101
|
Scope and potential of halogenases in biosynthetic applications. Curr Opin Chem Biol 2013; 17:276-83. [DOI: 10.1016/j.cbpa.2013.01.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
|
102
|
Gupta MK, Misra K. Modeling and simulation analysis of propyl-thiouracil (PTU), an anti-thyroid drug on thyroid peroxidase (TPO), thyroid stimulating hormone receptor (TSHR), and sodium iodide (NIS) symporter based on systems biology approach. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13721-013-0023-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
103
|
Tietge JE, Degitz SJ, Haselman JT, Butterworth BC, Korte JJ, Kosian PA, Lindberg-Livingston AJ, Burgess EM, Blackshear PE, Hornung MW. Inhibition of the thyroid hormone pathway in Xenopus laevis by 2-mercaptobenzothiazole. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:128-136. [PMID: 23178179 DOI: 10.1016/j.aquatox.2012.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 05/28/2023]
Abstract
Determining the effects of chemicals on the thyroid system is an important aspect of evaluating chemical safety from an endocrine disrupter perspective. Since there are numerous chemicals to test and limited resources, prioritizing chemicals for subsequent in vivo testing is critical. 2-Mercaptobenzothiazole (MBT), a high production volume chemical, was tested and shown to inhibit thyroid peroxidase (TPO) enzyme activity in vitro, a key enzyme necessary for the synthesis of thyroid hormone. To determine the thyroid disrupting activity of MBT in vivo, Xenopus laevis larvae were exposed using 7- and 21-day protocols. The 7-day protocol used 18-357 μg/L MBT concentrations and evaluated: metamorphic development, thyroid histology, circulating T4, circulating thyroid stimulating hormone, thyroidal sodium-iodide symporter gene expression, and thyroidal T4, T3, and related iodo-amino acids. The 21-day protocol used 23-435 μg/L MBT concentrations and evaluated metamorphic development and thyroid histology. Both protocols demonstrated that MBT is a thyroid disrupting chemical at the lowest concentrations tested. These studies complement the in vitro study used to identify MBT as a high priority for in vivo testing, supporting the utility/predictive potential of a tiered approach to testing chemicals for TPO activity inhibition. The 7-day study, with more comprehensive, sensitive, and diagnostic endpoints, provides information at intermediate biological levels that enables linking various endpoints in a robust and integrated pathway for thyroid hormone disruption associated with TPO inhibition.
Collapse
Affiliation(s)
- Joseph E Tietge
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN 55804, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Karbownik-Lewińska M, Stępniak J, Lewiński A. High level of oxidized nucleosides in thyroid mitochondrial DNA; damaging effects of Fenton reaction substrates. Thyroid Res 2012; 5:24. [PMID: 23267669 PMCID: PMC3566933 DOI: 10.1186/1756-6614-5-24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/07/2012] [Indexed: 01/06/2023] Open
Abstract
Background The mitochondrial DNA (mtDNA) lies in close proximity to the free radical-producing electron transport chain, thus, it is highly prone to oxidative damage. Oxyphilic type of follicular thyroid carcinoma consists of cells filled – almost exclusively – with aberrant mitochondria. In turn, bivalent iron (Fe2+) and hydrogen peroxide (H2O2) are indispensable for thyroid hormone synthesis, therefore being available in physiological conditions presumably at high concentrations. They participate in Fenton reaction (Fe2++H2O2→Fe3++·OH + OH-), resulting in the formation of the most harmful free radical – hydroxyl radical (·OH). The same substrates may be used to experimentally induce oxidative damage to macromolecules. The aim of the study was to evaluate the background level of oxidative damage to mtDNA and the damaging effects of Fenton reaction substrates. Methods Thyroid mtDNA was incubated in the presence of either H2O2 [100, 10, 1.0, 0.5, 0.1, 0.001, 0.00001 mM] or FeSO4 (Fe2+) [300, 150, 30, 15, 3.0, 1.5 μM], or in the presence of those two factors used together, namely, in the presence of Fe2+ [30 μM] plus H2O2 [100, 10, 1.0, 0.5, 0.1, 0.001, 0.00001 mM], or in the presence of H2O2 [0.5 mM] plus Fe2+ [300, 150, 30, 15, 3.0, 1.5 μM]. 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) concentration, as the index of DNA damage, was measured by HPLC. Results Both Fenton reaction substrates, used separately, increased 8-oxodG level for the highest H2O2 concentration of 100 mM and in Fe2+ concentration-dependent manner [300, 150, and 30 μM]. When Fe2+ and H2O2 were applied together, Fe2+ enhanced H2O2 damaging effect to a higher degree than did H2O2 on Fe2+ effect. Conclusions The level of oxidized nucleosides in thyroid mtDNA is relatively high, when compared to nuclear DNA. Both substrates of Fenton reaction, i.e. ferrous ion and hydrogen peroxide, increase oxidative damage to mtDNA, with stronger damaging effect exerted by iron. High level of oxidative damage to mtDNA suggests its possible contribution to malignant transformation of thyroid oncocytic cells, which are known to be especially abundant in mitochondria, the latter characterized by molecular and enzymatic abnormalities.
Collapse
|
105
|
Nazar M, Nicola JP, Vélez ML, Pellizas CG, Masini-Repiso AM. Thyroid peroxidase gene expression is induced by lipopolysaccharide involving nuclear factor (NF)-κB p65 subunit phosphorylation. Endocrinology 2012; 153:6114-25. [PMID: 23064013 DOI: 10.1210/en.2012-1567] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyroid peroxidase (TPO), a tissue-specific enzyme expressed in differentiated thyroid follicular cells, is a major antigen that has been linked to autoimmune thyroid disease. We have previously reported the functional expression of the lipopolysaccharide (LPS) receptor Toll-like receptor 4 on thyroid follicular cells. Here we investigated the effect of LPS in TPO expression and analyzed the mechanisms involved. We found a dose-dependent enhancement of TSH-induced TPO expression in response to LPS stimulation. EMSAs demonstrated that LPS treatment increased thyroid transcription factor-1 and -2 binding to the B and Z regions of TPO promoter, respectively. Moreover, LPS increased TSH-stimulated TPO promoter activity. Using bioinformatic analysis, we identified a conserved binding site for transcription nuclear factor-κB (NF-κB) in the TPO promoter. Chemical inhibition of NF-κB signaling and site-directed mutagenesis of the identified κB-cis-acting element abolished LPS stimulation. Furthermore, chromatin immunoprecipitation assays confirmed that TPO constitutes a novel NF-κB p65 subunit target gene in response to LPS. Additionally, our results indicate that p65 phosphorylation of serine 536 constitutes an essential step in the p65-dependent, LPS-induced transcriptional expression of TPO. In conclusion, here we demonstrated that LPS increases TPO expression, suggesting a novel mechanism involved in the regulation of a major thyroid autoantigen. Our results provide new insights into the potential effects of infectious processes on thyroid homeostasis.
Collapse
Affiliation(s)
- Magalí Nazar
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
106
|
Dodgson SE, Day R, Fyfe JC. Congenital hypothyroidism with goiter in Tenterfield terriers. J Vet Intern Med 2012; 26:1350-7. [PMID: 23113744 DOI: 10.1111/j.1939-1676.2012.01015.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/15/2012] [Accepted: 09/05/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND A cluster of cases of congenital hypothyroidism with goiter (CHG) in Tenterfield Terriers was identified and hypothesized to be dyshormonogenesis of genetic etiology with autosomal recessive inheritance. OBJECTIVES To describe the phenotype, thyroid histopathology, biochemistry, mode of inheritance, and causal mutation of CHG in Tenterfield Terriers. ANIMALS Thyroid tissue from 1 CHG-affected Tenterfield Terriers, 2 affected Toy Fox Terriers, and 7 normal control dogs. Genomic DNA from blood or buccal brushings of 114 additional Tenterfield Terriers. METHODS Biochemical and genetic segregation analysis of functional gene candidates in a Tenterfield Terrier kindred. Thyroid peroxidase (TPO) iodide oxidation activity was measured, and TPO protein and SDS-resistant thyroglobulin aggregation were assessed on western blots. TPO cDNA was amplified from thyroid RNA and sequenced. Exons and flanking splice sites were amplified from genomic DNA and sequenced. Variant TPO allele segregation was assessed by restriction enzyme digestion of PCR products. RESULTS Thyroid from an affected pup had lesions consistent with dyshormonogenesis. TPO activity was absent, but normal sized immunocrossreactive TPO protein was present. Affected dog cDNA and genomic sequences revealed a homozygous TPO missense mutation in exon 9 (R593W) that was heterozygous in all obligate carriers and in 31% of other clinically normal Tenterfield Terriers. CONCLUSIONS The mutation underlying CHG in Tenterfield Terriers was identified, and a convenient carrier test made available for screening Tenterfield Terriers used for breeding.
Collapse
Affiliation(s)
- S E Dodgson
- Laboratory of Comparative Medical Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
107
|
Chandra AK, Goswami H, Sengupta P. Dietary calcium induced cytological and biochemical changes in thyroid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:454-465. [PMID: 22789468 DOI: 10.1016/j.etap.2012.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/06/2012] [Accepted: 06/18/2012] [Indexed: 06/01/2023]
Abstract
Certain epidemiological studies revealed correlation between hard water consumption (with high calcium) and thyroid size of the population, though the possible alterations in thyroid physiology upon calcium exposure are still inconclusive. Adult male Wistar strain rats were subjected to calcium treatment at the doses of 0.5g%, 1.0g% and 1.5g% calcium chloride (CaCl(2)) for 60 days. The parameters studied were - thyroid gland weight, histopathology, histomorphometry; thyroid peroxidase (TPO), 5'-deiodinase I (DI), sodium-potassium adenosine triphosphatase (Na(+)-K(+)-ATPase) activities; serum total and free thyroxine (tT4, fT4), total and free triiodothyronine (tT3, fT3), thyroid stimulating hormone (TSH) levels. Enlargement of thyroid with hypertrophic and hyperplastic changes, retarded TPO and 5'-DI but enhanced Na(+)-K(+)-ATPase activities, augmented serum total and free T4 and TSH but decreased total and free T3 levels and low T3/T4 ratio (T3:T4) were observed in the treated groups. All these findings indicate development of goitrogenesis upon exposure to excessive dietary calcium.
Collapse
Affiliation(s)
- Amar K Chandra
- Endocrinology & Reproductive Physiology Laboratory, Department of Physiology, University of Calcutta, Kolkata, West Bengal, India.
| | - Haimanti Goswami
- Endocrinology & Reproductive Physiology Laboratory, Department of Physiology, University of Calcutta, Kolkata, West Bengal, India.
| | - Pallav Sengupta
- Endocrinology & Reproductive Physiology Laboratory, Department of Physiology, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
108
|
Belforte FS, Miras MB, Olcese MC, Sobrero G, Testa G, Muñoz L, Gruñeiro-Papendieck L, Chiesa A, González-Sarmiento R, Targovnik HM, Rivolta CM. Congenital goitrous hypothyroidism: mutation analysis in the thyroid peroxidase gene. Clin Endocrinol (Oxf) 2012; 76:568-76. [PMID: 21981063 DOI: 10.1111/j.1365-2265.2011.04249.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Iodide organification defect (IOD) is characterized by a reduced ability of the thyroid gland to retain iodide resulting in hypothyroidism. Mutations in thyroid peroxidase (TPO) gene appear to be the most common cause of IOD and are commonly inherited in an autosomal recessive fashion. The TPO gene is located on the chromosome 2p25. It comprises 17 exons, covers approximately 150 kb of genomic DNA and codes 933 amino acids. OBJECTIVES In this study, we characterize the clinical and molecular basis of seven patients from four unrelated families with congenital hypothyroidism (CH) because of IOD. DESIGN AND METHODS All patients underwent clinical, biochemical and imaging evaluation. The promoter and the complete coding regions of the human TPO along with the flanking intronic regions were analysed by single-strand conformation polymorphism analysis and direct DNA sequencing. Segregation analysis of mutations was carried out, and the effect of the novel missense identified mutations was investigated by 'in silico' studies. RESULTS All subjects had congenital and persistent primary hypothyroidism. Three novel mutations: c.796C>T [p.Q266X], c.1784G>A [p.R595K] and c.2000G>A [p.G667D] and a previously reported mutation: c.1186_1187insGGCC [p.R396fsX472] have been identified. Four patients were compound heterozygous for p.R396fsX472/p.R595K mutations, two patients were homozygous for p.R595K, and the remaining patient was a compound heterozygous for p.Q266X/p.G667D. CONCLUSIONS Our findings confirm the genetic heterogeneity of TPO defects and the importance of the implementation of molecular studies to determinate the aetiology of the CH with dyshormonogenesis.
Collapse
Affiliation(s)
- Fiorella S Belforte
- Laboratorio de Biología Molecular, Cátedra de Genética y Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Gurevitz SL, Snyder JA, Peterson KL, Kelly KL. Hypothyroidism and subclinical hypothyroidism in the older patient. THE CONSULTANT PHARMACIST : THE JOURNAL OF THE AMERICAN SOCIETY OF CONSULTANT PHARMACISTS 2011; 26:657-64. [PMID: 21896472 DOI: 10.4140/tcp.n.2011.657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To review the etiology, precipitating factors, clinical findings, screening recommendations, and treatment for primary hypothyroidism and subclinical hypothyroidism in the older patient. DATA SOURCES A PubMed search of English language articles using a combination of words: elderly, thyroid, hypothyroid,* subclinical hypothyroid,* etiology, screening, diagnosis, and treatment to identify original studies, guidelines, and reviews on primary hypothyroidism and subclinical hypothyroidism published between 1979 and present. STUDY SELECTION AND DATA EXTRACTION Overall, 51 clinical reviews, original studies, references, and guidelines were obtained and evaluated on their clinical relevance to the older patient population. DATA SYNTHESIS The literature included guidelines and considerations for the diagnosis, screening, and management of subclinical and overt primary hypothyroidism in the older patient. CONCLUSION Females and individuals 60 years of age or older have a higher prevalence of primary hypothyroidism and subclinical hypothyroidism. While screening recommendations exist, the need or suggested age to initiate screening varies among organizations. TSH and free T4 values are used for diagnosing and monitoring. Levothyroxine remains the drug of choice for replacing endogenous thyroid hormone. Despite evidence to suggest its need, the treatment of subclinical hypothyroidism remains controversial.
Collapse
Affiliation(s)
- Samuel L Gurevitz
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, Indiana
| | | | | | | |
Collapse
|
110
|
Neves SC, Mezalira PR, Dias VMA, Chagas AJ, Viana M, Targovnik H, Knobel M, Medeiros-Neto G, Rubio IGS. Monoallelic thyroid peroxidase gene mutation in a patient with congenital hypothyroidism with total iodide organification defect. ACTA ACUST UNITED AC 2011; 54:732-7. [PMID: 21340161 DOI: 10.1590/s0004-27302010000800012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/23/2010] [Indexed: 11/21/2022]
Abstract
The aim of this study was to identify the genetic defect of a patient with dyshormonogenetic congenital hypothyroidisms (CH) with total iodide organification defect (TIOD). A male child diagnosed with CH during neonatal screening. Laboratory tests confirmed the permanent and severe CH with TIOD (99% perchlorate release). The coding sequence of TPO, DUOX2, and DUOXA2 genes and 2957 base pairs (bp) of the TPO promoter were sequenced. Molecular analysis of patient's DNA identified the heterozygous duplication GGCC (c.1186_1187insGGCC) in exon 8 of the TPO gene. No additional mutation was detected either in the TPO gene, TPO promoter, DUOX2 or DUOXA2 genes. We have described a patient with a clear TIOD causing severe goitrous CH due to a monoallelic TPO mutation. A plausible explanation for the association between an autosomal recessive disorder with a single TPO-mutated allele is the presence of monoallelic TPO expression.
Collapse
Affiliation(s)
- Solange Caires Neves
- Thyroid Unit, Cellular and Molecular Endocrinology Laboratory, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Heteroaromatic thioamides: Structure and stability of charge transfer complexes with iodine, antithyroid activity. J STRUCT CHEM+ 2011. [DOI: 10.1007/s10947-010-0178-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
112
|
Gotenstein JR, Swale RE, Fukuda T, Wu Z, Giurumescu CA, Goncharov A, Jin Y, Chisholm AD. The C. elegans peroxidasin PXN-2 is essential for embryonic morphogenesis and inhibits adult axon regeneration. Development 2010; 137:3603-13. [PMID: 20876652 PMCID: PMC2964093 DOI: 10.1242/dev.049189] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2010] [Indexed: 02/03/2023]
Abstract
Peroxidasins form a highly conserved family of extracellular peroxidases of unknown cellular function. We identified the C. elegans peroxidasin PXN-2 in screens for mutants defective in embryonic morphogenesis. We find that PXN-2 is essential for specific stages of embryonic morphogenesis and muscle-epidermal attachment, and is also required postembryonically for basement membrane integrity. The peroxidase catalytic activity of PXN-2 is necessary for these developmental roles. pxn-2 mutants display aberrant ultrastructure of the extracellular matrix, suggesting a role in basement membrane consolidation. PXN-2 affects specific axon guidance choice points in the developing nervous system but is dispensable for maintenance of process positions. In adults, loss of pxn-2 function promotes regrowth of axons after injury, providing the first evidence that C. elegans extracellular matrix can play an inhibitory role in axon regeneration. Loss of function in the closely related C. elegans peroxidasin pxn-1 does not cause overt developmental defects. Unexpectedly, pxn-2 mutant phenotypes are suppressed by loss of function in pxn-1 and exacerbated by overexpression of wild-type pxn-1, indicating that PXN-1 and PXN-2 have antagonistic functions. These results demonstrate that peroxidasins play crucial roles in development and reveal a new role for peroxidasins as extracellular inhibitors of axonal regeneration.
Collapse
Affiliation(s)
- Jennifer R. Gotenstein
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ryann E. Swale
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| | - Tetsuko Fukuda
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zilu Wu
- Howard Hughes Medical Institute
| | - Claudiu A. Giurumescu
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | - Yishi Jin
- Howard Hughes Medical Institute
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Andrew D. Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
113
|
Bhabak KP, Mugesh G. Inhibition of peroxidase-catalyzed protein tyrosine nitration by antithyroid drugs and their analogues. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2010.03.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
114
|
Song Y, Ruf J, Lothaire P, Dequanter D, Andry G, Willemse E, Dumont JE, Van Sande J, De Deken X. Association of duoxes with thyroid peroxidase and its regulation in thyrocytes. J Clin Endocrinol Metab 2010; 95:375-82. [PMID: 19952225 DOI: 10.1210/jc.2009-1727] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CONTEXT Thyroid hormone synthesis requires H(2)O(2) produced by dual oxidases (Duoxes) and thyroperoxidase (TPO). Defects in this system lead to congenital hypothyroidism. H(2)O(2) damage to the thyrocytes may be a cause of cancer. OBJECTIVE The objective of the study was to investigate whether Duox and TPO, the H(2)O(2) producer and consumer, might constitute a complex in the plasma membrane of human thyroid cells, thus maximizing efficiency and minimizing leakage and damage. DESIGN The interaction between Duox and TPO was studied by coimmunoprecipitation and Western blotting of plasma membranes from incubated follicles prepared from freshly resected human thyroid tissue from patients undergoing thyroidectomy, and COS-7 cells transiently transfected with the entire Duoxes or truncated [amino (NH2) or carboxyl (COOH) terminal]. RESULTS The following results were reached: 1) Duox and TPO from membranes are coprecipitated, 2) this association is up-regulated through the Gq-phospholipase C-Ca(2+)-protein kinase C pathway and down-regulated through the Gs-cAMP-protein kinase A pathway, 3) H(2)O(2) increases the association of Duox1 and Duox2 to TPO in cells and in membranes, and 4) truncated NH(2)- or COOH-terminal Duox1 and Duox2 proteins show different binding abilities with TPO. CONCLUSION Coimmunoprecipitations show that Duox and TPO locate closely in the plasma membranes of human thyrocytes, and this association can be modulated by H(2)O(2), optimizing working efficiency and minimizing H(2)O(2) spillage. This association could represent one part of a postulated pluriprotein complex involved in iodination. This suggests that defects in this association could impair thyroid hormone synthesis and lead to thyroid insufficiency and cell damage.
Collapse
Affiliation(s)
- Yue Song
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, School of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Battistuzzi G, Bellei M, Vlasits J, Banerjee S, Furtmüller PG, Sola M, Obinger C. Redox thermodynamics of lactoperoxidase and eosinophil peroxidase. Arch Biochem Biophys 2009; 494:72-7. [PMID: 19944669 DOI: 10.1016/j.abb.2009.11.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/10/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
Eosinophil peroxidase (EPO) and lactoperoxidase (LPO) are important constituents of the innate immune system of mammals. These heme enzymes belong to the peroxidase-cyclooxygenase superfamily and catalyze the oxidation of thiocyanate, bromide and nitrite to hypothiocyanate, hypobromous acid and nitrogen dioxide that are toxic for invading pathogens. In order to gain a better understanding of the observed differences in substrate specificity and oxidation capacity in relation to heme and protein structure, a comprehensive spectro-electrochemical investigation was performed. The reduction potential (E degrees ') of the Fe(III)/Fe(II) couple of EPO and LPO was determined to be -126mV and -176mV, respectively (25 degrees C, pH 7.0). Variable temperature experiments show that EPO and LPO feature different reduction thermodynamics. In particular, reduction of ferric EPO is enthalpically and entropically disfavored, whereas in LPO the entropic term, which selectively stabilizes the oxidized form, prevails on the enthalpic term that favors reduction of Fe(III). The data are discussed with respect to the architecture of the heme cavity and the substrate channel. Comparison with published data for myeloperoxidase demonstrates the effect of heme to protein linkages and heme distortion on the redox chemistry of mammalian peroxidases and in consequence on the enzymatic properties of these physiologically important oxidoreductases.
Collapse
Affiliation(s)
- Gianantonio Battistuzzi
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, Modena, Italy.
| | | | | | | | | | | | | |
Collapse
|
116
|
Péterfi Z, Donkó A, Orient A, Sum A, Prókai A, Molnár B, Veréb Z, Rajnavölgyi E, Kovács KJ, Müller V, Szabó AJ, Geiszt M. Peroxidasin is secreted and incorporated into the extracellular matrix of myofibroblasts and fibrotic kidney. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:725-35. [PMID: 19590037 PMCID: PMC2716968 DOI: 10.2353/ajpath.2009.080693] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2009] [Indexed: 01/06/2023]
Abstract
Mammalian peroxidases are heme-containing enzymes that serve diverse biological roles, such as host defense and hormone biosynthesis. A mammalian homolog of Drosophila peroxidasin belongs to the peroxidase family; however, its function is currently unknown. In this study, we show that peroxidasin is present in the endoplasmic reticulum of human primary pulmonary and dermal fibroblasts, and the expression of this protein is increased during transforming growth factor-beta1-induced myofibroblast differentiation. Myofibroblasts secrete peroxidasin into the extracellular space where it becomes organized into a fibril-like network and colocalizes with fibronectin, thus helping to form the extracellular matrix. We also demonstrate that peroxidasin expression is increased in a murine model of kidney fibrosis and that peroxidasin localizes to the peritubular space in fibrotic kidneys. In addition, we show that this novel pathway of extracellular matrix formation is unlikely mediated by the peroxidase activity of the protein. Our data indicate that peroxidasin secretion represents a previously unknown pathway in extracellular matrix formation with a potentially important role in the physiological and pathological fibrogenic response.
Collapse
Affiliation(s)
- Zalán Péterfi
- Department of Physiology, Semmelweis University, Faculty of Medicine, PO Box 259 H-1444 Buda-pest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Sheikh IA, Singh AK, Singh N, Sinha M, Singh SB, Bhushan A, Kaur P, Srinivasan A, Sharma S, Singh TP. Structural evidence of substrate specificity in mammalian peroxidases: structure of the thiocyanate complex with lactoperoxidase and its interactions at 2.4 A resolution. J Biol Chem 2009; 284:14849-56. [PMID: 19339248 PMCID: PMC2685666 DOI: 10.1074/jbc.m807644200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 03/18/2009] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of the complex of lactoperoxidase (LPO) with its physiological substrate thiocyanate (SCN(-)) has been determined at 2.4A resolution. It revealed that the SCN(-) ion is bound to LPO in the distal heme cavity. The observed orientation of the SCN(-) ion shows that the sulfur atom is closer to the heme iron than the nitrogen atom. The nitrogen atom of SCN(-) forms a hydrogen bond with a water (Wat) molecule at position 6'. This water molecule is stabilized by two hydrogen bonds with Gln(423) N(epsilon2) and Phe(422) oxygen. In contrast, the placement of the SCN(-) ion in the structure of myeloperoxidase (MPO) occurs with an opposite orientation, in which the nitrogen atom is closer to the heme iron than the sulfur atom. The site corresponding to the positions of Gln(423), Phe(422) oxygen, and Wat(6)' in LPO is occupied primarily by the side chain of Phe(407) in MPO due to an entirely different conformation of the loop corresponding to the segment Arg(418)-Phe(431) of LPO. This arrangement in MPO does not favor a similar orientation of the SCN(-) ion. The orientation of the catalytic product OSCN(-) as reported in the structure of LPO.OSCN(-) is similar to the orientation of SCN(-) in the structure of LPO.SCN(-). Similarly, in the structure of LPO.SCN(-).CN(-), in which CN(-) binds at Wat(1), the position and orientation of the SCN(-) ion are also identical to that observed in the structure of LPO.SCN.
Collapse
Affiliation(s)
- Ishfaq Ahmed Sheikh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Ortiz de Montellano PR. Mechanism and Role of Covalent Heme Binding in the CYP4 Family of P450 Enzymes and the Mammalian Peroxidases. Drug Metab Rev 2008; 40:405-26. [DOI: 10.1080/03602530802186439] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
119
|
Incerpi S, Fiore AM, De Vito P, Pedersen JZ. Involvement of plasma membrane redox systems in hormone action. J Pharm Pharmacol 2008; 59:1711-20. [PMID: 18053334 DOI: 10.1211/jpp.59.12.0014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Reactive oxygen species (ROS) is the common name used to describe the partially reduced forms of molecular oxygen that may be generated in cells during oxidative metabolism. They are normally considered to be toxic, and cells possess various defence systems to protect themselves including antioxidant enzymes and low molecular weight antioxidants like vitamin C and vitamin E. However, it is now clear that small amounts of ROS also act as messenger molecules in cell signal transduction pathways; the plasma membrane of eukaryotic cells in particular contains a variety of different ROS-producing oxidases and reductases, of which the best characterized are the superoxide-producing NADPH oxidases. It has been known for many years that membrane redox activity can be changed rapidly by various hormones and growth factors, but the molecular mechanisms involved and the physiological importance of this phenomenon have only recently begun to be unveiled. This review summarizes the state of the art on plasma membrane-based ROS signalling in the pathways of insulin, steroid and thyroid hormones and growth factors. The apparent paradox of ROS being essential biomolecules in the regulation of cellular functions, but also toxic by-products of metabolism, may be important for the pharmacological application of natural and synthetic antioxidants.
Collapse
Affiliation(s)
- Sandra Incerpi
- Department of Biology, University of Rome 'Roma Tre', Viale Marconi 446, 00146 Roma, Italy.
| | | | | | | |
Collapse
|
120
|
The phylogeny of the mammalian heme peroxidases and the evolution of their diverse functions. BMC Evol Biol 2008; 8:101. [PMID: 18371223 PMCID: PMC2315650 DOI: 10.1186/1471-2148-8-101] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 03/27/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mammalian heme peroxidases (MHPs) are a medically important group of enzymes. Included in this group are myeloperoxidase, eosinophil peroxidase, lactoperoxidase, and thyroid peroxidase. These enzymes are associated with such diverse diseases as asthma, Alzheimer's disease and inflammatory vascular disease. Despite much effort to elucidate a clearer understanding of the function of the 4 major groups of this multigene family, we still do not have a clear understanding of their relationships to each other. RESULTS Sufficient signal exists for the resolution of the evolutionary relationships of this family of enzymes. We demonstrate, using a root mean squared deviation statistic, how the removal of the fastest evolving sites aids in the minimisation of the effect of long branch attraction and the generation of a highly supported phylogeny. Based on this phylogeny we have pinpointed the amino acid positions that have most likely contributed to the diverse functions of these enzymes. Many of these residues are in close proximity to sites implicated in protein misfolding, loss of function or disease. CONCLUSION Our analysis of all available genomic sequence data for the MHPs from all available completed mammalian genomes, involved sophisticated methods of phylogeny reconstruction and data treatment. Our study has (i) fully resolved the phylogeny of the MHPs and the subsequent pattern of gene duplication, and (ii), we have detected amino acids under positive selection that have most likely contributed to the observed functional shifts in each type of MHP.
Collapse
|
121
|
Jayaram PN, Roy G, Mugesh G. Effect of thione—thiol tautomerism on the inhibition of lactoperoxidase by anti-thyroid drugs and their analogues. J CHEM SCI 2008. [DOI: 10.1007/s12039-008-0017-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
122
|
Deladoëy J, Pfarr N, Vuissoz JM, Parma J, Vassart G, Biesterfeld S, Pohlenz J, Van Vliet G. Pseudodominant inheritance of goitrous congenital hypothyroidism caused by TPO mutations: molecular and in silico studies. J Clin Endocrinol Metab 2008; 93:627-33. [PMID: 18029453 DOI: 10.1210/jc.2007-2276] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT AND OBJECTIVE Most cases of goitrous congenital hypothyroidism (CH) from thyroid dyshormonogenesis 1) follow a recessive mode of inheritance and 2) are due to mutations in the thyroid peroxidase gene (TPO). We report the genetic mechanism underlying the apparently dominant inheritance of goitrous CH in a nonconsanguineous family of French Canadian origin. DESIGN, SETTING, AND PARTICIPANTS Two brothers identified by newborn TSH screening had severe hypothyroidism and a goiter with increased (99m)Tc uptake. The mother was euthyroid, but the father and two paternal uncles had also been diagnosed with goitrous CH. After having excluded PAX8 gene mutations, we hypothesized that the underlying defect could be TPO mutations. RESULTS Both compound heterozygous siblings had inherited a mutant TPO allele carried by their mother (c.1496delC; p.Pro499Argfs2X), and from their father, one brother had inherited a missense mutation (c.1978C-->G; p.Gln660Glu) and the other an insertion (c.1955insT; p.Phe653Valfs15X). The thyroid gland of one uncle who is a compound heterozygote for TPO mutations (p.Phe653Valfs15X/p.Gln660Glu) was removed because of concurrent multiple endocrine neoplasia type 2A. Immunohistochemistry revealed normal TPO staining, implying that Gln660Glu TPO is expressed properly. Modeling of this mutant in silico suggests that its three-dimensional structure is conserved, whereas the electrostatic binding energy between the Gln660Glu TPO and its heme group becomes repulsive. CONCLUSION We report a pedigree presenting with pseudodominant goitrous CH due to segregation of three different TPO mutations. Although goitrous CH generally follows a recessive mode of inheritance, the high frequency of TPO mutations carriers may lead to pseudodominant inheritance.
Collapse
Affiliation(s)
- Johnny Deladoëy
- Endocrinology Service and Research Center, Sainte-Justine Hospital and Department of Pediatrics, University of Montreal, Montreal, Canada H3T 1C5
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Blanchin S, Coffin C, Viader F, Ruf J, Carayon P, Potier F, Portier E, Comby E, Allouche S, Ollivier Y, Reznik Y, Ballet JJ. Anti-thyroperoxidase antibodies from patients with Hashimoto's encephalopathy bind to cerebellar astrocytes. J Neuroimmunol 2007; 192:13-20. [PMID: 17963848 DOI: 10.1016/j.jneuroim.2007.08.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 07/31/2007] [Accepted: 08/06/2007] [Indexed: 11/26/2022]
Abstract
A cohort of 10 Hashimoto's encephalopathy (HE) patients, 33 patients with unrelated neurological symptoms, 12 Hashimoto's thyroiditis patients and 4 healthy adult donors was studied to explore the neurological targets of anti-thyroperoxidase (TPO) autoantibodies (aAb) in HE. High levels of anti-TPO aAb were only detected in HE group's cerebrospinal fluids. In immunofluorescence assays on monkey brain cerebellum sections, both HE patients' sera and anti-TPO monoclonal antibodies (mAb) were able to bind cerebellar cells expressing glial fibrillary acid protein. Normal human astrocytes from primary cultures also reacted with anti-TPO mAb. Specific astrocyte binding of anti-TPO aAb suggests a role of these aAb in the HE pathogenesis.
Collapse
Affiliation(s)
- Stéphanie Blanchin
- Laboratoire d'Immunologie et d'Immunopathologie, UPRES-EA 2128, CHU Clémenceau, 14033 Caen cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Rivolta CM, Louis-Tisserand M, Varela V, Gruñeiro-Papendieck L, Chiesa A, González-Sarmiento R, Targovnik HM. Two compound heterozygous mutations (c.215delA/c.2422T-->C and c.387delC/c.1159G-->A) in the thyroid peroxidase gene responsible for congenital goitre and iodide organification defect. Clin Endocrinol (Oxf) 2007; 67:238-46. [PMID: 17547680 DOI: 10.1111/j.1365-2265.2007.02869.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Iodide organification defects are frequently but not always associated with mutations in the thyroid peroxidase (TPO) gene and characterized by a positive perchlorate discharge test. These mutations phenotypically produce a congenital goitrous hypothyroidism, with an autosomal recessive mode of inheritance. OBJECTIVES In the present study we extended our initial molecular studies in six unrelated patients heterozygous for the TPO mutations, in order to identify the second mutation in this autosomal recessive disease. METHODS The promoter and the complete coding regions of the human TPO and DUOXA2 genes, along with the flanking regions of each intron were analysed by direct DNA sequencing. RESULTS Four different inactivating TPO mutations were identified in two patients: two novel mutations (c.215delA [p.Q72fsX86] and c.1159G-->A [p.G387R]) and two previously reported (c.387delC [p.N129fsX208] and c.2422T-->C [p.C808R]), confirming the inheritance of two different compound heterozygous mutations, c.215delA/c.2422T-->C and c.387delC/c.1159G-->A. The remaining four patients did not show additional inactivating mutations in the TPO gene and all had only the wild type sequencing in the DUOXA2 gene. CONCLUSIONS We have reported two patients with iodide organification defect caused by two compound heterozygous mutations, c.215delA/c.2422T-->C [p.Q72fsX86/p.C808R] and c.387delC/c.1159G-->A [p.N129fsX208/p.G387R], in the TPO gene and four patients with monoallelic TPO defect. Identification of the molecular basis of this disorder might be helpful for understanding the pathophysiology of congenital hypothyroidism.
Collapse
Affiliation(s)
- Carina M Rivolta
- Laboratorio de Biología Molecular, Cátedra de Genética y Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
125
|
Spickett CM. Chlorinated lipids and fatty acids: an emerging role in pathology. Pharmacol Ther 2007; 115:400-9. [PMID: 17658610 DOI: 10.1016/j.pharmthera.2007.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
Although the existence of halogenated lipids in lower organisms has been known for many years, it is only since the 1990s that interest in their occurrence in mammalian systems has developed. Chlorinated (and other halogenated) lipids can arise from oxidation by hypohalous acids, such as HOCl, which are products of the phagocytic enzyme myeloperoxidase and are generated during inflammation. The major species of chlorinated lipids investigated to date are chlorinated sterols, fatty acid and phospholipid chlorohydrins, and alpha-chloro fatty aldehydes. While all of these chlorinated lipids have been shown to be produced in model systems from lipoproteins to cells subjected to oxidative stress, as yet only alpha-chloro fatty aldehydes, such as 2-chlorohexadecanal, have been detected in clinical samples or animal models of disease. alpha-Chloro fatty aldehydes and chlorohydrins have been found to have a number of potentially pro-inflammatory effects ranging from toxicity to inhibition of nitric oxide synthesis and upregulation of vascular adhesion molecules. Thus evidence is building for a role of chlorinated lipids in inflammatory disease, although much more research is required to establish the contributions of specific compounds in different disease pathologies. Preventing chlorinated lipid formation and indeed other HOCl-induced damage, via the inhibition of myeloperoxidase, is an area of growing interest and may lead in the future to antimyeloperoxidase-based antiinflammatory therapy. However, other chlorinated lipids, such as punaglandins, have beneficial effects that could offer novel therapies for cancer.
Collapse
Affiliation(s)
- Corinne M Spickett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
126
|
Roy G, Das D, Mugesh G. Bioinorganic chemistry aspects of the inhibition of thyroid hormone biosynthesis by anti-hyperthyroid drugs. Inorganica Chim Acta 2007. [DOI: 10.1016/j.ica.2006.07.052] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|