | | |
Collapse
|
133
|
Tonge DA, Golding JP, Gordon-Weeks PR. Expression of a developmentally regulated, phosphorylated isoform of microtubule-associated protein 1B in sprouting and regenerating axons in vitro. Neuroscience 1996; 73:541-51. [PMID: 8783269 DOI: 10.1016/0306-4522(96)00077-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have developed a novel culture system for studying axonal regeneration. Short lengths of spinal nerves with their attached dorsal root ganglia were removed from adult mice, explanted into Matrigel and maintained in serum-free medium for up to eight days. Profuse outgrowth of unfasciculated, naked axons occurred within 6 h from the cut ends of the peripheral nerve, dorsal roots and eventually from the ganglion itself, and continued to grow throughout the observation period. Some axons were entirely smooth, whilst others showed prominent varicosities. The former stained with antibody RT97, a marker for large-calibre, myelinated axons, whilst the latter stained with antibodies to calcitonin gene-related peptide, predominantly a marker for unmyelinated and small-diameter myelinated sensory axons. All axons stained with a monoclonal antibody (150) that recognizes a developmentally regulated phosphorylated isoform of the microtubule-associated protein 1B [Gordon-Weeks P. R. et al. (1993) Eur. J. Neurosci. 5, 1302-1311]. Monoclonal antibody 150 staining was observed along the entire length of all axons growing out of the explant; the proximal regions of these axons within the explant itself did not stain. The staining extended to the growth cones, which had elaborate morphologies. Other antibodies (e.g. to growth-associated protein 43) labelled axons within the nerve, as well as those growing in Matrigel. In preparations where the peripheral nerve had been crushed half-way along its length at the time of explantation, monoclonal antibody 150 staining was absent from axons in the nerve proximal to the crush, but present in axons which had regenerated within the nerve distal to the crush. The results indicate that re-expression during axonal regeneration of the phosphorylated isoform of microtubule-associated protein 1B recognized by monoclonal antibody 150 is restricted to the newly formed lengths of regenerated axons. The correlation between its expression and axonal growth during development and regeneration suggests that it may play a role in axonal extension. Our observations also demonstrate the usefulness of these explant cultures for studying axonal regeneration.
Collapse
Affiliation(s)
- D A Tonge
- Division of Biomedical Sciences, King's College London, Strand, U.K
| | | | | |
Collapse
|
134
|
Abstract
Time-lapse fluorescence confocal microscopy was used to directly visualize the formation and dynamics of postsynaptic target structures (i.e., dendritic branches and spines) on pyramidal neurons within developing tissue slices. Within a 2 week period of time, pyramidal neurons in cultured slices derived from early postnatal rat (postnatal days 2-7) developed complex dendritic arbors bearing numerous postsynaptic spines. At early stages (1-2 d in vitro), many fine filopodial protrusions on dendrite shafts rapidly extended (maximum rate approximately 2.5 microM/minute) and retracted (median filopodial lifetime, 10 min), but some filopodia transformed into growth cones and nascent dendrite branches. As dendritic arbors matured, the population of fleeting lateral filopodia was replaced by spine-like structures having a low rate of turnover. This developmental progression involved a transitional stage in which dendrites were dominated by persistent (up to 22 hr) but dynamic spiny protrusions (i.e., protospines) that showed substantial changes in length and shape on a timescale of minutes. These observations reveal a highly dynamic state of postsynaptic target structures that may actively contribute to the formation and plasticity of synaptic connections during CNS development.
Collapse
|
135
|
Burden-Gulley SM, Lemmon V. L1, N-cadherin, and laminin induce distinct distribution patterns of cytoskeletal elements in growth cones. CELL MOTILITY AND THE CYTOSKELETON 1996; 35:1-23. [PMID: 8874962 DOI: 10.1002/(sici)1097-0169(1996)35:1<1::aid-cm1>3.0.co;2-f] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Growth cones are highly motile extensions of growing neuronal processes that have a well-characterized cytoskeleton, which is necessary for motility and directed growth. In culture, neurons have been observed to extend processes on a variety of substrates made of cell adhesion molecules (CAMs) or extracellular matrix molecules (ECM molecules). We have previously shown that retinal ganglion cell (RGC) growth cones exhibit characteristic morphologies dependent on the substrate on which they are grown (Payne et al., 1992: Cell Motil. Cytoskel. 21:65-73). Upon contact with a sharp border between two substrates, the growth cones display rapid changes in morphology (Burden-Gulley et al., 1995: J. Neurosci. 15:4370-4381) that may result from extensive restructuring of the cytoskeleton. In the present study, immunocytochemical methods were used to examine the distribution of three cytoskeletal elements in RGC growth cones growing on L1, N-cadherin, or laminin as well as on dishes coated with alternating lanes of these substrates. Distinct distribution patterns of f-actin, microtubules (MTs), and neurofilaments (NFs) were observed in growth cones growing on individual substrates. At border regions between two substrates, growth cones with extensive lamellipodial contact with the second substrate were observed to have f-actin and MT distribution patterns appropriate for the new substrate encountered. Contact via filopodia alone did not evoke this change. Redistribution of NFs was observed only after the majority of the growth cone had crossed onto the second substrate. These results suggest that actin and MTs, but probably not NFs, are directly influenced by CAMs and ECM molecules to produce changes in growth cone morphology. The distribution of two members of the protein tyrosine kinase family, pp60arc and p59fyn, and phosphorylated tyrosine residues was also examined. No differences were observed in the distribution patterns of the kinases and phosphorylated tyrosine residues in growth cones on any of the substrate molecules tested. In addition, the distribution patterns were unchanged in growth cones that contacted and crossed borders between two substrates. These results suggest that redistribution of pp60arc or p59fyn is not required to produce alterations in growth cone morphology induced by contact with L1, N-cadherin or laminin.
Collapse
Affiliation(s)
- S M Burden-Gulley
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-4975, USA
| | | |
Collapse
|
136
|
Heidemann SR. Cytoplasmic mechanisms of axonal and dendritic growth in neurons. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 165:235-96. [PMID: 8900961 DOI: 10.1016/s0074-7696(08)62224-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The structural mechanisms responsible for the gradual elaboration of the cytoplasmic elongation of neurons are reviewed. In addition to discussing recent work, important older work is included to inform newcomers to the field how the current perspective arose. The highly specialized axon and the less exaggerated dendrite both result from the advance of the motile growth cone. In the area of physiology, studies in the last decade have directly confirmed the classic model of the growth cone pulling forward and the axon elongating from this tension. Particularly in the case of the axon, cytoplasmic elongation is closely linked to the formation of an axial microtubule bundle from behind the advancing growth cone. Substantial progress has been made in understanding the expression of microtubule-associated proteins during neuronal differentiation to stiffen and stabilize axonal microtubules, providing specialized structural support. Studies of membrane organelle transport along the axonal microtubules produced an explosion of knowledge about ATPase molecules serving as motors driving material along microtubule rails. However, most aspects of the cytoplasmic mechanisms responsible for neurogenesis remain poorly understood. There is little agreement on mechanisms for the addition of new plasma membrane or the addition of new cytoskeletal filaments in the growing axon. Also poorly understood are the mechanisms that couple the promiscuous motility of the growth cone to the addition of cytoplasmic elements.
Collapse
Affiliation(s)
- S R Heidemann
- Department of Physiology, Michigan State University, East Lansing 48824-1101, USA
| |
Collapse
|
137
|
Sanchez D, Ganfornina MD, Bastiani MJ. Contributions of an orthopteran to the understanding of neuronal pathfinding. Immunol Cell Biol 1995; 73:565-74. [PMID: 8713480 DOI: 10.1038/icb.1995.90] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During the development of the nervous system neurons extend axons through a complex embryonic environment. To find a correct target, often located at a long distance, the neuronal growth cones travel along highly specific and stereotyped pathways. Proper neuronal pathfinding is thought to be accomplished by the specific interaction of receptors on the neuronal surface with molecular cues in the environment. We review the information obtained in an invertebrate model system, the grasshopper embryo, about the specific role of the cell surface in wiring the nervous system.
Collapse
Affiliation(s)
- D Sanchez
- Biology Department, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
138
|
Gallo G, Pollack ED. Cyclic remodelling of growth cone lamellae and the effect of target tissue. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 85:140-5. [PMID: 7781162 DOI: 10.1016/0165-3806(94)00201-a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report the existence of cyclical fluctuations in the total size of growth cone lamellae, represented by membrane protrusions and retractions, and show that aspects of this behavior can be regulated by the target tissue for the nerve fibers. The transition of the growth cone from a high to a less motile state, which occurs in the presence of the target tissue, has implications for the mechanisms that underlie nerve fiber elongation during development.
Collapse
Affiliation(s)
- G Gallo
- Department of Biological Sciences, University of Illinois at Chicago 60608, USA
| | | |
Collapse
|
139
|
Rakic P, Komuro H. The role of receptor/channel activity in neuronal cell migration. JOURNAL OF NEUROBIOLOGY 1995; 26:299-315. [PMID: 7775964 DOI: 10.1002/neu.480260303] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Confocal laser microscopy, in conjunction with carbocyanine dyes and calcium-sensitive fluorescent indicators, was used in slices and explant cultures of developing cerebellum to study cellular mechanisms underlying a motility of neuronal cell migration. The results indicate that a combination of voltage- and ligand-activated ion channels cooperatively regulates Ca2+ influx into the migrating cells. We suggest that molecules, present in the local cellular milieu, affect cell motility by activating specific ion channels and second messengers that influence polymerization of stiff and contractile cytoskeletal proteins. This early interaction between postmitotic neurons and surrounding cells controls the rate of their movements, sculpts their shapes, establishes their positions, and, therefore, indirectly determines their identities to prior formation of synaptic connections.
Collapse
Affiliation(s)
- P Rakic
- Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
140
|
Abstract
Mechanical tension is a robust regulator of axonal development of cultured neurons. We review work from our laboratory, using calibrated glass needles to measure or apply tension to chick sensory neurons, chick forebrain neurons, and rat PC12 cells. We survey direct evidence for two different regimes of tension effects on neurons, a fluid-like growth regime, and a nongrowth, elastic regime. Above a minimum tension threshold, we observe growth effects of tension regulating four phases of axonal development: 1. Initiation of process outgrowth from the cell body; 2. Growth cone-mediated elongation of the axon; 3. Elongation of the axon after synaptogenesis, which normally accommodates the skeletal growth of vertebrates; and 4. Axonal elimination by retraction. Significantly, the quantitative relationship between the force and the growth response is surprisingly similar to the simple relationship characteristic of Newtonian fluid mechanical elements: elongation rate is directly proportional to tension (above the threshold), and this robust linear relationship extends from physiological growth rates to far-above-physiological rates. Thus, tension apparently integrates the complex biochemistry of axonal elongation, including cytoskeletal and membrane dynamics, to produce a simple "force input/growth output" relationship. In addition to this fluid-like growth response, peripheral neurons show elastic behaviors at low tensions (below the threshold tension for growth), as do most cell types. Thus, neurites could exert small static forces without diminution for long periods. In addition, axons of peripheral neurons can actively generate modest tensions, presumably similar to muscle contraction, at tensions near zero. The elastic and force-generating capability of neural axons has recently been proposed to play a major role in the morphogenesis of the brain.
Collapse
Affiliation(s)
- S R Heidemann
- Department of Physiology, Michigan State University, East Lansing 48824, USA.
| | | | | |
Collapse
|
141
|
Buettner HM. Computer simulation of nerve growth cone filopodial dynamics for visualization and analysis. CELL MOTILITY AND THE CYTOSKELETON 1995; 32:187-204. [PMID: 8581975 DOI: 10.1002/cm.970320304] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neuronal growth cone plays a fundamental role in nerve development and regeneration. A sensory-motile structure, it determines the path of axonal extension through its interactions with the extracellular environment, ultimately directing the formation of functional connections in the nervous system. Though several mechanisms of interaction have been proposed, these have been difficult to describe quantitatively due to the complexity of growth cone behavior, as manifested in the randomly and rapidly changing shape of the growth cone. The application of mathematical techniques to model growth cone shape and motility in terms of underlying processes represents a promising approach with untapped potential for helping to unravel this complexity while revealing new insights into axonal pathfinding events. This paper presents a simulation model for filopodial dynamics, a primary feature of the motile growth cone. The model produces realizations of dynamic filopodial structure on representative growth cones for a given set of model parameters, which include the rates of filopodial initiation, extension, and retraction, filopodial length at maximum extension, and angular orientation. These parameters are based on recent experimental characterization of filopodial dynamics [Buettner et al., 1994: Dev. Biol. 163:407-422]. The mathematical relationship between the model parameters and average filopodial number and length per growth cone is described, and the contribution of individual parameters to overall filopodial morphology is illustrated both visually and numerically. In addition, the model is used to simulate filopodial encounter with a target for various conditions of filopodial dynamics. The result is characterized in terms of a mean encounter time for a population of growth cones and provides an indication of the effect of individual parameters of filopodial dynamics on the encounter process. Future experimental testing will be required to develop the model further. However, in its current form, the model enables a first approximation analysis of many hypothesis of growth cone migration and pathfinding and offers insight into the the underlying mechanisms of nerve growth and regeneration.
Collapse
Affiliation(s)
- H M Buettner
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08855, USA
| |
Collapse
|
142
|
Varnum-Finney B, Reichardt LF. Vinculin-deficient PC12 cell lines extend unstable lamellipodia and filopodia and have a reduced rate of neurite outgrowth. J Cell Biol 1994; 127:1071-84. [PMID: 7962069 PMCID: PMC2200064 DOI: 10.1083/jcb.127.4.1071] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have studied the role of vinculin in regulating integrin-dependent neurite outgrowth in PC12 cells, a neuronal cell line. Vinculin is a cytoskeletal protein believed to mediate interactions between integrins and the actin cytoskeleton. In differentiated PC12 cells, the cell body, the neurite, and the growth cone contain vinculin. Within the growth cone, both the proximal region of "consolidation" and the more distal region consisting of lamellipodia and filopodia contain vinculin. To study the role of vinculin in neurite outgrowth, we generated vinculin-deficient isolates of PC12 cell lines by transfection with vectors expressing antisense vinculin RNA. In some of these cell lines, vinculin levels were reduced to 18-23% of normal levels. In the vinculin-deficient cell lines, neurite outgrowth on laminin was significantly reduced. In time-lapse analysis, growth cones advanced much more slowly than normal. Further analysis indicated that this deficit could be explained in large part by changes in the behaviors of filopodia and lamellipodia. Filopodia were formed in normal numbers, extended at normal rates, and extended to approximately normal lengths, but were much less stable in the vinculin deficient compared to control PC12 cells. Similarly, lamellipodia formed and grew nearly normally, but were dramatically less stable in the vinculin-deficient cells. This can account for the reduction in rate of growth cone advance. These results indicate that interactions between integrins and the actin-based cytoskeleton are necessary for stability of both filopodia and lamellipodia.
Collapse
Affiliation(s)
- B Varnum-Finney
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco 94143
| | | |
Collapse
|