101
|
Ye C, Chi H. A review of recent progress in drug and protein encapsulation: Approaches, applications and challenges. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 83:233-246. [PMID: 29208283 DOI: 10.1016/j.msec.2017.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Many drugs and proteins formulated for treatment of various diseases are not fully utilised due to environmentally problems such as degradation by enzymes or it being hydrophobic. To counter this problem, the drug and protein of interest are encapsulated by synthetic polymers where they are protected from the environment. This allows the molecule to reach its target safely and maximise its function. In this paper, we will discuss about the different techniques of encapsulation that includes emulsion evaporation, self-emulsifying drug delivery system and supercritical fluid. This will be followed by the drugs and proteins that are commonly encapsulated to counter life-threatening diseases such as cancer and diabetes. A novel method using foam was proposed and will be briefly discussed as it can play a huge role in future developments.
Collapse
Affiliation(s)
- Chen Ye
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China.
| | - Hong Chi
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, Shandong, China
| |
Collapse
|
102
|
Highlights in nanocarriers for the treatment against cervical cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:748-759. [PMID: 28866224 DOI: 10.1016/j.msec.2017.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 01/16/2023]
Abstract
Cervical cancer is the second most common malignant tumor in women worldwide and has a high mortality rate, especially when it is associated with human papillomavirus (HPV). In US, an estimated 12,820 cases of invasive cervical cancer and an estimated 4210 deaths from this cancer will occur in 2017. With rare and very aggressive conventional treatments, one sees in the real need of new alternatives of therapy as the delivery of chemotherapeutic agents by nanocarriers using nanotechnology. This review covers different drug delivery systems applied in the treatment of cervical cancer, such as solid lipid nanoparticles (SNLs), liposomes, nanoemulsions and polymeric nanoparticles (PNPs). The main advantages of drug delivery thus improving pharmacological activity, improving solubility, bioavailability to bioavailability reducing toxicity in the target tissue by targeting of ligands, thus facilitating new innovative therapeutic technologies in a too much needed area. Among the main disadvantage is the still high cost of production of these nanocarriers. Therefore, the aim this paper is review the nanotechnology based drug delivery systems in the treatment of cervical cancer.
Collapse
|
103
|
Development of semisolid self-microemulsifying drug delivery systems (SMEDDSs) filled in hard capsules for oral delivery of aciclovir. Int J Pharm 2017; 528:372-380. [PMID: 28619449 DOI: 10.1016/j.ijpharm.2017.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 12/18/2022]
Abstract
The study aimed to develop semisolid self-microemulsifying drug delivery systems (SMEDDSs) as carriers for oral delivery of aciclovir in hard hydroxypropylmethyl cellulose (HPMC) capsules. Six self-dispersing systems (SD1-SD6) were prepared by loading aciclovir into the semisolid formulations consisting of medium chain length triglycerides (lipid), macrogolglycerol hydroxystearate (surfactant), polyglyceryl-3-dioleate (cosurfactant), glycerol (hydrophilic cosolvent), and macrogol 8000 (viscosity modifier). Their characterization was performed in order to identify the semisolid system with rheological behaviour suitable for filling in hard HPMC capsules and fast dispersibility in acidic and alkaline aqueous media with formation of oil-in-water microemulsions. The optimal SMEDDS was loaded with aciclovir at two levels (2% and 33.33%) and morphology and aqueous dispersibility of the obtained systems were examined by applying light microscopy and photon correlation spectroscopy (PCS), respectively. The assessment of diffusivity of aciclovir from the SMEDDSs by using an enhancer cell model, showed that it was increased at a higher drug loading. Differential scanning calorimetry (DSC) analysis indicated that the SMEDDSs were semisolids at temperatures up to 50°C and physically stable and compatible with HPMC capsules for 3 months storage at 25°C and 4°C. The results of in vitro release study revealed that the designed solid dosage form based on the semisolid SMEDDS loaded with the therapeutic dose of 200mg, may control partitioning of the solubilized drug from in situ formed oil-in-water microemulsion carrier into the sorrounding aqueous media, and hence decrease the risk for precipitation of the drug.
Collapse
|
104
|
Dalvadi H, Patel N, Parmar K. Systematic development of design of experiments (DoE) optimised self-microemulsifying drug delivery system of Zotepine. J Microencapsul 2017; 34:308-318. [PMID: 28452252 DOI: 10.1080/02652048.2017.1324920] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of present investigation is to improve dissolution rate of poor soluble drug Zotepine by a self-microemulsifying drug delivery system (SMEDDS). Ternary phase diagram with oil (Oleic acid), surfactant (Tween 80) and co-surfactant (PEG 400) at apex were used to identify the efficient self-microemulsifying region. Box-Behnken design was implemented to study the influence of independent variables. Principal Component Analysis was used for scrutinising critical variables. The liquid SMEDDS were characterised for macroscopic evaluation, % Transmission, emulsification time and in vitro drug release studies. Optimised formulation OL1 was converted in to S-SMEDDS by using Aerosil® 200 as an adsorbent in the ratio of 3:1. The S-SMEDDS was characterised by SEM, DSC, globule size (152.1 nm), zeta-potential (-28.1 mV), % transmission study (98.75%), in vitro release (86.57%) at 30 min. The optimised solid SMEDDS formulation showed faster drug release properties as compared to conventional tablet of Zotepine.
Collapse
Affiliation(s)
- Hitesh Dalvadi
- a Department of Pharmaceutics , ROFEL, Shri G M Bilakhia College of Pharmacy , Gujarat , India
| | - Nikita Patel
- a Department of Pharmaceutics , ROFEL, Shri G M Bilakhia College of Pharmacy , Gujarat , India
| | - Komal Parmar
- a Department of Pharmaceutics , ROFEL, Shri G M Bilakhia College of Pharmacy , Gujarat , India
| |
Collapse
|
105
|
Son GH, Lee BJ, Cho CW. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0320-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
106
|
Nguyen DN, Clasen C, Van den Mooter G. Encapsulating darunavir nanocrystals within Eudragit L100 using coaxial electrospraying. Eur J Pharm Biopharm 2016; 113:50-59. [PMID: 27993734 DOI: 10.1016/j.ejpb.2016.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/07/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
Abstract
Electrospraying is renowned for its simplicity and versatility, and which can effectively produce particles with well-controlled size, size distribution, particle shape, morphology and microstructure at the nano/microscale. In this study, coaxial electrospraying was used to investigate its feasibility for preparing nanoparticles made up of nanocrystals encapsulated within a polymer shell. Firstly, aqueous nanosuspensions of darunavir were prepared by wet media milling. Then the nanosuspension and solutions of an enteric polymer, Eudragit L100, were used as the inner/core liquid and outer/shell liquid in a coaxial electrospraying setup, respectively. As long as a sufficiently high voltage was applied, a stable Taylor cone-jet mode was obtained to produce very fine core-shell structure nanoparticles with high darunavir encapsulation efficiency of approximately 90%. The influence of the starting nanosuspension and the flow rates on the characteristics of the final electrosprayed particles was also evaluated. Using an optimized nanosuspension with reasonable size, size distribution and flow rates, the enteric coating layer reduced the percentage of DRV release in acidic medium in the in vitro dissolution test to ca. 20%. This study indicates that coaxial electrospraying is a potential and unique technique for encapsulating drug nanocrystals within a polymeric shell.
Collapse
Affiliation(s)
- Duong Nhat Nguyen
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, Leuven B-300, Belgium
| | - Christian Clasen
- KU Leuven - University of Leuven, Department of Chemical Engineering, Leuven B-3001, Belgium
| | - Guy Van den Mooter
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, Leuven B-300, Belgium.
| |
Collapse
|
107
|
Ma HQ, Low BS, Chan KL, Khan NAK. Lignans of Phyllanthus niruri Solid Dispersion: A Potential Alternative Gout Therapy. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2017.11.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
108
|
Liu L, Li J, Zhao MH, Xu H, Li LS, Wang SN. Loading of tacrolimus containing lipid based drug delivery systems into mesoporous silica for extended release. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
109
|
Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev 2016; 106:277-319. [PMID: 27320643 DOI: 10.1016/j.addr.2016.06.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Intestinal permeation enhancers (PEs) are one of the most widely tested strategies to improve oral delivery of therapeutic peptides. This article assesses the intestinal permeation enhancement action of over 250 PEs that have been tested in intestinal delivery models. In depth analysis of pre-clinical data is presented for PEs as components of proprietary delivery systems that have progressed to clinical trials. Given the importance of co-presentation of sufficiently high concentrations of PE and peptide at the small intestinal epithelium, there is an emphasis on studies where PEs have been formulated with poorly permeable molecules in solid dosage forms and lipoidal dispersions.
Collapse
|
110
|
Production of a bioactive lipid-based delivery system from ratfish liver oil by enzymatic glycerolysis. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
111
|
Lipid-based oral delivery systems for skin deposition of a potential chemopreventive DIM derivative: characterization and evaluation. Drug Deliv Transl Res 2016; 6:526-39. [PMID: 27405772 DOI: 10.1007/s13346-016-0302-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The objective of this study was to explore the oral route as a viable potential for the skin deposition of a novel diindolylmethane derivative (DIM-D) for chemoprevention activity. Various lipid-based oral delivery systems were optimized and compared for enhancing DIM-D's oral bioavailability and skin deposition. Preformulation studies were performed to evaluate the log P and solubility of DIM-D. Microsomal metabolism, P-glycoprotein efflux, and caco-2 monolayer permeability of DIM-D were determined. Comparative evaluation of the oral absorption and skin deposition of DIM-D-loaded various lipid-based formulations was performed in rats. DIM-D showed pH-dependent solubility and a high log P value. It was not a strong substrate of microsomal degradation and P-glycoprotein. SMEDDs comprised of medium chain triglycerides, monoglycerides, and kolliphor-HS15 (36.70 ± 0.42 nm). SNEDDs comprised of long chain triglycerides, cremophor RH40, labrasol, and TPGS (84.00 ± 14.14 nm). Nanostructured lipid carriers (NLC) consisted of compritol, miglyol, and surfactants (116.50 ± 2.12 nm). The blank formulations all showed >70 % cell viability in caco-2 cells. Differential Scanning Calorimetry confirmed the amorphization of DIM-D within the lipid matrices while Atomic Force Microscopy showed particle size distribution similar to the dynamic light scattering data. DIM-D also showed reduced permeation across caco-2 monolayer that was enhanced (p < 0.05) by SNEDDs in comparison to SMEDDs and NLC. Fabsolute for DIM-D SNEDDs, SMEDDs, and NLC was 0.14, 0.04, and 0.007, respectively. SNEDDs caused 53.90, 11.32, and 15.08-fold more skin deposition of DIM-D than the free drug, SMEDDs, and NLC, respectively, at 2 h following oral administration and shows a viable potential for use in skin cancer chemoprevention. Graphical Abstract ᅟ.
Collapse
|
112
|
Machado AH, Kokubo T, Dujovny G, Jones B, Scialdone C, Bravo R, Kuentz M. A microstructural study of water effects in lipid-based pharmaceutical formulations for liquid filling of capsules. Eur J Pharm Sci 2016; 90:64-75. [DOI: 10.1016/j.ejps.2016.04.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
|
113
|
Feeney OM, Crum MF, McEvoy CL, Trevaskis NL, Williams HD, Pouton CW, Charman WN, Bergström CA, Porter CJ. 50years of oral lipid-based formulations: Provenance, progress and future perspectives. Adv Drug Deliv Rev 2016; 101:167-194. [PMID: 27089810 DOI: 10.1016/j.addr.2016.04.007] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 12/12/2022]
Abstract
Lipid based formulations (LBF) provide well proven opportunities to enhance the oral absorption of drugs and drug candidates that sit close to, or beyond, the boundaries of Lipinski's 'rule-of-five' chemical space. Advantages in permeability, efflux and presystemic metabolism are evident; however, the primary benefit is in increases in dissolution and apparent intestinal solubility for lipophilic, poorly water soluble drugs. This review firstly details the inherent advantages of LBF, their general properties and classification, and provides a brief retrospective assessment of the development of LBF over the past fifty years. More detailed analysis of the ability of LBF to promote intestinal solubilisation, supersaturation and absorption is then provided alongside review of the methods employed to assess formulation performance. Critical review of the ability of simple dispersion and more complex in vitro digestion methods to predict formulation performance subsequently reveals marked differences in the correlative ability of in vitro tests, depending on the properties of the drug involved. Notably, for highly permeable low melting drugs e.g. fenofibrate, LBF appear to provide significant benefit in all cases, and sustained ongoing solubilisation may not be required. In other cases, and particularly for higher melting point drugs such as danazol, where re-dissolution of crystalline precipitate drug is likely to be slow, correlations with ongoing solubilisation and supersaturation are more evident. In spite of their potential benefits, one limitation to broader use of LBF is low drug solubility in the excipients employed to generate formulations. Techniques to increase drug lipophilicity and lipid solubility are therefore explored, and in particular those methods that provide for temporary enhancement including lipophilic ionic liquid and prodrug technologies. The transient nature of these lipophilicity increases enhances lipid solubility and LBF viability, but precludes enduring effects on receptor promiscuity and off target toxicity. Finally, recent efforts to generate solid LBF are briefly described as a means to circumvent the need to encapsulate in soft or hard gelatin capsules, although the latter remain popular with consumers and a proven means of LBF delivery.
Collapse
|
114
|
Development of a solidified self-microemulsifying drug delivery system (S-SMEDDS) for atorvastatin calcium with improved dissolution and bioavailability. Int J Pharm 2016; 506:302-11. [PMID: 27125455 DOI: 10.1016/j.ijpharm.2016.04.059] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/12/2016] [Accepted: 04/22/2016] [Indexed: 11/21/2022]
Abstract
To improve the dissolution and oral bioavailability (BA) of atorvastatin calcium (ATV), we previously introduced an optimized self-microemulsifying drug delivery system (SMEDDS) using Capmul(®) MCM (oil), Tween(®) 20 (surfactant), and tetraglycol (cosurfactant). In this study, various solid carriers were employed to develop a solidified SMEDDS (S-SMEDDS): mannitol (M) and lactose (L) as water-soluble carriers, and Sylysia(®) 350 (S) and Aerosil(®) 200 (A) as water-insoluble carriers. Maximum solidifying capacities (SCmax) of water-insoluble carriers were significantly greater than those of water-soluble carriers were. The resultant powders were free flowing with an angle of repose <40° and Carr's index 5-20%, regardless of the solid carrier types. S-SMEDDS with mannitol (S(M)-SMEDDS) or lactose (S(L)-SMEDDS) had a smaller droplet size and greater dissolution than S-SMEDDS with Sylysia(®) 350 (S(S)-SMEDDS) or Aerosil(®) 200 (S(A)-SMEDDS). Following oral administration of various formulations to rats at a dose equivalent to 25mg/kg of ATV, plasma drug levels were measured by LC-MS/MS. The relative BAs (RBAs) of SMEDDS, S(M)-SMEDDS, and S(S)-SMEDDS were 345%, 216%, and 160%, respectively, compared to that of ATV suspension. Additionally, at a reduced dose of ATV equivalent to 5mg/kg, the RBAs of S(M)-SMEDDS and S(S)-SMEDDS compared to that of SMEDDS were 101% and 65%, respectively. These results suggest that S(M)-SEMDDS offers great potential for the development of solid dosage forms with improved oral absorption of drugs with poor water solubility.
Collapse
|
115
|
Singh A, Ahmad I, Ahmad S, Iqbal Z, Ahmad FJ. A novel monolithic controlled delivery system of resveratrol for enhanced hepatoprotection: nanoformulation development, pharmacokinetics and pharmacodynamics. Drug Dev Ind Pharm 2016; 42:1524-36. [PMID: 26902951 DOI: 10.3109/03639045.2016.1151032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The current investigation aims to present a novel solid lipid-based nanoparticulate system of resveratrol (RV) for the effective treatment of liver cirrhosis. A simplified solvent injection method was employed and the Box-Behnken experimental design was applied for optimization to get a window particle size of 150-200 nm having maximum entrapment efficiency as well as % release. Optimized resveratrol solid lipid nanoparticles (RV-SLNs) (SR-1) of appropriate characteristics (particle size = 191.1 ± 10.44 nm; zeta potential= -13.56 ± 4.14 mV; entrapment efficiency = 75.23 ± 3.85%; maximum % release = 80.53 ± 3.99%) were produced. Differential scanning calorimetry and X-ray diffraction studies were carried out which collectively proved the reduced crystallinity and stability enhancing the effect of the SLNs. Improved drug stability was further established by the appreciable shelf-life of the formulation from International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH)-recommended accelerated stability studies. In vivo studies revealed nearly five-fold increase in the bioavailability of SR-1 (AUC0→∞=3411 ± 170.34 µg/ml/h) as compared to RV suspension (AUC0→∞=653.5 ± 30.10 µg/ml/h). Pharmacodynamic data exhibited a significant decrease in the serum biomarker enzymes (serum glutamic oxalo-acetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT) and alkaline phosphatase) after oral administration of RV-SLNs as compared to control and marketed (SILYBON(®)) formulations against paracetamol-induced liver cirrhosis. The effect of the treatment was confirmed by the histopathology of the liver microtome sections. Finally, reverse transcriptase-polymerase chain reaction studies were conducted on isolated liver mRNA from SR-1 treated animals and significant down-regulation of tissue inhibitor of metalloproteinases-1 and nuclear factor-kB was witnessed.
Collapse
Affiliation(s)
- Anjali Singh
- a Nanoformulation Research Lab , Jamia Hamdard , New Delhi , India ;,b Department of Pharmaceutical Medicine, Faculty of Pharmacy , Jamia Hamdard , New Delhi , India
| | - Iqbal Ahmad
- a Nanoformulation Research Lab , Jamia Hamdard , New Delhi , India
| | - Sayeed Ahmad
- c Bioactive Natural Product Lab , Jamia Hamdard , New Delhi , India
| | - Zeenat Iqbal
- a Nanoformulation Research Lab , Jamia Hamdard , New Delhi , India
| | - Farhan J Ahmad
- a Nanoformulation Research Lab , Jamia Hamdard , New Delhi , India
| |
Collapse
|
116
|
Zhao K, Yuan Y, Wang H, Li P, Bao Z, Li Y. Preparation and evaluation of valsartan by a novel semi-solid self-microemulsifying delivery system using Gelucire 44/14. Drug Dev Ind Pharm 2016; 42:1545-52. [PMID: 26857923 DOI: 10.3109/03639045.2016.1151034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of the present study was to develop a novel semi-solid self-microemulsifying drug delivery system (SMEDDS) using Gelucire(®) 44/14 as oil with strong solid character to improve the oral bioavailability of poorly soluble drug valsartan. The solubility of valsartan in various excipients was determined, the pseudo-ternary phase diagram was constructed in order to screen the optimal excipients, and DSC analysis was performed to evaluate the melting point of SMEDDS. The optimal drug-loaded SMEDDS formulation was consisted of 30% Gelucire(®) 44/14 (oil), 40% Solutol(®) HS 15 (surfactant), and 30% Transcutol(®) P (cosurfactant) (w/w) with 80 mg valsartan/g excipients. The average droplet sizes of the optimized blank and drug-loaded SMEDDS formulations were 26.20 ± 1.43 and 33.34 ± 2.15 nm, and the melting points of them were 35.6 and 36.8 °C, respectively. The in vitro dissolution rate of optimal semi-solid SMEDDS was increased compared with commercial capsules, resulting in the 2.72-fold and 2.97-fold enhancement of Cmax and AUC0-t after oral administration in rats, respectively. These results indicated that the novel semi-solid SMEDDS formulation could potentially improve the oral bioavailability of valsartan, and the semi-solid SMEDDS was a desirable system than the traditional liquid SMEDDS because it was convenient for preparation, storage and transportation due to semi-solid state at room temperature and melted state at body temperature.
Collapse
Affiliation(s)
- Kun Zhao
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , P.R. China
| | - Yue Yuan
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , P.R. China
| | - Hui Wang
- b Department of Internal Medicine , Cardiovascular Research Center, University of Michigan , Ann Arbor , MI , USA
| | - Panpan Li
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , P.R. China
| | - Zhihong Bao
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , P.R. China
| | - Yue Li
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , P.R. China
| |
Collapse
|
117
|
Pham K, Li D, Guo S, Penzak S, Dong X. Development and in vivo evaluation of child-friendly lopinavir/ritonavir pediatric granules utilizing novel in situ self-assembly nanoparticles. J Control Release 2016; 226:88-97. [PMID: 26849919 DOI: 10.1016/j.jconrel.2016.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 11/18/2022]
Abstract
The aim of this study was to develop a nanotechnology to formulate a fixed-dose combination of poorly water-soluble drugs in a children-friendly, flexible solid dosage form. For diseases like HIV, pediatric patients are taking multiple drugs for effective treatments. Fixed-dose combinations could reduce pill burdens and costs as well as improving patient adherence. However, development of fixed-dose combinations of poorly water-soluble drugs for pediatric formulations is very challenging. We discovered a novel nanotechnology that produced in situ self-assembly nanoparticles (ISNPs) when the ISNP granules were introduced to water. In this study, antiretroviral drug granules, including lopinavir (LPV) ISNP granules and a fixed-dose combination of LPV/ritonavir (RTV) ISNP granules, were prepared using the ISNP nanotechnology, which spontaneously produced drug-loaded ISNPs in contact with water. Drug-loaded ISNPs had particle size less than 158nm with mono-dispersed distribution, over 95% entrapment efficiency for both LPV and RTV and stability over 8h in simulated physiological conditions. Drug-loaded ISNP granules with about 16% of LPV and 4% of RTV were palatable and stable at room temperature over 6months. Furthermore, LPV/RTV ISNP granules displayed a 2.56-fold increase in bioavailability and significantly increased LPV concentrations in tested tissues, especially in HIV sanctuary sites, as compared to the commercial LPV/RTV tablet (Kaletra®) in rats. Overall, the results demonstrated that the novel ISNP nanotechnology is a promising platform to manufacture palatable, "heat" stable, and flexible pediatric granules for fixed-dose combinations that can be used as sachets and sprinkles. To the best of our knowledge, this is the first report on this kind of novel nanotechnology for pediatric fixed-dose combinations of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Kevin Pham
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Diana Li
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Shujie Guo
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Scott Penzak
- Department of Pharmacotherapy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xiaowei Dong
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
118
|
Preparation of fenofibrate dry emulsion and dry suspension using octenyl succinic anhydride starch as emulsifying agent and solid carrier. Int J Pharm 2016; 498:347-54. [DOI: 10.1016/j.ijpharm.2015.12.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022]
|
119
|
Adler C, Schönenberger M, Teleki A, Leuenberger B, Kuentz M. Flow-through cross-polarized imaging as a new tool to overcome the analytical sensitivity challenges of a low-dose crystalline compound in a lipid matrix. J Pharm Biomed Anal 2015; 115:20-30. [PMID: 26142560 DOI: 10.1016/j.jpba.2015.06.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 11/18/2022]
Abstract
Assessing the physical state of a low-dose active compound in a solid lipid or polymer matrix is analytically challenging, especially if the matrix exhibits some crystallinity. The aim of this study was first to compare the ability of current methods to detect the presence of a crystalline model compound in lipid matrices. Subsequently, a new technique was introduced and evaluated because of sensitivity issues that were encountered with current methods. The new technique is a flow-through version of cross-polarized imaging in transmission mode. The tested lipid-based solid dispersions (SDs) consisted of β-carotene (BC) as a model compound, and of Gelucire 50/13 or Geleol mono- and diglycerides as lipid matrices. The solid dispersions were analyzed by (hyper) differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and microscopic techniques including atomic force microscopy (AFM). DSC and XRPD could analyze crystalline BC at concentrations as low as 3% (w/w) in the formulations. However, with microscopic techniques crystalline particles were detected at significantly lower concentrations of even 0.5% (w/w) BC. A flow-through cross-polarized imaging technique was introduced that combines the advantage of analyzing a larger sample size with high sensitivity of microscopy. Crystals were detected easily in samples containing even less than 0.2% (w/w) BC. Moreover, the new tool enabled approximation of the kinetic BC solubility in the crystalline lipid matrices. As a conclusion, the flow-through cross-polarized imaging technique has the potential to become an indispensable tool for characterizing low-dose crystalline compounds in a lipid or polymer matrix of solid dispersions.
Collapse
Affiliation(s)
- Camille Adler
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharmaceutical Technology, Gründenstrasse 40, 4132 Muttenz, Switzerland; University of Basel, Institute of Pharmaceutical Technology, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Monica Schönenberger
- Swiss Nanoscience Institute, Nanotech Service Lab, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Alexandra Teleki
- DSM Nutritional Products Ltd., Research Center Formulation & Application, P.O. Box 2676, 4002 Basel, Switzerland
| | - Bruno Leuenberger
- DSM Nutritional Products Ltd., Research Center Formulation & Application, P.O. Box 2676, 4002 Basel, Switzerland
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharmaceutical Technology, Gründenstrasse 40, 4132 Muttenz, Switzerland.
| |
Collapse
|
120
|
Pereira Camelo SR, Franceschi S, Perez E, Girod Fullana S, Ré MI. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug. Drug Dev Ind Pharm 2015; 42:985-97. [DOI: 10.3109/03639045.2015.1103746] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Sophie Franceschi
- Laboratoire Des I.M.R.C.P., Université Paul Sabatier, Toulouse, France, and
| | - Emile Perez
- Laboratoire Des I.M.R.C.P., Université Paul Sabatier, Toulouse, France, and
| | - Sophie Girod Fullana
- Faculty of Sciences Pharmaceutiques, CIRIMAT INPT-CNRS-UPS, Université Toulouse, Toulouse, France
| | - Maria Inês Ré
- Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, Université De Toulouse, Albi CT Cedex, France,
| |
Collapse
|
121
|
Ucisik MH, Sleytr UB, Schuster B. Emulsomes meet S-layer proteins: an emerging targeted drug delivery system. Curr Pharm Biotechnol 2015; 16:392-405. [PMID: 25697368 PMCID: PMC4460288 DOI: 10.2174/138920101604150218112656] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/17/2014] [Accepted: 12/12/2014] [Indexed: 11/22/2022]
Abstract
Here, the use of emulsomes as a drug delivery system is reviewed and compared with other similar lipidic nanoformulations. In particular, we look at surface modification of emulsomes using S-layer proteins, which are self-assembling proteins that cover the surface of many prokaryotic organisms. It has been shown that covering emulsomes with a crystalline S-layer lattice can protect cells from oxidative stress and membrane damage. In the future, the capability to recrystallize S-layer fusion proteins on lipidic nanoformulations may allow the presentation of binding functions or homing protein domains to achieve highly specific targeted delivery of drug-loaded emulsomes. Besides the discussion on several designs and advantages of composite emulsomes, the success of emulsomes for the delivery of drugs to fight against viral and fungal infections, dermal therapy, cancer, and autoimmunity is summarized. Further research might lead to smart, biocompatible emulsomes, which are able to protect and reduce the side effects caused by the drug, but at the same time are equipped with specific targeting molecules to find the desired site of action.
Collapse
Affiliation(s)
| | | | - Bernhard Schuster
- Department of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Ekinciler Cad. No.19, 34810 Beykoz, Istanbul, Turkey.
| |
Collapse
|
122
|
Jannin V, Chevrier S, Michenaud M, Dumont C, Belotti S, Chavant Y, Demarne F. Development of self emulsifying lipid formulations of BCS class II drugs with low to medium lipophilicity. Int J Pharm 2015; 495:385-392. [DOI: 10.1016/j.ijpharm.2015.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022]
|
123
|
Čerpnjak K, Pobirk AZ, Vrečer F, Gašperlin M. Tablets and minitablets prepared from spray-dried SMEDDS containing naproxen. Int J Pharm 2015; 495:336-346. [DOI: 10.1016/j.ijpharm.2015.08.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 11/28/2022]
|
124
|
Fujicalin®-based solid supersaturable self-emulsifying drug delivery system (S-SEDDS) of tacrolimus for enhanced dissolution rate and oral absorption. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0220-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
125
|
Evaluation of Surfactant Effect on Self Micro Emulsifying Drug Delivery System (SMEDDS) of Lercanidipine Hydrochloride: Formulation and Evaluation. J Pharm Innov 2015. [DOI: 10.1007/s12247-015-9233-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
126
|
Lacidipine self-nanoemulsifying drug delivery system for the enhancement of oral bioavailability. Arch Pharm Res 2015; 39:481-491. [DOI: 10.1007/s12272-015-0657-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
|
127
|
Dening TJ, Rao S, Thomas N, Prestidge CA. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems. AAPS JOURNAL 2015; 18:23-40. [PMID: 26354801 DOI: 10.1208/s12248-015-9824-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/23/2015] [Indexed: 12/20/2022]
Abstract
Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.
Collapse
Affiliation(s)
- Tahnee J Dening
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Shasha Rao
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Nicky Thomas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
128
|
Kakkar S, Karuppayil SM, Raut JS, Giansanti F, Papucci L, Schiavone N, Kaur IP. Lipid-polyethylene glycol based nano-ocular formulation of ketoconazole. Int J Pharm 2015; 495:276-289. [PMID: 26325312 DOI: 10.1016/j.ijpharm.2015.08.088] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/13/2022]
Abstract
Ophthalmic mycoses including corneal keratitis or endophthalmitis affects 6-million persons/year and can cause blindness. Its management requires antifungals to penetrate the ocular tissue. Oral use of Ketoconazole (KTZ), the first broad-spectrum antifungal to be marketed, is now restricted to life-threatening infections due to severe adverse effects and drug-interactions. Local use of KTZ loaded nanocarrier system can address its toxicity, poor solubility, photodegradation, permeation and bioavailability issues. Solid lipid nanoparticles (SLNs) comprising Compritol(®) 888 ATO and PEG 600 matrix, were presently prepared using hot high-pressure homogenization. Employing extensive characterization: TEM, NMR, DSC, XRD and FTIR, it is proposed that SLNs comprise of a polyethylene glycol (PEG) core into which KTZ is dissolved. PEG endows the lipid matrix with amorphousness and imperfections; rigidity; and, stability to aggregation, on storage and autoclaving. PEG is a simple, cost-effective and safe polymer with superior solubilizing and surfactant-supporting properties. Without its inclusion KTZ could not be loaded into SLNs. It ensured high incorporation efficiency (70%) of KTZ; small size (126 nm); and, better permeation into the eye. Pharmacokinetic studies indicated 2.5 and 1.6 fold higher bioavailability (AUC) in aqueous and vitreous humor, respectively. Biocompatibility and in vitro (both in corneal and retinal cell lines) and in vivo (in rabbits) ocular safety is the other highlight of developed formulation.
Collapse
Affiliation(s)
- Shilpa Kakkar
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160014, India
| | | | - Jayant S Raut
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160014, India
| | - Fabrizio Giansanti
- Department of Translational Medicine and Surgery, Eye Clinic, University of Florence, Viale Morgagni 85, 50134 Florence, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences, Section of Experimental Pathology and Oncology, University of Florence, Viale Morgagni, 50, 50134 Florence, Italy
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences, Section of Experimental Pathology and Oncology, University of Florence, Viale Morgagni, 50, 50134 Florence, Italy
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
129
|
Joyce P, Whitby CP, Prestidge CA. Bioactive Hybrid Particles from Poly(D,L-lactide-co-glycolide) Nanoparticle Stabilized Lipid Droplets. ACS APPLIED MATERIALS & INTERFACES 2015; 7:17460-70. [PMID: 26181279 DOI: 10.1021/acsami.5b05068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biodegradable and bioactive hybrid particles composed of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles and medium-chain triglycerides were prepared by spray drying lipid-in-water emulsions stabilized by PLGA nanoparticles, to form PLGA-lipid hybrid (PLH) microparticles approximately 5 μm in mean diameter. The nanoparticle stabilizer was varied and mannitol was also incorporated during the preparation to investigate the effect of stabilizer charge and cryoprotectant content on the particle microstructure. An in vitro lipolysis model was used to demonstrate the particles' bioactivity by manipulating the digestion kinetics of encapsulated lipid by pancreatic lipase in simulated gastrointestinal fluid. Lipid digestion kinetics were enhanced in PLH and PLGA-lipid-mannitol hybrid (PLMH) microparticles for both stabilizers, compared to a coarse emulsion, in biorelevant media. An optimal digestion rate was observed for the negatively charged PLMH system, evidenced by a 2-fold increase in the pseudo-first-order rate constant compared to a coarse emulsion. Improved microparticle redispersion, probed by dual dye confocal fluorescence microscopy, increased the available surface area of lipid for lipase adsorption, enhancing digestion kinetics. Thereby, lipase action was controlled in hybrid microparticles by altering the surface charge and carbohydrate content. Our results demonstrate that bioactive microparticles composed of versatile and biodegradable polymeric particles and oil droplets have great potential for use in smart food and nutrient delivery, as well as safer and more efficacious oral delivery of drugs and drug combinations.
Collapse
Affiliation(s)
- Paul Joyce
- Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Catherine P Whitby
- Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Clive A Prestidge
- Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
130
|
Gurram AK, Deshpande PB, Kar SS, Nayak UY, Udupa N, Reddy MS. Role of Components in the Formation of Self-microemulsifying Drug Delivery Systems. Indian J Pharm Sci 2015; 77:249-57. [PMID: 26180269 PMCID: PMC4502138 DOI: 10.4103/0250-474x.159596] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 11/23/2014] [Accepted: 04/17/2015] [Indexed: 11/04/2022] Open
Abstract
Pharmaceutical research is focused in designing novel drug delivery systems to improve the bioavailability of poorly water soluble drugs. Self-microemulsifying drug delivery systems, one among the lipid-based dosage forms were proven to be promising in improving the oral bioavailability of such drugs by enhancing solubility, permeability and avoiding first-pass metabolism via enhanced lymphatic transport. Further, they have been successful in avoiding both inter and intra individual variations as well as the dose disproportionality. Aqueous insoluble drugs, in general, show greater solubility in lipid based excipients, and hence they are formulated as lipid based drug delivery systems. The extent of solubility of a hydrophobic drug in lipid excipients i.e. oil, surfactant and co-surfactant (components of self-microemulsifying drug delivery systems) greatly affects the drug loading and in producing stable self-microemulsifying drug delivery systems. The present review highlighted the influence of physicochemical factors and structural features of the hydrophobic drug on its solubility in lipid excipients and an attempt was made to explore the role of each component of self-microemulsifying drug delivery systems in the formation of stable microemulsion upon dilution.
Collapse
Affiliation(s)
- A K Gurram
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576 104, India
| | - P B Deshpande
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576 104, India
| | - S S Kar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576 104, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576 104, India
| | - N Udupa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576 104, India
| | - M S Reddy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576 104, India
| |
Collapse
|
131
|
Effects of absorbent materials on a self-emulsifying drug delivery system for a poorly water soluble drug. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0201-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
132
|
Čerpnjak K, Zvonar A, Vrečer F, Gašperlin M. Development of a solid self-microemulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen. Drug Dev Ind Pharm 2015; 41:1548-57. [PMID: 25308746 DOI: 10.3109/03639045.2014.971031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT Comparative evaluation of liquid and solid self-microemulsifying drug delivery systems (SMEDDS) as promising approaches for solubility enhancement. OBJECTIVE The aim of this work was to develop, characterize, and evaluate a solid SMEDDS prepared via spray-drying of a liquid SMEDDS based on Gelucire® 44/14 to improve the solubility and dissolution rate of naproxen. MATERIAL AND METHODS Various oils and co-surfactants in combination with Gelucire® 44/14 were evaluated during excipient selection study, solubility testing, and construction of (pseudo)ternary diagrams. The selected system was further evaluated for naproxen solubility, self-microemulsification ability, and in vitro dissolution of naproxen. In addition, its transformation into a solid SMEDDS by spray-drying using maltodextrin as a solid carrier was performed. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to evaluate the physical characteristics of the solid SMEDDS obtained. RESULTS The selected formulation of SMEDDS was comprised of Miglyol 812®, Peceol™, Gelucire® 44/14, and Solutol® HS 15. The liquid and solid SMEDDS formed a microemulsion after dilution with comparable average droplet size and exhibited uniform droplet size distribution. In the solid SMEDDS, liquid SMEDDS was adsorbed onto the surface of maltodextrin and formed smooth granular particles with the encapsulated drug predominantly in a dissolved state and partially in an amorphous state. Overall, incorporation of naproxen in SMEDDS, either liquid or solid, resulted in improved solubility and dissolution rate compared to pure naproxen. CONCLUSION This study indicates that a liquid and solid SMEDDS is a strategy for solubility enhancement in the future development of orally delivered dosage forms.
Collapse
|
133
|
Abstract
Novel solid lipid drug delivery systems such as solid lipid nanoparticles (SLN) have attracted wide and increasing attention in recent years. It has been sought as an interesting alternative drug delivery carrier system for bioactives for a variety of delivery routes. They show major advantages such as sustained release, improved bioavailability, improved drug incorporation and very wide application. This paper presents a discussion on the production protocols of SLN, lyophilization of SLN and delivery of SLN across the blood–brain barrier. Special attention was also paid to entrapment and release of drugs from SLN and strategies to enhance drug entrapment in SLN for sustained release. Analytical methods for the characterization of SLN were also discussed. Various routes of administration of SLN were presented as well as a consideration of the ethical issues and future prospects in the production and use of SLN for sustained release of bioactives.
Collapse
|
134
|
Yeom DW, Song YS, Kim SR, Lee SG, Kang MH, Lee S, Choi YW. Development and optimization of a self-microemulsifying drug delivery system for atorvastatin calcium by using D-optimal mixture design. Int J Nanomedicine 2015; 10:3865-77. [PMID: 26089663 PMCID: PMC4462857 DOI: 10.2147/ijn.s83520] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, we developed and optimized a self-microemulsifying drug delivery system (SMEDDS) formulation for improving the dissolution and oral absorption of atorvastatin calcium (ATV), a poorly water-soluble drug. Solubility and emulsification tests were performed to select a suitable combination of oil, surfactant, and cosurfactant. A D-optimal mixture design was used to optimize the concentration of components used in the SMEDDS formulation for achieving excellent physicochemical characteristics, such as small droplet size and high dissolution. The optimized ATV-loaded SMEDDS formulation containing 7.16% Capmul MCM (oil), 48.25% Tween 20 (surfactant), and 44.59% Tetraglycol (cosurfactant) significantly enhanced the dissolution rate of ATV in different types of medium, including simulated intestinal fluid, simulated gastric fluid, and distilled water, compared with ATV suspension. Good agreement was observed between predicted and experimental values for mean droplet size and percentage of the drug released in 15 minutes. Further, pharmacokinetic studies in rats showed that the optimized SMEDDS formulation considerably enhanced the oral absorption of ATV, with 3.4-fold and 4.3-fold increases in the area under the concentration-time curve and time taken to reach peak plasma concentration, respectively, when compared with the ATV suspension. Thus, we successfully developed an optimized ATV-loaded SMEDDS formulation by using the D-optimal mixture design, that could potentially be used for improving the oral absorption of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Dong Woo Yeom
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Ye Seul Song
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sang Gon Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Min Hyung Kang
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
135
|
Čerpnjak K, Zvonar A, Vrečer F, Gašperlin M. Characterization of naproxen-loaded solid SMEDDSs prepared by spray drying: The effect of the polysaccharide carrier and naproxen concentration. Int J Pharm 2015; 485:215-28. [DOI: 10.1016/j.ijpharm.2015.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/01/2022]
|
136
|
Weerapol Y, Limmatvapirat S, Jansakul C, Takeuchi H, Sriamornsak P. Enhanced dissolution and oral bioavailability of nifedipine by spontaneous emulsifying powders: Effect of solid carriers and dietary state. Eur J Pharm Biopharm 2015; 91:25-34. [DOI: 10.1016/j.ejpb.2015.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
|
137
|
Zhao T, Maniglio D, Chen J, Chen B, Motta A, Migliaresi C. Design and optimization of self-nanoemulsifying formulations for lipophilic drugs. NANOTECHNOLOGY 2015; 26:125102. [PMID: 25744555 DOI: 10.1088/0957-4484/26/12/125102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The purpose of the current study was to develop and optimize novel self-nanoemulsifying drug delivery systems (SNEDDS) with a high proportion of essential oil as carriers for lipophilic drugs. Solubility and droplet size as a function of the composition were investigated, and a ternary phase diagram was constructed in order to identify the self-emulsification regions. The optimized SNEDDS formulation consisted of lemon essential oil (oil), Cremophor RH40 (surfactant) and Transcutol HP (co-surfactant) in the ratio 50:30:20 (v/v). Ibuprofen was chosen as the model drug. The droplet size, ζ-potential and stability of the drug-loaded optimized formulations were determined. The stability of SNEDDS was proved after triple freezing/thawing cycles and storage at 4 °C and 25 °C for 3 months. In vitro drug release studies of optimized SNEDDS revealed a significant increase of the drug release and release rate in comparison to the Ibuprofen suspension (80% versus approximately 40% in 2 h). The results indicated that these SNEDDS formulations could be used to improve the bioavailability of lipophilic drugs.
Collapse
Affiliation(s)
- Tianjing Zhao
- Department of Industrial Engineering and Biotech Research Centre, University of Trento, Italy
| | | | | | | | | | | |
Collapse
|
138
|
Becker K, Salar-Behzadi S, Zimmer A. Solvent-free melting techniques for the preparation of lipid-based solid oral formulations. Pharm Res 2015; 32:1519-45. [PMID: 25788447 PMCID: PMC4381087 DOI: 10.1007/s11095-015-1661-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/19/2015] [Indexed: 01/08/2023]
Abstract
Lipid excipients are applied for numerous purposes such as taste masking, controlled release, improvement of swallowability and moisture protection. Several melting techniques have evolved in the last decades. Common examples are melt coating, melt granulation and melt extrusion. The required equipment ranges from ordinary glass beakers for lab scale up to large machines such as fluid bed coaters, spray dryers or extruders. This allows for upscaling to pilot or production scale. Solvent free melt processing provides a cost-effective, time-saving and eco-friendly method for the food and pharmaceutical industries. This review intends to give a critical overview of the published literature on experiences, formulations and challenges and to show possibilities for future developments in this promising field. Moreover, it should serve as a guide for selecting the best excipients and manufacturing techniques for the development of a product with specific properties using solvent free melt processing.
Collapse
Affiliation(s)
- Karin Becker
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University Graz, Member of BioTechMed, Universitätplatz 1, 8010 Graz, Austria
| | | | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University Graz, Member of BioTechMed, Universitätplatz 1, 8010 Graz, Austria
| |
Collapse
|
139
|
Enhancement of solubility and therapeutic potential of poorly soluble lovastatin by SMEDDS formulation adsorbed on directly compressed spray dried magnesium aluminometasilicate liquid loadable tablets: A study in diet induced hyperlipidemic rabbits. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
140
|
Jannin V, Rosiaux Y, Doucet J. Exploring the possible relationship between the drug release of Compritol®-containing tablets and its polymorph forms using micro X-ray diffraction. J Control Release 2015; 197:158-64. [DOI: 10.1016/j.jconrel.2014.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/20/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022]
|
141
|
Zhang D, Templeton AC, Marinaro W, Rumondor ACF, Kesisoglou F, Duersch B, Thompson K, Stellabott J, Kress MH. Leveraging Solid State Form and Physiochemical Properties for Early Clinical Formulation Efforts: Opportunities and Challenges During Telcagepant Liquid Capsule Development. DISCOVERING AND DEVELOPING MOLECULES WITH OPTIMAL DRUG-LIKE PROPERTIES 2015. [DOI: 10.1007/978-1-4939-1399-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
142
|
|
143
|
Self-Microemulsifying Drug Delivery Systems: An Attractive Strategy for Enhanced Therapeutic Profile. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:964051. [PMID: 27382619 PMCID: PMC4897095 DOI: 10.1155/2014/964051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022]
Abstract
Ease of administration and painless approach made oral route the most preferred. Poor oral bioavailability is pronounced with the majority of recent active ingredients because of dissolution rate limited absorption. Failure to attain intended therapeutic effect of the poor water soluble drugs by this route led to development of novel drug delivery systems which will fulfill therapeutic needs with minimum dose. Although many formulation approaches like solid dispersions, complexation, pH modification, and cocrystals exist, lipid based delivery systems finding increased appliance with the apparent increase in absorption of drug. Among lipid based formulations, self-microemulsifying formulations (droplet size < 100 nm) are evident to improve the oral bioavailability of hydrophobic drugs primarily due to their efficiency in facilitating solubilization and in presenting the hydrophobic drug in solubilized form whereby dissolution process can be circumvented. Various components that are used to formulate these dosage forms like surfactants and lipids contribute to the overall improvement in oral bioavailability via promoting the lymphatic transport; thereby hepatic first pass metabolism can be surmounted. The present paper gives exhaustive information on the formulation design and characterization of SMEDDS along with the probable mechanisms by which the bioavailability can be improved with SMEDDS.
Collapse
|
144
|
Otun SO, Meehan E, Qi S, Craig DQM. The use of quasi-isothermal modulated temperature differential scanning calorimetry for the characterization of slow crystallization processes in lipid-based solid self-emulsifying systems. Pharm Res 2014; 32:1316-24. [PMID: 25330742 PMCID: PMC4356888 DOI: 10.1007/s11095-014-1535-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/26/2014] [Indexed: 12/24/2022]
Abstract
Purpose Slow or incomplete crystallization may be a significant manufacturing issue for solid lipid-based dosage forms, yet little information is available on this phenomenon. In this investigation we suggest a novel means by which slow solidification may be monitored in Gelucire 44/14 using quasi-isothermal modulated temperature DSC (QiMTDSC). Methods Conventional linear heating and cooling DSC methods were employed, along with hot stage microscopy (HSM), for basic thermal profiling of Gelucire 44/14. QiMTDSC experiments were performed on cooling from the melt, using a range of incremental decreases in temperature and isothermal measurement periods. Results DSC and HSM highlighted the main (primary) crystallization transition; solid fat content analysis and kinetic analysis were used to profile the solidification process. The heat capacity profile from QiMTDSC indicated that after an initial energetic primary crystallisation, the lipid underwent a slower period of crystallization which continued to manifest at much lower temperatures than indicated by standard DSC. Conclusions We present evidence that Gelucire 44/14 undergoes an initial crystallization followed by a secondary, slower process. QIMTDSC appears to be a promising tool in the investigation of this secondary crystallization process.
Collapse
Affiliation(s)
- Sarah O Otun
- School of Pharmacy, University of East Anglia, Earlham Road, Norwich, Norfolk, NR4 7TJ, UK
| | | | | | | |
Collapse
|
145
|
Milović M, Simović S, Lošić D, Dashevskiy A, Ibrić S. Solid self-emulsifying phospholipid suspension (SSEPS) with diatom as a drug carrier. Eur J Pharm Sci 2014; 63:226-32. [DOI: 10.1016/j.ejps.2014.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 06/11/2014] [Accepted: 07/19/2014] [Indexed: 11/26/2022]
|
146
|
Pivette P, Faivre V, Brubach JB, Daste G, Ollivon M, Lesieur S. Polymorphism of glyceryl behenates: From the individual compounds to the pharmaceutical excipient. Chem Phys Lipids 2014; 183:191-203. [DOI: 10.1016/j.chemphyslip.2014.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022]
|
147
|
Tsai MJ, Kuo YM, Tsai YH. Transient ischemic attack induced by melted solid lipid microparticles protects rat brains from permanent focal ischemia. Neuroscience 2014; 275:136-45. [DOI: 10.1016/j.neuroscience.2014.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/26/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
148
|
Zhai H, Jones DS, McCoy CP, Madi AM, Tian Y, Andrews GP. Gastroretentive extended-release floating granules prepared using a novel fluidized hot melt granulation (FHMG) technique. Mol Pharm 2014; 11:3471-83. [PMID: 25105340 DOI: 10.1021/mp500242q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The objective of this work was to investigate the feasibility of using a novel granulation technique, namely, fluidized hot melt granulation (FHMG), to prepare gastroretentive extended-release floating granules. In this study we have utilized FHMG, a solvent free process in which granulation is achieved with the aid of low melting point materials, using Compritol 888 ATO and Gelucire 50/13 as meltable binders, in place of conventional liquid binders. The physicochemical properties, morphology, floating properties, and drug release of the manufactured granules were investigated. Granules prepared by this method were spherical in shape and showed good flowability. The floating granules exhibited sustained release exceeding 10 h. Granule buoyancy (floating time and strength) and drug release properties were significantly influenced by formulation variables such as excipient type and concentration, and the physical characteristics (particle size, hydrophilicity) of the excipients. Drug release rate was increased by increasing the concentration of hydroxypropyl cellulose (HPC) and Gelucire 50/13, or by decreasing the particle size of HPC. Floating strength was improved through the incorporation of sodium bicarbonate and citric acid. Furthermore, floating strength was influenced by the concentration of HPC within the formulation. Granules prepared in this way show good physical characteristics, floating ability, and drug release properties when placed in simulated gastric fluid. Moreover, the drug release and floating properties can be controlled by modification of the ratio or physical characteristics of the excipients used in the formulation.
Collapse
Affiliation(s)
- H Zhai
- The Drug Delivery and Biomaterials Group, School of Pharmacy, Medical Biology Centre, Queen's University Belfast , 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K
| | | | | | | | | | | |
Collapse
|
149
|
Williams HD, Speybroeck MV, Augustijns P, Porter CJ. Lipid-Based Formulations Solidified Via Adsorption onto the Mesoporous Carrier Neusilin® US2: Effect of Drug Type and Formulation Composition on In Vitro Pharmaceutical Performance. J Pharm Sci 2014; 103:1734-46. [DOI: 10.1002/jps.23970] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/18/2014] [Accepted: 03/25/2013] [Indexed: 11/09/2022]
|
150
|
Jannin V, Rodier JD, Musakhanian J. Polyoxylglycerides and glycerides: Effects of manufacturing parameters on API stability, excipient functionality and processing. Int J Pharm 2014; 466:109-21. [DOI: 10.1016/j.ijpharm.2014.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/13/2014] [Accepted: 03/02/2014] [Indexed: 01/13/2023]
|