101
|
Kostyushev D, Kostyusheva A, Brezgin S, Smirnov V, Volchkova E, Lukashev A, Chulanov V. Gene Editing by Extracellular Vesicles. Int J Mol Sci 2020; 21:E7362. [PMID: 33028045 PMCID: PMC7582630 DOI: 10.3390/ijms21197362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/23/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
CRISPR/Cas technologies have advanced dramatically in recent years. Many different systems with new properties have been characterized and a plethora of hybrid CRISPR/Cas systems able to modify the epigenome, regulate transcription, and correct mutations in DNA and RNA have been devised. However, practical application of CRISPR/Cas systems is severely limited by the lack of effective delivery tools. In this review, recent advances in developing vehicles for the delivery of CRISPR/Cas in the form of ribonucleoprotein complexes are outlined. Most importantly, we emphasize the use of extracellular vesicles (EVs) for CRISPR/Cas delivery and describe their unique properties: biocompatibility, safety, capacity for rational design, and ability to cross biological barriers. Available molecular tools that enable loading of desired protein and/or RNA cargo into the vesicles in a controllable manner and shape the surface of EVs for targeted delivery into specific tissues (e.g., using targeting ligands, peptides, or nanobodies) are discussed. Opportunities for both endogenous (intracellular production of CRISPR/Cas) and exogenous (post-production) loading of EVs are presented.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
| | - Valery Smirnov
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Elena Volchkova
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Alexander Lukashev
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| |
Collapse
|
102
|
Lin S, Zhou S, Yuan T. The "sugar-coated bullets" of cancer: Tumor-derived exosome surface glycosylation from basic knowledge to applications. Clin Transl Med 2020; 10:e204. [PMID: 33135347 PMCID: PMC7551131 DOI: 10.1002/ctm2.204] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Scientific interest in exosomes has exploded in recent decades. In 1990 only three articles were published on exosomes, while over 1,700 have already been published half-way into 2020.1 While researchers have shown much interest in exosomes since being discovered in 1981, an appreciation of the potential role of glycans in exosome structure and function has emerged only recently. Glycosylation is one of the most common post-translational modification, which functions in many physiological and pathological aspects of cellular function. Many components of exosomes are heavily glycosylated including proteins, lipids, among others. Thus, glycosylation undoubtedly has a great impact on exosome biosynthesis and function. Despite the importance of glycosylation in exosomes and the recent recognition of them as biomarkers for not only malignancies but also other system dysfunction and disease, the characterization of exosome glycans remains understudied. In this review, we discuss glycosylation patterns of exosomes derived from various tissues, their biological features, and potential for various clinical applications. We highlight state-of-the-art knowledge about the fine structure of exosomes, which will allow researchers to reconstruct them by surface modification. These efforts will likely lead to novel disease-related biomarker discovery, purification tagging, and targeted drug transfer for clinical applications in the future.
Collapse
Affiliation(s)
- Shanyi Lin
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| | - Shumin Zhou
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| | - Ting Yuan
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| |
Collapse
|
103
|
Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. Int J Nanomedicine 2020; 15:6917-6934. [PMID: 33061359 PMCID: PMC7519827 DOI: 10.2147/ijn.s264498] [Citation(s) in RCA: 630] [Impact Index Per Article: 157.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nano-sized small extracellular vesicles secreted by cells, carrying nucleic acids, proteins, lipids and other bioactive substances to play a role in the body's physiological and pathological processes. Compared to synthetic carriers such as liposomes and nanoparticles, the endogeneity and heterogeneity of exosomes give them extensive and unique advantages in the field of disease diagnosis and treatment. However, the storage stability, low yield, low purity, and weak targeting of exosomes limit its clinical application. For this reason, further exploration is needed to optimize the above problems and facilitate future functional studies of exosomes. In this paper, the origin, classification, preparation and characterization, storage stability and applications of exosome delivery system are summarized and discussed by searching a large number of literatures.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jiayao Bi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jiayi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yanan Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Pengyue Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
104
|
Asgarpour K, Shojaei Z, Amiri F, Ai J, Mahjoubin-Tehran M, Ghasemi F, ArefNezhad R, Hamblin MR, Mirzaei H. Exosomal microRNAs derived from mesenchymal stem cells: cell-to-cell messages. Cell Commun Signal 2020; 18:149. [PMID: 32917227 PMCID: PMC7488404 DOI: 10.1186/s12964-020-00650-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Exosomes are extracellular vesicles characterized by their size, source, release mechanism and contents. MicroRNAs (miRNAs) are single stranded non-coding RNAs transcribed from DNA. Exosomes and miRNAs are widespread in eukaryotic cells, especially in mesenchymal stem cells (MSCs). MSCs are used for tissue regeneration, and also exert paracrine, anti-inflammatory and immunomodulatory effects. However, the use of MSCs is controversial, especially in the presence or after the remission of a tumor, due to their secretion of growth factors and their migration ability. Instead of intact MSCs, MSC-derived compartments or substances could be used as practical tools for diagnosis, follow up, management and monitoring of diseases. Herein, we discuss some aspects of exosomal miRNAs derived from MSCs in the progression, diagnosis and treatment of various diseases. Video Abstract.
Collapse
Affiliation(s)
- Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Zahra Shojaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amiri
- School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine (SATM), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Reza ArefNezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran.
| |
Collapse
|
105
|
Tieu A, Lalu MM, Slobodian M, Gnyra C, Fergusson DA, Montroy J, Burger D, Stewart DJ, Allan DS. An Analysis of Mesenchymal Stem Cell-Derived Extracellular Vesicles for Preclinical Use. ACS NANO 2020; 14:9728-9743. [PMID: 32697573 DOI: 10.1021/acsnano.0c01363] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) can reduce inflammation, promote healing, and improve organ function, thereby providing a potential "cell-free" therapy. Prior to clinical translation, it is critical to synthesize existing evidence on preclinical methods and efficacy. To address these issues, we used gold standard systematic review methodology to consolidate information from all published animal studies investigating MSC-EVs as an intervention. A systematic search of MEDLINE and Embase identified 206 studies. Data were extracted in duplicate for methodology, experimental design, interventional traits, modifications, and outcomes. MSC-EVs were used to treat a variety of diseases and demonstrated benefits in 97% of studies. Adverse effects were reported in only three studies, two demonstrating tumor growth. A quarter of articles modified EVs to enhance efficacy, with 72% leading to markedly improved outcomes as compared to unmodified EVs. However, several key methodological concerns were evident. Only 60% of studies used nomenclature consistent with the size definitions of EVs. Ultracentrifugation (70%) and isolation kits (23%) were the most common isolation techniques with noted differences in yield and purity. EVs were inconsistently dosed by protein (68%) or particle concentration (16%). Two-thirds of studies administered xenogeneic EVs, suggesting immunocompatibility. Less than 25% of studies assessed EV biodistribution. Approaches for determining size, protein markers, and morphology were highly heterogeneous, with only 12 and 4 studies meeting the MISEV 2014 and 2018 recommendations, respectively. Knowledge gaps identified from this systematic review highlight important opportunities to improve preclinical design and methodology in the rapidly growing field of EV therapeutics.
Collapse
Affiliation(s)
- Alvin Tieu
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada, K1H 8L1
| | - Manoj M Lalu
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada, K1H 8L1
- Departments of Anesthesiology and Pain Medicine, University of Ottawa, The Ottawa Hospital, Ottawa, Canada, K1H 8L6
| | | | | | | | | | - Dylan Burger
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada, K1H 8L1
| | - Duncan J Stewart
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada, K1H 8L1
| | | |
Collapse
|
106
|
Salunkhe S, Dheeraj, Basak M, Chitkara D, Mittal A. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: Strategies and significance. J Control Release 2020; 326:599-614. [PMID: 32730952 DOI: 10.1016/j.jconrel.2020.07.042] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
Exosomes are natural nanovesicles excreted by many cells for intercellular communication and for transfer of materials including proteins, nucleic acids and even synthetic therapeutic agents. Surface modification of exosomes imparts additional functionality to the exosomes to enable site specific drug delivery and in vivo imaging and tracking and is an emerging area in drug delivery research. The present review focuses upon these modifications on the exosomal surface, the chemistry involved and their impact on targeted drug delivery for the treatment of brain, breast, lung, liver, colon tumors and, heart diseases and for understanding their in vivo fate including their uptake mechanisms, pharmacokinetics and biodistribution. The specific exosomal membrane proteins such as tetraspanins (CD63, CD81, CD9), lactadherin (LA), lysosome associated membrane protein-2b (Lamp-2b) and, glycosyl-phosphatidyl-inositol (GPI) involved in functionalization of exosome surface have also been discussed along with different strategies of surface modification like genetic engineering, covalent modification (click chemistry and metabolic engineering of parent cells of exosomes) and non-covalent modification (multivalent electrostatic interactions, ligand-receptor interaction, hydrophobic interaction, aptamer based modification and modification by anchoring CP05 peptide) along with optical (fluorescent and bioluminescent) and radioactive isotope labelling techniques of exosomes for imaging purpose.
Collapse
Affiliation(s)
- Shubham Salunkhe
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Dheeraj
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Moumita Basak
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India.
| |
Collapse
|
107
|
Rayamajhi S, Aryal S. Surface functionalization strategies of extracellular vesicles. J Mater Chem B 2020; 8:4552-4569. [PMID: 32377649 DOI: 10.1039/d0tb00744g] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extracellular vesicles (EVs) are lipid-protein bilayer vesicular constructs secreted to the extracellular spaces by cells. All cells secrete EVs as a regular biological process that appears to be conserved throughout the evolution. Owing to the rich molecular cargo of EVs with specific lipid and protein content and documented role in cellular communication, EVs have been exploited as a versatile agent in the biomedical arena, including as diagnostic, drug delivery, immunomodulatory, and therapeutic agents. With these multifaceted applications in the biomedical field, the functionalization of EVs to add diverse functionality has garnered rapid attention. EVs can be functionalized with an exogenous imaging and targeting moiety that allows for the target specificity and the real-time tracking of EVs for diagnostic and therapeutic applications. Importantly, such added functionalities can be used to explore EVs' biogenesis pathway and their role in cellular communication, which can lead to a better understanding of EVs' cellular mechanisms and processes. In this report, we have reviewed the existing surface functionalization strategies of EVs and broadly classified them into three major approaches: physical, biological, and chemical approaches. The physical approach of EV functionalization includes methods like sonication, extrusion, and freeze-thaw that can change the surface properties of EVs via membrane rearrangements. The biological approach includes genetically and metabolically engineering cells to express protein or cargo molecules of interest in secreted EVs. The chemical approach includes different facile click type chemistries that can be used to covalently conjugate the EV lipid or protein construct with different linker groups for diverse functionality. Different chemistries like thiol-maleimide, EDC/NHS, azide-alkyne cycloaddition, and amidation chemistry have been discussed to functionalize EVs. Finally, a comparative discussion of all approaches has been done focusing on the significance of each approach. The collective knowledge of the major approach of surface functionalization can be used to improve the limitation of one technique by combining it with another. An optimized surface functionalization approach developed accordingly can efficiently add required functionality to EVs while maintaining their natural integrity.
Collapse
Affiliation(s)
- Sagar Rayamajhi
- Department of Chemistry, Nanotechnology Innovation Center of Kansas State (NICKS), Kansas State University, Manhattan, KS 66506, USA.
| | | |
Collapse
|
108
|
Abstract
As a nanoscale subset of extracellular vehicles, exosomes represent a new pathway of intercellular communication by delivering cargos such as proteins and nucleic acids to recipient cells. Importantly, it has been well documented that exosome-mediated delivery of such cargo is involved in many pathological processes such as tumor progression, cancer metastasis, and development of drug resistance. Innately biocompatible and possessing ideal structural properties, exosomes offer distinct advantages for drug delivery over artificial nanoscale drug carriers. In this review, we summarize recent progress in methods for engineering exosomes including isolation techniques and exogenous cargo encapsulation, with a focus on applications of engineered exosomes to target cancer metastasis.
Collapse
Affiliation(s)
- Zhenjiang Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Jenna A. Dombroski
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| |
Collapse
|
109
|
Böttger R, Pauli G, Chao PH, AL Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev 2020; 154-155:79-101. [PMID: 32574575 DOI: 10.1016/j.addr.2020.06.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
Liver diseases such as hepatitis, cirrhosis, and hepatocellular carcinoma are global health problems accounting for approximately 800 million cases and over 2 million deaths per year worldwide. Major drawbacks of standard pharmacological therapies are the inability to deliver a sufficient concentration of a therapeutic agent to the diseased liver, and nonspecific drug delivery leading to undesirable systemic side effects. Additionally, depending on the specific liver disease, drug delivery to a subset of liver cells is required. In recent years, lipid nanoparticles have been developed to passively and actively target drugs to the liver. The success of this approach has been highlighted by the FDA-approval of the first liver-targeting lipid nanoparticle, ONPATTRO, in 2018 and many other promising candidate technologies are expected to follow. This review summarizes recent developments of various lipid-based liver-targeting technologies, namely solid-lipid nanoparticles, liposomes, niosomes and micelles, and discusses the challenges and future perspectives in this field.
Collapse
|
110
|
Sawada SI, Sato YT, Kawasaki R, Yasuoka JI, Mizuta R, Sasaki Y, Akiyoshi K. Nanogel hybrid assembly for exosome intracellular delivery: effects on endocytosis and fusion by exosome surface polymer engineering. Biomater Sci 2020; 8:619-630. [DOI: 10.1039/c9bm01232j] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface polymer engineering was applied with a carrier of exosomes, namely, the amphiphilic cationic CHP (cCHP) nanogel, to improve the delivery of exosome content by forming complexes with the exosomes.
Collapse
Affiliation(s)
- Shin-ichi Sawada
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Yuko T. Sato
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Riku Kawasaki
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Jun-ichi Yasuoka
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Ryosuke Mizuta
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
111
|
Susa F, Limongi T, Dumontel B, Vighetto V, Cauda V. Engineered Extracellular Vesicles as a Reliable Tool in Cancer Nanomedicine. Cancers (Basel) 2019; 11:E1979. [PMID: 31835327 PMCID: PMC6966613 DOI: 10.3390/cancers11121979] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Fast diagnosis and more efficient therapies for cancer surely represent one of the huge tasks for the worldwide researchers' and clinicians' community. In the last two decades, our understanding of the biology and molecular pathology of cancer mechanisms, coupled with the continuous development of the material science and technological compounds, have successfully improved nanomedicine applications in oncology. This review argues on nanomedicine application of engineered extracellular vesicles (EVs) in oncology. All the most innovative processes of EVs engineering are discussed together with the related degree of applicability for each one of them in cancer nanomedicines.
Collapse
Affiliation(s)
| | | | | | | | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (T.L.); (B.D.); (V.V.)
| |
Collapse
|
112
|
Exosomes and Their Noncoding RNA Cargo Are Emerging as New Modulators for Diabetes Mellitus. Cells 2019; 8:cells8080853. [PMID: 31398847 PMCID: PMC6721737 DOI: 10.3390/cells8080853] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetes belongs to a group of metabolic disorders characterized by long term high blood glucose levels due to either inadequate production of insulin (Type 1 diabetes, T1DM) or poor response of the recipient cell to insulin (Type 2 diabetes, T2DM). Organ dysfunctions are the main causes of morbidity and mortality due to high glucose levels. Understanding the mechanisms of organ crosstalk may help us improve our basic knowledge and find novel strategies to better treat the disease. Exosomes are part of a newly emerged research area and have attracted a great deal of attention for their capacity to regulate communications between cells. In conditions of diabetes, exosomes play important roles in the pathological processes in both T1DM and T2DM, such as connecting the immune cell response to pancreatic tissue injury, as well as adipocyte stimulation to insulin resistance of skeletal muscle or liver. Furthermore, in recent years, nucleic acids containing exosomes—especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs)—have been shown to mainly regulate communications between organs in pathological processes of diabetes, including influencing metabolic signals and insulin signals in target tissues, affecting cell viability, and modulating inflammatory pancreatic cells. Moreover, exosome miRNAs show promise in their use as biomarkers or in treatments for diabetes and diabetic complications. Thus, this paper summarizes the recent work on exosomes related to diabetes as well as the roles of exosomal miRNAs and lncRNAs in diabetic pathology and diagnosis in order to help us better understand the exact roles of exosomes in diabetes development.
Collapse
|
113
|
Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Ther Deliv 2019; 10:527-550. [DOI: 10.4155/tde-2019-0044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent decades, many novel methods by using nanoparticles (NPs) have been investigated for diagnosis, drug delivery and treatment of cancer. Accordingly, the potential of NPs as carriers is very significant for the delivery of anticancer drugs, because cancer treatment with NPs has led to the improvement of some of the drug delivery limitations such as low blood circulation time and bioavailability, lack of water solubility, drug adverse effect. In addition, the NPs protect drugs against enzymatic degradation and can lead to the targeted and/or controlled release of the drug. The present review focuses on the potential of NPs that can help the targeted and/or controlled delivery of anticancer agents for cancer therapy.
Collapse
|
114
|
Tran TTD, Tran PHL. Nanoconjugation and Encapsulation Strategies for Improving Drug Delivery and Therapeutic Efficacy of Poorly Water-Soluble Drugs. Pharmaceutics 2019; 11:E325. [PMID: 31295947 PMCID: PMC6680391 DOI: 10.3390/pharmaceutics11070325] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/25/2019] [Accepted: 05/10/2019] [Indexed: 01/14/2023] Open
Abstract
Nanoconjugations have been demonstrated to be a dominant strategy for drug delivery and biomedical applications. In this review, we intend to describe several strategies for drug formulation, especially to improve the bioavailability of poorly water-soluble molecules for future application in the therapy of numerous diseases. The context of current studies will give readers an overview of the conjugation strategies for fabricating nanoparticles, which have expanded from conjugated materials to the surface conjugation of nanovehicles. Moreover, nanoconjugates for theranostics are also discussed and highlighted. Overall, these state-of-the-art conjugation methods and these techniques and applications for nanoparticulate systems of poorly water-soluble drugs will inspire scientists to explore and discover more productive techniques and methodologies for drug development.
Collapse
Affiliation(s)
- Thao T. D. Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam;
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
115
|
Tiwari S, Patil R, Dubey SK, Bahadur P. Derivatization approaches and applications of pullulan. Adv Colloid Interface Sci 2019; 269:296-308. [PMID: 31128461 DOI: 10.1016/j.cis.2019.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
Abstract
Pullulan (PUL), a linear exo-polysaccharide, is useful in industries as diverse as food, cosmetics and pharmaceuticals. PUL presents many favorable characteristics, such as renewable origin, biocompatibility, stability, hydrophilic nature, and availability of reactive sites for chemical modification. With an inherent affinity to asialoglycoprotein receptors, PUL can be used for targeted drug delivery to the liver. Besides, these primary properties have been combined with modern synthetic approaches for developing multifunctional biomaterials. This is evident from numerous studies on approaches, such as hydrophobic modification, cross-linking, grafting and transformation as a polyelectrolyte. In this review, we have discussed up-to-date advances on chemical modifications and emerging applications of PUL in targeted theranostics and tissue engineering. Besides, we offer an overview of its applications in food, cosmetics and environment remediation.
Collapse
|
116
|
Murphy DE, de Jong OG, Brouwer M, Wood MJ, Lavieu G, Schiffelers RM, Vader P. Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking. Exp Mol Med 2019; 51:1-12. [PMID: 30872574 PMCID: PMC6418170 DOI: 10.1038/s12276-019-0223-5] [Citation(s) in RCA: 430] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are increasingly being recognized as mediators of intercellular signaling via the delivery of effector molecules. Interestingly, certain types of EVs are also capable of inducing therapeutic responses. For these reasons, the therapeutic potential of EVs is a topic of intense research, both in the context of drug delivery and regenerative medicine. However, to fully utilize EVs for therapeutic purposes, an improved understanding of the mechanisms by which they function would be highly advantageous. Here, the current state of knowledge regarding the cellular uptake and trafficking of EVs is reviewed, along with a consideration of how these pathways potentially influence the functions of therapeutic EVs. Furthermore, the natural cell-targeting abilities, biodistribution profiles, and pharmacokinetics of exogenously administered EVs, along with the components responsible for these features are discussed. An overview of the potential clinical applications and preclinical examples of their successful use is also provided. Finally, examples of EV modifications that have successfully been employed to improve their therapeutic characteristics receive a particular focus. We suggest that, in addition to investigation of EV cell targeting and routes of uptake, future research into the routes of intracellular trafficking in recipient cells is required to optimally utilize EVs for therapeutic purposes. An increased understanding of how extracellular vesicles (EVs) enter cells and deliver molecules will enable promising new therapies, according to researchers in the Netherlands, UK and France. EVs are liquid-filled sacs secreted by cells that transport proteins, lipids and RNA between cells, and therefore have potential for delivering drugs. Pieter Vader at UMC Utrecht and co-workers review recent research into EVs, focusing on how EVs are distributed around the body, and how they target and enter cells. However, there is little known about EV biology once they are inside cells, and it is likely that many EVs simply degrade without delivering their cargo. Further research in this area could help identify features that improve cargo escape from EVs, thus ensuring that future therapies can be effective.
Collapse
Affiliation(s)
- Daniel E Murphy
- Laboratory of Clinical Chemistry and Haematology, UMC Utrecht, Utrecht, The Netherlands
| | - Olivier G de Jong
- Laboratory of Clinical Chemistry and Haematology, UMC Utrecht, Utrecht, The Netherlands.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Maarten Brouwer
- Laboratory of Clinical Chemistry and Haematology, UMC Utrecht, Utrecht, The Netherlands
| | - Matthew J Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Grégory Lavieu
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Raymond M Schiffelers
- Laboratory of Clinical Chemistry and Haematology, UMC Utrecht, Utrecht, The Netherlands.
| | - Pieter Vader
- Laboratory of Clinical Chemistry and Haematology, UMC Utrecht, Utrecht, The Netherlands. .,Department of Experimental Cardiology, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
117
|
Liao W, Du Y, Zhang C, Pan F, Yao Y, Zhang T, Peng Q. Exosomes: The next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater 2019; 86:1-14. [PMID: 30597259 DOI: 10.1016/j.actbio.2018.12.045] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/23/2018] [Accepted: 12/27/2018] [Indexed: 02/08/2023]
Abstract
Development of functional nanomaterials is of great importance and significance for advanced drug delivery and therapy. Nevertheless, exogenous nanomaterials have a great ability to induce undesired immune responses and nano-protein interactions, which may result in toxicity and failure of therapy. Exosomes, a kind of endogenous extracellular vesicle (40-100 nm in diameter), are considered as a new generation of a natural nanoscale delivery system. Exosomes secreted by different types of cells carry different signal molecules (such as RNAs and proteins) and thus have a great potential for targeted drug delivery and therapy. Herein, we provide comprehensive understanding of the properties and applications of exosomes, including their biogenesis, biofunctions, isolation, purification, and drug loading, and typical examples in drug delivery and therapy. Furthermore, their advantages compared to other nanoparticles and potential in tumor immunotherapy are also discussed. STATEMENT OF SIGNIFICANCE: Exosomes, a kind of endogenous extracellular vesicle, have emerged as a novel and attractive endogenous nanomaterial for advanced drug delivery and targeted therapy. Exosomes are secreted by many types of cells and carry some unique signals obtained from their parental cells. Furthermore, the liposome-like structure allows exosomes to load various drugs. Hence, the potential of exosomes in drug delivery, tumor targeted therapy, and immunotherapy has been investigated in recent years. On the basis of their endogenous features and multifunctional properties, exosomes are of great significance and interest for the development of future medicine and pharmaceuticals.
Collapse
|
118
|
Tian G, Sun X, Bai J, Dong J, Zhang B, Gao Z, Wu J. Doxorubicin‑loaded dual‑functional hyaluronic acid nanoparticles: Preparation, characterization and antitumor efficacy in vitro and in vivo. Mol Med Rep 2018; 19:133-142. [PMID: 30483793 PMCID: PMC6297777 DOI: 10.3892/mmr.2018.9687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023] Open
Abstract
A novel GHH copolymer was synthesized using hyaluronic acid modified with glycyrrhetinic acid and L-histidine (His), and doxorubicin-loaded GHH nanoparticles (DOX/GHH) were prepared for liver-targeted drug delivery and pH-responsive drug release. In the present study, GHH nanoparticles were characterized, and their pH-responsive behaviors were evaluated at different pH levels. The antitumor effect of the DOX/GHH nanoparticles was investigated in vitro and in vivo. Results showed that the DOX/GHH nanoparticles were spherical, and the particle sizes ranged from 238.1 to 156.7 nm with an increase in the degree of substitution of His. The GHH nanoparticles were obviously internalized into human hepatoblastoma cells. In vitro cytotoxicity assay results showed that the DOX/GHH nanoparticles exhibited a dose-dependent antitumor effect. Compared with free DOX, the DOX/GHH nanoparticles displayed higher antitumor efficacy. These results indicate that GHH nanoparticles could be a promising nano-delivery carrier of hydrophobic drugs for liver-targeted therapy.
Collapse
Affiliation(s)
- Guixiang Tian
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiue Sun
- Department of Psychology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jinhua Dong
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhiqin Gao
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
119
|
Zhang S, Wang D, Li Y, Li L, Chen H, Xiong Q, Liu Y, Wang Y. pH- and redox-responsive nanoparticles composed of charge-reversible pullulan-based shells and disulfide-containing poly(ß-amino ester) cores for co-delivery of a gene and chemotherapeutic agent. NANOTECHNOLOGY 2018; 29:325101. [PMID: 29761789 DOI: 10.1088/1361-6528/aac4b5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel pH- and redox-responsive nanoparticle system was designed based on a charge-reversible pullulan derivative (CAPL) and disulfide-containing poly(β-amino ester) (ssPBAE) for the co-delivery of a gene and chemotherapeutic agent targeting hepatoma. The end-alkene groups of ssPBAE were reacted with diethylenetriamine to form amino-modified ssPBAE (NH-ssPBAE). Methotrexate (MTX), a chemotherapy agent, was then conjugated to NH-ssPBAE via an amide bond to obtain the polymeric prodrug ssPBAE-MTX. ssPBAE-MTX exhibited a good capability for condensing genes, including plasmid DNA (pDNA) and tetramethyl rhodamine-labeled DNA (TAMRA-DNA), and almost completely condensed pDNA at the weight ratio of 5/1 to form spherical nanocomplexes with a uniform size. In a D,L-dithiothreitol solution, the ssPBAE-MTX/pDNA nanocomplexes showed rapid release of pDNA and MTX, indicating their redox-responsive capability. CAPL, a pullulan derivative containing β-carboxylic amide bond, was efficiently coated on the surfaces of ssPBAE-MTX/pDNA nanocomplexes to form polysaccharide shells, thus realizing co-loading of the gene and chemotherapeutic agent. CAPL/ssPBAE-MTX/pDNA nanoparticles displayed an obvious pH-responsive charge reversal ability due to the rupture of the β-carboxylic amide bond under the weakly acidic condition. In human hepatoma HepG2 cells, CAPL/ssPBAE-MTX/TAMRA-DNA nanoparticles were efficiently internalized via endocytosis and successfully escaped from the endo/lysosomes into the cytoplasm, and CAPL/ssPBAE-MTX/pDNA nanoparticles remarkably inhibited the cell growth. In summary, this nanoparticle system based on CAPL and ssPBAE showed great potential for combined gene/chemotherapy on hepatomas.
Collapse
Affiliation(s)
- Sipei Zhang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); Research Center of Basic Medical Science; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Functionalized extracellular vesicles as advanced therapeutic nanodelivery systems. Eur J Pharm Sci 2018; 121:34-46. [DOI: 10.1016/j.ejps.2018.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/25/2022]
|
121
|
Lu M, Zhao X, Xing H, Xun Z, Yang T, Cai C, Wang D, Ding P. Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. Acta Biomater 2018; 76:1-20. [PMID: 29625253 DOI: 10.1016/j.actbio.2018.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Cell-free (CF) protein synthesis has emerged as a powerful technique platform for efficient protein production in vitro. Liposomes have been widely studied as therapeutic carriers due to their biocompatibility, biodegradability, low toxicity, flexible surface manipulation, easy preparation, and higher cargo encapsulation capability. However, rapid immune clearance, insufficient targeting capacity, and poor cytoplasmic delivery efficiency substantially restrict their clinical application. The incorporation of functional membrane proteins (MPs) or peptides allows the transfer of biological properties to liposomes and imparts them with improved circulation, increased targeting, and efficient intracellular delivery. Liposome-chaperoned CF synthesis enables production of proteoliposomes in one-step reaction, which not only substantially simplifies the production procedure but also keeps protein functionality intact. Building off these observations, proteoliposomes with integrated MPs represent an excellent candidate for therapeutic delivery. In this review, we describe recent advances in CF synthesis with emphasis on detailing key factors for improving CF expression efficiency. Furthermore, we provide insights into strategies for rational design of proteoliposomal nanodelivery systems via CF synthesis. STATEMENT OF SIGNIFICANCE Liposome-chaperoned CF synthesis has emerged as a powerful approach for the design of recombinant proteoliposomes in one-step reaction. The incorporation of bioactive MPs or peptides into liposomes via CF synthesis can facilitate the development of proteoliposomal nanodelivery systems with improved circulation, increased targeting, and enhanced cellular delivery capacity. Moreover, by adapting lessons learned from natural delivery vehicles, novel bio-inspired proteoliposomes with enhanced delivery properties could be produced in CF systems. In this review, we first give an overview of CF synthesis with focus on enhancing protein expression in liposome-chaperoned CF systems. Furthermore, we intend to provide insight into harnessing CF-synthesized proteoliposomes for efficient therapeutic delivery.
Collapse
|
122
|
Meng F, Wang J, Ping Q, Yeo Y. Quantitative Assessment of Nanoparticle Biodistribution by Fluorescence Imaging, Revisited. ACS NANO 2018; 12:6458-6468. [PMID: 29920064 PMCID: PMC6105334 DOI: 10.1021/acsnano.8b02881] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fluorescence-based whole-body imaging is widely used in the evaluation of nanoparticles (NPs) in small animals, often combined with quantitative analysis to indicate their spatiotemporal distribution following systemic administration. An underlying assumption is that the fluorescence label represents NPs and the intensity increases with the amount of NPs and/or the labeling dyes accumulated in the region of interest. We prepare DiR-loaded poly(lactic- co-glycolic acid) (PLGA) NPs with different surface layers (polyethylene glycol with and without folate terminus) and compare the distribution of fluorescence signals in a mouse model of folate-receptor-expressing tumors by near-infrared fluorescence whole-body imaging. Unexpectedly, we observe that fluorescence distribution patterns differ far more dramatically with DiR loading than with the surface ligand, reaching opposite conclusions with the same type of NPs (tumor-specific delivery vs predominant liver accumulation). Analysis of DiR-loaded PLGA NPs reveals that fluorescence quenching, dequenching, and signal saturation, which occur with the increasing dye content and local NP concentration, are responsible for the conflicting interpretations. This study highlights the critical need for validating fluorescence labeling of NPs in the quantitative analysis of whole-body imaging. In light of our observation, we make suggestions for future whole-body fluorescence imaging in the in vivo evaluation of NP behaviors.
Collapse
Affiliation(s)
- Fanfei Meng
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jianping Wang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Qineng Ping
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Corresponding author: Yoon Yeo, Ph.D., Phone: 1.765.496.9608, Fax: 1.765.494.6545,
| |
Collapse
|
123
|
Wang JH, Forterre AV, Zhao J, Frimannsson DO, Delcayre A, Antes TJ, Efron B, Jeffrey SS, Pegram MD, Matin AC. Anti-HER2 scFv-Directed Extracellular Vesicle-Mediated mRNA-Based Gene Delivery Inhibits Growth of HER2-Positive Human Breast Tumor Xenografts by Prodrug Activation. Mol Cancer Ther 2018; 17:1133-1142. [PMID: 29483213 DOI: 10.1158/1535-7163.mct-17-0827] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/29/2017] [Accepted: 02/09/2018] [Indexed: 12/25/2022]
Abstract
This paper deals with specific targeting of the prodrug/enzyme regimen, CNOB/HChrR6, to treat a serious disease, namely HER2+ human breast cancer with minimal off-target toxicity. HChrR6 is an improved bacterial enzyme that converts CNOB into the cytotoxic drug MCHB. Extracellular vesicles (EV) were used for mRNA-based HchrR6 gene delivery: EVs may cause minimal immune rejection, and mRNA may be superior to DNA for gene delivery. To confine HChrR6 generation and CNOB activation to the cancer, the EVHB chimeric protein was constructed. It contains high-affinity anti-HER2 scFv antibody (ML39) and is capable of latching on to EV surface. Cells transfected with EVHB-encoding plasmid generated EVs displaying this protein ("directed EVs"). Transfection of a separate batch of cells with the new plasmid, XPort/HChrR6, generated EVs containing HChrR6 mRNA; incubation with pure EVHB enabled these to target the HER2 receptor, generating "EXO-DEPT" EVs. EXO-DEPT treatment specifically enabled HER2-overexpressing BT474 cells to convert CNOB into MCHB in actinomycin D-independent manner, showing successful and specific delivery of HChrR6 mRNA. EXO-DEPTs-but not undirected EVs-plus CNOB caused near-complete growth arrest of orthotopic BT474 xenografts in vivo, demonstrating for the first time EV-mediated delivery of functional exogenous mRNA to tumors. EXO-DEPTs may be generated from patients' own dendritic cells to evade immune rejection, and without plasmids and their potentially harmful genetic material, raising the prospect of clinical use of this regimen. This approach can be used to treat any disease overexpressing a specific marker. Mol Cancer Ther; 17(5); 1133-42. ©2018 AACR.
Collapse
Affiliation(s)
- Jing-Hung Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | - Alexis V Forterre
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | - Jinjing Zhao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | - Daniel O Frimannsson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | | | | | - Bradley Efron
- Department of Statistics, Stanford University, Stanford, California
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Mark D Pegram
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - A C Matin
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
124
|
Focus on Mesenchymal Stem Cell-Derived Exosomes: Opportunities and Challenges in Cell-Free Therapy. Stem Cells Int 2017; 2017:6305295. [PMID: 29410682 PMCID: PMC5749272 DOI: 10.1155/2017/6305295] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/05/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells have been at the forefront of regenerative medicine for many years. Exosomes, which are nanovesicles involved in intercellular communication and the transportation of genetic material transportation that can be released by mesenchymal stem cells, have been recently reported to play a role in cell-free therapy of many diseases, including myocardial infarction, drug addiction, and status epilepticus. They are also thought to help ameliorate inflammation-induced preterm brain injury, liver injury, and various types of cancer. This review highlights recent advances in the exploration of mesenchymal stem cell-derived exosomes in therapeutic applications. The natural contents, drug delivery potency, modification methods, and drug loading methods of exosomes are also discussed.
Collapse
|
125
|
Parodi A, Molinaro R, Sushnitha M, Evangelopoulos M, Martinez JO, Arrighetti N, Corbo C, Tasciotti E. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials 2017; 147:155-168. [PMID: 28946131 DOI: 10.1016/j.biomaterials.2017.09.020] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022]
Abstract
The engineering of future generations of nanodelivery systems aims at the creation of multifunctional vectors endowed with improved circulation, enhanced targeting and responsiveness to the biological environment. Moving past purely bio-inert systems, researchers have begun to create nanoparticles capable of proactively interacting with the biology of the body. Nature offers a wide-range of sources of inspiration for the synthesis of more effective drug delivery platforms. Because the nano-bio-interface is the key driver of nanoparticle behavior and function, the modification of nanoparticles' surfaces allows the transfer of biological properties to synthetic carriers by imparting them with a biological identity. Modulation of these surface characteristics governs nanoparticle interactions with the biological barriers they encounter. Building off these observations, we provide here an overview of virus- and cell-derived biomimetic delivery systems that combine the intrinsic hallmarks of biological membranes with the delivery capabilities of synthetic carriers. We describe the features and properties of biomimetic delivery systems, recapitulating the distinctive traits and functions of viruses, exosomes, platelets, red and white blood cells. By mimicking these biological entities, we will learn how to more efficiently interact with the human body and refine our ability to negotiate with the biological barriers that impair the therapeutic efficacy of nanoparticles.
Collapse
Affiliation(s)
- Alessandro Parodi
- Department of Pharmacology, University of Illinois, Chicago College of Medicine, Chicago, IL, USA
| | - Roberto Molinaro
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manuela Sushnitha
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | - Jonathan O Martinez
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | - Noemi Arrighetti
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX, USA; Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per Lo Studio e La Cura Dei Tumori, Milan, Italy
| | - Claudia Corbo
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, MA, USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX, USA; Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|