101
|
Zhu Z, Hou Q, Guo H. NT5DC2 knockdown inhibits colorectal carcinoma progression by repressing metastasis, angiogenesis and tumor-associated macrophage recruitment: A mechanism involving VEGF signaling. Exp Cell Res 2020; 397:112311. [PMID: 32991874 DOI: 10.1016/j.yexcr.2020.112311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed tumors among human worldwide. Angiogenesis and tumor-associated macrophage (TAM) recruitment are closely associated with CRC development. Nevertheless, the mechanisms revealing CRC progression are still not fully understood. 5'-Nucleotidase domain containing 2 (NT5DC2), a member of the NT5DC family, modulates various cellular events to mediate tumor growth, and thus serves as a disgnostic biomarker. Here, we explored the potential of NT5DC2 on tumor progression in CRC. We first found that NT5DC2 expression was significantly up-regulated in CRC tissues and cell lines. CRC patients with higher NT5DC2 expression showed poor overall survival. Furthermore, CRC cell lines stably transfected with shNT5DC2 lentivirus plasmids exhibited markedly reduced cell proliferation, migration and invasion compared with the negative control group. Hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGF-A) expression levels were remarkably reduced in CRC cells with NT5DC2 deletion, along with evidently reduced tube formation in the HUVECs cultured in the collected conditional medium. The expression levels of CC chemokine ligand 2 (CCL2) and its receptor CCR2 were found to be greatly down-regulated in CRC cells transfected with shNT5DC2. Moreover, NT5DC2 knockdown markedly suppressed the activation of protein kinase-B/nuclear transcription factor κB (AKT/NF-κB) signaling in CRC cells. Furthermore, we found that NT5DC2 deletion obviously reduced the TAM recruitments through suppressing CCL2/CCR2 and AKT/NF-κB signaling pathways. Intriguingly, our in vitro experiments demonstrated that VEGF reduction was necessary for shNT5DC2-inhibited cell proliferation, migration, invasion, angiogenesis and TAM recruitment. In vivo studies also confirmed that NT5DC2 knockdown effectively reduced the tumor growth and VEGF expression in a xonegraft mouse model with CRC. Lung metastasis of CRC cells was also hindered by NT5DC2 deletion in vivo. Collectively, our results indicated a previously unrecognized NT5DC2/VEGF/CCL2 axis involved in CRC development and metastasis.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Qingsheng Hou
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Hongliang Guo
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
102
|
Liquid biopsy as a perioperative biomarker of digestive tract cancers: review of the literature. Surg Today 2020; 51:849-861. [PMID: 32979121 DOI: 10.1007/s00595-020-02148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Tissue biopsies are the gold-standard for investigating the molecular characterization of tumors. However, a "solid" biopsy is an invasive procedure that cannot capture real-time tumor dynamics and may yield inaccurate information because of intratumoral heterogeneity. In this review, we summarize the current state of knowledge about surgical treatment-associated "liquid" biopsy for patients with digestive organ tumors. A liquid biopsy is a technique involving the sampling and testing of non-solid biological materials, including blood, urine, saliva, and ascites. Previous studies have reported the potential value of blood-based biomarkers, circulating tumor cells, and cell-free nucleic acids as facilitators of cancer treatment. The applications of a liquid biopsy in a cancer treatment setting include screening and early diagnosis, prognostication, and outcome and recurrence monitoring of cancer. This technique has also been suggested as a useful tool in personalized medicine. The transition to precision medicine is still in its early stages. Soon, however, liquid biopsy is likely to form the basis of patient selection for molecular targeted therapies, predictions regarding chemotherapy sensitivity, and real-time evaluations of therapeutic effects.
Collapse
|
103
|
Cohen R, Pudlarz T, Delattre JF, Colle R, André T. Molecular Targets for the Treatment of Metastatic Colorectal Cancer. Cancers (Basel) 2020; 12:E2350. [PMID: 32825275 PMCID: PMC7563268 DOI: 10.3390/cancers12092350] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past years, colorectal cancer (CRC) was subtyped according to its molecular and genetic characteristics, allowing the development of therapeutic strategies, based on predictive biomarkers. Biomarkers such as microsatellite instability (MSI), RAS and BRAF mutations, HER2 amplification or NTRK fusions represent major tools for personalized therapeutic strategies. Moreover, the routine implementation of molecular predictive tests provides new perspectives and challenges for the therapeutic management of CRC patients, such as liquid biopsies and the reintroduction of anti-EGFR monoclonal antibodies. In this review, we summarize the current landscape of targeted therapies for metastatic CRC patients, with a focus on new developments for EGFR blockade and emerging biomarkers (MSI, HER2, NTRK).
Collapse
Affiliation(s)
- Romain Cohen
- Department of Medical Oncology, Hôpital Saint-Antoine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), F-75012 Paris, France; (T.P.); (J.-F.D.); (R.C.); (T.A.)
| | | | | | | | | |
Collapse
|
104
|
The Protective Role of Decorin in Hepatic Metastasis of Colorectal Carcinoma. Biomolecules 2020; 10:biom10081199. [PMID: 32824864 PMCID: PMC7465536 DOI: 10.3390/biom10081199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/24/2022] Open
Abstract
Decorin, the prototype member of the small leucine-rich proteoglycan gene family of extracellular matrix (ECM) proteins, acts as a powerful tumor suppressor by inducing the p21Waf1/Cip1 cyclin-dependent kinase inhibitor, as well as through its ability to directly bind and block the action of several tyrosine kinase receptors. Our previous studies suggested that the lack of decorin promotes hepatic carcinogenesis in mice. Based on this, we set out to investigate whether excess decorin may protect against the liver metastases of colon carcinoma. We also analyzed the effect of decorin in tissue microarrays of human colon carcinoma liver metastasis and examined whether the tumor cells can directly influence the decorin production of myofibroblasts. In humans, low levels of decorin in the liver facilitated the development of colon carcinoma metastases in proportion with more aggressive phenotypes, indicating a possible antitumor action of the proteoglycan. In vitro, colon carcinoma cells inhibited decorin expression in LX2 hepatic stellate cells. Moreover, liver-targeted decorin delivery in mice effectively attenuated metastasis formation of colon cancer. Overexpressed decorin reduced the activity of multiple receptor tyrosine kinases (RTKs) including the epidermal growth factor receptor (EGFR), an important player in colorectal cancer (CRC) pathogenesis. Downstream of that, we observed weakened signaling of ERK1/2, PLCγ, Akt/mTOR, STAT and c-Jun pathways, while p38 MAPK/MSK/CREB and AMPK were upregulated culminating in enhanced p53 function. In conclusion, decorin may effectively inhibit metastatic tumor formation in the liver.
Collapse
|
105
|
Marmorino F, Boccaccino A, Germani MM, Falcone A, Cremolini C. Immune Checkpoint Inhibitors in pMMR Metastatic Colorectal Cancer: A Tough Challenge. Cancers (Basel) 2020; 12:E2317. [PMID: 32824490 PMCID: PMC7465130 DOI: 10.3390/cancers12082317] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
The introduction of checkpoint inhibitors provided remarkable achievements in several solid tumors but only 5% of metastatic colorectal cancer (mCRC) patients, i.e., those with bearing microsatellite instable (MSI-high)/deficient DNA mismatch repair (dMMR) tumors, benefit from this approach. The favorable effect of immunotherapy in these patients has been postulated to be due to an increase in neoantigens due to their higher somatic mutational load, also associated with an abundant infiltration of immune cells in tumor microenvironment (TME). While in patients with dMMR tumors checkpoint inhibitors allow achieving durable response with dramatic survival improvement, current results in patients with microsatellite stable (MSS or MSI-low)/proficient DNA mismatch repair (pMMR) tumors are disappointing. These tumors show low mutational load and absence of "immune-competent" TME, and are intrinsically resistant to immune checkpoint inhibitors. Modifying the interplay among cancer cells, TME and host immune system is the aim of multiple lines of research in order to enhance the immunogenicity of pMMR mCRC, and exploit immunotherapy also in this field. Here, we focus on the rationale behind ongoing clinical trials aiming at extending the efficacy of immunotherapy beyond the MSI-high/dMMR subgroup with particular regard to academic no-profit studies.
Collapse
Affiliation(s)
- Federica Marmorino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Alessandra Boccaccino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Marco Maria Germani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Alfredo Falcone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
106
|
Kitamura S, Maeda T, Yanagi T. Vandetanib inhibits cell growth in EGFR-expressing cutaneous squamous cell carcinoma. Biochem Biophys Res Commun 2020; 531:396-401. [PMID: 32800552 DOI: 10.1016/j.bbrc.2020.07.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
Advanced cutaneous squamous cell carcinoma (SCC) responds poorly to chemotherapy, leading to significant morbidity or death. Overexpression of epidermal growth factor receptor (EGFR) is frequently observed in advanced cutaneous SCC. Vandetanib is a multiple tyrosine kinase targeting vascular endothelial growth factor receptor-2 (VEGFR2), EGFR, and the rearranged during transfection (RET) proto-oncogene. Vandetanib has been reported to inhibit tumor growth in head and neck SCC. However, the efficacy of vandetanib against cutaneous SCC has not been thoroughly investigated. The aim of this study is to evaluate the efficacy of vandetanib against cutaneous SCC in vitro and in vivo. Vandetanib is found to inhibit the proliferation of cutaneous SCC cells as assessed by cell viability and clonogenic assay. Cell death analysis indicates that vandetanib induces cell death in SCC cells but not in normal human keratinocytes or fibroblasts. The in vivo anti-tumor effect of vandetanib is shown in xenograft tumor models using A431 SCC cells. Mechanistically, vandetanib suppresses the phosphorylation of EGFR in SCC cells. Clinically, EGFR expression levels are elevated in cutaneous SCC specimens, relative to normal epidermis. In conclusion, we identified vandetanib as a novel therapeutic option for cutaneous SCC, especially in tumors with high EGFR expression.
Collapse
Affiliation(s)
- Shinya Kitamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takuya Maeda
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Teruki Yanagi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
107
|
Ye P, Cai P, Xie J, Wei Y. The diagnostic accuracy of digital PCR, ARMS and NGS for detecting KRAS mutation in cell-free DNA of patients with colorectal cancer: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e20708. [PMID: 32590745 PMCID: PMC7328928 DOI: 10.1097/md.0000000000020708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Cetuximab and panitumumab have been used clinically to treat metastatic colorectal cancer for more than 15 years. Before the treatment is given, it is required to determine the KRAS mutation status since it would lead to drug resistance. Tumor tissue sample is traditionally used for cancer genotyping. In recent years, liquid biopsy sample has been intensively investigated as a surrogate for tumor tissue sample due to its non-invasiveness and better presentation of tumor heterogeneity. The aim of this study is to systematically summarize the accuracy of KRAS mutation measurement in colorectal cancer using cell-free DNA in liquid biopsy samples, with tumor tissue sample as reference (gold standard). METHODS AND ANALYSIS We will search literatures in the following databases: Pubmed, Embase, and Cochrane Library. Systemic review and meta-analysis will be performed to summarize the accuracy of KRAS mutation measurement in colorectal cancer using liquid biopsy sample, and subgroup analysis will be performed on different testing platforms, and on metastatic and non-metastatic colorectal cancer. TIMELINE This study will start on June 1, 2020, and is expected to be finished by November 1, 2020. ETHICS AND DISSEMINATION Ethical approval will not be required since the data obtained and analyzed in this study will not be on individual patients. Study results will be disseminated as an official publication in a peer-reviewed journal.Registration: PROSPERO CRD42020176682.
Collapse
Affiliation(s)
- Peng Ye
- Department of Anatomy and Histology, College of Medicine, Chengdu University
| | - Peiling Cai
- Department of Anatomy and Histology, College of Medicine, Chengdu University
| | - Jing Xie
- Department of Pathology and Clinical Laboratory, Sichuan Provincial Fourth People's Hospital
| | - Yuanyuan Wei
- Department of Physiology, College of Medicine, Chengdu University, Chengdu, China
| |
Collapse
|
108
|
Huo M, Zhao Y, Liu X, Gao Y, Zhang D, Chang M, Liu M, Xu N, Zhu H. EGFR targeting enhances the efficiency of chemotherapy through inhibiting IRE1α-XBP1s pathway in colorectal cancer cells. J Cancer 2020; 11:4464-4473. [PMID: 32489465 PMCID: PMC7255363 DOI: 10.7150/jca.44234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022] Open
Abstract
Targeting EGFR combined with chemotherapy is one of the most valuable therapeutic strategies in colorectal cancer. However, resistance remains a major obstacle to improve efficacy. IRE1α-XBP1s signaling pathway is activated in many malignant tumors, and plays important roles in chemoresistance. Therefore, IRE1α-XBP1s might be a potential target to overcome the chemoresistance in colorectal cancer. In this study, we detected the activation of IRE1α-XBP1s signaling in patient cancer tissues and colorectal cancer cell lines. The phosphorylation level of IRE1α and the spliced XBP1s were aberrantly elevated in colorectal cancer, and IRE1α-XBP1s signaling activation was correlated with high EGFR expression. By overexpression of EGFR protein or activation by EGF treatment, we found that EGFR activation could enhance the phosphorylation of IRE1α and spliced XBP1s expression. On the contrary, inhibition of EGFR decreased the IRE1α-XBP1s signaling. Further, we examined the downstream signaling pathways regulated by EGFR. Inhibition of ERK activity could reverse the EGFR induced IRE1α-XBP1s activation. Co-IP confirmed the physical interaction of ERK and IRE1α. Cell growth and colony formation assay showed that the inhibition of IRE1α activity could suppress EGFR driven colorectal cancer cell proliferation. Furthermore, we found that oxaliplatin could activate IRE1α-XBP1s signaling, and combination with cetuximab partially reversed the activation. Inhibition of EGFR signaling could enhance the efficacy of oxaliplatin in vitro and in vivo. Our results showed that IRE1α RNase activity is aberrantly elevated in colorectal cancer, and EGFR signaling could activate IRE1α/XBP1s possibly through EGFR-MEK-ERK pathway. IRE1α-XBP1s pathway might involve in EGFR driven tumor cell proliferation. Cetuximab could partially recover oxaliplatin-induced IRE1α-XBP1s activation, and therefore enhance the anti-tumor efficacy of oxaliplatin. Our findings declare a new mechanism that targeting EGFR could inhibit chemotherapy-induced IRE1α-XBP1s activation and therefore enhance the efficacy.
Collapse
Affiliation(s)
- Miaomiao Huo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xianghe Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yang Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Die Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mengjiao Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mei Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ningzhi Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongxia Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
109
|
Evaluation of Second-line Anti-VEGF after First-line Anti-EGFR Based Therapy in RAS Wild-Type Metastatic Colorectal Cancer: The Multicenter "SLAVE" Study. Cancers (Basel) 2020; 12:cancers12051259. [PMID: 32429380 PMCID: PMC7281759 DOI: 10.3390/cancers12051259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022] Open
Abstract
: Background: The optimal anti-angiogenic strategy as second-line treatment in RAS wild-type metastatic colorectal cancer (mCRC) treated with anti-EGFR (Epidermal Growth Factor Receptor) based first-line treatment is still debated. METHODS This multicenter, real-world, retrospective study is aimed at evaluating the effectiveness of second-line Bevacizumab- and Aflibercept-based treatments after an anti-EGFR based first-line regimen. Clinical outcomes measured were: objective response rate (ORR), progression free survival (PFS), overall survival (OS) and adverse events (AEs) profiles. RESULTS From February 2011 to October 2019, 277 consecutive mCRC patients received Bevacizumab-based (228, 82.3%) or Aflibercept-based (49, 17.7%) regimen. No significant difference was found regarding ORR. The median follow-up was 27.7 months (95%CI: 24.7-34.4). Aflibercept-treated group had a significantly shorter PFS compared to Bevacizumab-treated group (5.6 vs. 7.1 months, respectively) (HR = 1.34 (95%CI: 0.95-1.89); p = 0.0932). The median OS of the Bevacizumab-treated group and Aflibercept-treated group was 16.2 (95%CI: 15.3-18.1) and 12.7 (95%CI: 8.8-17.5) months, respectively (HR= 1.31 (95%CI: 0.89-1.93) p = 0.16). After adjusting for the key covariates (age, gender, performance status, number of metastatic sites and primary tumor side) Bevacizumab-based regimens revealed to be significantly related with a prolonged PFS (HR = 1.44 (95%CI: 1.02-2.03); p = 0.0399) compared to Aflibercept-based regimens, but not with a prolonged OS (HR = 1.47 (95%CI: 0.99-2.17); p = 0.0503). The incidence of G3/G4 VEGF inhibitors class-specific AEs was 7.5% and 26.5% in the Bevacizumab-treated group and the Aflibercept-treated group, respectively (p = 0.0001). CONCLUSION Our analysis seems to reveal that Bevacizumab-based regimens have a slightly better PFS and class-specific AEs profile compared to Aflibercept-based regimen as second-line treatment of RAS wild-type mCRC patients previously treated with anti-EGFR based treatments. These results have to be taken with caution and no conclusive considerations are allowed.
Collapse
|
110
|
Wang J, Liu J, Guo Y. Cell Growth Stimulation, Cell Cycle Alternation, and Anti-Apoptosis Effects of Bovine Bone Collagen Hydrolysates Derived Peptides on MC3T3-E1 Cells Ex Vivo. Molecules 2020; 25:E2305. [PMID: 32422931 PMCID: PMC7287833 DOI: 10.3390/molecules25102305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 01/30/2023] Open
Abstract
Bovine bone collagen hydrolysates promote bone formation through regulating bone growth. However, the peptide sequences within these isolates have not been characterized. In this study, twenty-nine peptides from bovine bone collagen hydrolysates were purified and identified using nano-HPLC-MS-MS and Peak Studio analysis. HHGDQGAPGAVGPAGPRGPAGPSGPAGKDGR (Deamidation) and GPAGANGDRGEAGPAGPAGPAGPR (Deamidation) enhanced cell viability, inhibited apoptosis, and significantly altered the cell cycle of MC3T3-E1 osteoblast cells. These peptides were selected to perform molecular docking analysis to examine the mechanism underlying these bioactivities. Molecular docking analysis showed that these two peptides formed hydrophobic interactions and hydrogen bonds with epidermal growth factor receptor (EGFR) to activate the EGFR-signaling pathway, which may explain their bioactivity. These findings indicate that these and other similar peptides might be candidates for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.W.); (J.L.)
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Junli Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.W.); (J.L.)
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.W.); (J.L.)
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| |
Collapse
|
111
|
Liposomes Loaded with the Proteasome Inhibitor Z-Leucinyl-Leucinyl-Norleucinal are Effective in Inducing Apoptosis in Colorectal Cancer Cell Lines. MEMBRANES 2020; 10:membranes10050091. [PMID: 32375292 PMCID: PMC7281214 DOI: 10.3390/membranes10050091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/19/2020] [Accepted: 04/29/2020] [Indexed: 01/09/2023]
Abstract
Colorectal cancer (CRC) is one of the main causes of cancer-related death in developed countries. Targeted therapies and conventional chemotherapeutics have been developed to help treat this type of aggressive cancer. Among these, the monoclonal antibodies cetuximab (Cxm) and panitumumab specifically target and inactivate the signaling of ERBB1 (EGF receptor), a key player in the development and progression of this cancer. Unfortunately, these antibodies are effective only on a small fraction of patients due to primary or secondary/acquired resistance. However, as ERBB1 cell surface expression is often maintained in resistant tumors, ERBB1 can be exploited as a target to deliver other drugs. Liposomes and immunoliposomes are under intensive investigation as pharmaceutical nanocarriers and can be functionalized with specific antibodies. In this study, we first investigated the anti-cancer activity of a cell permeable tripeptide, leucine-leucin-norleucinal (LLNle), an inhibitor of gamma-secretase and proteasome, in three different CRC cell lines that express ERBB1. We formulated LLNle-liposomes and Cxm-conjugated LLNle-loaded liposomes (LLNle-immunoliposomes) and evaluated their efficacy in inhibiting cell survival. Despite similar pro-apoptotic effects of free LLNle and LLNle-liposomes, immunoliposomes-LLNle were significantly less effective than their unconjugated counterparts. Indeed, immunoliposomes-LLNle were readily internalized and trafficked to lysosomes, where LLNle was likely trapped and/or inactivated. In conclusion, we demonstrated that LLNle was readily delivered to CRC cell lines by liposomes, but immunoliposomes-LLNle failed to show significant anti-cancer activity.
Collapse
|