101
|
Giacomelli C, Daniele S, Martini C. Potential biomarkers and novel pharmacological targets in protein aggregation-related neurodegenerative diseases. Biochem Pharmacol 2017; 131:1-15. [PMID: 28159621 DOI: 10.1016/j.bcp.2017.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
The aggregation of specific proteins plays a pivotal role in the etiopathogenesis of several neurodegenerative diseases (NDs). β-Amyloid (Aβ) peptide-containing plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated protein tau are the two main neuropathological lesions in Alzheimer's disease. Meanwhile, Parkinson's disease is defined by the presence of intraneuronal inclusions (Lewy bodies), in which α-synuclein (α-syn) has been identified as a major protein component. The current literature provides considerable insights into the mechanisms underlying oligomeric-related neurodegeneration, as well as the relationship between protein aggregation and ND, thus facilitating the development of novel putative biomarkers and/or pharmacological targets. Recently, α-syn, tau and Aβ have been shown to interact each other or with other "pathological proteins" to form toxic heteroaggregates. These latest findings are overcoming the concept that each neurodegenerative disease is related to the misfolding of a single specific protein. In this review, potential opportunities and pharmacological approaches targeting α-syn, tau and Aβ and their oligomeric forms are highlighted with examples from recent studies. Protein aggregation as a biomarker of NDs, in both the brain and peripheral fluids, is deeply explored. Finally, the relationship between biomarker establishment and assessment and their use as diagnostics or therapeutic targets are discussed.
Collapse
Affiliation(s)
- Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|
102
|
Lei J, Qi R, Xie L, Xi W, Wei G. Inhibitory effect of hydrophobic fullerenes on the β-sheet-rich oligomers of a hydrophilic GNNQQNY peptide revealed by atomistic simulations. RSC Adv 2017. [DOI: 10.1039/c6ra27608c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fullerenes suppress fibril-like β-sheet oligomers by interacting strongly with the nonpolar aliphatic groups of polar residues of GNNQQNY peptide, thus inhibit peptide aggregation.
Collapse
Affiliation(s)
- Jiangtao Lei
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Department of Physics
- Fudan University
- Shanghai
| | - Ruxi Qi
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Department of Physics
- Fudan University
- Shanghai
| | - Luogang Xie
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Department of Physics
- Fudan University
- Shanghai
| | - Wenhui Xi
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Department of Physics
- Fudan University
- Shanghai
| | - Guanghong Wei
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Department of Physics
- Fudan University
- Shanghai
| |
Collapse
|
103
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
104
|
Casamenti F, Stefani M. Olive polyphenols: new promising agents to combat aging-associated neurodegeneration. Expert Rev Neurother 2016; 17:345-358. [DOI: 10.1080/14737175.2017.1245617] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fiorella Casamenti
- Department of Neuroscience, Psychology, Division of Pharmacology and Toxicology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Biomedical Experimental and Clinical Sciences ‘Mario Serio’, University of Florence, Florence, Italy
| |
Collapse
|
105
|
Ma DL, Wang M, Liu C, Miao X, Kang TS, Leung CH. Metal complexes for the detection of disease-related protein biomarkers. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
106
|
Abstract
The aggregation of peptides/proteins is intimately related to a number of human diseases. More than 20 have been identified which aggregate into fibrils containing extensive β-sheet structures, and species generated in the aggregation processes (i.e., oligomers and fibrils) contribute to disease development. Amyloid-β peptide (designated Aβ), related to Alzheimer's disease (AD), is the representative example. The intensive aggregation property of Aβ also leads to difficulty in its synthesis. To improve the synthetic problem, we developed an O-acyl isopeptide of Aβ1-42, in which the N-acyl linkage (amide bond) of Ser(26) was replaced with an O-acyl linkage (ester bond) at the side chain. The O-acyl isopeptide demonstrated markedly higher water-solubility than that of Aβ1-42, while it quickly converted to intact monomer Aβ1-42 via an O-to-N acyl rearrangement under physiological conditions. Inhibition of the pathogenic aggregation of Aβ1-42 might be a therapeutic strategy for curing AD. We succeeded in the rational design and identification of a small molecule aggregation inhibitor based on a pharmacophore motif obtained from cyclo[-Lys-Leu-Val-Phe-Phe-]. Moreover, the inhibition of Aβ aggregation was achieved via oxygenation (i.e., incorporation of oxygen atoms to Aβ) using an artificial catalyst. We identified a selective, cell-compatible photo-oxygenation catalyst of Aβ, a flavin catalyst attached to an Aβ-binding peptide, which markedly decreased the aggregation potency and neurotoxicity of Aβ.
Collapse
Affiliation(s)
- Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
107
|
Melkani GC. Huntington's Disease-Induced Cardiac Disorders Affect Multiple Cellular Pathways. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2016; 2:325-338. [PMID: 29963642 PMCID: PMC6022757 DOI: 10.20455/ros.2016.859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is a rare, inherited, progressive, and fatal neurological disorder resulting from expanded polyglutamine repeats in the huntingtin protein. While HD is predominately characterized as a disease of the central nervous system, mortality surveys and epidemiological studies reveal heart disease as one of the leading causes of death in HD patients. Emerging evidence supports a link between HD and cardiovascular disease, such as cardiac amyloidosis (accumulation of aggregates in the heart). Experimental animal and clinical studies have attempted to explain the mechanisms of HD-induced cardiac pathology in the association of protein misfolding, autophagic defects, oxidative stress, mitochondrial dysfunction, and cell death. HD is increasingly understood as a complex disease with peripheral components of cardiac and skeletal muscle pathophysiology. While the discovery of these linkages and apparent pathological markers is promising, the mechanism of HD-induced cardiac pathology and the nature of its cell autonomy remain elusive. Further study of the wide-ranging cardiac function in HD patients is needed. This review highlights published literature on the pathological factors associated with HD-induced cardiac amyloidosis and other cardiovascular diseases, and addresses gaps in this expanding area of study. Through comprehensive experimental and clinical studies, potential drugs can be tested to attenuate and/or ameliorate HD-induced cardiac pathology and mortality.
Collapse
Affiliation(s)
- Girish C Melkani
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
108
|
Activation of NRF2/ARE by isosilybin alleviates Aβ25-35-induced oxidative stress injury in HT-22 cells. Neurosci Lett 2016; 632:92-7. [PMID: 27567700 DOI: 10.1016/j.neulet.2016.08.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
Abstract
Aβ-mediated oxidative stress damage is considered a direct cause of Alzheimer's disease (AD). Therefore, drugs that have been developed to block oxidative stress are considered effective for AD treatment. Isosilybin is a flavonoid compound extracted from Silybum marianum, and it has been confirmed to have many pharmacological activities. This study aimed to verify that isosilybin could alleviate the Aβ25-35-induced oxidative stress damage in HT-22 hippocampal cells and to investigate the specific targets of isosilybin. A non-toxic dose of isosilybin significantly inhibited the production of reactive oxygen species (ROS), the release of malondialdehyde (MDA) and lactate dehydrogenase (LDH), and the Aβ25-35-stimulated reduction in total antioxidant capacity (T-AOC). Subsequent studies showed that isosilybin significantly increased the protein and mRNA expression of antioxidases, including heme oxygenase-1 (HO-1), glutathione S-transferase (GST), and aldo-keto reductases 1C1 and 1C2 (AKR1C2). Moreover, isosilybin stimulated the activity of an antioxidant-response element (ARE)-driven luciferase reporter gene. Further studies showed that isosilybin induced the expression of NFR-2 in a time- and dose-dependent manner and promoted its translocation to the nucleus. This result indicated that the antioxidant function of isosilybin might be achieved through the activation of NRF2/ARE signalling. Subsequent studies showed that the NRF2-specific agonist t-BHQ effectively inhibited ROS, MDA and LDH release and T-AOC reduction under Aβ25-35 stimulation. In addition, t-BHQ induced the expression of HO-1, GST, and AKR1C2, as well as the activity of ARE luciferase reporter plasmids. NRF2 siRNA blocked the antioxidative stress damage function of isosilybin. Therefore, NRF2 is likely to be a key mediator of isosilybin's anti-Aβ25-35-mediated oxidative stress damage function. Overall, our results confirmed that isosilybin regulates the expression of HO-1, GST, and AKR1C2 through the activation of NRF2/ARE signalling, inhibiting ROS accumulation and ultimately alleviating Aβ25-35-induced oxidative stress damage in HT-22 cells.
Collapse
|
109
|
Konijnenberg A, Ranica S, Narkiewicz J, Legname G, Grandori R, Sobott F, Natalello A. Opposite Structural Effects of Epigallocatechin-3-gallate and Dopamine Binding to α-Synuclein. Anal Chem 2016; 88:8468-75. [PMID: 27467405 DOI: 10.1021/acs.analchem.6b00731] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The intrinsically disordered and amyloidogenic protein α-synuclein (AS) has been linked to several neurodegenerative states, including Parkinson's disease. Here, nanoelectrospray-ionization mass spectrometry (nano-ESI-MS), ion mobility (IM), and native top-down electron transfer dissociation (ETD) techniques are employed to study AS interaction with small molecules known to modulate its aggregation, such as epigallocatechin-3-gallate (EGCG) and dopamine (DA). The complexes formed by the two ligands under identical conditions reveal peculiar differences. While EGCG engages AS in compact conformations, DA preferentially binds to the protein in partially extended conformations. The two ligands also have different effects on AS structure as assessed by IM, with EGCG leading to protein compaction and DA to its extension. Native top-down ETD on the protein-ligand complexes shows how the different observed modes of binding of the two ligands could be related to their known opposite effects on AS aggregation. The results also show that the protein can bind either ligand in the absence of any covalent modifications, such as oxidation.
Collapse
Affiliation(s)
- Albert Konijnenberg
- Biomolecular & Analytical Mass Spectrometry, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Simona Ranica
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Joanna Narkiewicz
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) and ELETTRA-Sincrotrone Trieste S.C.p.A , 34136 Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) and ELETTRA-Sincrotrone Trieste S.C.p.A , 34136 Trieste, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium.,Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds, LS2 9JT, U.K.,School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy.,Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), UdR of Milano-Bicocca, and Milan Center of Neuroscience (NeuroMI), 20126 Milan, Italy
| |
Collapse
|
110
|
Caruana M, Cauchi R, Vassallo N. Putative Role of Red Wine Polyphenols against Brain Pathology in Alzheimer's and Parkinson's Disease. Front Nutr 2016; 3:31. [PMID: 27570766 PMCID: PMC4981604 DOI: 10.3389/fnut.2016.00031] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/29/2016] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common age-related neurodegenerative disorders and hence pose remarkable socio-economical burdens to both families and state. Although AD and PD have different clinical and neuropathological features, they share common molecular mechanisms that appear to be triggered by multi-factorial events, such as protein aggregation, mitochondrial dysfunction, oxidative stress (OS), and neuroinflammation, ultimately leading to neuronal cell death. Currently, there are no established and validated disease-modifying strategies for either AD or PD. Among the various lifestyle factors that may prevent or slow age-related neurodegenerative diseases, epidemiological studies on moderate consumption of red wine, especially as part of a holistic Mediterranean diet, have attracted increasing interest. Red wine is particularly rich in specific polyphenolic compounds that appear to affect the biological processes of AD and PD, such as quercetin, myricetin, catechins, tannins, anthocyanidins, resveratrol, and ferulic acid. Indeed, there is now a consistent body of in vitro and in vivo data on the neuroprotective effects of red wine polyphenols (RWP) showing that they do not merely possess antioxidant properties, but may additionally act upon, in a multi-target manner, the underlying key mechanisms featuring in both AD and PD. Furthermore, it is important that bioavailability issues are addressed in order for neuroprotection to be relevant in a clinical study scenario. This review summarizes the current knowledge about the major classes of RWP and places into perspective their potential to be considered as nutraceuticals to target neuropathology in AD and PD.
Collapse
Affiliation(s)
- Mario Caruana
- Centre for Molecular Medicine and Biobanking, University of Malta , Msida , Malta
| | - Ruben Cauchi
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta; Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Neville Vassallo
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta; Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| |
Collapse
|
111
|
Xu Y, Zhang Y, Quan Z, Wong W, Guo J, Zhang R, Yang Q, Dai R, McGeer PL, Qing H. Epigallocatechin Gallate (EGCG) Inhibits Alpha-Synuclein Aggregation: A Potential Agent for Parkinson's Disease. Neurochem Res 2016; 41:2788-2796. [PMID: 27364962 DOI: 10.1007/s11064-016-1995-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 06/19/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
Protein aggregation is a prominent feature of many neurodegenerative disorders including Parkinson's disease (PD). Aggregation of alpha-synuclein (SNCA) may underlie the pathology of PD. They are the main components of Lewy bodies and dystrophic neurites that are the intraneuronal inclusions characteristic of the disease. We have demonstrated that the polyphenol (-)-epi-gallocatechine gallate (EGCG) inhibited SNCA aggregation, which made it a candidate for therapeutic intervention in PD. Three methods were used: SNCA fibril formation inhibition by EGCG in incubates; inhibition of the SNCA fluorophore A-Syn-HiLyte488 binding to plated SNCA in microwells; and inhibition of the A-Syn-HiLyte488 probe binding to aggregated SNCA in postmortem PD tissue. Recombinant human SNCA was incubated under conditions that result in fibril formation. The aggregation was blocked by 100 nM EGCG in a concentration-dependent manner, as shown by an absence of thioflavin T binding. In the microplate assay system, the ED50 of EGCG inhibition of A-Syn-HiLyte488 binding to coated SNCA was 250 nM. In the PD tissue based assay, SNCA aggregates were recognized by incubation with 7 nM of A-Syn-HiLyte488. This binding was blocked by EGCG in a concentration dependent manner. The SNCA amino acid sites, which potentially interacted with EGCG, were detected on peptide membranes. It was implicated that EGCG binds to SNCA by instable hydrophobic interactions. In this study, we suggested that EGCG could be a potent remodeling agent of SNCA aggregates and a potential disease modifying drug for the treatment of PD and other α-synucleinopathies.
Collapse
Affiliation(s)
- Yan Xu
- Research Center for Biopharmaceutical and Bioengineering, Beijing Institute of Technology, School of Life Science, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Yanyan Zhang
- Research Center for Biopharmaceutical and Bioengineering, Beijing Institute of Technology, School of Life Science, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Zhenzhen Quan
- Research Center for Biopharmaceutical and Bioengineering, Beijing Institute of Technology, School of Life Science, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Winnie Wong
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC, Canada
| | - Jianping Guo
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC, Canada
| | - Rongkai Zhang
- Research Center for Biopharmaceutical and Bioengineering, Beijing Institute of Technology, School of Life Science, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Qinghu Yang
- Research Center for Biopharmaceutical and Bioengineering, Beijing Institute of Technology, School of Life Science, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Rongji Dai
- Research Center for Biopharmaceutical and Bioengineering, Beijing Institute of Technology, School of Life Science, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Patrick L McGeer
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC, Canada
| | - Hong Qing
- Research Center for Biopharmaceutical and Bioengineering, Beijing Institute of Technology, School of Life Science, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
112
|
Switchable photooxygenation catalysts that sense higher-order amyloid structures. Nat Chem 2016; 8:974-82. [PMID: 27657874 DOI: 10.1038/nchem.2550] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 05/16/2016] [Indexed: 11/08/2022]
Abstract
Proteins can misfold into amyloid structures that are associated with diseases; however, the same proteins often have important biological roles. To degrade selectively the amyloid form without affecting the fraction of functional protein is, therefore, an attractive goal. Here we report target-state-dependent photooxygenation catalysts that are active only when bound to the cross-β-sheet structure that is characteristic of pathogenic aggregated amyloid proteins. We show these catalysts can selectively oxygenate the amyloid form of amyloid β-protein (Aβ) 1-42 in the presence of non-amyloid off-target substrates. Furthermore, photooxygenation with a catalyst that bears an Aβ-binding peptide attenuated the Aβ pathogenicity in the presence of cells. We also show that selective photooxygenation is generally applicable to other amyloidogenic proteins (amylin, insulin, β2-microglobulin, transthyretin and α-synuclein) and does not affect the physiologically functional non-aggregate states of these proteins. This is the first report of an artificial catalyst that can be selectively and reversibly turned on and off depending on the structure and aggregation state of the substrate protein.
Collapse
|
113
|
Maqbool M, Manral A, Jameel E, Kumar J, Saini V, Shandilya A, Tiwari M, Hoda N, Jayaram B. Development of cyanopyridine–triazine hybrids as lead multitarget anti-Alzheimer agents. Bioorg Med Chem 2016; 24:2777-88. [DOI: 10.1016/j.bmc.2016.04.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 11/15/2022]
|
114
|
Pantano D, Luccarini I, Nardiello P, Servili M, Stefani M, Casamenti F. Oleuropein aglycone and polyphenols from olive mill waste water ameliorate cognitive deficits and neuropathology. Br J Clin Pharmacol 2016; 83:54-62. [PMID: 27131215 DOI: 10.1111/bcp.12993] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 01/01/2023] Open
Abstract
AIM In TgCRND8 (Tg) mice we checked the dose-response effect of diet supplementation with oleuropein aglycone (OLE) at 12.5 or 0.5 mg kg-1 of diet. We also studied the effects of dietary intake of the mix of polyphenols present in olive mill waste water administered at a total dose as high as the highest dose of OLE (50 mg kg-1 of diet) previously investigated. METHODS Four month-old Tg mice were equally divided into four groups and treated for 8 weeks with a modified low fat (5.0%) AIN-76 A diet (10 g day-1 per mouse) as such, supplemented with OLE (12.5 or 0.5 mg kg-1 of diet) or with a mix of polyphenols (50 mg kg-1 of diet) found in olive mill waste water. Behavioural performance was evaluated by the step down inhibitory avoidance and object recognition tests. Neuropathology was analyzed by immunohistochemistry. RESULTS OLE supplementation at 12.5 mg kg-1 of diet and the mix of polyphenols was found to improve significantly cognitive functions of Tg mice (P < 0.0001). Aß42 and pE-3Aß plaque area and number were significantly reduced in the cortex by OLE and in the cortex and hippocampus by the mix of polyphenols (P < 0.01, P < 0.001 and P < 0.0001). Similar autophagy induction was found in the brain cortex of differently treated mice. CONCLUSION Our results extend previous data showing that the effects of OLE on behavioural performance and neuropathology are dose-dependent and not closely related to OLE by itself. In fact, diet supplementation with the same dose of a mix of polyphenols found in olive mill waste water resulted in comparable neuroprotection.
Collapse
Affiliation(s)
- Daniela Pantano
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini, 6, 50139, Florence
| | - Ilaria Luccarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini, 6, 50139, Florence
| | - Pamela Nardiello
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini, 6, 50139, Florence
| | - Maurizio Servili
- Department of Agricultural Sciences, Food and Environment, University of Perugia, Via S. Costanzo, 06126, Perugia, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G. B. Morgagni, 50, 50134, Florence
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini, 6, 50139, Florence
| |
Collapse
|
115
|
Chen F, Wang Y, Yang M, Yin J, Meng Q, Bu F, Sun D, Liu J. Interaction of the ginsenosides with κ-casein and their effects on amyloid fibril formation by the protein: Multi-spectroscopic approaches. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 160:306-17. [PMID: 27163725 DOI: 10.1016/j.jphotobiol.2016.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
The interaction of the ginsenosides (GS) including ginsenoside Rg1, Rb1 and Re with κ-casein and the effects of GS inhibiting amyloid fibril formation by κ-casein have been investigated in vitro by fluorescence and ultraviolet spectra. Results showed that Rg1 and Rb1 had dose-dependent inhibitory effects on reduced and carboxymethylated κ-casein (RCMκ-CN) fibril formation, while Re resulted in an increase in the rate of fibril formation. The enhancement in RLS intensity was attributed to the formation of new complex between GS and RCMκ-CN, and the corresponding thermodynamic parameters (ΔH, ΔS and ΔG) were assayed. The steady-state ultraviolet-visible absorption spectra had also been tested to observe if the ground-state complex formed, and it showed the same result as RLS spectra. The binding constants and the number of binding sites between GS and RCMκ-CN at different temperatures had been evaluated from relevant fluorescence data. According to the Förster non-radiation energy transfer theory, the binding distance between RCMκ-CN and GS was calculated. The fluorescence lifetime of RCMκ-CN was longer in the presence of GS than in absence of GS, which was evident that the hydrophobic interaction plays a major role in the binding of GS to RCMκ-CN. From the results of synchronous fluorescence, it could be deduced that the polarity around RCMκ-CN Trp97 residue decreased and the hydrophobicity increased after addition of Rg1 or Rb1. Based on all the above results, it is explained that Rg1 and Rb1 inhibited amyloid fibril formation by κ-casein because the molecular spatial conformation and physical property of κ-casein changed causing by the complex formation between GS and κ-casein.
Collapse
Affiliation(s)
- Fanbo Chen
- College of Pharmacy, Jilin University, Changchun 130021, PR China
| | - Yunhua Wang
- College of Pharmacy, Jilin University, Changchun 130021, PR China
| | - Miao Yang
- College of Pharmacy, Jilin University, Changchun 130021, PR China
| | - Jianyuan Yin
- College of Pharmacy, Jilin University, Changchun 130021, PR China
| | - Qin Meng
- College of Pharmacy, Jilin University, Changchun 130021, PR China
| | - Fengquan Bu
- College of Pharmacy, Jilin University, Changchun 130021, PR China
| | - Dandan Sun
- College of Pharmacy, Jilin University, Changchun 130021, PR China
| | - Jihua Liu
- College of Pharmacy, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
116
|
Zhang X, Liu J, Huang L, Yang X, Petersen RB, Sun Y, Gong H, Zheng L, Huang K. How the imidazole ring modulates amyloid formation of islet amyloid polypeptide: A chemical modification study. Biochim Biophys Acta Gen Subj 2016; 1860:719-26. [DOI: 10.1016/j.bbagen.2016.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/18/2015] [Accepted: 01/13/2016] [Indexed: 11/25/2022]
|
117
|
Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol Res Perspect 2016; 4:e00211. [PMID: 26977301 PMCID: PMC4777263 DOI: 10.1002/prp2.211] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Drug‐induced toxicity is a key issue for public health because some side effects can be severe and life‐threatening. These adverse effects can also be a major concern for the pharmaceutical companies since significant toxicity can lead to the interruption of clinical trials, or the withdrawal of the incriminated drugs from the market. Recent studies suggested that endoplasmic reticulum (ER) stress could be an important event involved in drug liability, in addition to other key mechanisms such as mitochondrial dysfunction and oxidative stress. Indeed, drug‐induced ER stress could lead to several deleterious effects within cells and tissues including accumulation of lipids, cell death, cytolysis, and inflammation. After recalling important information regarding drug‐induced adverse reactions and ER stress in diverse pathophysiological situations, this review summarizes the main data pertaining to drug‐induced ER stress and its potential involvement in different adverse effects. Drugs presented in this review are for instance acetaminophen (APAP), arsenic trioxide and other anticancer drugs, diclofenac, and different antiretroviral compounds. We also included data on tunicamycin (an antibiotic not used in human medicine because of its toxicity) and thapsigargin (a toxic compound of the Mediterranean plant Thapsia garganica) since both molecules are commonly used as prototypical toxins to induce ER stress in cellular and animal models.
Collapse
|
118
|
Cai P, Ye J, Zhu J, Liu D, Chen D, Wei X, Johnson NR, Wang Z, Zhang H, Cao G, Xiao J, Ye J, Lin L. Inhibition of Endoplasmic Reticulum Stress is Involved in the Neuroprotective Effect of bFGF in the 6-OHDA-Induced Parkinson's Disease Model. Aging Dis 2016; 7:336-449. [PMID: 27493838 PMCID: PMC4963188 DOI: 10.14336/ad.2016.0117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/17/2016] [Indexed: 01/20/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with complicated pathophysiologic mechanisms. Endoplasmic reticulum (ER) stress appears to play a critical role in the progression of PD. We demonstrated that basic fibroblast growth factor (bFGF), as a neurotropic factor, inhibited ER stress-induced neuronal cell apoptosis and that 6-hydroxydopamine (6-OHDA)-induced ER stress was involved in the progression of PD in rats. bFGF administration improved motor function recovery, increased tyrosine hydroxylase (TH)-positive neuron survival, and upregulated the levels of neurotransmitters in PD rats. The 6-OHDA-induced ER stress response proteins were inhibited by bFGF treatment. Meanwhile, bFGF also increased expression of TH. The administration of bFGF activated the downstream signals PI3K/Akt and Erk1/2 in vivo and in vitro. Inhibition of the PI3K/Akt and Erk1/2 pathways by specific inhibitors partially reduced the protective effect of bFGF. This study provides new insight towards bFGF translational drug development for PD involving the regulation of ER stress.
Collapse
Affiliation(s)
- Pingtao Cai
- 1School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingjing Ye
- 1School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingjing Zhu
- 1School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Dan Liu
- 1School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Daqing Chen
- 2Emergency Department, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaojie Wei
- 3Department of Neurosurgery, Cixi People's Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, China
| | - Noah R Johnson
- 4Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Zhouguang Wang
- 1School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hongyu Zhang
- 1School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Guodong Cao
- 4Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jian Xiao
- 1School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Junming Ye
- 5Department of Anesthesia, the First Affiliated Hospital, Gannan Medical College, Ganzhou, 341000, China
| | - Li Lin
- 1School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
119
|
Liao M, Zhao Y, Huang L, Cheng B, Huang K. Isoliquiritigenin and liquiritin from Glycyrrhiza uralensis inhibit α-synuclein amyloid formation. RSC Adv 2016. [DOI: 10.1039/c6ra17770k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bioactive isoliquiritigenin and liquiritin inhibit α-synuclein aggregation and extend the life span of theC. elegansmodel of Parkinson's disease.
Collapse
Affiliation(s)
- Mingyan Liao
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Yudan Zhao
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Lizi Huang
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Biao Cheng
- The Department of Pharmacy
- The Central Hospital of Wuhan
- Wuhan
- China
| | - Kun Huang
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
- Center for Biomedicine Research
| |
Collapse
|
120
|
Fortin JS, Benoit-Biancamano MO. Inhibition of islet amyloid polypeptide aggregation and associated cytotoxicity by nonsteroidal anti-inflammatory drugs. Can J Physiol Pharmacol 2016; 94:35-48. [DOI: 10.1139/cjpp-2015-0117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) constitute an important pharmacotherapeutic class that, over the past decade, have expanded in application to a panoply of medical conditions. They have been tested for neurodegenerative diseases such as Alzheimer’s to reduce inflammation and also in the attempt to abrogate amyloid deposition. However, the use of NSAIDs as aggregation inhibitors has not been extensively studied in pancreatic amyloid deposition. Pancreatic amyloidosis involves the misfolding of islet amyloid polypeptide (IAPP) and contributes to the progression of type-2 diabetes in humans and felines. To ascertain their antiamyloidogenic activity, several NSAIDs were tested using fluorometric thioflavin-T assays, circular dichroism, photo-induced cross-linking assays, and cell culture. Celecoxib, diclofenac, indomethacin, meloxicam, niflumic acid, nimesulide, phenylbutazone, piroxicam, sulindac, and tenoxicam reduced fibrillization at a molar ratio of 1:10. The circular dichroism spectra of diclofenac, piroxicam, and sulindac showed characteristic spectral signatures found in predominantly α-helical structures. The oligomerization of human IAPP was abrogated with diclofenac and sulindac at a molar ratio of 1:5. The cytotoxic effects of pre-incubated human IAPP on cultured INS-1 cells were noticeably reduced in the presence of diclofenac, meloxicam, phenylbutazone, sulindac, and tenoxicam at a molar ratio of 1:10. Our results demonstrate that NSAIDs can provide chemical scaffolds to generate new and promising antiamyloidogenic agents that can be used alone or as a coadjuvant therapy.
Collapse
Affiliation(s)
- Jessica S. Fortin
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Odile Benoit-Biancamano
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
121
|
Huang L, Liao M, Yang X, Gong H, Ma L, Zhao Y, Huang K. Bisphenol analogues differently affect human islet polypeptide amyloid formation. RSC Adv 2016. [DOI: 10.1039/c5ra21792j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bisphenols (BPs) are widely used in the production of plastic material, misfolded human islet amyloid polypeptide (hIAPP) is a causal factor in diabetes. We demonstrated BPs analogues show different effects on hIAPP amyloid formation.
Collapse
Affiliation(s)
- Lizi Huang
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Mingyan Liao
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Xin Yang
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Hao Gong
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Liang Ma
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Yudan Zhao
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Kun Huang
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
- Center for Biomedicine Research
| |
Collapse
|
122
|
Singh SK, Srivastav S, Yadav AK, Srikrishna S, Perry G. Overview of Alzheimer's Disease and Some Therapeutic Approaches Targeting Aβ by Using Several Synthetic and Herbal Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7361613. [PMID: 27034741 PMCID: PMC4807045 DOI: 10.1155/2016/7361613] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/05/2015] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is a complex age-related neurodegenerative disease. In this review, we carefully detail amyloid-β metabolism and its role in AD. We also consider the various genetic animal models used to evaluate therapeutics. Finally, we consider the role of synthetic and plant-based compounds in therapeutics.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Saurabh Srivastav
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Amarish Kumar Yadav
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
123
|
Shimojo M, Higuchi M, Suhara T, Sahara N. Imaging Multimodalities for Dissecting Alzheimer's Disease: Advanced Technologies of Positron Emission Tomography and Fluorescence Imaging. Front Neurosci 2015; 9:482. [PMID: 26733795 PMCID: PMC4686595 DOI: 10.3389/fnins.2015.00482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/01/2015] [Indexed: 01/24/2023] Open
Abstract
The rapid progress in advanced imaging technologies has expanded our toolbox for monitoring a variety of biological aspects in living subjects including human. In vivo radiological imaging using small chemical tracers, such as with positron emission tomography, represents an especially vital breakthrough in the efforts to improve our understanding of the complicated cascade of neurodegenerative disorders including Alzheimer's disease (AD), and it has provided the most reliable visible biomarkers for enabling clinical diagnosis. At the same time, in combination with genetically modified animal model systems, the most recent innovation of fluorescence imaging is helping establish diverse applications in basic neuroscience research, from single-molecule analysis to animal behavior manipulation, suggesting the potential utility of fluorescence technology for dissecting the detailed molecular-based consequence of AD pathophysiology. In this review, our primary focus is on a current update of PET radiotracers and fluorescence indicators beneficial for understanding the AD cascade, and discussion of the utility and pitfalls of those imaging modalities for future translational research applications. We will also highlight current cutting-edge genetic approaches and discuss how to integrate individual technologies for further potential innovations.
Collapse
Affiliation(s)
- Masafumi Shimojo
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences Chiba, Japan
| | - Makoto Higuchi
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences Chiba, Japan
| | - Tetsuya Suhara
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences Chiba, Japan
| | - Naruhiko Sahara
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences Chiba, Japan
| |
Collapse
|
124
|
Lu L, Zhong HJ, Wang M, Ho SL, Li HW, Leung CH, Ma DL. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes. Sci Rep 2015; 5:14619. [PMID: 26419607 PMCID: PMC4588514 DOI: 10.1038/srep14619] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/01/2015] [Indexed: 11/20/2022] Open
Abstract
We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1–40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1–40 peptide on the basis of their emission response.
Collapse
Affiliation(s)
- Lihua Lu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Modi Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - See-Lok Ho
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
125
|
Villaverde A, Corchero JL, Seras-Franzoso J, Garcia-Fruitós E. Functional protein aggregates: just the tip of the iceberg. Nanomedicine (Lond) 2015; 10:2881-91. [PMID: 26370294 DOI: 10.2217/nnm.15.125] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
An increasing number of both prokaryotic and eukaryotic cell types are being adapted as platforms for recombinant protein production. The overproduction of proteins in such expression systems leads to the formation of insoluble protein-based aggregates. Although these protein clusters have been poorly studied in most of the eukaryotic systems, aggregates formed in E. coli, named inclusion bodies (IBs), have been deeply characterized in the last decades. Contrary to the general belief, an important fraction of the protein embedded in IB is functional, showing promise in biocatalysis, regenerative medicine and cell therapy. Thus, the exploration of all these functional protein clusters would largely expand their potential in both pharma and biotech industry.
Collapse
Affiliation(s)
- Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Joaquin Seras-Franzoso
- CIBBIM-Nanomedicine, Hospital Universitari Vall d'Hebron & Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08035, Barcelona, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, 08140, Barcelona, Spain
| |
Collapse
|
126
|
Inhibitory effects of magnolol and honokiol on human calcitonin aggregation. Sci Rep 2015; 5:13556. [PMID: 26324190 PMCID: PMC4555095 DOI: 10.1038/srep13556] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023] Open
Abstract
Amyloid formation is associated with multiple amyloidosis diseases. Human calcitonin (hCT) is a typical amyloidogenic peptide, its aggregation is associated with medullary carcinoma of the thyroid (MTC), and also limits its clinical application. Magnolia officinalis is a traditional Chinese herbal medicine; its two major polyphenol components, magnolol (Mag) and honokiol (Hon), have displayed multiple functions. Polyphenols like flavonoids and their derivatives have been extensively studied as amyloid inhibitors. However, the anti-amyloidogenic property of a biphenyl backbone containing polyphenols such as Mag and Hon has not been reported. In this study, these two compounds were tested for their effects on hCT aggregation. We found that Mag and Hon both inhibited the amyloid formation of hCT, whereas Mag showed a stronger inhibitory effect; moreover, they both dose-dependently disassembled preformed hCT aggregates. Further immuno-dot blot and dynamic light scattering studies suggested Mag and Hon suppressed the aggregation of hCT both at the oligomerization and the fibrillation stages, while MTT-based and dye-leakage assays demonstrated that Mag and Hon effectively reduced cytotoxicity caused by hCT aggregates. Furthermore, isothermal titration calorimetry indicated Mag and Hon both interact with hCT. Together, our study suggested a potential anti-amyloidogenic property of these two compounds and their structure related derivatives.
Collapse
|
127
|
Yamakawa MY, Uchino K, Watanabe Y, Adachi T, Nakanishi M, Ichino H, Hongo K, Mizobata T, Kobayashi S, Nakashima K, Kawata Y. Anthocyanin suppresses the toxicity of Aβ deposits through diversion of molecular forms in in vitro and in vivo models of Alzheimer's disease. Nutr Neurosci 2015; 19:32-42. [PMID: 26304685 DOI: 10.1179/1476830515y.0000000042] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES The pathogenesis of Alzheimer's disease (AD) is strongly correlated with the aggregation and deposition of the amyloid beta (Aβ1-42) peptide in fibrillar form, and many studies have shown that plant-derived polyphenols are capable of attenuating AD progression in various disease models. In this study, we set out to correlate the effects of anthocyanoside extracts (Vaccinium myrtillus anthocyanoside (VMA)) obtained from bilberry on the in vitro progression of Aβ fibril formation with the in vivo effects of this compound on AD pathogenesis. METHODS Thioflavin T fluorescence assays and atomic force microscopy were used to monitor Aβ amyloid formation in in vitro assays. Effects of Aβ amyloids on cellular viability were assayed using cultured Neuro2a cells. Cognitive effects were probed using mice that simultaneously expressed mutant human Aβ precursor and mutant presenilin-2. RESULTS Addition of VMA inhibited the in vitro formation of Aβ peptide fibrils and also reduced the toxicity of these aggregates toward Neuro2a cells. A diet containing 1% VMA prevented the cognitive degeneration in AD mice. Curiously, this diet-derived retention of cognitive ability was not accompanied by a reduction in aggregate deposition in brains; rather, an increase in insoluble deposits was observed compared with mice raised on a control diet. DISCUSSION The paradoxical increase in insoluble deposits caused by VMA suggests that these polyphenols divert Aβ aggregation to an alternate, non-toxic form. This finding underscores the complex effects that polyphenol compounds may exert on amyloid deposition in vivo.
Collapse
|
128
|
Hung VWS, Bressan LP, Seo K, Kerman K. Electroanalysis of Natural Compounds as Copper Chelating Agents for Alzheimer’s Disease Therapy. ELECTROANAL 2015. [DOI: 10.1002/elan.201500138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
129
|
Lee BI, Lee S, Suh YS, Lee JS, Kim A, Kwon O, Yu K, Park CB. Photoexcited Porphyrins as a Strong Suppressor of β‐Amyloid Aggregation and Synaptic Toxicity. Angew Chem Int Ed Engl 2015; 54:11472-6. [DOI: 10.1002/anie.201504310] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/22/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Byung Il Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 305‐701 (Republic of Korea)
| | - Seongsoo Lee
- Neurophysiology Research Group, Bionano Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 305‐333 (Korea)
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 500‐757 (Korea)
| | - Yoon Seok Suh
- Neurophysiology Research Group, Bionano Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 305‐333 (Korea)
| | - Joon Seok Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 305‐701 (Republic of Korea)
| | - Ae‐kyeong Kim
- Neurophysiology Research Group, Bionano Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 305‐333 (Korea)
| | - O‐Yu Kwon
- Department of Anatomy, College of Medicine, Chungnam National University, Daejeon 301‐747 (Korea)
| | - Kweon Yu
- Neurophysiology Research Group, Bionano Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 305‐333 (Korea)
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 305‐701 (Republic of Korea)
| |
Collapse
|
130
|
Berthoumieu O, Nguyen PH, Castillo-Frias MPD, Ferre S, Tarus B, Nasica-Labouze J, Noël S, Saurel O, Rampon C, Doig AJ, Derreumaux P, Faller P. Combined experimental and simulation studies suggest a revised mode of action of the anti-Alzheimer disease drug NQ-Trp. Chemistry 2015; 21:12657-66. [PMID: 26179053 DOI: 10.1002/chem.201500888] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 11/09/2022]
Abstract
Inhibition of the aggregation of the monomeric peptide β-amyloid (Aβ) into oligomers is a widely studied therapeutic approach in Alzheimer's disease (AD). Many small molecules have been reported to work in this way, including 1,4-naphthoquinon-2-yl-L-tryptophan (NQ-Trp). NQ-Trp has been reported to inhibit aggregation, to rescue cells from Aβ toxicity, and showed complete phenotypic recovery in an in vivo AD model. In this work we investigated its molecular mechanism by using a combined approach of experimental and theoretical studies, and obtained converging results. NQ-Trp is a relatively weak inhibitor and the fluorescence data obtained by employing the fluorophore widely used to monitor aggregation into fibrils can be misinterpreted due to the inner filter effect. Simulations and NMR experiments showed that NQ-Trp has no specific "binding site"-type interaction with mono- and dimeric Aβ, which could explain its low inhibitory efficiency. This suggests that the reported anti-AD activity of NQ-Trp-type molecules in in vivo models has to involve another mechanism. This study has revealed the potential pitfalls in the development of aggregation inhibitors for amyloidogenic peptides, which are of general interest for all the molecules studied in the context of inhibiting the formation of toxic aggregates.
Collapse
Affiliation(s)
- Olivia Berthoumieu
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4 (France) and Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4 (France)
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)
| | - Maria P Del Castillo-Frias
- Manchester Institute of Biotechnology, Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN (UK)
| | - Sabrina Ferre
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4 (France) and Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4 (France)
| | - Bogdan Tarus
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)
| | - Jessica Nasica-Labouze
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)
| | - Sabrina Noël
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4 (France) and Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4 (France)
| | - Olivier Saurel
- IPBS Institute of Pharmacology and Structural Biology, Université de Toulouse, UPS, 205 route de Narbonne, 31077 Toulouse (France).,IPBS, UMR 5089, CNRS, 205 route de Narbonne, BP 64182, 31077 Toulouse (France)
| | - Claire Rampon
- Université de Toulouse, UPS, CNRS, Centre de Recherches sur la Cognition, Animale, 118 route de Narbonne, 31062 Toulouse Cedex 4 (France)
| | - Andrew J Doig
- Manchester Institute of Biotechnology, Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN (UK).
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France). .,Institut Universitaire de France, IUF, 103 Boulevard Saint-Michel, 75005 Paris (France).
| | - Peter Faller
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4 (France) and Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4 (France).
| |
Collapse
|
131
|
Lee BI, Lee S, Suh YS, Lee JS, Kim AK, Kwon OY, Yu K, Park CB. Photoexcited Porphyrins as a Strong Suppressor of β-Amyloid Aggregation and Synaptic Toxicity. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
132
|
Zhang H, Rochet JC, Stanciu LA. Cu(II) promotes amyloid pore formation. Biochem Biophys Res Commun 2015; 464:342-7. [PMID: 26129772 DOI: 10.1016/j.bbrc.2015.06.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
The aggregation of α-synuclein is associated with dopamine neuron death in Parkinson's disease. There is controversy in the field over the question of which species of the aggregates, fibrils or protofibrils, are toxic. Moreover, compelling evidence suggested the exposure to heavy metals to be a risk of PD. Nevertheless, the mechanism of metal ions in promoting PD remains unclear. In this research, we investigated the structural basis of Cu(II) induced aggregation of α-synuclein. Using transmission electron microscopy experiments, Cu(II) was found to promote in vitro aggregation of α-synuclein by facilitating annular protofibril formation rather than fibril formation. Furthermore, neuroprotective baicalein disaggregated annular protofibrils accompanied by considerable decrease of β-sheet content. These results strongly support the hypothesis that annular protofibrils are the toxic species, rather than fibrils, thereby inspiring us to search novel therapeutic strategies for the suppression of the toxic annular protofibril formation.
Collapse
Affiliation(s)
- Hangyu Zhang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States.
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Lia A Stanciu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States; School of Materials Engineering, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
133
|
Bu XL, Rao PPN, Wang YJ. Anti-amyloid Aggregation Activity of Natural Compounds: Implications for Alzheimer's Drug Discovery. Mol Neurobiol 2015; 53:3565-3575. [PMID: 26099310 DOI: 10.1007/s12035-015-9301-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/09/2015] [Indexed: 11/24/2022]
Abstract
Several plant-derived natural compounds are known to exhibit anti-amyloid aggregation activity which makes them attractive as potential therapies to treat Alzheimer's disease. The mechanisms of their anti-amyloid activity are not well known. In this regard, many natural compounds are known to exhibit direct binding to various amyloid species including oligomers and fibrils, which in turn can lead to conformational change in the beta-sheet assembly to form nontoxic aggregates. This review discusses the mechanism of anti-amyloid activity of 16 natural compounds and gives structural details on their direct binding interactions with amyloid aggregates. Our computational investigations show that the physicochemical properties of natural products do fit Lipinski's criteria and that catechol and catechol-type moieties present in natural compounds act as lysine site-specific inhibitors of amyloid aggregation. Based on these observations, we propose a structural template to design novel small molecules containing site-specific ring scaffolds, planar aromatic and nonaromatic linkers with suitably substituted hydrogen bond acceptors and donors. These studies will have significant implications in the design and development of novel amyloid aggregation inhibitors with superior metabolic stability and blood-brain barrier penetration as potential agents to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Xian-Le Bu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Praveen P N Rao
- School of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
134
|
Ahsan N, Mishra S, Jain MK, Surolia A, Gupta S. Curcumin Pyrazole and its derivative (N-(3-Nitrophenylpyrazole) Curcumin inhibit aggregation, disrupt fibrils and modulate toxicity of Wild type and Mutant α-Synuclein. Sci Rep 2015; 5:9862. [PMID: 25985292 PMCID: PMC4435243 DOI: 10.1038/srep09862] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/17/2015] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence suggests that deposition of neurotoxic α-synuclein
aggregates in the brain during the development of neurodegenerative diseases like
Parkinson’s disease can be curbed by anti-aggregation strategies that
either disrupt or eliminate toxic aggregates. Curcumin, a dietary polyphenol
exhibits anti-amyloid activity but the use of this polyphenol is limited owing to
its instability. As chemical modifications in curcumin confiscate this limitation,
such efforts are intensively performed to discover molecules with similar but
enhanced stability and superior properties. This study focuses on the inhibitory
effect of two stable analogs of curcumin viz. curcumin pyrazole and curcumin
isoxazole and their derivatives against α-synuclein aggregation,
fibrillization and toxicity. Employing biochemical, biophysical and cell based
assays we discovered that curcumin pyrazole (3) and its derivative
N-(3-Nitrophenylpyrazole) curcumin (15) exhibit remarkable potency in not only
arresting fibrillization and disrupting preformed fibrils but also preventing
formation of A11 conformation in the protein that imparts toxic effects. Compounds 3
and 15 also decreased neurotoxicity associated with fast aggregating A53T mutant
form of α-synuclein. These two analogues of curcumin described here may
therefore be useful therapeutic inhibitors for the treatment of
α-synuclein amyloidosis and toxicity in Parkinson’s disease
and other synucleinopathies.
Collapse
Affiliation(s)
- Nuzhat Ahsan
- Molecular Science Lab, National Institute of Immunology, New Delhi, INDIA 110067
| | - Satyendra Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, INDIA 560012
| | - Manish Kumar Jain
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, INDIA 110067
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, INDIA 560012
| | - Sarika Gupta
- Molecular Science Lab, National Institute of Immunology, New Delhi, INDIA 110067
| |
Collapse
|
135
|
Barrera Guisasola EE, Andujar SA, Hubin E, Broersen K, Kraan IM, Méndez L, Delpiccolo CM, Masman MF, Rodríguez AM, Enriz RD. New mimetic peptides inhibitors of Αβ aggregation. Molecular guidance for rational drug design. Eur J Med Chem 2015; 95:136-52. [DOI: 10.1016/j.ejmech.2015.03.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
|
136
|
Porzoor A, Alford B, Hügel HM, Grando D, Caine J, Macreadie I. Anti-amyloidogenic properties of some phenolic compounds. Biomolecules 2015; 5:505-27. [PMID: 25898401 PMCID: PMC4496683 DOI: 10.3390/biom5020505] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 12/23/2022] Open
Abstract
A family of 21 polyphenolic compounds consisting of those found naturally in danshen and their analogues were synthesized and subsequently screened for their anti-amyloidogenic activity against the amyloid beta peptide (Aβ42) of Alzheimer’s disease. After 24 h incubation with Aβ42, five compounds reduced thioflavin T (ThT) fluorescence, indicative of their anti-amyloidogenic propensity (p < 0.001). TEM and immunoblotting analysis also showed that selected compounds were capable of hindering fibril formation even after prolonged incubations. These compounds were also capable of rescuing the yeast cells from toxic changes induced by the chemically synthesized Aβ42. In a second assay, a Saccharomyces cerevisiae AHP1 deletant strain transformed with GFP fused to Aβ42 was treated with these compounds and analyzed by flow cytometry. There was a significant reduction in the green fluorescence intensity associated with 14 compounds. We interpret this result to mean that the compounds had an anti-amyloid-aggregation propensity in the yeast and GFP-Aβ42 was removed by proteolysis. The position and not the number of hydroxyl groups on the aromatic ring was found to be the most important determinant for the anti-amyloidogenic properties.
Collapse
Affiliation(s)
- Afsaneh Porzoor
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Benjamin Alford
- School of Applied Sciences, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Helmut M Hügel
- School of Applied Sciences, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Danilla Grando
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Joanne Caine
- Materials Science and Engineering, CSIRO Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052, Australia.
| | - Ian Macreadie
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
137
|
Taylor JD, Matthews SJ. New insight into the molecular control of bacterial functional amyloids. Front Cell Infect Microbiol 2015; 5:33. [PMID: 25905048 PMCID: PMC4389571 DOI: 10.3389/fcimb.2015.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/19/2015] [Indexed: 11/16/2022] Open
Abstract
Amyloid protein structure has been discovered in a variety of functional or pathogenic contexts. What distinguishes the former from the latter is that functional amyloid systems possess dedicated molecular control systems that determine the timing, location, and structure of the fibers. Failure to guide this process can result in cytotoxicity, as observed in several pathologies like Alzheimer's and Parkinson's Disease. Many gram-negative bacteria produce an extracellular amyloid fiber known as curli via a multi-component secretion system. During this process, aggregation-prone, semi-folded curli subunits have to cross the periplasm and outer-membrane and self-assemble into surface-attached fibers. Two recent breakthroughs have provided molecular details regarding periplasmic chaperoning and subunit secretion. This review offers a combined perspective on these first mechanistic insights into the curli system.
Collapse
Affiliation(s)
- Jonathan D Taylor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College of Science, Technology and Medicine London, UK
| | - Steve J Matthews
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College of Science, Technology and Medicine London, UK
| |
Collapse
|
138
|
Abstract
Pharmacological chaperone therapy is an emerging approach to treat lysosomal storage diseases. Small-molecule chaperones interact with mutant enzymes, favor their correct conformation and enhance their stability. This approach shows significant advantages when compared with existing therapies, particularly in terms of the bioavailability of drugs, oral administration and positive impact on the quality of patients' lives. On the other hand, future research in this field must confront important challenges. The identification of novel chaperones is indispensable to expanding the number of patients amenable to this treatment and to optimize therapeutic efficacy. It is important to develop new allosteric drugs, to address the risk of inhibiting target enzymes. Future research must also be directed towards the exploitation of synergies between chaperone treatment and other therapeutic approaches.
Collapse
|
139
|
Derrick JS, Lim MH. Tools of the Trade: Investigations into Design Strategies of Small Molecules to Target Components in Alzheimer's Disease. Chembiochem 2015; 16:887-98. [DOI: 10.1002/cbic.201402718] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Indexed: 12/21/2022]
|
140
|
Huang L, Liu X, Cheng B, Huang K. How our bodies fight amyloidosis: effects of physiological factors on pathogenic aggregation of amyloidogenic proteins. Arch Biochem Biophys 2015; 568:46-55. [PMID: 25615529 DOI: 10.1016/j.abb.2015.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/08/2015] [Accepted: 01/11/2015] [Indexed: 12/15/2022]
Abstract
The process of protein aggregation from soluble amyloidogenic proteins to insoluble amyloid fibrils plays significant roles in the onset of over 30 human amyloidogenic diseases, such as Prion disease, Alzheimer's disease and type 2 diabetes mellitus. Amyloid deposits are commonly found in patients suffered from amyloidosis; however, such deposits are rarely seen in healthy individuals, which may be largely attributed to the self-regulation in vivo. A vast number of physiological factors have been demonstrated to directly affect the process of amyloid formation in vivo. In this review, physiological factors that influence amyloidosis, including biological factors (chaperones, natural antibodies, enzymes, lipids and saccharides) and physicochemical factors (metal ions, pH environment, crowding and pressure, etc.), together with the mechanisms underlying these proteostasis effects, are summarized.
Collapse
Affiliation(s)
- Lianqi Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Biao Cheng
- Department of Pharmacy, Central Hospital of Wuhan, Wuhan, Hubei 430014, PR China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, Hubei 430075, PR China.
| |
Collapse
|
141
|
Guzior N, Bajda M, Skrok M, Kurpiewska K, Lewiński K, Brus B, Pišlar A, Kos J, Gobec S, Malawska B. Development of multifunctional, heterodimeric isoindoline-1,3-dione derivatives as cholinesterase and β-amyloid aggregation inhibitors with neuroprotective properties. Eur J Med Chem 2015; 92:738-49. [PMID: 25621991 DOI: 10.1016/j.ejmech.2015.01.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 01/11/2023]
Abstract
The presented study describes the synthesis, pharmacological evaluation (AChE and BuChE inhibition, beta amyloid anti-aggregation effect and neuroprotective effect), molecular modeling and crystallographic studies of a novel series of isoindoline-1,3-dione derivatives. The target compounds were designed as dual binding site acetylcholinesterase inhibitors with an arylalkylamine moiety binding at the catalytic site of the enzyme and connected via an alkyl chain to a heterocyclic fragment, capable of binding at the peripheral anionic site of AChE. Among these molecules, compound 15b was found to be the most potent and selective AChE inhibitor (IC50EeAChE = 0.034 μM). Moreover, compound 13b in addition to AChE inhibition (IC50 EeAChE = 0.219 μM) possesses additional properties, such as the ability to inhibit Aβ aggregation (65.96% at 10 μM) and a neuroprotective effect against Aβ toxicity at 1 and 3 μM. Compound 13b emerges as a promising multi-target ligand for the further development of the therapy for age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Natalia Guzior
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Mirosław Skrok
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kurpiewska
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Krzysztof Lewiński
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Boris Brus
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Janko Kos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Stanislav Gobec
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
142
|
Fortin JS, Benoit-Biancamano MO. Wildlife sequences of islet amyloid polypeptide (IAPP) identify critical species variants for fibrillization. Amyloid 2015; 22:194-202. [PMID: 26300107 DOI: 10.3109/13506129.2015.1070824] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Amyloid can be detected in the islets of Langerhans in a majority of type 2 diabetic patients. These deposits have been associated with β-cell death, thereby furthering diabetes progression. Islet amyloid polypeptide (IAPP) amyloidogenicity is quite variable among animal species, and studying this variability could further our understanding of the mechanisms involved in the aggregation process. Thus, the general aim of this study was to identify IAPP isoforms in different animal species and characterize their propensity to form fibrillar aggregates. A library of 23 peptides (fragment 8-32) was designed to study the amyloid formation using in silico analysis and in vitro assays. Amyloid formation was impeded when the NFLVH motif found in segment 8-20 was substituted by DFLGR or KFLIR segments. A 29P, 14K and 18R substitution were often present in non-amyloidogenic sequences. Non-amyloidogenic sequences were obtained from Leontopithecus rosalia, Tursiops truncatus and Vicugna pacos. Fragment peptides from 34 species were amyloidogenic. To conclude, this project advances our knowledge on the comparative pathogenesis of amyloidosis in type II diabetes. It is conceivable that the additional information gained may help point towards new therapeutic strategies for diabetes patients.
Collapse
Affiliation(s)
- Jessica S Fortin
- a Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire , Université de Montréal , Saint-Hyacinthe , Quebec , Canada
| | | |
Collapse
|
143
|
Dorta-Estremera SM, Cao W. Human Pentraxins Bind to Misfolded Proteins and Inhibit Production of Type I Interferon Induced by Nucleic Acid-Containing Amyloid. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2015; 6. [PMID: 31080694 DOI: 10.4172/2155-9899.1000332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Objective Amyloid deposition is linked to multiple human ailments, including neurodegenerative diseases, type 2 diabetes, and systemic amyloidosis. The assembly of misfolded proteins into amyloid fibrils involves an intermediate form, i.e., soluble amyloid precursor (AP), which exerts cytotoxic function. Insoluble amyloid also stimulates innate immune cells to elicit cytokine response and inflammation. How any of these misfolded proteins are controlled by the host remains obscure. Serum amyloid-P component (SAP) is a universal constituent of amyloid deposits. Short-chain pentraxins, which include both SAP and C-reactive protein (CRP), are pattern recognition molecules that bind to diverse ligands and promote the clearance of microbes and cell debris. Whether these pentraxins interact with AP and cofactor-containing amyloid and subsequently impact their function is not known. Methods and Results To detect the interaction between SAP and different types of amyloids, we performed dot blot analysis. The results showed that SAP invariably bound to protein-only, nucleic acid-containing and glycosaminoglycan-containing amyloid fibrils. This interaction required the presence of calcium. By ELISA, both SAP and CRP bound to soluble AP in the absence of divalent cations. Further characterization, by gel filtration, implied that SAP decamer may recognize AP whereas aggregated SAP preferentially associates with amyloid fibril. Although SAP binding did not affect cytotoxic function of AP, SAP potently inhibited the production of interferon-α from human plasmacytoid dendritic cells triggered by DNA-containing amyloid. Conclusions Our data suggest that short pentraxins differentially interact with various forms of misfolded proteins and, in particular, modulate the ability of nucleic acid-containing amyloid to stimulate aberrant type I interferon response. Hence, pentraxins may function as key players in modulating the pathogenesis of protein misfolding diseases as well as interferon-mediated autoimmune manifestation.
Collapse
Affiliation(s)
- Stephanie M Dorta-Estremera
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Wei Cao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
144
|
Photo-induced inhibition of Alzheimer's β-amyloid aggregation in vitro by rose bengal. Biomaterials 2015; 38:43-9. [DOI: 10.1016/j.biomaterials.2014.10.058] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/19/2014] [Indexed: 12/24/2022]
|
145
|
Trujillo AS, Ramos R, Bodmer R, Bernstein SI, Ocorr K, Melkani GC. Drosophila as a potential model to ameliorate mutant Huntington-mediated cardiac amyloidosis. RARE DISEASES (AUSTIN, TEX.) 2014; 2:e968003. [PMID: 26942103 PMCID: PMC4755237 DOI: 10.4161/2167549x.2014.968003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 01/28/2023]
Abstract
Several human diseases, including Huntington's disease (HD), are associated with the expression of mutated, misfolded, and aggregation-prone amyloid proteins. Cardiac disease is the second leading cause of death in HD, which has been mainly studied as a neurodegenerative disease that is caused by expanded polyglutamine repeats in the huntingtin protein. Since the mechanistic basis of mutant HD-induced cardiomyopathy is unknown, we established a Drosophila heart model that exhibited amyloid aggregate-induced oxidative stress, resulting in myofibrillar disorganization and physiological defects upon expression of HD-causing PolyQ expression in cardiomyocytes. Using powerful Drosophila genetic techniques, we suppressed mutant HD-induced cardiomyopathy by modulating pathways associated with folding defects and oxidative stress. In this addendum, we describe additional potential molecular players that might be associated with HD cardiac amyloidosis. Drosophila, with its high degree of conservation to the human genome and many techniques to manipulate its gene expression, will be an excellent model for the suppression of cardiac amyloidosis linked to other polyglutamine expansion repeat disorders.
Collapse
Affiliation(s)
- Adriana S Trujillo
- Department of Biology; Molecular Biology and Heart Institutes; San Diego State University; San Diego, CA USA,Development and Aging Program; Sanford-Burnham Institute for Medical Research; La Jolla, CA USA
| | - Raul Ramos
- Department of Biology; Molecular Biology and Heart Institutes; San Diego State University; San Diego, CA USA
| | - Rolf Bodmer
- Development and Aging Program; Sanford-Burnham Institute for Medical Research; La Jolla, CA USA
| | - Sanford I Bernstein
- Department of Biology; Molecular Biology and Heart Institutes; San Diego State University; San Diego, CA USA
| | - Karen Ocorr
- Development and Aging Program; Sanford-Burnham Institute for Medical Research; La Jolla, CA USA
| | - Girish C Melkani
- Department of Biology; Molecular Biology and Heart Institutes; San Diego State University; San Diego, CA USA,Development and Aging Program; Sanford-Burnham Institute for Medical Research; La Jolla, CA USA,Correspondence to: Girish C Melkani;
| |
Collapse
|
146
|
Ngoungoure VLN, Schluesener J, Moundipa PF, Schluesener H. Natural polyphenols binding to amyloid: A broad class of compounds to treat different human amyloid diseases. Mol Nutr Food Res 2014; 59:8-20. [DOI: 10.1002/mnfr.201400290] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/24/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Viviane L. Ndam Ngoungoure
- Laboratory of Pharmacology and Toxicology; University of Yaoundé I; Yaoundé Cameroon
- Division of Immunopathology of the Nervous System; Department of Neuropathology; Institute of Pathology; University of Tuebingen; Tuebingen Germany
| | - Jan Schluesener
- Division of Immunopathology of the Nervous System; Department of Neuropathology; Institute of Pathology; University of Tuebingen; Tuebingen Germany
| | - Paul F. Moundipa
- Laboratory of Pharmacology and Toxicology; University of Yaoundé I; Yaoundé Cameroon
| | - Hermann Schluesener
- Division of Immunopathology of the Nervous System; Department of Neuropathology; Institute of Pathology; University of Tuebingen; Tuebingen Germany
| |
Collapse
|
147
|
Navarro S, Ventura S. Fluorescent dye ProteoStat to detect and discriminate intracellular amyloid-like aggregates in Escherichia coli. Biotechnol J 2014; 9:1259-66. [PMID: 25112199 DOI: 10.1002/biot.201400291] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/24/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022]
Abstract
The formation of amyloid aggregates is linked to the onset of an increasing number of human disorders. Thus, there is an increasing need for methodologies able to provide insights into protein deposition and its modulation. Many approaches exist to study amyloids in vitro, but the techniques available for the study of amyloid aggregation in cells are still limited and non-specific. In this study we developed a methodology for the detection of amyloid-like aggregates inside cells that discriminates these ordered assemblies from other intracellular aggregates. We chose bacteria as model system, since the inclusion bodies formed by amyloid proteins in the cytosol of bacteria resemble toxic amyloids both structurally and functionally. Using confocal microscopy, fluorescence spectroscopy, and flow cytometry, we show that the recently developed red fluorescent dye ProteoStat can detect the presence of intracellular amyloid-like deposits in living bacterial cells with high specificity, even when the target proteins are expressed at low levels. This methodology allows quantitation of the intracellular amyloid content, shows the potential to replace in vitro screenings in the search for therapeutic anti-amyloidogenic compounds, and might be useful for identifying conditions that prevent the aggregation of therapeutic recombinant proteins.
Collapse
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | | |
Collapse
|
148
|
Li Y, Maurer J, Roth A, Vogel V, Winter E, Mäntele W. A setup for simultaneous measurement of infrared spectra and light scattering signals: watching amyloid fibrils grow from intact proteins. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:084302. [PMID: 25173287 DOI: 10.1063/1.4891704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A setup for the simultaneous measurement of mid-infrared spectra and static light scattering is described that can be used for the analysis of the formation of nanoscale and microscopic aggregates from smaller molecules to biopolymers. It can be easily integrated into sample chambers of infrared spectrometers or combined with laser beams from tunable infrared lasers. Here, its use for the analysis of the formation of amyloid fibrils from intact proteins is demonstrated. The formation of amyloid fibrils or plaques from proteins is a widespread and pathogenetic relevant process, and a number of diseases are caused and correlated with the deposition of amyloid fibrils in cells and tissues. The molecular mechanisms of these transformations, however, are still unclear. We report here the simultaneous measurement of infrared spectra and static light scattering for the analysis of fibril formation from egg-white lysozyme. The transformation of the native form into non-native forms rich in β-sheet structure is measured by analysis of the amide I spectral region in the infrared spectra, which is sensitive for local structures. At the same time, light scattering signals at forward direction as well as the forward/backward ratio, which are sensitive for the number of scattering centers and their approximate sizes, respectively, are collected for the analysis of fibril growth. Thermodynamic and kinetic parameters as well as mechanistic information are deduced from the combination of the two complementary techniques.
Collapse
Affiliation(s)
- Yang Li
- Institut für Biophysik, Goethe-Universität Frankfurt am Main, Max-von Laue-Straße 1, D-60438 Frankfurt am Main, Germany
| | - Jürgen Maurer
- Institut für Biophysik, Goethe-Universität Frankfurt am Main, Max-von Laue-Straße 1, D-60438 Frankfurt am Main, Germany
| | - Andreas Roth
- Institut für Biophysik, Goethe-Universität Frankfurt am Main, Max-von Laue-Straße 1, D-60438 Frankfurt am Main, Germany
| | - Vitali Vogel
- Institut für Biophysik, Goethe-Universität Frankfurt am Main, Max-von Laue-Straße 1, D-60438 Frankfurt am Main, Germany
| | - Ernst Winter
- Institut für Biophysik, Goethe-Universität Frankfurt am Main, Max-von Laue-Straße 1, D-60438 Frankfurt am Main, Germany
| | - Werner Mäntele
- Institut für Biophysik, Goethe-Universität Frankfurt am Main, Max-von Laue-Straße 1, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
149
|
Regitz C, Marie Dußling L, Wenzel U. Amyloid-beta (Aβ1-42)-induced paralysis inCaenorhabditis elegansis inhibited by the polyphenol quercetin through activation of protein degradation pathways. Mol Nutr Food Res 2014; 58:1931-40. [DOI: 10.1002/mnfr.201400014] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/20/2014] [Accepted: 05/25/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Charlotte Regitz
- Molecular Nutrition Research, Interdisciplinary Research Center; Justus-Liebig-University of Giessen; Giessen Germany
| | - Lisa Marie Dußling
- Molecular Nutrition Research, Interdisciplinary Research Center; Justus-Liebig-University of Giessen; Giessen Germany
| | - Uwe Wenzel
- Molecular Nutrition Research, Interdisciplinary Research Center; Justus-Liebig-University of Giessen; Giessen Germany
| |
Collapse
|
150
|
Bonanomi M, Natalello A, Visentin C, Pastori V, Penco A, Cornelli G, Colombo G, Malabarba MG, Doglia SM, Relini A, Regonesi ME, Tortora P. Epigallocatechin-3-gallate and tetracycline differently affect ataxin-3 fibrillogenesis and reduce toxicity in spinocerebellar ataxia type 3 model. Hum Mol Genet 2014; 23:6542-52. [PMID: 25030034 DOI: 10.1093/hmg/ddu373] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The polyglutamine (polyQ)-containing protein ataxin-3 (AT3) triggers the neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) when its polyQ tract is expanded beyond a critical length. This results in protein aggregation and generation of toxic oligomers and fibrils. Currently, no effective treatment is available for such and other polyQ diseases. Therefore, plenty of investigations are being carried on to assess the mechanism of action and the therapeutic potential of anti-amyloid agents. The polyphenol compound epigallocatechin-3-gallate (EGCG) and tetracycline have been shown to exert some effect in preventing fibrillogenesis of amyloidogenic proteins. Here, we have incubated an expanded AT3 variant with either compound to assess their effects on the aggregation pattern. The process was monitored by atomic force microscopy and Fourier transform infrared spectroscopy. Whereas in the absence of any treatment, AT3 gives rise to amyloid β-rich fibrils, whose hallmark is the typical glutamine side-chain hydrogen bonding, when incubated in the presence of EGCG it generated soluble, SDS-resistant aggregates, much poorer in β-sheets and devoid of any ordered side-chain hydrogen bonding. These are off-pathway species that persist until the latest incubation time and are virtually absent in the control sample. In contrast, tetracycline did not produce major alterations in the structural features of the aggregated species compared with the control, but substantially increased their solubility. Both compounds significantly reduced toxicity, as shown by the MTT assay in COS-7 cell line and in a transgenic Caenorhabditis elegans strain expressing in the nervous system an AT3 expanded variant in fusion with GFP.
Collapse
Affiliation(s)
| | - Antonino Natalello
- Department of Biotechnologies and Biosciences, Department of Physics G. Occhialini
| | | | | | - Amanda Penco
- Department of Physics, University of Genoa, 16146 Genoa, Italy
| | | | | | - Maria G Malabarba
- IFOM, The FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy, Department of Health Sciences, University of Milan, 20122 Milan, Italy and
| | - Silvia M Doglia
- Department of Biotechnologies and Biosciences, Department of Physics G. Occhialini
| | - Annalisa Relini
- Department of Physics, University of Genoa, 16146 Genoa, Italy, National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
| | - Maria E Regonesi
- Department of Biotechnologies and Biosciences, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy,
| | | |
Collapse
|