101
|
Xu Q, Chen Y, Luo Y, Zheng J, Lin Z, Xiong B, Wang L. Proposal of an automated tumor-stromal ratio assessment algorithm and a nomogram for prognosis in early-stage invasive breast cancer. Cancer Med 2022; 12:131-145. [PMID: 35689454 PMCID: PMC9844605 DOI: 10.1002/cam4.4928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The tumor-stromal ratio (TSR) has been verified to be a prognostic factor in many solid tumors. In most studies, it was manually assessed on routinely stained H&E slides. This study aimed to assess the TSR using image analysis algorithms developed by the Qupath software, and integrate the TSR into a nomogram for prediction of the survival in invasive breast cancer (BC) patients. METHODS A modified TSR assessment algorithm based on the recognition of tumor and stroma tissues was developed using the Qupath software. The TSR of 234 invasive BC specimens in H&E-stained tissue microarrays (TMAs) were assessed with the algorithm and categorized as stroma-low or stroma-high. The consistency of TSR estimation between Qupath prediction and pathologist annotation was analyzed. Univariable and multivariable analyses were applied to select potential risk factors and a nomogram for predicting survival in invasive BC patients was constructed and validated. An extra TMA containing 110 specimens was obtained to validate the conclusion as an independent cohort. RESULTS In the discovery cohort, stroma-low and stroma-high were identified in 43.6% and 56.4% cases, respectively. Good concordance was observed between the pathologist annotated and Qupath predicted TSR. The Kaplan-Meier curve showed that stroma-high patients were associated with worse 5-DFS compared to stroma-low patients (p = 0.007). Multivariable analysis identified age, T stage, N status, histological grade, ER status, HER-2 gene, and TSR as potential risk predictors, which were included in the nomogram. The nomogram was well calibrated and showed a favorable predictive value for the recurrence of BC. Kaplan-Meier curves showed that the nomogram had a better risk stratification capability than the TNM staging system. In the external validation of the nomogram, the results were further validated. CONCLUSIONS Based on H&E-stained TMAs, this study successfully developed image analysis algorithms for TSR assessment and constructed a nomogram for predicting survival in invasive BC.
Collapse
Affiliation(s)
- Qian Xu
- Department of Radiation and Medical OncologyZhongnan Hospital of Wuhan UniversityWuhanChina,Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina,Hubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhanChina
| | - Yuan‐Yuan Chen
- Department of Radiation and Medical OncologyZhongnan Hospital of Wuhan UniversityWuhanChina,Hubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhanChina
| | - Ying‐Hao Luo
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina,Hubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhanChina
| | - Jin‐Sen Zheng
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina,Hubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhanChina
| | - Zai‐Huan Lin
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina,Hubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhanChina
| | - Bin Xiong
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina,Hubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhanChina
| | - Lin‐Wei Wang
- Department of Radiation and Medical OncologyZhongnan Hospital of Wuhan UniversityWuhanChina,Hubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhanChina
| |
Collapse
|
102
|
Li Y, Ganesan K, Chen J. Role of Biological Mediators of Tumor-Associated Macrophages in Breast Cancer Progression. Curr Med Chem 2022; 29:5420-5440. [PMID: 35619312 DOI: 10.2174/0929867329666220520121711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer (BRCA) has become the most common cancer worldwide. The tumor microenvironment (TME) in the breast exerts a crucial role in promoting BRCA initiation, progression, and metastasis. Tumor-associated macrophages (TAMs) are the primary component of tumor-infiltrating immune cells through biological mediators which convert TME into malignant tumors. Combinations of these biological mediators can promote tumor growth, metastasis, angiogenesis, immune suppression, and limit the anti-tumor activity of conventional chemotherapy and radiotherapy. OBJECTIVES The present study aimed to highlight the functions of several biological mediators in the breast which generate TME into malignant tumors. Furthermore, this review offers a rationale for TAM-targeted therapy as a novel treatment strategy for BRCA Results: this review emphasizes TAM-associated biological mediators of TME viz., cancer-associated fibroblasts, endothelial cells, adipocytes, tumor-derived exosomes, extracellular matrix, and other immune cells, which facilitates TME into malignant tumors. Evidence suggests that the increased infiltration of TAMs and elevated expression of TAM-related genes are associated with a poor prognosis of BRCA. Based on these findings, TAM-targeted therapeutic strategies, including inhibitors of CSF-1/CSF-1R, CCL2/CCR2, CCL5-CCR5, bisphosphonate, nanoparticle, and exosomal-targeted delivery have been developed, and are currently being employed in intervention trials. CONCLUSION This review concludes the roles of biological mediators of TME interact with TAMs in BRCA that provide a rationale for TAM-targeted therapy as a novel treatment approach for BRCA.
Collapse
Affiliation(s)
- Yan Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
103
|
Fatherree JP, Guarin JR, McGinn RA, Naber SP, Oudin MJ. Chemotherapy-Induced Collagen IV Drives Cancer Cell Motility through Activation of Src and Focal Adhesion Kinase. Cancer Res 2022; 82:2031-2044. [PMID: 35260882 PMCID: PMC9381104 DOI: 10.1158/0008-5472.can-21-1823] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/15/2021] [Accepted: 03/04/2022] [Indexed: 01/07/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and deadly subtype of breast cancer, accounting for 30,000 cases annually in the United States. While there are several clinical trials ongoing to identify new agents to treat TNBC, the majority of patients with TNBC are treated with anthracycline- or taxane-based chemotherapies in the neoadjuvant setting, followed by surgical resection and adjuvant chemotherapy. While many patients respond well to this approach, as many as 25% will suffer local or metastatic recurrence within 5 years. Understanding the mechanisms that drive recurrence after chemotherapy treatment is critical to improving survival for patients with TNBC. It is well established that the extracellular matrix (ECM), which provides structure and support to tissues, is a major driver of tumor growth, local invasion, and dissemination of cancer cells to distant metastatic sites. In the present study, we show that decellularized ECM (dECM) obtained from chemotherapy-treated mice increases motility of treatment-naïve breast cancer cells compared with vehicle-treated dECM. Tandem-mass-tag proteomics revealed that anthracycline- and taxane-based chemotherapies induce drug-specific changes in tumor ECM composition. The basement membrane protein collagen IV was significantly upregulated in the ECM of chemotherapy-treated mice and patients treated with neoadjuvant chemotherapy. Collagen IV drove invasion via activation of Src and focal adhesion kinase signaling downstream of integrin α1 and α2, and inhibition of collagen IV-driven signaling decreased motility in chemotherapy-treated dECM. These studies provide a novel mechanism by which chemotherapy may induce metastasis via its effects on ECM composition. SIGNIFICANCE Cytotoxic chemotherapy induces significant changes in the composition of tumor ECM, inducing a more invasive and aggressive phenotype in residual tumor cells following chemotherapy.
Collapse
Affiliation(s)
- Jackson P. Fatherree
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts
| | - Justinne R. Guarin
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts
| | - Rachel A. McGinn
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts
| | - Stephen P. Naber
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts.,Corresponding Author: Madeleine J. Oudin, Science & Engineering Complex, 200 College Avenue, Medford, MA 02155. Phone: 617-627-2580; E-mail:
| |
Collapse
|
104
|
A Novel Risk Score Model Based on Eleven Extracellular Matrix-Related Genes for Predicting Overall Survival of Glioma Patients. JOURNAL OF ONCOLOGY 2022; 2022:4966820. [PMID: 35528238 PMCID: PMC9076298 DOI: 10.1155/2022/4966820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Gliomas are the most common lethal primary brain tumors with variable survival outcomes for patients. The extracellular matrix (ECM) is linked with clinical prognosis of glioma patients, but it is not commonly used as a clinical indicator. Herein, we investigated changes in ECM-related genes (ECMRGs) via analyzing the transcriptional data of 938 gliomas from TCGA and CGGA datasets. Based on least absolute shrinkage and selection operator (LASSO) Cox regression analysis, a 11-ECMRG signature that is strongly linked with overall survival (OS) in glioma patients was identified. This signature was characterized by high-risk and low-risk score patterns. We found that the patients in the high-risk group are significantly linked with malignant molecular features and worse outcomes. Univariate and multivariate Cox regression analyses suggested that the signature is an independent indicator for glioma prognosis. The prediction accuracy of the signature was verified through time-dependent receiver operating characteristic (ROC) curves and calibration plots. Further bioinformatics analyses implied that the ECMRG signature is strongly associated with the activation of multiple oncogenic and metabolic pathways and immunosuppressive tumor microenvironment in gliomas. In addition, we confirmed that the high-risk score is an indicator for a therapy-resistant phenotype. In addition to bioinformatics analyses, we functionally verified the oncogenic role of bone morphogenetic protein 1 (BMP1) in gliomas in vitro.
Collapse
|
105
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022; 42:401-434. [PMID: 35481621 PMCID: PMC9118050 DOI: 10.1002/cac2.12291] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer-associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF-related studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhaoqing Li
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Bin Zheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Xixi Lin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yujie Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Cong Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Lini Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Jichun Zhou
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Linbo Wang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| |
Collapse
|
106
|
Hongu T, Pein M, Insua-Rodríguez J, Gutjahr E, Mattavelli G, Meier J, Decker K, Descot A, Bozza M, Harbottle R, Trumpp A, Sinn HP, Riedel A, Oskarsson T. Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs. NATURE CANCER 2022; 3:486-504. [PMID: 35469015 PMCID: PMC9046090 DOI: 10.1038/s43018-022-00353-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Disseminated cancer cells frequently lodge near vasculature in secondary organs. However, our understanding of the cellular crosstalk invoked at perivascular sites is still rudimentary. Here, we identify intercellular machinery governing formation of a pro-metastatic vascular niche during breast cancer colonization in the lung. We show that specific secreted factors, induced in metastasis-associated endothelial cells (ECs), promote metastasis in mice by enhancing stem cell properties and the viability of cancer cells. Perivascular macrophages, activated via tenascin C (TNC) stimulation of Toll-like receptor 4 (TLR4), were shown to be crucial in niche activation by secreting nitric oxide (NO) and tumor necrosis factor (TNF) to induce EC-mediated production of niche components. Notably, this mechanism was independent of vascular endothelial growth factor (VEGF), a key regulator of EC behavior and angiogenesis. However, targeting both macrophage-mediated vascular niche activation and VEGF-regulated angiogenesis resulted in added potency to curb lung metastasis in mice. Together, our findings provide mechanistic insights into the formation of vascular niches in metastasis.
Collapse
Affiliation(s)
- Tsunaki Hongu
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Maren Pein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Jacob Insua-Rodríguez
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ewgenija Gutjahr
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Greta Mattavelli
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Jasmin Meier
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Kristin Decker
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Arnaud Descot
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Bozza
- DNA Vector Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Richard Harbottle
- DNA Vector Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Hans-Peter Sinn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Angela Riedel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Thordur Oskarsson
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany.
- German Cancer Consortium, Heidelberg, Germany.
- Department of Molecular Oncology and Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
107
|
Medulloblastoma: Immune microenvironment and targeted nano-therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
108
|
Lepucki A, Orlińska K, Mielczarek-Palacz A, Kabut J, Olczyk P, Komosińska-Vassev K. The Role of Extracellular Matrix Proteins in Breast Cancer. J Clin Med 2022; 11:jcm11051250. [PMID: 35268340 PMCID: PMC8911242 DOI: 10.3390/jcm11051250] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix is a structure composed of many molecules, including fibrillar (types I, II, III, V, XI, XXIV, XXVII) and non-fibrillar collagens (mainly basement membrane collagens: types IV, VIII, X), non-collagenous glycoproteins (elastin, laminin, fibronectin, thrombospondin, tenascin, osteopontin, osteonectin, entactin, periostin) embedded in a gel of negatively charged water-retaining glycosaminoglycans (GAGs) such as non-sulfated hyaluronic acid (HA) and sulfated GAGs which are linked to a core protein to form proteoglycans (PGs). This highly dynamic molecular network provides critical biochemical and biomechanical cues that mediate the cell–cell and cell–matrix interactions, influence cell growth, migration and differentiation and serve as a reservoir of cytokines and growth factors’ action. The breakdown of normal ECM and its replacement with tumor ECM modulate the tumor microenvironment (TME) composition and is an essential part of tumorigenesis and metastasis, acting as key driver for malignant progression. Abnormal ECM also deregulate behavior of stromal cells as well as facilitating tumor-associated angiogenesis and inflammation. Thus, the tumor matrix modulates each of the classically defined hallmarks of cancer promoting the growth, survival and invasion of the cancer. Moreover, various ECM-derived components modulate the immune response affecting T cells, tumor-associated macrophages (TAM), dendritic cells and cancer-associated fibroblasts (CAF). This review article considers the role that extracellular matrix play in breast cancer. Determining the detailed connections between the ECM and cellular processes has helped to identify novel disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Arkadiusz Lepucki
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Kinga Orlińska
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Jacek Kabut
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
- Correspondence:
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
109
|
Wu F, Zhang Y, Chen X, Wang Y, Peng H, Zhang Z, Yang Y, Wang Q. Bioinformatics analysis of key genes and potential mechanism in cadmium-induced breast cancer progression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11883-11892. [PMID: 34558042 DOI: 10.1007/s11356-021-16542-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) may be associated with breast cancer progression, but the detailed molecular mechanism has not been fully elucidated. In this study, one public dataset (GSE136595) was used to identify differentially expressed genes (DEGs) in Cd-treated MCF-7 breast cancer cells. We determined a total of 2077 DEGs, and Ingenuity Pathway Analysis (IPA) software showed that 246 of them were related to tumor progression. Pathway analysis of these DEGs indicated that the HIF1α signaling and the epithelial-mesenchymal transition (EMT) pathway regulated by growth factors might be activated. Moreover, twist family bHLH transcription factor 1 (TWIST1), lysine demethylase 3A (KDM3A), Kruppel-like factor 4 (KLF4), nuclear protein 1 (NUPR1), neurogenin 3 (NEUROG3), and HNF1 homeobox B (HNF1B) might be the key transcription factors. And the result of protein-protein interaction (PPI) analysis showed that the hub genes in these 246 DEGs were tumor protein p53 (TP53), polo-like kinase 1 (PLK1), sirtuin 1 (SIRT1), protein tyrosine phosphatase non-receptor type 11 (PTPN11), caspase 8 (CASP8), cyclin-dependent kinase 6 (CDK6), calmodulin 3 (CALM3), KRAS proto-oncogene (KRAS), extra spindle pole bodies like 1 (ESPL1), and marker of proliferation Ki-67 (MKI67). Further analysis indicated that TWIST1, NUPR1, KRAS, and PTPN11 were related to the prognostic of breast cancer based on the Cancer Genome Atlas (TCGA) and they were validated to be upregulated in the Cd-treated MCF-7 cells. Our results suggested that the HIF1α signaling and the EMT pathway regulated by growth factors might be participant in the Cd-induced breast cancer progression and TWIST1, NUPR1, KRAS, and PTPN11 might be potential key genes.
Collapse
Affiliation(s)
- Fei Wu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yangchun Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xu Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuqing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Honghao Peng
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhengbao Zhang
- Department of Quality Management, Guangdong Provincial Center for Disease Prevention and Control, Guangzhou, China
| | - Ying Yang
- Department of Quality Management, Guangdong Provincial Center for Disease Prevention and Control, Guangzhou, China.
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
110
|
Qi L, Knifley T, Chen M, O'Connor KL. Integrin α6β4 requires plectin and vimentin for adhesion complex distribution and invasive growth. J Cell Sci 2022; 135:273711. [PMID: 34897465 PMCID: PMC8917354 DOI: 10.1242/jcs.258471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 12/01/2021] [Indexed: 01/30/2023] Open
Abstract
Integrin α6β4 binds plectin to associate with vimentin; however, the biological function remains unclear. Here, we utilized various integrin β4 mutants and CRISPR-Cas9 editing to investigate this association. Upon laminin binding, integrin α6β4 distinctly distributed peripherally as well as centrally, proximal to the nucleus. Upon fibronectin addition, integrin α6β4 was centrally recruited to large focal adhesions (FAs) and enhanced Fak (also known as PTK2) phosphorylation. Integrin β4 plectin-binding mutants or genetic deletion of plectin inhibited β4 recruitment to FAs and integrin α6β4-enhanced cell spreading, migration and three-dimensional invasive growth. Loss of the β4 signaling domain (but retaining plectin binding) blocked migration and invasiveness but not cell spreading, recruitment to FAs or colony growth. Immunostaining revealed that integrin α6β4 redistributed vimentin perinuclearly, where it colocalized with plectin and FAs. Depletion of vimentin completely blocked integrin β4-enhanced invasive growth, Fak phosphorylation and proliferation in three dimensions but not two dimensions. In summary, we demonstrate the essential roles of plectin and vimentin in promoting an invasive phenotype downstream of integrin α6β4. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lei Qi
- Markey Cancer Center, University of Kentucky, Lexington 40506-0509, USA,Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40506-0509, USA
| | - Teresa Knifley
- Markey Cancer Center, University of Kentucky, Lexington 40506-0509, USA,Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40506-0509, USA
| | - Min Chen
- Markey Cancer Center, University of Kentucky, Lexington 40506-0509, USA,Toxicology and Cancer Biology, University of Kentucky, Lexington 40506-0509, USA
| | - Kathleen L. O'Connor
- Markey Cancer Center, University of Kentucky, Lexington 40506-0509, USA,Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40506-0509, USA,Author for correspondence ()
| |
Collapse
|
111
|
C/EBPβ isoform-specific regulation of migration and invasion in triple-negative breast cancer cells. NPJ Breast Cancer 2022; 8:11. [PMID: 35042889 PMCID: PMC8766495 DOI: 10.1038/s41523-021-00372-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
The transcription factor C/EBPβ is a master regulator of mammary gland development and tissue remodelling during lactation. The CEBPB-mRNA is translated into three distinct protein isoforms named C/EBPβ-LAP1, -LAP2 and -LIP that are functionally different. The smaller isoform LIP lacks the N-terminal transactivation domains and is considered to act as an inhibitor of the transactivating LAP1/2 isoforms by competitive binding for the same DNA recognition sequences. Aberrantly high expression of LIP is associated with mammary epithelial proliferation and is found in grade III, estrogen receptor (ER) and progesterone (PR) receptor-negative human breast cancer. Here, we show that reverting the high LIP/LAP ratios in triple-negative breast cancer (TNBC) cell lines into low LIP/LAP ratios by overexpression of LAP reduces migration and matrix invasion of these TNBC cells. In addition, in untransformed MCF10A human mammary epithelial cells overexpression of LIP stimulates migration. Knockout of CEBPB in TNBC cells where LIP expression prevails, resulted in strongly reduced migration that was accompanied by a downregulation of genes involved in cell migration, extracellular matrix production and cytoskeletal remodelling, many of which are epithelial to mesenchymal transition (EMT) marker genes. Together, this study suggests that the LIP/LAP ratio is involved in regulating breast cancer cell migration and invasion. This study together with studies from others shows that understanding the functions the C/EBPβ-isoforms in breast cancer development may reveal new avenues of treatment.
Collapse
|
112
|
Saby C, Maquoi E, Saltel F, Morjani H. Collagen and Discoidin Domain Receptor 1 Partnership: A Multifaceted Role in the Regulation of Breast Carcinoma Cell Phenotype. Front Cell Dev Biol 2022; 9:808625. [PMID: 35004699 PMCID: PMC8727774 DOI: 10.3389/fcell.2021.808625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Type I collagen, the major components of breast interstitial stroma, is able to regulate breast carcinoma cell behavior. Discoidin domain receptor 1 (DDR1) is a type I collagen receptor playing a key role in this process. In fact, collagen/DDR1 axis is able to trigger the downregulation of cell proliferation and the activation of BIK-mediated apoptosis pathway. The aim of this review is to discuss the role of two important factors that regulate these processes. The first factor is the level of DDR1 expression. DDR1 is highly expressed in epithelial-like breast carcinoma cells, but poorly in basal-like ones. Moreover, DDR1 undergoes cleavage by MT1-MMP, which is highly expressed in basal-like breast carcinoma cells. The second factor is type I collagen remodeling since DDR1 activation depends on its fibrillar organization. Collagen remodeling is involved in the regulation of cell proliferation and apoptosis through age- and proteolysis-related modifications.
Collapse
Affiliation(s)
- Charles Saby
- Unité BioSpecT, EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Erik Maquoi
- Laboratory of Tumour and Developmental Biology, Groupe Interdisciplinaire de Génoprotéomique Appliqué (GIGA), Unit of Cancer, University of Liège, Liège, Belgium
| | - Frédéric Saltel
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology, Bordeaux, France
| | - Hamid Morjani
- Unité BioSpecT, EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
113
|
Barrón-Gallardo CA, Garcia-Chagollán M, Morán-Mendoza AJ, Delgadillo-Cristerna R, Martínez-Silva MG, Aguilar-Lemarroy A, Jave-Suárez LF. Transcriptomic Analysis of Breast Cancer Patients Sensitive and Resistant to Chemotherapy: Looking for Overall Survival and Drug Resistance Biomarkers. Technol Cancer Res Treat 2022; 21:15330338211068965. [PMID: 34981997 PMCID: PMC8733364 DOI: 10.1177/15330338211068965] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Worldwide breast cancer ranks first in mortality and incidence rates in women over 20 years old. Rather than one disease, breast cancer is a heterogeneous group of diseases that express distinct molecular profiles. Neoadjuvant chemotherapy is an important therapeutic strategy for breast cancer patients independently of their molecular subtype, with the drawback of resistance development. In addition, chemotherapy has adverse effects that combined with resistance could contribute to lower overall survival. Although great efforts have been made to find diagnostic and prognostic biomarkers for breast cancer and for response to targeted and immune therapy for this pathology, little has been explored regarding biomarkers of response to anthracyclines and taxanes based neoadjuvant chemotherapy. This work aimed to evaluate the molecular profile of patients who received neoadjuvant chemotherapy to identify differentially expressed genes (DEGs) that could be used as biomarkers of chemotherapy response and overall survival. Breast cancer patients who were candidates for neoadjuvant chemotherapy were enrolled in this study. After treatment and according to their pathological response, they were assigned as sensitive or resistant. To evaluate DEGs, Gene Ontology, Kyoto Encyclopedia Gene and Genome (KEGG), and protein–protein interactions, RNA-seq information from all patients was obtained by next-generation sequencing. A total of 1985 DEGs were found, and KEGG analysis indicated a great number of DEGs in metabolic pathways, pathways in cancer, cytokine–cytokine receptor interactions, and neuroactive ligand-receptor interactions. A selection of 73 DEGs was used further for an analysis of overall survival using the METABRIC study and the ductal carcinoma dataset of The Cancer Genome Atlas (TCGA) database. Nine DEGs correlated with overall survival, of which the subexpression of C1QTNF3, CTF1, OLFML3, PLA2R1, PODN, KRT15, HLA-A, and the overexpression of TUBB and TCP1 were found in resistant patients and related to patients with lower overall survival.
Collapse
Affiliation(s)
- Carlos A Barrón-Gallardo
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Mariel Garcia-Chagollán
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | | | | | - Luis F Jave-Suárez
- 37767Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| |
Collapse
|
114
|
Kim SJ, Khadka D, Seo JH. Interplay between Solid Tumors and Tumor Microenvironment. Front Immunol 2022; 13:882718. [PMID: 35707536 PMCID: PMC9189309 DOI: 10.3389/fimmu.2022.882718] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
Over the past few decades, basic studies aimed at curing patients with cancer have been constantly evolving. A myriad of mechanistic studies on physiological changes and related factors in tumor growth and metastasis have been reported. Recently, several studies have been considerate to how tumors adapt to unfavorable environments, such as glucose deprivation, oxidative stress, hypoxic conditions, and immune responses. Tumors attempt to adapt to unfavorable environments with genetic or non-genetic changes, the alteration of metabolic signals, or the reconfiguration of their environment through migration to other organs. One of the distinct features in solid tumors is heterogeneity because their environments vary due to the characteristics of colony growth. For this reason, researchers are paying attention to the communication between growing tumors and neighboring environments, including stromal cells, immune cells, fibroblasts, and secreted molecules, such as proteins and RNAs. During cancer survival and progression, tumor cells undergo phenotype and molecular changes collectively referred to as cellular plasticity, which result from microenvironment signals, genetics and epigenetic alterations thereby contributing to tumor heterogeneity and therapy response. In this review, we herein discuss the adaptation process of tumors to adverse environments via communication with neighboring cells for overcoming unfavorable growth conditions. Understanding the physiology of these tumors and their communication with the tumor environment can help to develop promising tumor treatment strategies.
Collapse
Affiliation(s)
- Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, and Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, South Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, South Korea
| | - Dipendra Khadka
- NADIANBIO Ltd., Wonkwang University, Business Incubation Center R201-1, Iksan, South Korea
| | - Jae Ho Seo
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, South Korea
- Sarcopenia Total Solution Center, Wonkwang University School of Medicine, Iksan, South Korea
- *Correspondence: Jae Ho Seo,
| |
Collapse
|
115
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
116
|
Jiang P, Chen Y, Liu B. Prognostic Efficacy of Tumor-Stroma Ratio in Women With Breast Cancer: A Meta-Analysis of Cohort Studies. Front Oncol 2021; 11:731409. [PMID: 34976792 PMCID: PMC8716503 DOI: 10.3389/fonc.2021.731409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/23/2021] [Indexed: 01/07/2023] Open
Abstract
Background Tumor-stroma ratio (TSR) has been suggested as an emerging prognostic predictor in women with breast cancer. However, previous studies evaluating the association between TSR and survival in women with breast cancer showed inconsistent results. We performed a meta-analysis to systematically evaluate the possible prognostic role of TSR in breast cancer. Methods Relevant cohort studies were obtained via search of PubMed, Embase, and Web of Science databases. A random-effects model, which incorporated the potential heterogeneity, was used to pool the results. Results Twelve cohort studies with 6175 patients were included. Nine of the 12 studies used 50% as the cutoff to divide the patients into those with stroma-rich (low TSR) and stroma-poor (high TSR) tumors. Pooled results showed that compared women with stroma-poor tumor, those with stroma-rich tumor were associated with worse survival outcomes (disease-free survival [DFS]: hazard ratio [HR] = 1.56, 95% confidence interval [CI]: 1.32 to 1.85, P < 0.001; overall survival [OS]: HR = 1.67, 95% CI: 1.46 to 1.91, P < 0.001; and cancer-specific survival [CSS]: HR = 1.75, 95% CI: 1.40 to 2.20, P < 0.001). Analysis limited to women with triple-negative breast cancer (TNBC) showed consistent results (DFS: HR: 2.07, 95% CI: 1.59 to 2.71, P < 0.001; OS: HR: 2.04, 95% CI: 1.52 to 2.73, P < 0.001; and CSS: HR: 2.40, 95% CI: 1.52 to 3.78, P < 0.001). Conclusions Current evidence from retrospective studies supports that tumor TSR is a prognostic predictor or poor survival in women with breast cancer.
Collapse
|
117
|
Gao H, Tian Q, Zhu L, Feng J, Zhou Y, Yang J. 3D Extracellular Matrix Regulates the Activity of T Cells and Cancer Associated Fibroblasts in Breast Cancer. Front Oncol 2021; 11:764204. [PMID: 34956886 PMCID: PMC8699235 DOI: 10.3389/fonc.2021.764204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Breast cancer progression has been gradually recognized as a bidirectional interaction between cancer cells and tumor microenvironment including stroma cells, immune cells, and the dynamically altered ECM. However, there still lacks direct experimental evidences about how ECM properties modulate the activities of stroma and immune cells. METHOD The transcriptomic data and corresponding clinical information of breast cancer pawere obtained from TCGA. Patients were divided into ECM-high, ECM-median and ECM-low groups based on ssGSEA scores of C-ECM genes. The prognostic value of ECM was confirmed by univariate/multivariate Cox regression and survival analyses. GO and KEGG analyses were performed between ECM-high and -low groups. Then associations between ECM characteristics and clinical stages were verified by Masson's trichrome and Sirius red/Fast Green staining of clinical breast cancer tissues. To evaluate the effects of ECM on CAF induction and T cell activation, the MRC-5, NIH/3T-3, primary T cells and Jurkat T cells were encapsulated in 3D collagen with different densities and organizations, and the expression levels of CAF biomarkers and secretion levels of IL-2 were assessed. RESULTS ECM scores showed broad variation across paracancerous and cancer samples as well as breast cancer molecular subtypes, and patients with different ECM groups showed distinct prognosis. Immunological activity and ECM associated biology processes were identified by GO and KEGG analyses across ECM-high and -low groups. According to MCP-counter algorithm, the infiltration of T cells was significantly lower in the ECM-high group, while CAF abundance was significantly higher. It is furtherly confirmed by clinical samples that collagen density and organization were associate with breast cancer progression. Finally, in vitro 3D-cultured fibroblasts and T cells validated that the density and organization of collagen showed significant effects on CAF induction and T cell activation. CONCLUSION Our study revealed a new mechanism of T cell immunosuppression and CAF induction, which could be of central importance for the breast cancer invasion and may constitute novel therapeutic targets to improve breast cancer outcomes.
Collapse
Affiliation(s)
- Huan Gao
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qi Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lizhe Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jinteng Feng
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jin Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
118
|
Zhu R, Lang T, Yin Q, Li Y. Nano drug delivery systems improve metastatic breast cancer therapy. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:244-274. [PMID: 37724299 PMCID: PMC10388745 DOI: 10.1515/mr-2021-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Despite continual progress in the technologies and regimens for cancer therapy, the treatment outcome of fatal metastatic breast cancer is far from satisfactory. Encouragingly, nanotechnology has emerged as a valuable tool to optimize drug delivery process in cancer therapy via preventing the cargos from degradation, improving the tumor-targeting efficiency, enhancing therapeutic agents' retention in specific sites, and controlling drug release. In the last decade, several mechanisms of suppressing tumor metastasis by functional nano drug delivery systems (NDDSs) have been revealed and a guidance for the rational design of anti-metastasis NDDSs is summarized, which consist of three aspects: optimization of physiochemical properties, tumor microenvironment remodeling, and biomimetic strategies. A series of medicinal functional biomaterials and anti-metastatic breast cancer NDDSs constructed by our team are introduced in this review. It is hoped that better anti-metastasis strategies can be inspired and applied in clinic.
Collapse
Affiliation(s)
- Runqi Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong Province, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong Province, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Bohai rim Advanced Research Institute for Drug Discovery, Yantai, Shandong Province, China
- School of Pharmacy, Yantai University, Yantai, Shandong Province, China
| |
Collapse
|
119
|
Gil-Redondo JC, Weber A, Zbiral B, Vivanco MDM, Toca-Herrera JL. Substrate stiffness modulates the viscoelastic properties of MCF-7 cells. J Mech Behav Biomed Mater 2021; 125:104979. [PMID: 34826769 DOI: 10.1016/j.jmbbm.2021.104979] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/27/2021] [Accepted: 11/12/2021] [Indexed: 01/01/2023]
Abstract
Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells probe the stiffness of the substrate by anchoring and pulling to their surroundings, transmitting force to the extracellular matrix and other cells, and respond to the resistance they sense, mainly through changes in their cytoskeleton. Cancer and other diseases alter stiffness of tissues, and the response of cancer cells to this stiffness can also be affected. In the present study we show that MCF-7 breast cancer cells seeded on polyacrylamide gels have the ability to detect the stiffness of the substrate and alter their mechanical properties in response. MCF-7 cells plated on soft substrates display lower stiffness and viscosity when compared to those seeded on stiffer gels or glass. These differences can be associated with differences in the morphology and cytoskeleton organisation, since cells seeded on soft substrates have a round morphology, while cells seeded on stiffer substrates acquire a flat and spread morphology with formation of actin filaments, similar to that observed when seeded on glass. These findings show that MCF-7 cells can detect the stiffness of the surrounding microenvironment and thus, modify their mechanical properties.
Collapse
Affiliation(s)
- Juan Carlos Gil-Redondo
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria.
| | - Andreas Weber
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria.
| | - Barbara Zbiral
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria.
| | - Maria dM Vivanco
- Cancer Heterogeneity Lab, CIC BioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48160, Derio, Spain.
| | - José L Toca-Herrera
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
120
|
Wang H, Yu T, Mao L. Placental-Cadherin, a biomarker for local immune status and poor prognosis among patients with tongue squamous cell carcinoma. Eur Arch Otorhinolaryngol 2021; 279:3597-3609. [PMID: 34825969 DOI: 10.1007/s00405-021-07181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The prognostic and clinicopathological value of placental-Cadherin (CDH3) in multiple cancers is controversial. The diagnostic significance and functional mechanism of CDH3 in tongue squamous cell carcinoma (TSCC) have not been thoroughly investigated. This study aims to clarify the potential of CDH3 as biomarker for TSCC. METHODS Here, meta-analysis, bioinformatics, along wet-lab techniques were employed to evaluate the diagnostic, as well as the prognostic value of CDH3 in diverse types of cancers, especially TSCC. Meta-analysis was used to determine the influence of CDH3 on prognostic and clinicopathological features in numerous cancers. Molecular biology function was used to investigate the role of CDH3 in TSCC cells. The relationship of CDH3 with tumor-infiltrating immune cells (TIICs) in TSCC was assessed using CIBERSORT. Moreover, gene set enrichment analysis (GSEA) was done based on TCGA. Besides, the hub genes and associated cascades were uncovered based on gene co-expression with CDH3. RESULTS CDH3 upregulation correlated with worse overall survival and disease-free survival in various cancers. CDH3 was validated as an independent risk factor for HNSC and was linked to the onset of tumors, tumor stage, and infiltration depth. CDH3 silencing inhibited cell growth and induced apoptosis of the CAL-27 cell line. CDH3 expression level correlated with infiltration by macrophages, T cells, T cell regulatory cells (Tregs), and plasma cells in TSCC. GSEA revealed that CDH3 influences multiple cancer-associated cascades. Besides, CBX3, CCHCR1, along NFYC were identified as the core hub genes for CDH3. CONCLUSION We identified CDH3 as a pan-cancer gene with potential prognostic and diagnostic significance in various cancers, particularly in TSCC, where it is tumorigenic.
Collapse
Affiliation(s)
- Haixia Wang
- Harbin Medical University Dental Hospital, 141 Iman Street, Nangang District, 150081, Harbin, People's Republic of China
| | - Tianliang Yu
- Harbin Medical University Dental Hospital, 141 Iman Street, Nangang District, 150081, Harbin, People's Republic of China
| | - Limin Mao
- Harbin Medical University Dental Hospital, 141 Iman Street, Nangang District, 150081, Harbin, People's Republic of China.
| |
Collapse
|
121
|
Dong X, Chen X, Lu D, Diao D, Liu X, Mai S, Feng S, Xiong G. LncRNA miR205HG hinders HNRNPA0 translation: anti-oncogenic effects in esophageal carcinoma. Mol Oncol 2021; 16:795-812. [PMID: 34821009 PMCID: PMC8807358 DOI: 10.1002/1878-0261.13142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Esophageal carcinoma (ESCA) affects 4 450 000 people and causes approximately 400 000 deaths annually worldwide, making it the sixth most lethal and eighth most common cancer. Patients with ESCA are often diagnosed at the later stages in which cancer cell metastasis is the main factor contributing to the low 5‐year survival rate (< 20%) of this disease. Long noncoding RNAs (lncRNAs) are a group of regulatory RNAs with a length of > 200 nucleotides but which fail to encode proteins. In this study, by using real‐time quantitative PCR, we found that the expression of the miR205 host gene (miR205HG; a lncRNA) was downregulated in ESCA tumors when compared with normal esophageal tissues or adjacent normal tissues of tumors. Furthermore, we demonstrated that miR205HG modulates the expression of extracellular matrix‐related genes in ESCA cells. In the transwell assay, downregulation of miR205HG contributes to migration and invasion of ESCA cells. In relation to the mechanism, our data show that miR205HG interacts with heterogeneous nuclear ribonucleoprotein A0 (HNRNPA0) mRNA and then hamper its translation by interacting with lin‐28 homolog A (LIN28A). Altogether, we highlight that the miR205HG‐HNRNPA0 axis is implicated in the migration and invasion of ESCA cells and that these members of this pathway may serve as therapeutic targets to inhibit metastasis of ESCA.
Collapse
Affiliation(s)
- Xiaoying Dong
- Department of Thoracic SurgerySouthern Medical University Nanfang HospitalGuangzhouChina
| | - Xuyuan Chen
- Department of Thoracic SurgerySouthern Medical University Nanfang HospitalGuangzhouChina
| | - Di Lu
- Department of Thoracic SurgerySouthern Medical University Nanfang HospitalGuangzhouChina
| | - Dingwei Diao
- Department of Thoracic SurgerySouthern Medical University Nanfang HospitalGuangzhouChina
| | - Xiguang Liu
- Department of Thoracic SurgerySouthern Medical University Nanfang HospitalGuangzhouChina
| | - Shijie Mai
- Department of Thoracic SurgerySouthern Medical University Nanfang HospitalGuangzhouChina
| | - Siyang Feng
- Department of Thoracic SurgerySouthern Medical University Nanfang HospitalGuangzhouChina
| | - Gang Xiong
- Department of Thoracic SurgerySouthern Medical University Nanfang HospitalGuangzhouChina
| |
Collapse
|
122
|
ECM stiffness-tuned exosomes drive breast cancer motility through thrombospondin-1. Biomaterials 2021; 279:121185. [PMID: 34808560 DOI: 10.1016/j.biomaterials.2021.121185] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer progression features ECM stiffening due to excess deposition and crosslinking of collagen, which dramatically influence tumor behaviour and fate. The mechanisms by which extracellular matrix (ECM) stiffening drives breast cancer invasion is an area of active research. Here we demonstrate the role of exosomes in ECM stiffness triggered breast cancer invasiveness. Using stiffness tuneable hydrogel ECM scaffolds, we show that stiff ECMs promote exosome secretion in a YAP/TAZ pathway-dependent manner. Interestingly, blocking exosome synthesis and secretion by GW4869 abrogated stiffness regulated motility and contractility in breast cancer cells. Reciprocally, exogenous addition of ECM stiffness-tuned exosomes orchestrated a series of changes in cell morphology, adhesion, protrusion dynamics resulting in fostered cell motility and invasion. Proteomic analysis of exosomal lysates followed by overrepresentation analysis and interactome studies revealed enrichment of cell adhesion and cell migration proteins in exosomes from stiff ECM cultures compared to that of soft ones. Quantitative proteomics of exosomes combined with genomic analysis of human breast tumor tissues (TCGA database) identified thrombospondin-1 (THBS1) as a prospective regulator of stiffness-dependent cancer invasion. Knockdown studies confirmed that the pro-invasive effects of stiffness-tuned exosomes are fuelled by exosomal THBS1. We further demonstrated that exosomal THBS1 mediates these stiffness-induced effects by engaging matrix metalloproteinase and focal adhesion kinase. Our studies establish the pivotal role of exosomal communication in ECM stiffness dependent cell migration with exosomal THBS1 as a master regulator of cancer invasion, which can be further exploited as a potential theranostic for improved breast cancer management.
Collapse
|
123
|
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. Int J Mol Sci 2021; 22:12200. [PMID: 34830082 PMCID: PMC8618305 DOI: 10.3390/ijms222212200] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 01/09/2023] Open
Abstract
The traditional two-dimensional (2D) in vitro cell culture system (on a flat support) has long been used in cancer research. However, this system cannot be fully translated into clinical trials to ideally represent physiological conditions. This culture cannot mimic the natural tumor microenvironment due to the lack of cellular communication (cell-cell) and interaction (cell-cell and cell-matrix). To overcome these limitations, three-dimensional (3D) culture systems are increasingly developed in research and have become essential for tumor research, tissue engineering, and basic biology research. 3D culture has received much attention in the field of biomedicine due to its ability to mimic tissue structure and function. The 3D matrix presents a highly dynamic framework where its components are deposited, degraded, or modified to delineate functions and provide a platform where cells attach to perform their specific functions, including adhesion, proliferation, communication, and apoptosis. So far, various types of models belong to this culture: either the culture based on natural or synthetic adherent matrices used to design 3D scaffolds as biomaterials to form a 3D matrix or based on non-adherent and/or matrix-free matrices to form the spheroids. In this review, we first summarize a comparison between 2D and 3D cultures. Then, we focus on the different components of the natural extracellular matrix that can be used as supports in 3D culture. Then we detail different types of natural supports such as matrigel, hydrogels, hard supports, and different synthetic strategies of 3D matrices such as lyophilization, electrospiding, stereolithography, microfluid by citing the advantages and disadvantages of each of them. Finally, we summarize the different methods of generating normal and tumor spheroids, citing their respective advantages and disadvantages in order to obtain an ideal 3D model (matrix) that retains the following characteristics: better biocompatibility, good mechanical properties corresponding to the tumor tissue, degradability, controllable microstructure and chemical components like the tumor tissue, favorable nutrient exchange and easy separation of the cells from the matrix.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie Moléculaire et Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Liban;
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| |
Collapse
|
124
|
Chen L, Kong X, Fang Y, Paunikar S, Wang X, Brown JAL, Bourke E, Li X, Wang J. Recent Advances in the Role of Discoidin Domain Receptor Tyrosine Kinase 1 and Discoidin Domain Receptor Tyrosine Kinase 2 in Breast and Ovarian Cancer. Front Cell Dev Biol 2021; 9:747314. [PMID: 34805157 PMCID: PMC8595330 DOI: 10.3389/fcell.2021.747314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Discoidin domain receptor tyrosine kinases (DDRs) are a class of receptor tyrosine kinases (RTKs), and their dysregulation is associated with multiple diseases (including cancer, chronic inflammatory conditions, and fibrosis). The DDR family members (DDR1a-e and DDR2) are widely expressed, with predominant expression of DDR1 in epithelial cells and DDR2 in mesenchymal cells. Structurally, DDRs consist of three regions (an extracellular ligand binding domain, a transmembrane domain, and an intracellular region containing a kinase domain), with their kinase activity induced by receptor-specific ligand binding. Collagen binding to DDRs stimulates DDR phosphorylation activating kinase activity, signaling to MAPK, integrin, TGF-β, insulin receptor, and Notch signaling pathways. Abnormal DDR expression is detected in a range of solid tumors (including breast, ovarian, cervical liver, gastric, colorectal, lung, and brain). During tumorigenesis, abnormal activation of DDRs leads to invasion and metastasis, via dysregulation of cell adhesion, migration, proliferation, secretion of cytokines, and extracellular matrix remodeling. Differential expression or mutation of DDRs correlates with pathological classification, clinical characteristics, treatment response, and prognosis. Here, we discuss the discovery, structural characteristics, organizational distribution, and DDR-dependent signaling. Importantly, we highlight the key role of DDRs in the development and progression of breast and ovarian cancer.
Collapse
Affiliation(s)
- Li Chen
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shishir Paunikar
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - James A. L. Brown
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Emer Bourke
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
125
|
Cirillo F, Pellegrino M, Talia M, Perrotta ID, Rigiracciolo DC, Spinelli A, Scordamaglia D, Muglia L, Guzzi R, Miglietta AM, De Francesco EM, Belfiore A, Maggiolini M, Lappano R. Estrogen receptor variant ERα46 and insulin receptor drive in primary breast cancer cells growth effects and interleukin 11 induction prompting the motility of cancer-associated fibroblasts. Clin Transl Med 2021; 11:e516. [PMID: 34841688 PMCID: PMC8567034 DOI: 10.1002/ctm2.516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Among the prognostic and predictive biomarkers of breast cancer (BC), the role of estrogen receptor (ER)α wild-type has been acknowledged, although the action of certain ERα splice variants has not been elucidated. Insulin/insulin receptor (IR) axis has also been involved in the progression and metastasis of BC. For instance, hyperinsulinemia, which is often associated with obesity and type 2 diabetes, may be a risk factor for BC. Similarly, an aberrant expression of IR or its hyperactivation may correlate with aggressive BC phenotypes. In the present study, we have shown that a novel naturally immortalized BC cell line (named BCAHC-1) is characterized by a unique expression of 46 kDa ERα splice variant (ERα46) along with IR. Moreover, we have shown that a multifaceted crosstalk between ERα46 and IR occurs in BCAHC-1 cells upon estrogen and insulin exposure for growth and pulmonary metastasis. Through high-throughput RNA sequencing analysis, we have also found that the cytokine interleukin-11 (IL11) is the main factor linking BCAHC-1 cells to breast cancer-associated fibroblasts (CAFs). In particular, we have found that IL11 induced by estrogens and insulin in BCAHC-1 cells regulates pro-tumorigenic genes of the "extracellular matrix organization" signaling pathway, such as ICAM-1 and ITGA5, and promotes both migratory and invasive features in breast CAFs. Overall, our results may open a new scientific avenue to identify additional prognostic and therapeutic targets in BC.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of PhysicsUniversity of CalabriaRendeItaly
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Ida Daniela Perrotta
- Centre for Microscopy and Microanalysis, Transmission Electron Microscopy Laboratory, and Department of Biology, Ecology and Earth SciencesUniversity of CalabriaRendeItaly
| | | | - Asia Spinelli
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Rita Guzzi
- Department of PhysicsUniversity of CalabriaRendeItaly
| | | | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of CataniaGaribaldi‐Nesima HospitalCataniaItaly
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| |
Collapse
|
126
|
Identification of potential genes related to breast cancer brain metastasis in breast cancer patients. Biosci Rep 2021; 41:229807. [PMID: 34541602 PMCID: PMC8521534 DOI: 10.1042/bsr20211615] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 01/04/2023] Open
Abstract
Brain metastases (BMs) usually develop in breast cancer (BC) patients. Thus, the molecular mechanisms of breast cancer brain metastasis (BCBM) are of great importance in designing therapeutic strategies to treat or prevent BCBM. The present study attempted to identify novel diagnostic and prognostic biomarkers of BCBM. Two datasets (GSE125989 and GSE100534) were obtained from the Gene Expression Omnibus (GEO) database to find differentially expressed genes (DEGs) in cases of BC with and without brain metastasis (BM). A total of 146 overlapping DEGs, including 103 up-regulated and 43 down-regulated genes, were identified. Functional enrichment analysis showed that these DEGs were mainly enriched for functions including extracellular matrix (ECM) organization and collagen catabolic fibril organization. Using protein-protein interaction (PPI) and principal component analysis (PCA) analysis, we identified ten key genes, including LAMA4, COL1A1, COL5A2, COL3A1, COL4A1, COL5A1, COL5A3, COL6A3, COL6A2, and COL6A1. Additionally, COL5A1, COL4A1, COL1A1, COL6A1, COL6A2, and COL6A3 were significantly associated with the overall survival of BC patients. Furthermore, COL6A3, COL5A1, and COL4A1 were potentially correlated with BCBM in human epidermal growth factor 2 (HER2) expression. Additionally, the miR-29 family might participate in the process of metastasis by modulating the cancer microenvironment. Based on datasets in the GEO database, several DEGs have been identified as playing potentially important roles in BCBM in BC patients.
Collapse
|
127
|
Biological Mechanisms and Therapeutic Opportunities in Mammographic Density and Breast Cancer Risk. Cancers (Basel) 2021; 13:cancers13215391. [PMID: 34771552 PMCID: PMC8582527 DOI: 10.3390/cancers13215391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Mammographic density is an important risk factor for breast cancer; women with extremely dense breasts have a four to six fold increased risk of breast cancer compared to women with mostly fatty breasts, when matched with age and body mass index. High mammographic density is characterised by high proportions of stroma, containing fibroblasts, collagen and immune cells that suggest a pro-tumour inflammatory microenvironment. However, the biological mechanisms that drive increased mammographic density and the associated increased risk of breast cancer are not yet understood. Inflammatory factors such as monocyte chemotactic protein 1, peroxidase enzymes, transforming growth factor beta, and tumour necrosis factor alpha have been implicated in breast development as well as breast cancer risk, and also influence functions of stromal fibroblasts. Here, the current knowledge and understanding of the underlying biological mechanisms that lead to high mammographic density and the associated increased risk of breast cancer are reviewed, with particular consideration to potential immune factors that may contribute to this process.
Collapse
|
128
|
Janoniene A, Mazutis L, Matulis D, Petrikaite V. Inhibition of Carbonic Anhydrase IX Suppresses Breast Cancer Cell Motility at the Single-Cell Level. Int J Mol Sci 2021; 22:11571. [PMID: 34769000 PMCID: PMC8584155 DOI: 10.3390/ijms222111571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
Protein Carbonic Anhydrase IX (CA IX), which is expressed in various hypoxic solid tumors in order to maintain proper pH, is also related to cancer cell adhesion, invasion, and metastasis processes. Here, we investigated whether CA IX inhibition by a highly CA IX selective agent benzenesulfonamide VD11-4-2 triggers changes in individual cell motility. We seeded breast cancer cells on an extracellular matrix-coated glass-bottomed dish and in a microfluidic device with a gradient flow of epidermal growth factor (EGF), tracked individual cell movement, calculated their migration speeds, and/or followed movement direction. Our results showed that the inhibitor VD11-4-2 decreased the speed of CA IX positive breast cancer cells by 20-26% while not affecting non-cancerous cell migration. The inhibitor suppressed the cell migration velocity increment and hindered cells from reaching their maximum speed. VD11-4-2 also reduced CA IX, expressing cell movement towards the growth factor as a chemoattractant. Such a single cell-based migration assay enabled the comprehensive investigation of the cell motility and revealed that VD11-4-2 shows the ability to suppress breast cancer cell migration at a lower concentration than previously tested CA IX inhibitors.
Collapse
Affiliation(s)
| | | | | | - Vilma Petrikaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (A.J.); (L.M.); (D.M.)
| |
Collapse
|
129
|
Li Y, Wu J, Hu X, Ding T, Tang T, Xiang D. Biomimetic Liposome with Surface-Bound Elastase for Enhanced Tumor Penetration and Chemo-Immumotherapy. Adv Healthc Mater 2021; 10:e2100794. [PMID: 34160137 DOI: 10.1002/adhm.202100794] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Indexed: 01/01/2023]
Abstract
Dense extracellular matrix (ECM) in the tumor stroma has been a challenge for drug penetration and cytotoxic T lymphocyte (CTL) infiltration. Neutrophil elastase (NE), in surface-bound form, can destruct ECM rapidly, may be used for remodeling tumor ECM, and overcoming tumor stromal barrier. Focusing on elastosis in triple-negative breast tumor, biomimetic liposomes with chimeric cell membrane proteins (LMP) are developed and for the first time, it is demonstrated that LMP with surface-bound elastase (NE-LMP) can target and degrade ECM effectively in tumor stroma, with minimal toxicity to normal tissues. The pretreatment of NE-LMP increases the accumulation of chemotherapeutics at the tumor site and enhances antitumor effects. Also, NE-LMP facilitates CTL infiltration in tumors and exhibits enhanced chemo-immunotherapy in combination of PD-1 immune checkpoint blockade treatment in orthotopic 4T1 tumor-bearing mice, with significantly prolonged survival. Moreover, the remodeling of the tumor ECM by NE-LMP shows inhibiting effects on metastasis in the lung. Findings from this study suggest that NE-LMP holds promise for enhancing deep penetration of drug and infiltration of CTL in desmoplastic tumor by effective degrading ECM in the tumor stroma.
Collapse
Affiliation(s)
- Yong‐Jiang Li
- Department of Pharmacy The Second Xiangya Hospital Central South University 139 Middle Renmin Road Changsha 410011 China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug 139 Middle Renmin Road Changsha 410011 China
- Institute of Clinical Pharmacy Central South University 139 Middle Renmin Road Changsha 410011 China
| | - Jun‐Yong Wu
- Department of Pharmacy The Second Xiangya Hospital Central South University 139 Middle Renmin Road Changsha 410011 China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug 139 Middle Renmin Road Changsha 410011 China
- Institute of Clinical Pharmacy Central South University 139 Middle Renmin Road Changsha 410011 China
| | - Xiong‐Bin Hu
- Department of Pharmacy The Second Xiangya Hospital Central South University 139 Middle Renmin Road Changsha 410011 China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug 139 Middle Renmin Road Changsha 410011 China
- Institute of Clinical Pharmacy Central South University 139 Middle Renmin Road Changsha 410011 China
| | - Tianjinhao Ding
- Department of Breast and Thyroid Surgery the Third Xiangya Hospital of Central South University Changsha 410013 China
| | - Tiantian Tang
- Department of Pharmacy The Second Xiangya Hospital Central South University 139 Middle Renmin Road Changsha 410011 China
- Institute of Clinical Pharmacy Central South University 139 Middle Renmin Road Changsha 410011 China
| | - Da‐Xiong Xiang
- Department of Pharmacy The Second Xiangya Hospital Central South University 139 Middle Renmin Road Changsha 410011 China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug 139 Middle Renmin Road Changsha 410011 China
- Institute of Clinical Pharmacy Central South University 139 Middle Renmin Road Changsha 410011 China
| |
Collapse
|
130
|
Sun A, Sheng X, Tang J, Yu Z, Zhang J. Integrated Bioinformatics and Experimental Approaches Identified the Role of NPPA in the Proliferation and the Malignant Behavior of Breast Cancer. J Immunol Res 2021; 2021:7876489. [PMID: 34616853 PMCID: PMC8490067 DOI: 10.1155/2021/7876489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
Breast cancer is the 3rd most common type of malignant tumor worldwide with high heterogeneity, frequent recurrence, and high metastasis tendency. In this study, we aimed to demonstrate the value of extracellular matrix- (ECM-) related genes in breast cancer patients. The overall expression of ECM is assessed with a novel SC3 clustering method, and patients were divided into two clusters with diverse recurrence rate. We established the Cox regression model in breast cancer patients and identified NPPA as an independent prognostic marker. The NPPA expression is downregulated in breast cancer patients, independent of the ER status, PR status, stemness score, and immune infiltrating condition. And we observed the enhanced proliferation, migration, and invasion potential of breast cancer cells after NPPA depletion. Further, we predicted the transcription modulation of NPPA with PROMO and JASPAR. And we further validated the binding of MZF1 to the -318 bp~-452 bp region of the NPPA promoter with chromatin immunoprecipitation and dual luciferase assay. Together, our study identified NPPA as a potential prognostic biomarker for breast cancer patients, whose downregulation is associated with an enhanced malignant behavior of breast cancer cells both in vivo and in vitro and identified the transcription regulation of NPPA by MZF1.
Collapse
Affiliation(s)
- Aijun Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
- Department of Thyroid and Breast Oncological Surgery, Xuzhou Medical College Affiliated Huaian Hospital, Huaihai South Road 62#, Huaian, Jiangsu 223001, China
| | - Xiaonan Sheng
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1630 Dongfang Shanghai 200127, China
| | - Jinhai Tang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Zhenfeng Yu
- Department of General Surgery, Shanghai Fengxian Central Hospital, 6600 NanFeng Road, 201499, China
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
131
|
Mehraj U, Ganai RA, Macha MA, Hamid A, Zargar MA, Bhat AA, Nasser MW, Haris M, Batra SK, Alshehri B, Al-Baradie RS, Mir MA, Wani NA. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities. Cell Oncol (Dordr) 2021; 44:1209-1229. [PMID: 34528143 DOI: 10.1007/s13402-021-00634-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Breast cancer (BC), the second most common cause of cancer-related deaths, remains a significant threat to the health and wellness of women worldwide. The tumor microenvironment (TME), comprising cellular components, such as cancer-associated fibroblasts (CAFs), immune cells, endothelial cells and adipocytes, and noncellular components such as extracellular matrix (ECM), has been recognized as a critical contributor to the development and progression of BC. The interplay between TME components and cancer cells promotes phenotypic heterogeneity, cell plasticity and cancer cell stemness that impart tumor dormancy, enhanced invasion and metastasis, and the development of therapeutic resistance. While most previous studies have focused on targeting cancer cells with a dismal prognosis, novel therapies targeting stromal components are currently being evaluated in preclinical and clinical studies, and are already showing improved efficacies. As such, they may offer better means to eliminate the disease effectively. CONCLUSIONS In this review, we focus on the evolving concept of the TME as a key player regulating tumor growth, metastasis, stemness, and the development of therapeutic resistance. Despite significant advances over the last decade, several clinical trials focusing on the TME have failed to demonstrate promising effectiveness in cancer patients. To expedite clinical efficacy of TME-directed therapies, a deeper understanding of the TME is of utmost importance. Secondly, the efficacy of TME-directed therapies when used alone or in combination with chemo- or radiotherapy, and the tumor stage needs to be studied. Likewise, identifying molecular signatures and biomarkers indicating the type of TME will help in determining precise TME-directed therapies.
Collapse
Affiliation(s)
- Umar Mehraj
- Department of Bioresources, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Rais A Ganai
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science & Technology , Awantipora, Jammu & Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science & Technology , Awantipora, Jammu & Kashmir, India
| | - Abid Hamid
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Mohammed A Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Ajaz A Bhat
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohammad Haris
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.,Laboratory of Animal Research, Qatar University, Doha, Qatar
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska, Lincoln, NE, USA.,Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah, Kingdom of Saudi Arabia
| | - Raid Saleem Al-Baradie
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah, Kingdom of Saudi Arabia
| | - Manzoor A Mir
- Department of Bioresources, University of Kashmir, Srinagar, Jammu & Kashmir, India.
| | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India.
| |
Collapse
|
132
|
Rujchanarong D, Lefler J, Saunders JE, Pippin S, Spruill L, Bethard JR, Ball LE, Mehta AS, Drake RR, Ostrowski MC, Angel PM. Defining the Tumor Microenvironment by Integration of Immunohistochemistry and Extracellular Matrix Targeted Imaging Mass Spectrometry. Cancers (Basel) 2021; 13:4419. [PMID: 34503228 PMCID: PMC8430776 DOI: 10.3390/cancers13174419] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
Breast stroma plays a significant role in breast cancer risk and progression yet remains poorly understood. In breast stroma, collagen is the most abundantly expressed protein and its increased deposition and alignment contributes to progression and poor prognosis. Collagen post-translation modifications such as hydroxylated-proline (HYP) control deposition and stromal organization. The clinical relevance of collagen HYP site modifications in cancer processes remains undefined due to technical issues accessing collagen from formalin-fixed, paraffin-embedded (FFPE) tissues. We previously developed a targeted approach for investigating collagen and other extracellular matrix proteins from FFPE tissue. Here, we hypothesized that immunohistochemistry staining for fibroblastic markers would not interfere with targeted detection of collagen stroma peptides and could reveal peptide regulation influenced by specific cell types. Our initial work demonstrated that stromal peptide peak intensities when using MALD-IMS following IHC staining (αSMA, FAP, P4HA3 and PTEN) were comparable to serial sections of nonstained tissue. Analysis of histology-directed IMS using PTEN on breast tissues and TMAs revealed heterogeneous PTEN staining patterns and suggestive roles in stromal protein regulation. This study sets the foundation for investigations of target cell types and their unique contribution to collagen regulation within extracellular matrix niches.
Collapse
Affiliation(s)
- Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
| | - Julia Lefler
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (J.L.); (M.C.O.)
| | - Janet E. Saunders
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
| | - Sarah Pippin
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Jennifer R. Bethard
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
| | - Michael C. Ostrowski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (J.L.); (M.C.O.)
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (J.L.); (M.C.O.)
| |
Collapse
|
133
|
The role of extracellular matrix in tumour angiogenesis: the throne has NOx servants. Biochem Soc Trans 2021; 48:2539-2555. [PMID: 33150941 PMCID: PMC7752075 DOI: 10.1042/bst20200208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) dynamics in tumour tissue are deregulated compared to the ECM in healthy tissue along with disorganized architecture and irregular behaviour of the residing cells. Nitric oxide (NO) as a pleiotropic molecule exerts different effects on the components of the ECM driving or inhibiting augmented angiogenesis and tumour progression and tumour cell proliferation and metastasis. These effects rely on the concentration of NO within the tumour tissue, the nature of the surrounding microenvironment and the sensitivity of resident cells to NO. In this review article, we summarize the recent findings on the correlation between the levels of NO and the ECM components towards the modulation of tumour angiogenesis in different types of cancers. These are discussed principally in the context of how NO modulates the expression of ECM proteins resulting in either the promotion or inhibition of tumour growth via tumour angiogenesis. Furthermore, the regulatory effects of individual ECM components on the expression of the NO synthase enzymes and NO production were reviewed. These findings support the current efforts for developing effective therapeutics for cancers.
Collapse
|
134
|
Ansardamavandi A, Tafazzoli-Shadpour M. The functional cross talk between cancer cells and cancer associated fibroblasts from a cancer mechanics perspective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119103. [PMID: 34293346 DOI: 10.1016/j.bbamcr.2021.119103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
The function of biological tissues in health and disease is regulated at cellular level and is highly influenced by the physical microenvironment, through the interaction of forces between cells and ECM, which are perceived through mechanosensing pathways. In cancer, both chemical and physical signaling cascades and their interactions are involved during cell-cell and cell-ECM communications to meet requirements of tumor growth. Among stroma cells, cancer associated fibroblasts (CAFs) play key role in tumor growth and pave the way for cancer cells to initiate metastasis and invasion to other tissues, and without recruitment of CAFs, the process of cancer invasion is dysfunctional. This is through an intense chemical and physical cross talks with tumor cells, and interactive remodeling of ECM. During such interaction CAFs apply traction forces and depending on the mechanical properties, deform ECM and in return receive physical signals from the micromechanical environment. Such interaction leads to ECM remodeling by manipulating ECM structure and its mechanical properties. The results are in form of deposition of extra fibers, stiffening, rearrangement and reorganization of fibrous structure, and degradation which are due to a complex secretion and expression of different markers triggered by mechanosensing of tumor cells, specially CAFs. Such events define cancer progress and invasion of cancer cells. A systemic knowledge of chemical and physical factors provides a holistic view of how cancer process and enhances the current treatment methods to provide more diversity among targets that involves tumor cells and ECM structure.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
135
|
Identification and validation of a novel ferroptosis-related gene model for predicting the prognosis of gastric cancer patients. PLoS One 2021; 16:e0254368. [PMID: 34252149 PMCID: PMC8274920 DOI: 10.1371/journal.pone.0254368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background Ferroptosis is a novel form of regulated cell death that plays a critical role in tumorigenesis. The purpose of this study was to establish a ferroptosis-associated gene (FRG) signature and assess its clinical outcome in gastric cancer (GC). Methods Differentially expressed FRGs were identified using gene expression profiles from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were performed to construct a prognostic signature. The model was validated using an independent GEO dataset, and a genomic-clinicopathologic nomogram integrating risk scores and clinicopathological features was established. Results An 8-FRG signature was constructed to calculate the risk score and classify GC patients into two risk groups (high- and low-risk) according to the median value of the risk score. The signature showed a robust predictive capacity in the stratification analysis. A high-risk score was associated with advanced clinicopathological features and an unfavorable prognosis. The predictive accuracy of the signature was confirmed using an independent GSE84437 dataset. Patients in the two groups showed different enrichment of immune cells and immune-related pathways. Finally, we established a genomic-clinicopathologic nomogram (based on risk score, age, and tumor stage) to predict the overall survival (OS) of GC patients. Conclusions The novel FRG signature may be a reliable tool for assisting clinicians in predicting the OS of GC patients and may facilitate personalized treatment.
Collapse
|
136
|
Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy? Cancers (Basel) 2021; 13:3466. [PMID: 34298680 PMCID: PMC8303391 DOI: 10.3390/cancers13143466] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Solid cancer progression is dictated by neoplastic cell features and pro-tumoral crosstalks with their microenvironment. Stroma modifications, such as fibroblast activation into cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) remodeling, are now recognized as critical events for cancer progression and as potential therapeutic or diagnostic targets. The recent appreciation of the key, complex and multiple roles of the ECM in cancer and of the CAF diversity, has revolutionized the field and raised innovative but challenging questions. Here, we rapidly present CAF heterogeneity in link with their specific ECM remodeling features observed in cancer, before developing each of the impacts of such ECM modifications on tumor progression (survival, angiogenesis, pre-metastatic niche, chemoresistance, etc.), and on patient prognosis. Finally, based on preclinical studies and recent results obtained from clinical trials, we highlight key mechanisms or proteins that are, or may be, used as potential therapeutic or diagnostic targets, and we report and discuss benefits, disappointments, or even failures, of recently reported stroma-targeting strategies.
Collapse
Affiliation(s)
| | | | | | | | - Christine Jean
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31037 Toulouse, France; (I.B.); (S.Z.); (C.L.); (C.B.)
| |
Collapse
|
137
|
Saeed M, Chen F, Ye J, Shi Y, Lammers T, De Geest BG, Xu ZP, Yu H. From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008094. [PMID: 34048101 DOI: 10.1002/adma.202008094] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/17/2021] [Indexed: 05/21/2023]
Abstract
The tumor immune microenvironment (TIME) is comprised of a complex milieu that contributes to stunting antitumor immune responses by restricting T cells to accumulate in the vicinity of the tumor. Nanomedicine-based strategies are being proposed as a salvage effort to reinvigorate antitumor immunity. Various strategies, however, often fail to unleash the antitumor immune response because of the paucity of appropriate therapeutic targets in the complex TIME, invigorating a fervor of investigation into mechanisms underlying the TIME to resist nanomedicines. In this review article, effective nano/biomaterial-based delivery and TIME normalization approaches that promote T cell-mediated antitumor immune response will be discussed, with a focus on emerging preclinical and clinical strategies for immune normalization. Based on currently available evidence, it seems as if the ultimate success of cancer immunotherapy and nanomedicine hinges on the capacity to normalize the TIME. Here, how nanomedicines target immunosuppressive cells and signaling pathways to broaden the impact of cancer immunotherapy are explored. Acquisition of the urgently needed knowledge of nanomedicine-mediated immune normalization will guide researchers and scientists towards clinical applications of cancer immunotherapy.
Collapse
Affiliation(s)
- Madiha Saeed
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Fangming Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Jiayi Ye
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Bruno G De Geest
- Department of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, 9000, Belgium
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| |
Collapse
|
138
|
Kadir SR, Lilja A, Gunn N, Strong C, Hughes RT, Bailey BJ, Rae J, Parton RG, McGhee J. Nanoscape, a data-driven 3D real-time interactive virtual cell environment. eLife 2021; 10:64047. [PMID: 34191720 PMCID: PMC8245131 DOI: 10.7554/elife.64047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Our understanding of cellular and structural biology has reached unprecedented levels of detail, and computer visualisation techniques can be used to create three-dimensional (3D) representations of cells and their environment that are useful in both teaching and research. However, extracting and integrating the relevant scientific data, and then presenting them in an effective way, can pose substantial computational and aesthetic challenges. Here we report how computer artists, experts in computer graphics and cell biologists have collaborated to produce a tool called Nanoscape that allows users to explore and interact with 3D representations of cells and their environment that are both scientifically accurate and visually appealing. We believe that using Nanoscape as an immersive learning application will lead to an improved understanding of the complexities of cellular scales, densities and interactions compared with traditional learning modalities.
Collapse
Affiliation(s)
- Shereen R Kadir
- 3D Visualisation Aesthetics Lab, School of Art and Design, and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Andrew Lilja
- 3D Visualisation Aesthetics Lab, School of Art and Design, and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Nick Gunn
- 3D Visualisation Aesthetics Lab, School of Art and Design, and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Campbell Strong
- 3D Visualisation Aesthetics Lab, School of Art and Design, and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Rowan T Hughes
- 3D Visualisation Aesthetics Lab, School of Art and Design, and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Benjamin J Bailey
- 3D Visualisation Aesthetics Lab, School of Art and Design, and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - James Rae
- Institute for Molecular Bioscience, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - John McGhee
- 3D Visualisation Aesthetics Lab, School of Art and Design, and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| |
Collapse
|
139
|
Moccia C, Haase K. Engineering Breast Cancer On-chip-Moving Toward Subtype Specific Models. Front Bioeng Biotechnol 2021; 9:694218. [PMID: 34249889 PMCID: PMC8261144 DOI: 10.3389/fbioe.2021.694218] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the second leading cause of death among women worldwide, and while hormone receptor positive subtypes have a clear and effective treatment strategy, other subtypes, such as triple negative breast cancers, do not. Development of new drugs, antibodies, or immune targets requires significant re-consideration of current preclinical models, which frequently fail to mimic the nuances of patient-specific breast cancer subtypes. Each subtype, together with the expression of different markers, genetic and epigenetic profiles, presents a unique tumor microenvironment, which promotes tumor development and progression. For this reason, personalized treatments targeting components of the tumor microenvironment have been proposed to mitigate breast cancer progression, particularly for aggressive triple negative subtypes. To-date, animal models remain the gold standard for examining new therapeutic targets; however, there is room for in vitro tools to bridge the biological gap with humans. Tumor-on-chip technologies allow for precise control and examination of the tumor microenvironment and may add to the toolbox of current preclinical models. These new models include key aspects of the tumor microenvironment (stroma, vasculature and immune cells) which have been employed to understand metastases, multi-organ interactions, and, importantly, to evaluate drug efficacy and toxicity in humanized physiologic systems. This review provides insight into advanced in vitro tumor models specific to breast cancer, and discusses their potential and limitations for use as future preclinical patient-specific tools.
Collapse
Affiliation(s)
| | - Kristina Haase
- European Molecular Biology Laboratory, European Molecular Biology Laboratory Barcelona, Barcelona, Spain
| |
Collapse
|
140
|
Ferreira LP, Gaspar VM, Mendes L, Duarte IF, Mano JF. Organotypic 3D decellularized matrix tumor spheroids for high-throughput drug screening. Biomaterials 2021; 275:120983. [PMID: 34186236 DOI: 10.1016/j.biomaterials.2021.120983] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Decellularized extracellular matrix (dECM) is emerging as a valuable tool for generating 3D in vitro tumor models that better recapitulate tumor-stroma interactions. However, the development of dECM-3D heterotypic microtumors exhibiting a controlled morphology is yet to be materialized. Precisely controlling microtumors morphologic features is key to avoid an inaccurate evaluation of therapeutics performance during preclinical screening. To address this, herein we employed ultra-low adhesion surfaces for bioengineering organotypic 3D metastatic breast cancer-fibroblast models enriched with dECM microfibrillar fragments, as a bottom-up strategy to include major matrix components and their associated biomolecular cues during the early stages of 3D microtissue spheroids assembly, simulating pre-existing ECM presence in the in vivo setting. This biomimetic approach enabled the self-assembly of dECM-3D tumor-stroma spheroids with tunable size and reproducible morphology. Along time, dECM enriched and stroma-rich microtumors exhibited necrotic core formation, secretion of key biomarkers and higher cancer-cell specific resistance to different chemotherapeutics in comparison to standard spheroids. Exometabolomics profiling of dECM-Spheroid in vitro models further identified important breast cancer metabolic features including glucose/pyruvate consumption and lactate excretion, which suggest an intense glycolytic activity, recapitulating major hallmarks of the native microenvironment. Such organotypic dECM-enriched microtumors overcome the morphologic variability generally associated with cell-laden dECM models, while providing a scalable testing platform that can be foreseeable leveraged for high-throughput screening of candidate therapeutics.
Collapse
Affiliation(s)
- Luís P Ferreira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Luís Mendes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Iola F Duarte
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
141
|
Zou T, Lu W, Mezhuev Y, Lan M, Li L, Liu F, Cai T, Wu X, Cai Y. A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment. Eur J Pharm Biopharm 2021; 166:30-43. [PMID: 34098073 DOI: 10.1016/j.ejpb.2021.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022]
Abstract
Breast cancer, as a malignant disease that seriously threatens women's health, urgently needs to be researched to develop effective and safe therapeutic drugs. Nanoparticle drug delivery systems (NDDS), provide a powerful means for drug targeting to the breast cancer, enhancing the bioavailability and reducing the adverse effects of anticancer drug. However, the breast cancer microenvironment together with heterogeneity of cancer, impedes the tumor targeting effect of NDDS. Breast cancer microenvironment, exerts endogenous stimuli, such as hypoxia, acidosis, and aberrant protease expression, shape a natural shelter for tumor growth, invasion and migration. On the basis of the ubiquitous of endogenous stimuli in the breast cancer microenvironment, researchers exploited them to design the stimuli-responsive NDDS, which response to endogenous stimulus, targeted release drug in breast cancer microenvironment. In this review, we highlighted the effect of the breast cancer microenvironment, summarized innovative NDDS responsive to the internal stimuli in the tumor microenvironment, including the material, the targeting groups, the loading drugs, targeting position and the function of stimuli-responsive nanoparticle drug delivery system. The limitations and potential applications of the stimuli-responsive nanoparticle drug delivery systems for breast cancer treatment were discussed to further the application.
Collapse
Affiliation(s)
- Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Wenping Lu
- Guang an'men Hospital China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yaroslav Mezhuev
- Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Meng Lan
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Lihong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Fengjie Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, PR China.
| | - Xiaoyu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou 510632, PR China; Cancer Research Institute, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
142
|
Fang W, Su D, Lu W, Wang N, Mao R, Chen Y, Ge K, Shen A, Hu R. Application and Future Prospect of Extracellular Matrix Targeted Nanomaterials in Tumor Theranostics. Curr Drug Targets 2021; 22:913-921. [PMID: 33504304 DOI: 10.2174/1389450122666210127100430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
Systemic chemotherapy and radiotherapy have been widely used in clinics for several decades, but their disadvantages, such as systemic cytotoxicity and severe side effects, are the biggest obstacle to maximum therapeutic efficacy. In recent years, the impact of extracellular matrix components in tumor progression has gained the attention of researchers, and with the rapid development of nanomaterials, extracellular matrix targeted nanomaterials have become a promising strategy in tumor theranostics. In this review, we will outline the recent and relevant examples of various tumor extracellular matrix targeted nanomaterials applied in tumor therapy and imaging. And we will discuss the challenges and prospects of nanomaterials for future tumor therapy.
Collapse
Affiliation(s)
- Wenyou Fang
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| | - Dan Su
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wenjie Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Nan Wang
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| | - Rong Mao
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| | - Yuan Chen
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| | - Kunkun Ge
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| | - Aizong Shen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Rongfeng Hu
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| |
Collapse
|
143
|
Liu Z, Hu S, Yun Z, Hu W, Zhang S, Luo D. Using dynamic cell communication improves treatment strategies of breast cancer. Cancer Cell Int 2021; 21:275. [PMID: 34034721 PMCID: PMC8145794 DOI: 10.1186/s12935-021-01979-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
Several insights from the clinical treatment of breast cancer patients have revealed that only a portion of patients achieve the expected curative effect after traditional targeted therapy, that surgical treatment may promote the development of cancer metastasis, and that the optimal combination of neoadjuvant chemotherapy and traditional treatment is not clear. Therefore, a more precise classification of breast cancer and selection of treatment methods should be undertaken to improve the efficacy of clinical treatment. In the clinical treatment of breast cancer, cell communication molecules are often selected as therapeutic targets. However, various cell communications are not static. Their dynamic changes are related to communicating cells, communicating molecules, and various intertwined internal and external environmental factors. Understanding the dynamic microenvironment can help us improve therapeutic efficacy and provide new ways to more accurately determine the cancer status. Therefore, this review describes multiple types of cellular communication in the breast cancer microenvironment and incorporates internal and external environmental factors as variable signaling factors in cell communication. Using dynamic and developmental concepts, we summarize the functional changes in signaling molecules and cells to aid in the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Zhibo Liu
- Second Clinic Medical College, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, People's Republic of China
| | - Song Hu
- Thrombosis Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zehui Yun
- Queen Mary School, School of Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Wanshan Hu
- School of Medicine, Forth Clinic Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Aiguo Road, No. 152, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Bayi Road, No. 461, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
144
|
Martinez J, Smith PC. The Dynamic Interaction between Extracellular Matrix Remodeling and Breast Tumor Progression. Cells 2021; 10:1046. [PMID: 33946660 PMCID: PMC8145942 DOI: 10.3390/cells10051046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022] Open
Abstract
Desmoplastic tumors correspond to a unique tissue structure characterized by the abnormal deposition of extracellular matrix. Breast tumors are a typical example of this type of lesion, a property that allows its palpation and early detection. Fibrillar type I collagen is a major component of tumor desmoplasia and its accumulation is causally linked to tumor cell survival and metastasis. For many years, the desmoplastic phenomenon was considered to be a reaction and response of the host tissue against tumor cells and, accordingly, designated as "desmoplastic reaction". This notion has been challenged in the last decades when desmoplastic tissue was detected in breast tissue in the absence of tumor. This finding suggests that desmoplasia is a preexisting condition that stimulates the development of a malignant phenotype. With this perspective, in the present review, we analyze the role of extracellular matrix remodeling in the development of the desmoplastic response. Importantly, during the discussion, we also analyze the impact of obesity and cell metabolism as critical drivers of tissue remodeling during the development of desmoplasia. New knowledge derived from the dynamic remodeling of the extracellular matrix may lead to novel targets of interest for early diagnosis or therapy in the context of breast tumors.
Collapse
Affiliation(s)
- Jorge Martinez
- Cell Biology Laboratory, INTA, University of Chile, Santiago 7810000, Chile
| | - Patricio C. Smith
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| |
Collapse
|
145
|
Xu W, Li C, Ma B, Lu Z, Wang Y, Jiang H, Luo Y, Yang Y, Wang X, Liao T, Ji Q, Wang Y, Wei W. Identification of Key Functional Gene Signatures Indicative of Dedifferentiation in Papillary Thyroid Cancer. Front Oncol 2021; 11:641851. [PMID: 33996555 PMCID: PMC8113627 DOI: 10.3389/fonc.2021.641851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Differentiated thyroid cancer (DTC) is the most common type of thyroid cancer. Many of them can relapse to dedifferentiated thyroid cancer (DDTC) and exhibit different gene expression profiles. The underlying mechanism of dedifferentiation and the involved genes or pathways remained to be investigated. Methods: A discovery cohort obtained from patients who received surgical resection in the Fudan University Shanghai Cancer Center (FUSCC) and two validation cohorts derived from Gene Expression Omnibus (GEO) database were used to screen out differentially expressed genes in the dedifferentiation process. Weighted gene co-expression network analysis (WGCNA) was constructed to identify modules highly related to differentiation. Gene Set Enrichment Analysis (GSEA) was used to identify pathways related to differentiation, and all differentially expressed genes were grouped by function based on the GSEA and literature reviewing data. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to control the number of variables in each group. Next, we used logistic regression to build a gene signature in each group to indicate differentiation status, and we computed receiver operating characteristic (ROC) curve to evaluate the indicative performance of each signature. Results: A total of 307 upregulated and 313 downregulated genes in poorly differentiated thyroid cancer (PDTC) compared with papillary thyroid cancer (PTC) and normal thyroid (NT) were screened out in FUSCC cohort and validated in two GEO cohorts. WGCNA of 620 differential genes yielded the seven core genes with the highest correlation with thyroid differentiation score (TDS). Furthermore, 395 genes significantly correlated with TDS in univariate logistic regression analysis were divided into 11 groups. The areas under the ROC curve (AUCs) of the gene signature of group transcription and epigenetic modification, signal and substance transport, extracellular matrix (ECM), and metabolism in the training set [The Cancer Genome Atlas (TCGA) cohort] and validation set (combined GEO cohort) were both >0.75. The gene signature based on group transcription and epigenetic modification, cilia formation and movement, and proliferation can reflect the patient's disease recurrence state. Conclusion: The dedifferentiation of DTC is affected by a variety of mechanisms including many genes. The gene signature of group transcription and epigenetic modification, signal and substance transport, ECM, and metabolism can be used as biomarkers for DDTC.
Collapse
Affiliation(s)
- Weibo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cuiwei Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuchen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongyi Jiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Luo
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yichen Yang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
146
|
Duan W, Wang K, Duan Y, Chen X, Chu X, Hu P, Xiong B. Combined Analysis of RNA Sequence and Microarray Data Reveals a Competing Endogenous RNA Network as Novel Prognostic Markers in Malignant Pleural Mesothelioma. Front Oncol 2021; 11:615234. [PMID: 33968720 PMCID: PMC8104912 DOI: 10.3389/fonc.2021.615234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with short survival time. Unbalanced competing endogenous RNAs (ceRNAs) have been shown to participate in the tumor pathogenesis and served as biomarkers for the clinical prognosis. However, the comprehensive analyses of the ceRNA network in the prognosis of MPM are still rarely reported. In this study, we obtained the transcriptome data of the MPM and the normal samples from TCGA, EGA, and GEO databases and identified the differentially expressed (DE) mRNAs, lncRNAs, and miRNAs. The functions of the prognostic genes and the overlapped DEmRNAs were further annotated by the multiple enrichment analyses. Then, the targeting relationships among lncRNA–miRNA and miRNA–mRNA were predicted and calculated, and a prognostic ceRNA regulatory network was established. We included the prognostic 73 mRNAs and 13 miRNAs and 26 lncRNAs into the ceRNA network. Moreover, 33 mRNAs, three miRNAs, and seven lncRNAs were finally associated with prognosis, and a model including seven mRNAs, two lincRNAs, and some clinical factors was finally established and validated by two independent cohorts, where CDK6 and SGMS1-AS1 were significant to be independent prognostic factors. In addition, the identified co-expressed modules associated with the prognosis were overrepresented in the ceRNA network. Multiple enrichment analyses showed the important roles of the extracellular matrix components and cell division dysfunction in the invasion of MPM potentially. In summary, the prognostic ceRNA network of MPM was established and analyzed for the first time and these findings shed light on the function of ceRNAs and revealed the potential prognostic and therapeutic biomarkers of MPM.
Collapse
Affiliation(s)
- Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijie Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuyi Chen
- Key Laboratory of Environment and Health (HUST), Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
147
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021; 6:153. [PMID: 33888679 PMCID: PMC8062524 DOI: 10.1038/s41392-021-00544-0] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is one of the major components of tumors that plays multiple crucial roles, including mechanical support, modulation of the microenvironment, and a source of signaling molecules. The quantity and cross-linking status of ECM components are major factors determining tissue stiffness. During tumorigenesis, the interplay between cancer cells and the tumor microenvironment (TME) often results in the stiffness of the ECM, leading to aberrant mechanotransduction and further malignant transformation. Therefore, a comprehensive understanding of ECM dysregulation in the TME would contribute to the discovery of promising therapeutic targets for cancer treatment. Herein, we summarized the knowledge concerning the following: (1) major ECM constituents and their functions in both normal and malignant conditions; (2) the interplay between cancer cells and the ECM in the TME; (3) key receptors for mechanotransduction and their alteration during carcinogenesis; and (4) the current therapeutic strategies targeting aberrant ECM for cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Lele Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Dalong Wan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shengzhang Lin
- School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China.
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China.
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
148
|
Zhao Y, Zheng X, Zheng Y, Chen Y, Fei W, Wang F, Zheng C. Extracellular Matrix: Emerging Roles and Potential Therapeutic Targets for Breast Cancer. Front Oncol 2021; 11:650453. [PMID: 33968752 PMCID: PMC8100244 DOI: 10.3389/fonc.2021.650453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence shows that the extracellular matrix (ECM) is an important regulator of breast cancer (BC). The ECM comprises of highly variable and dynamic components. Compared with normal breast tissue under homeostasis, the ECM undergoes many changes in composition and organization during BC progression. Induced ECM proteins, including fibrinogen, fibronectin, hyaluronic acid, and matricellular proteins, have been identified as important components of BC metastatic cells in recent years. These proteins play major roles in BC progression, invasion, and metastasis. Importantly, several specific ECM molecules, receptors, and remodeling enzymes are involved in promoting resistance to therapeutic intervention. Additional analysis of these ECM proteins and their downstream signaling pathways may reveal promising therapeutic targets against BC. These potential drug targets may be combined with new nanoparticle technologies. This review summarizes recent advances in functional nanoparticles that target the ECM to treat BC. Accurate nanomaterials may offer a new approach to BC treatment.
Collapse
Affiliation(s)
- Yunchun Zhao
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoling Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
149
|
Horder H, Guaza Lasheras M, Grummel N, Nadernezhad A, Herbig J, Ergün S, Teßmar J, Groll J, Fabry B, Bauer-Kreisel P, Blunk T. Bioprinting and Differentiation of Adipose-Derived Stromal Cell Spheroids for a 3D Breast Cancer-Adipose Tissue Model. Cells 2021; 10:cells10040803. [PMID: 33916870 PMCID: PMC8066030 DOI: 10.3390/cells10040803] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Biofabrication, including printing technologies, has emerged as a powerful approach to the design of disease models, such as in cancer research. In breast cancer, adipose tissue has been acknowledged as an important part of the tumor microenvironment favoring tumor progression. Therefore, in this study, a 3D-printed breast cancer model for facilitating investigations into cancer cell-adipocyte interaction was developed. First, we focused on the printability of human adipose-derived stromal cell (ASC) spheroids in an extrusion-based bioprinting setup and the adipogenic differentiation within printed spheroids into adipose microtissues. The printing process was optimized in terms of spheroid viability and homogeneous spheroid distribution in a hyaluronic acid-based bioink. Adipogenic differentiation after printing was demonstrated by lipid accumulation, expression of adipogenic marker genes, and an adipogenic ECM profile. Subsequently, a breast cancer cell (MDA-MB-231) compartment was printed onto the adipose tissue constructs. After nine days of co-culture, we observed a cancer cell-induced reduction of the lipid content and a remodeling of the ECM within the adipose tissues, with increased fibronectin, collagen I and collagen VI expression. Together, our data demonstrate that 3D-printed breast cancer-adipose tissue models can recapitulate important aspects of the complex cell–cell and cell–matrix interplay within the tumor-stroma microenvironment.
Collapse
Affiliation(s)
- Hannes Horder
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
| | - Mar Guaza Lasheras
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
| | - Nadine Grummel
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany; (N.G.); (B.F.)
| | - Ali Nadernezhad
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Johannes Herbig
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Süleyman Ergün
- Department of Medicine, Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany;
| | - Jörg Teßmar
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Jürgen Groll
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany; (N.G.); (B.F.)
| | - Petra Bauer-Kreisel
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
- Correspondence: ; Tel.: +49-931-201-37115
| |
Collapse
|
150
|
Byrne CE, Decombe JB, Bingham GC, Remont J, Miller LG, Khalif L, King CT, Hamel K, Bunnell BA, Burow ME, Martin EC. Evaluation of Extracellular Matrix Composition to Improve Breast Cancer Modeling. Tissue Eng Part A 2021; 27:500-511. [PMID: 33797977 PMCID: PMC8349725 DOI: 10.1089/ten.tea.2020.0364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 01/16/2023] Open
Abstract
The development of resistance to therapy is a significant obstacle to effective therapeutic regimens. Evaluating the effects of oncology drugs in the laboratory setting is limited by the lack of translational models that accurately recapitulate cell-microenvironment interactions present in tumors. Acquisition of resistance to therapy is facilitated, in part, by the composition of the tumor extracellular matrix (ECM), with the primary current in vitro model using collagen I (COL I). Here we seek to identify the prevalence of COL I-enhanced expression in the triple-negative breast cancer (TNBC) subtype. Furthermore, we identify if methods of response to therapy are altered depending on matrix composition. We demonstrated that collagen content varies in patient tumor samples across subtypes, with COL I expression dramatically increased in typically less aggressive estrogen receptor (ER)-positive(ER+)/progesterone receptor (PGR)-positive (PGR+) cancers irrespective of patient age or race. These findings are of significance considering how frequently COL I is implicated in tumor progression. In vitro analyses of ER+ and ER-negative (ER-) cell lines were used to determine the effects of ECM content (collagen I, collagen IV, fibronectin, and laminin) on proliferation, cellular phenotype, and survival. Neither ER+ nor ER- cells demonstrated significant increases in proliferation when cultured on these ECM substrates. ER- cells cultured on these substrates were sensitized to both chemotherapy and targeted therapy. In addition, MDA-MB-231 cells expressed different morphologies, binding affinities, and stiffness across these substrates. We also demonstrated that ECM composition significantly alters transcription of senescence-associated pathways across ER+ and ER- cell lines. Together, these results suggest that complex matrix composites should be incorporated into in vitro tumor models, especially for the drug-resistant TNBC subtype. Impact statement The importance of tumor extracellular matrix (ECM) in disease progression is often inadequately represented in models of breast cancer that rely heavily on collagen I and Matrigel. Through immunohistochemistry analysis of patient breast tumors, we show a wide variation in collagen content based on subtype, specifically a repression of fibril collagens in the receptor negative subtype, irrespective of age and race. We also demonstrated that tumor ECM composition alters cellular elasticity and oncogenic pathway activation demonstrating that physiologically relevant three-dimensional models of breast cancer should include an ECM that is subtype specific.
Collapse
Affiliation(s)
- Charles Ethan Byrne
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Grace C. Bingham
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jordan Remont
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Lindsay G. Miller
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Layah Khalif
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Connor T. King
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Katie Hamel
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew E. Burow
- Section of Hematology and Medical Oncology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Elizabeth C. Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|