101
|
Rasheed M, Yan R, Kelly G, Pastore A. Chemical shift assignment of a thermophile frataxin. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:113-116. [PMID: 29090418 PMCID: PMC5869877 DOI: 10.1007/s12104-017-9790-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Frataxin is the protein responsible for the genetically-inherited neurodegenerative disease Friedreich's ataxia caused by partial silencing of the protein and loss of function. Although the frataxin function is not yet entirely clear, it has been associated to the machine that builds iron-sulfur clusters, essential prosthetic groups involved in several processes and is strongly conserved in organisms from bacteria to humans. Two of its important molecular partners are the protein NFS1 (or IscS in bacteria), that is the desulfurase which converts cysteine to alanine and produces sulfur, and ISU (or IscU), the scaffold protein which transiently accepts the cluster. While bacterial frataxin has been extensively characterized, only few eukaryotic frataxins have been described. Here we report the 1H, 13C and 15N backbone and side-chain chemical shift assignments of frataxin from Chaetomium thermophilum, a thermophile increasingly used by virtue of its stability.
Collapse
Affiliation(s)
- Masooma Rasheed
- Maurice Wohl Institute, King's College London, 5 Cutcombe Rd, London, SE5 9RT, UK
| | - Robert Yan
- Maurice Wohl Institute, King's College London, 5 Cutcombe Rd, London, SE5 9RT, UK
| | - Geoff Kelly
- MRC-NMR Centre, The Crick Institute, London, NW7 1AT, UK
| | - Annalisa Pastore
- Maurice Wohl Institute, King's College London, 5 Cutcombe Rd, London, SE5 9RT, UK.
- Molecular Medicine Department, University of Pavia, Pavia, Italy.
| |
Collapse
|
102
|
Li H, Zhao H, Hao S, Shang L, Wu J, Song C, Meyron-Holtz EG, Qiao T, Li K. Iron regulatory protein deficiency compromises mitochondrial function in murine embryonic fibroblasts. Sci Rep 2018; 8:5118. [PMID: 29572489 PMCID: PMC5865113 DOI: 10.1038/s41598-018-23175-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/07/2018] [Indexed: 01/25/2023] Open
Abstract
Iron is essential for growth and proliferation of mammalian cells. The maintenance of cellular iron homeostasis is regulated by iron regulatory proteins (IRPs) through binding to the cognate iron-responsive elements in target mRNAs and thereby regulating the expression of target genes. Irp1 or Irp2-null mutation is known to reduce the cellular iron level by decreasing transferrin receptor 1 and increasing ferritin. Here, we report that Irp1 or Irp2-null mutation also causes downregulation of frataxin and IscU, two of the core components in the iron-sulfur cluster biogenesis machinery. Interestingly, while the activities of some of iron-sulfur cluster-containing enzymes including mitochondrial aconitase and cytosolic xanthine oxidase were not affected by the mutations, the activities of respiratory chain complexes were drastically diminished resulting in mitochondrial dysfunction. Overexpression of human ISCU and frataxin in Irp1 or Irp2-null cells was able to rescue the defects in iron-sulfur cluster biogenesis and mitochondrial quality. Our results strongly suggest that iron regulatory proteins regulate the part of iron sulfur cluster biogenesis tailored specifically for mitochondrial electron transport chain complexes.
Collapse
Affiliation(s)
- Huihui Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P. R. China
| | - Hongting Zhao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P. R. China
| | - Shuangying Hao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P. R. China
- Medical School of Henan Polytechnic University, Jiaozuo, 454000, P. R. China
| | - Longcheng Shang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P. R. China
| | - Jing Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P. R. China
| | - Chuanhui Song
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P. R. China
| | - Esther G Meyron-Holtz
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion, Technion City, Haifa, 32000, Israel
| | - Tong Qiao
- Department of Vascular Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, 210008, P. R. China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
103
|
Banci L, Camponeschi F, Ciofi-Baffoni S, Piccioli M. The NMR contribution to protein-protein networking in Fe-S protein maturation. J Biol Inorg Chem 2018; 23:665-685. [PMID: 29569085 PMCID: PMC6006191 DOI: 10.1007/s00775-018-1552-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Iron–sulfur proteins were among the first class of metalloproteins that were actively studied using NMR spectroscopy tailored to paramagnetic systems. The hyperfine shifts, their temperature dependencies and the relaxation rates of nuclei of cluster-bound residues are an efficient fingerprint of the nature and the oxidation state of the Fe–S cluster. NMR significantly contributed to the analysis of the magnetic coupling patterns and to the understanding of the electronic structure occurring in [2Fe–2S], [3Fe–4S] and [4Fe–4S] clusters bound to proteins. After the first NMR structure of a paramagnetic protein was obtained for the reduced E. halophila HiPIP I, many NMR structures were determined for several Fe–S proteins in different oxidation states. It was found that differences in chemical shifts, in patterns of unobserved residues, in internal mobility and in thermodynamic stability are suitable data to map subtle changes between the two different oxidation states of the protein. Recently, the interaction networks responsible for maturing human mitochondrial and cytosolic Fe–S proteins have been largely characterized by combining solution NMR standard experiments with those tailored to paramagnetic systems. We show here the contribution of solution NMR in providing a detailed molecular view of “Fe–S interactomics”. This contribution was particularly effective when protein–protein interactions are weak and transient, and thus difficult to be characterized at high resolution with other methodologies.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy. .,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy.
| | - Francesca Camponeschi
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy. .,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy.
| |
Collapse
|
104
|
Crooks DR, Maio N, Lane AN, Jarnik M, Higashi RM, Haller RG, Yang Y, Fan TWM, Linehan WM, Rouault TA. Acute loss of iron-sulfur clusters results in metabolic reprogramming and generation of lipid droplets in mammalian cells. J Biol Chem 2018. [PMID: 29523684 DOI: 10.1074/jbc.ra118.001885] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are ancient cofactors in cells and participate in diverse biochemical functions, including electron transfer and enzymatic catalysis. Although cell lines derived from individuals carrying mutations in the Fe-S cluster biogenesis pathway or siRNA-mediated knockdown of the Fe-S assembly components provide excellent models for investigating Fe-S cluster formation in mammalian cells, these experimental strategies focus on the consequences of prolonged impairment of Fe-S assembly. Here, we constructed and expressed dominant-negative variants of the primary Fe-S biogenesis scaffold protein iron-sulfur cluster assembly enzyme 2 (ISCU2) in human HEK293 cells. This approach enabled us to study the early metabolic reprogramming associated with loss of Fe-S-containing proteins in several major cellular compartments. Using multiple metabolomics platforms, we observed a ∼12-fold increase in intracellular citrate content in Fe-S-deficient cells, a surge that was due to loss of aconitase activity. The excess citrate was generated from glucose-derived acetyl-CoA, and global analysis of cellular lipids revealed that fatty acid biosynthesis increased markedly relative to cellular proliferation rates in Fe-S-deficient cells. We also observed intracellular lipid droplet accumulation in both acutely Fe-S-deficient cells and iron-starved cells. We conclude that deficient Fe-S biogenesis and acute iron deficiency rapidly increase cellular citrate concentrations, leading to fatty acid synthesis and cytosolic lipid droplet formation. Our findings uncover a potential cause of cellular steatosis in nonadipose tissues.
Collapse
Affiliation(s)
- Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Nunziata Maio
- Section on Human Iron Metabolism, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
| | - Michal Jarnik
- Section on Cell Biology and Metabolism, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
| | - Ronald G Haller
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Veterans Affairs North Texas Medical Center, Dallas, Texas 75216; Neuromuscular Center, Institute for Exercise and Environmental Medicine, Dallas, Texas 75231
| | - Ye Yang
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Tracey A Rouault
- Section on Human Iron Metabolism, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
105
|
Cai K, Frederick RO, Tonelli M, Markley JL. ISCU(M108I) and ISCU(D39V) Differ from Wild-Type ISCU in Their Failure To Form Cysteine Desulfurase Complexes Containing Both Frataxin and Ferredoxin. Biochemistry 2018; 57:1491-1500. [PMID: 29406711 PMCID: PMC5842376 DOI: 10.1021/acs.biochem.7b01234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/06/2018] [Indexed: 01/09/2023]
Abstract
Whereas iron-sulfur (Fe-S) cluster assembly on the wild-type scaffold protein ISCU, as catalyzed by the human cysteine desulfurase complex (NIA)2, exhibits a requirement for frataxin (FXN), in yeast, ISCU variant M108I has been shown to bypass the FXN requirement. Wild-type ISCU populates two interconverting conformational states: one structured and one dynamically disordered. We show here that variants ISCU(M108I) and ISCU(D39V) of human ISCU populate only the structured state. We have compared the properties of ISCU, ISCU(M108I), and ISCU(D39V), with and without FXN, in both the cysteine desulfurase step of Fe-S cluster assembly and the overall Fe-S cluster assembly reaction catalyzed by (NIA)2. In the cysteine desulfurase step with dithiothreitol (DTT) as the reductant, FXN was found to stimulate cysteine desulfurase activity with both the wild-type and structured variants, although the effect was less prominent with ISCU(D39V) than with the wild-type or ISCU(M108I). In overall Fe-S cluster assembly, frataxin was found to stimulate cluster assembly with both the wild-type and structured variants when the reductant was DTT; however, with the physiological reductant, reduced ferredoxin 2 (rdFDX2), FXN stimulated the reaction with wild-type ISCU but not with either ISCU(M108I) or ISCU(D39V). Nuclear magnetic resonance titration experiments revealed that wild-type ISCU, FXN, and rdFDX2 all bind to (NIA)2. However, when ISCU was replaced by the fully structured variant ISCU(M108I), the addition of rdFDX2 to the [NIA-ISCU(M108I)-FXN]2 complex led to the release of FXN. Thus, the displacement of FXN by rdFDX2 explains the failure of FXN to stimulate Fe-S cluster assembly on ISCU(M108I).
Collapse
Affiliation(s)
- Kai Cai
- National Magnetic Resonance
Facility at Madison and Department of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Ronnie O. Frederick
- National Magnetic Resonance
Facility at Madison and Department of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Marco Tonelli
- National Magnetic Resonance
Facility at Madison and Department of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - John L. Markley
- National Magnetic Resonance
Facility at Madison and Department of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
106
|
Wachnowsky C, Fidai I, Cowan JA. Iron-sulfur cluster biosynthesis and trafficking - impact on human disease conditions. Metallomics 2018; 10:9-29. [PMID: 29019354 PMCID: PMC5783746 DOI: 10.1039/c7mt00180k] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron-sulfur clusters (Fe-S) are one of the most ancient, ubiquitous and versatile classes of metal cofactors found in nature. Proteins that contain Fe-S clusters constitute one of the largest families of proteins, with varied functions that include electron transport, regulation of gene expression, substrate binding and activation, radical generation, and, more recently discovered, DNA repair. Research during the past two decades has shown that mitochondria are central to the biogenesis of Fe-S clusters in eukaryotic cells via a conserved cluster assembly machinery (ISC assembly machinery) that also controls the synthesis of Fe-S clusters of cytosolic and nuclear proteins. Several key steps for synthesis and trafficking have been determined for mitochondrial Fe-S clusters, as well as the cytosol (CIA - cytosolic iron-sulfur protein assembly), but detailed mechanisms of cluster biosynthesis, transport, and exchange are not well established. Genetic mutations and the instability of certain steps in the biosynthesis and maturation of mitochondrial, cytosolic and nuclear Fe-S cluster proteins affects overall cellular iron homeostasis and can lead to severe metabolic, systemic, neurological and hematological diseases, often resulting in fatality. In this review we briefly summarize the current molecular understanding of both mitochondrial ISC and CIA assembly machineries, and present a comprehensive overview of various associated inborn human disease states.
Collapse
Affiliation(s)
- C Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
107
|
Alaimo JT, Besse A, Alston CL, Pang K, Appadurai V, Samanta M, Smpokou P, McFarland R, Taylor RW, Bonnen PE. Loss-of-function mutations in ISCA2 disrupt 4Fe-4S cluster machinery and cause a fatal leukodystrophy with hyperglycinemia and mtDNA depletion. Hum Mutat 2018; 39:537-549. [PMID: 29297947 PMCID: PMC5839994 DOI: 10.1002/humu.23396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/09/2017] [Accepted: 12/27/2017] [Indexed: 12/26/2022]
Abstract
Iron–sulfur (Fe–S) clusters are essential cofactors for proteins that participate in fundamental cellular processes including metabolism, DNA replication and repair, transcriptional regulation, and the mitochondrial electron transport chain (ETC). ISCA2 plays a role in the biogenesis of Fe–S clusters and a recent report described subjects displaying infantile‐onset leukodystrophy due to bi‐allelic mutation of ISCA2. We present two additional unrelated cases, and provide a more complete clinical description that includes hyperglycinemia, leukodystrophy of the brainstem with longitudinally extensive spinal cord involvement, and mtDNA deficiency. Additionally, we characterize the role of ISCA2 in mitochondrial bioenergetics and Fe–S cluster assembly using subject cells and ISCA2 cellular knockdown models. Loss of ISCA2 diminished mitochondrial membrane potential, the mitochondrial network, basal and maximal respiration, ATP production, and activity of ETC complexes II and IV. We specifically tested the impact of loss of ISCA2 on 2Fe–2S proteins versus 4Fe–4S proteins and observed deficits in the functioning of 4Fe–4S but not 2Fe–2S proteins. Together these data indicate loss of ISCA2 impaired function of 4Fe–4S proteins resulting in a fatal encephalopathy accompanied by a relatively unusual combination of features including mtDNA depletion alongside complex II deficiency and hyperglycinemia that may facilitate diagnosis of ISCA2 deficiency patients.
Collapse
Affiliation(s)
- Joseph T Alaimo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Arnaud Besse
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Ki Pang
- Royal Victoria Infirmary, Great North Children's Hospital, Newcastle upon Tyne, Newcastle Upon Tyne, UK
| | - Vivek Appadurai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Monisha Samanta
- Division of Genetics & Metabolism, Children's National Health System, Washington, District of Columbia
| | - Patroula Smpokou
- Division of Genetics & Metabolism, Children's National Health System, Washington, District of Columbia.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
108
|
McCarthy EL, Booker SJ. Destruction and reformation of an iron-sulfur cluster during catalysis by lipoyl synthase. Science 2018; 358:373-377. [PMID: 29051382 DOI: 10.1126/science.aan4574] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/06/2017] [Indexed: 01/15/2023]
Abstract
Lipoyl synthase (LipA) catalyzes the last step in the biosynthesis of the lipoyl cofactor, which is the attachment of two sulfhydryl groups to C6 and C8 of a pendant octanoyl chain. The appended sulfur atoms derive from an auxiliary [4Fe-4S] cluster on the protein that is degraded during turnover, limiting LipA to one turnover in vitro. We found that the Escherichia coli iron-sulfur (Fe-S) cluster carrier protein NfuA efficiently reconstitutes the auxiliary cluster during LipA catalysis in a step that is not rate-limiting. We also found evidence for a second pathway for cluster regeneration involving the E. coli protein IscU. These results show that enzymes that degrade their Fe-S clusters as a sulfur source can nonetheless act catalytically. Our results also explain why patients with NFU1 gene deletions exhibit phenotypes that are indicative of lipoyl cofactor deficiencies.
Collapse
Affiliation(s)
- Erin L McCarthy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Squire J Booker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA. .,Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.,Howard Hughes Medical Institute, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
109
|
Wachnowsky C, Liu Y, Yoon T, Cowan JA. Regulation of human Nfu activity in Fe-S cluster delivery-characterization of the interaction between Nfu and the HSPA9/Hsc20 chaperone complex. FEBS J 2017; 285:391-410. [PMID: 29211945 DOI: 10.1111/febs.14353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/24/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022]
Abstract
Iron-sulfur cluster biogenesis is a complex, but highly regulated process that involves de novo cluster formation from iron and sulfide ions on a scaffold protein, and subsequent delivery to final targets via a series of Fe-S cluster-binding carrier proteins. The process of cluster release from the scaffold/carrier for transfer to the target proteins may be mediated by a dedicated Fe-S cluster chaperone system. In human cells, the chaperones include heat shock protein HSPA9 and the J-type chaperone Hsc20. While the role of chaperones has been somewhat clarified in yeast and bacterial systems, many questions remain over their functional roles in cluster delivery and interactions with a variety of human Fe-S cluster proteins. One such protein, Nfu, has recently been recognized as a potential interaction partner of the chaperone complex. Herein, we examined the ability of human Nfu to function as a carrier by interacting with the human chaperone complex. Human Nfu is shown to bind to both chaperone proteins with binding affinities similar to those observed for IscU binding to the homologous HSPA9 and Hsc20, while Nfu can also stimulate the ATPase activity of HSPA9. Additionally, the chaperone complex was able to promote Nfu function by enhancing the second-order rate constants for Fe-S cluster transfer to target proteins and providing directionality in cluster transfer from Nfu by eliminating promiscuous transfer reactions. Together, these data support a hypothesis in which Nfu can serve as an alternative carrier protein for chaperone-mediated cluster release and delivery in Fe-S cluster biogenesis and trafficking.
Collapse
Affiliation(s)
- Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Yushi Liu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Taejin Yoon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
110
|
Abstract
Iron-sulfur clusters (Fe/S clusters) are essential cofactors required throughout the clades of biology for performing a myriad of unique functions including nitrogen fixation, ribosome assembly, DNA repair, mitochondrial respiration, and metabolite catabolism. Although Fe/S clusters can be synthesized in vitro and transferred to a client protein without enzymatic assistance, biology has evolved intricate mechanisms to assemble and transfer Fe/S clusters within the cellular environment. In eukaryotes, the foundation of all cellular clusters starts within the mitochondria. The focus of this review is to detail the mitochondrial Fe/S biogenesis (ISC) pathway along with the Fe/S cluster transfer steps necessary to mature Fe/S proteins. New advances in our understanding of the mitochondrial Fe/S biogenesis machinery will be highlighted. Additionally, we will address various experimental approaches that have been successful in the identification and characterization of components of the ISC pathway.
Collapse
Affiliation(s)
- Andrew Melber
- University of Utah Health Sciences Center, Salt Lake City, Utah, United States
| | - Dennis R Winge
- University of Utah Health Sciences Center, Salt Lake City, Utah, United States.
| |
Collapse
|
111
|
Dutkiewicz R, Nowak M. Molecular chaperones involved in mitochondrial iron-sulfur protein biogenesis. J Biol Inorg Chem 2017; 23:569-579. [PMID: 29124426 PMCID: PMC6006194 DOI: 10.1007/s00775-017-1504-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/28/2017] [Indexed: 12/16/2022]
Abstract
Iron-sulfur (FeS) clusters are prosthetic groups critical for the function of many proteins in all domains of life. FeS proteins function in processes ranging from oxidative phosphorylation and cofactor biosyntheses to DNA/RNA metabolism and regulation of gene expression. In eukaryotic cells, mitochondria play a central role in the process of FeS biogenesis and support maturation of FeS proteins localized within mitochondria and in other cellular compartments. In humans, defects in mitochondrial FeS cluster biogenesis lead to numerous pathologies, which are often fatal. The generation of FeS clusters in mitochondria is a complex process. The [2Fe-2S] cluster is first assembled on a dedicated scaffold protein (Isu1) by the action of protein factors that interact with Isu1 to form the "assembly complex". Next, the FeS cluster is transferred onto a recipient apo-protein. Genetic and biochemical evidence implicates participation of a specialized J-protein co-chaperone Jac1 and its mitochondrial (mt)Hsp70 chaperone partner, and the glutaredoxin Grx5 in the FeS cluster transfer process. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Although a framework of protein components that are involved in the mitochondrial FeS cluster biogenesis has been established based on genetic and biochemical studies, detailed molecular mechanisms involved in this important and medically relevant process are not well understood. This review summarizes our molecular knowledge on chaperone proteins' functions during the FeS protein biogenesis.
Collapse
Affiliation(s)
- Rafal Dutkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdańsk, Poland.
| | - Malgorzata Nowak
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdańsk, Poland
| |
Collapse
|
112
|
Maio N, Rouault TA. Mammalian Fe-S proteins: definition of a consensus motif recognized by the co-chaperone HSC20. Metallomics 2017; 8:1032-1046. [PMID: 27714045 DOI: 10.1039/c6mt00167j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron-sulfur (Fe-S) clusters are inorganic cofactors that are fundamental to several biological processes in all three kingdoms of life. In most organisms, Fe-S clusters are initially assembled on a scaffold protein, ISCU, and subsequently transferred to target proteins or to intermediate carriers by a dedicated chaperone/co-chaperone system. The delivery of assembled Fe-S clusters to recipient proteins is a crucial step in the biogenesis of Fe-S proteins, and, in mammals, it relies on the activity of a multiprotein transfer complex that contains the chaperone HSPA9, the co-chaperone HSC20 and the scaffold ISCU. How the transfer complex efficiently engages recipient Fe-S target proteins involves specific protein interactions that are not fully understood. This mini review focuses on recent insights into the molecular mechanism of amino acid motif recognition and discrimination by the co-chaperone HSC20, which guides Fe-S cluster delivery.
Collapse
Affiliation(s)
- N Maio
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, 20892 Bethesda, MD, USA.
| | - T A Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, 20892 Bethesda, MD, USA.
| |
Collapse
|
113
|
Fidai I, Wachnowsky C, Cowan JA. Mapping cellular Fe-S cluster uptake and exchange reactions - divergent pathways for iron-sulfur cluster delivery to human ferredoxins. Metallomics 2017; 8:1283-1293. [PMID: 27878189 DOI: 10.1039/c6mt00193a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferredoxins are protein mediators of biological electron-transfer reactions and typically contain either [2Fe-2S] or [4Fe-4S] clusters. Two ferredoxin homologues have been identified in the human genome, Fdx1 and Fdx2, that share 43% identity and 69% similarity in protein sequence and both bind [2Fe-2S] clusters. Despite the high similarity, the two ferredoxins play very specific roles in distinct physiological pathways and cannot replace each other in function. Both eukaryotic and prokaryotic ferredoxins and homologues have been reported to receive their Fe-S cluster from scaffold/delivery proteins such as IscU, Isa, glutaredoxins, and Nfu. However, the preferred and physiologically relevant pathway for receiving the [2Fe-2S] cluster by ferredoxins is subject to speculation and is not clearly identified. In this work, we report on in vitro UV-visible (UV-vis) circular dichroism studies of [2Fe-2S] cluster transfer to the ferredoxins from a variety of partners. The results reveal rapid and quantitative transfer to both ferredoxins from several donor proteins (IscU, Isa1, Grx2, and Grx3). Transfer from Isa1 to Fdx2 was also observed to be faster than that of IscU to Fdx2, suggesting that Fdx2 could receive its cluster from Isa1 instead of IscU. Several other transfer combinations were also investigated and the results suggest a complex, but kinetically detailed map for cellular cluster trafficking. This is the first step toward building a network map for all of the possible iron-sulfur cluster transfer pathways in the mitochondria and cytosol, providing insights on the most likely cellular pathways and possible redundancies in these pathways.
Collapse
Affiliation(s)
- Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. and The Biophysics Graduate Program, The Ohio State University, USA
| | - Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. and The Ohio State Biochemistry Program, The Ohio State University, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. and The Biophysics Graduate Program, The Ohio State University, USA and The Ohio State Biochemistry Program, The Ohio State University, USA
| |
Collapse
|
114
|
Zang SS, Jiang HB, Song WY, Chen M, Qiu BS. Characterization of the sulfur-formation (suf) genes in Synechocystis sp. PCC 6803 under photoautotrophic and heterotrophic growth conditions. PLANTA 2017; 246:927-938. [PMID: 28710587 DOI: 10.1007/s00425-017-2738-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
The sulfur-formation ( suf ) genes play important roles in both photosynthesis and respiration of cyanobacteria, but the organism prioritizes Fe-S clusters for respiration at the expense of photosynthesis. Iron-sulfur (Fe-S) clusters are important to all living organisms, but their assembly mechanism is poorly understood in photosynthetic organisms. Unlike non-photosynthetic bacteria that rely on the iron-sulfur cluster system, Synechocystis sp. PCC 6803 uses the Sulfur-Formation (SUF) system as its major Fe-S cluster assembly pathway. The co-expression of suf genes and the direct interactions among SUF subunits indicate that Fe-S assembly is a complex process in which no suf genes can be knocked out completely. In this study, we developed a condition-controlled SUF Knockdown mutant by inserting the petE promoter, which is regulated by Cu2+ concentration, in front of the suf operon. Limited amount of the SUF system resulted in decreased chlorophyll contents and photosystem activities, and a lower PSI/PSII ratio. Unexpectedly, increased cyclic electron transport and a decreased dark respiration rate were only observed under photoautotrophic growth conditions. No visible effects on the phenotype of SUF Knockdown mutant were observed under heterotrophic culture conditions. The phylogenetic distribution of the SUF system indicates that it has a co-evolutionary relationship with photosynthetic energy storing pathways.
Collapse
Affiliation(s)
- Sha-Sha Zang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Hai-Bo Jiang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Wei-Yu Song
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China.
| |
Collapse
|
115
|
Wesley NA, Wachnowsky C, Fidai I, Cowan JA. Analysis of NFU-1 metallocofactor binding-site substitutions-impacts on iron-sulfur cluster coordination and protein structure and function. FEBS J 2017; 284:3817-3837. [PMID: 28906593 DOI: 10.1111/febs.14270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/28/2017] [Accepted: 09/11/2017] [Indexed: 11/27/2022]
Abstract
Iron-sulfur (Fe/S) clusters are ancient prosthetic groups found in numerous metalloproteins and are conserved across all kingdoms of life due to their diverse, yet essential functional roles. Genetic mutations to a specific subset of mitochondrial Fe/S cluster delivery proteins are broadly categorized as disease-related under multiple mitochondrial dysfunction syndrome (MMDS), with symptoms indicative of a general failure of the metabolic system. Multiple mitochondrial dysfunction syndrome 1 (MMDS1) arises as a result of the missense mutation in NFU1, an Fe/S cluster scaffold protein, which substitutes a glycine near the Fe/S cluster-binding pocket to a cysteine (p.Gly208Cys). This substitution has been shown to promote protein dimerization such that cluster delivery to NFU1 is blocked, preventing downstream cluster trafficking. However, the possibility of this additional cysteine, located adjacent to the cluster-binding site, serving as an Fe/S cluster ligand has not yet been explored. To fully understand the consequences of this Gly208Cys replacement, complementary substitutions at the Fe/S cluster-binding pocket for native and Gly208Cys NFU1 were made, along with six other variants. Herein, we report the results of an investigation on the effect of these substitutions on both cluster coordination and NFU1 structure and function. The data suggest that the G208C substitution does not contribute to cluster binding. Rather, replacement of the glycine at position 208 changes the oligomerization state as a result of global structural alterations that result in the downstream effects manifest as MMDS1, but does not perturb the coordination chemistry of the Fe-S cluster.
Collapse
Affiliation(s)
- Nathaniel A Wesley
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
116
|
Wesley NA, Wachnowsky C, Fidai I, Cowan JA. Understanding the molecular basis for multiple mitochondrial dysfunctions syndrome 1 (MMDS1): impact of a disease-causing Gly189Arg substitution on NFU1. FEBS J 2017; 284:3838-3848. [PMID: 28906594 DOI: 10.1111/febs.14271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/28/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022]
Abstract
Iron-sulfur (Fe/S) cluster-containing proteins constitute one of the largest protein classes, with highly varied function. Consequently, the biosynthesis of Fe/S clusters is evolutionarily conserved and mutations in intermediate Fe/S cluster scaffold proteins can cause disease, including multiple mitochondrial dysfunctions syndrome (MMDS). Herein, we have characterized the impact of defects occurring in the MMDS1 disease state that result from a point mutation (p.Gly189Arg) near the active site of NFU1, an Fe/S scaffold protein. In vitro investigation into the structure-function relationship of the Gly189Arg derivative, along with two other variants, reveals that substitution at position 189 triggers structural changes that increase flexibility, decrease stability, and alter the monomer-dimer equilibrium toward monomer, thereby impairing the ability of the Gly189X derivatives to receive an Fe/S cluster from physiologically relevant sources.
Collapse
Affiliation(s)
- Nathaniel A Wesley
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
117
|
Clinically relevant HIF-1α-dependent metabolic reprogramming in oropharyngeal squamous cell carcinomas includes coordinated activation of CAIX and the miR-210/ISCU signaling axis, but not MCT1 and MCT4 upregulation. Oncotarget 2017; 8:13730-13746. [PMID: 28099149 PMCID: PMC5355133 DOI: 10.18632/oncotarget.14629] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/03/2017] [Indexed: 02/04/2023] Open
Abstract
Metabolic reprogramming is a very heterogeneous phenomenon in cancer. It mostly consists on increased glycolysis, lactic acid formation and extracellular acidification. These events have been associated to increased activity of the hypoxia inducible factor, HIF-1α. This study aimed at defining the metabolic program activated by HIF-1α in oropharyngeal squamous cell carcinomas (SCC) and assessing its clinical impact. Global gene/miRNA expression was analyzed in SCC-derived cells exposed to hypoxia. Expression of HIF-1α, the carbonic anhydrase CAIX, and the lactate/H+ transporters MCT1 and MCT4 were analyzed by immunohistochemistry in 246 SCCs. Cell-based analysis revealed that HIF-1α-driven metabolic program includes over-expression of glycolytic enzymes and the microRNA miR-210 coupled to down-regulation of its target, the iron-sulfur cluster assembly protein, ISCU. pH-regulator program entailed over-expression of CAIX, but not MCT1 or MCT4. Accordingly, significant overlapping exists between over-expression of HIF-1α and CAIX, but not HIF-1α and MCT1 or MCT4, in tumor cells. Increased miR-210 and concomitant decreased ISCU RNA levels were found in ~40% of tumors and this was significantly associated with HIF-1α and CAIX, but not MCT1 or MCT4, over-expression. HIF-1α and/or CAIX over-expression was associated with high recurrence rate and low overall survival of surgically treated patients. By contrast, clinically significant correlations were not found in tumors with MCT1 or MCT4 over-expression. This is the first study that provides in vivo evidences of coordinated activation of HIF-1α, CAIX, miR-210 and ISCU in carcinoma and association with poor prognosis, a finding with important implications for the development of metabolic-targeting therapies against hypoxia.
Collapse
|
118
|
|
119
|
Toyokuni S, Ito F, Yamashita K, Okazaki Y, Akatsuka S. Iron and thiol redox signaling in cancer: An exquisite balance to escape ferroptosis. Free Radic Biol Med 2017; 108:610-626. [PMID: 28433662 DOI: 10.1016/j.freeradbiomed.2017.04.024] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Epidemiological data indicate a constant worldwide increase in cancer mortality, although the age of onset is increasing. Recent accumulation of genomic data on human cancer via next-generation sequencing confirmed that cancer is a disease of genome alteration. In many cancers, the Nrf2 transcription system is activated via mutations either in Nrf2 or Keap1 ubiquitin ligase, leading to persistent activation of the genes with antioxidative functions. Furthermore, deep sequencing of passenger mutations is clarifying responsible cancer causative agent(s) in each case, including aging, APOBEC activation, smoking and UV. Therefore, it is most likely that oxidative stress is the principal initiating factor in carcinogenesis, with the involvement of two essential molecules for life, iron and oxygen. There is evidence based on epidemiological and animal studies that excess iron is a major risk for carcinogenesis, suggesting the importance of ferroptosis-resistance. Microscopic visualization of catalytic Fe(II) has recently become available. Although catalytic Fe(II) is largely present in lysosomes, proliferating cells harbor catalytic Fe(II) also in the cytosol and mitochondria. Oxidative stress catalyzed by Fe(II) is counteracted by thiol systems at different functional levels. Nitric oxide, carbon monoxide and hydrogen (per)sulfide modulate these reactions. Mitochondria generate not only energy but also heme/iron sulfur cluster cofactors and remain mostly dysfunctional in cancer cells, leading to Warburg effects. Cancer cells are under persistent oxidative stress with a delicate balance between catalytic iron and thiols, thereby escaping ferroptosis. Thus, high-dose L-ascorbate and non-thermal plasma as well as glucose/glutamine deprivation may provide additional benefits as cancer therapies over preexisting therapeutics.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Sydney Medical School, The University of Sydney, NSW 2006, Australia.
| | - Fumiya Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kyoko Yamashita
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
120
|
Galeano BK, Ranatunga W, Gakh O, Smith DY, Thompson JR, Isaya G. Zinc and the iron donor frataxin regulate oligomerization of the scaffold protein to form new Fe-S cluster assembly centers. Metallomics 2017; 9:773-801. [PMID: 28548666 PMCID: PMC5552075 DOI: 10.1039/c7mt00089h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
Early studies of the bacterial Fe-S cluster assembly system provided structural details for how the scaffold protein and the cysteine desulfurase interact. This work and additional work on the yeast and human systems elucidated a conserved mechanism for sulfur donation but did not provide any conclusive insights into the mechanism for iron delivery from the iron donor, frataxin, to the scaffold. We previously showed that oligomerization is a mechanism by which yeast frataxin (Yfh1) can promote assembly of the core machinery for Fe-S cluster synthesis both in vitro and in cells, in such a manner that the scaffold protein, Isu1, can bind to Yfh1 independent of the presence of the cysteine desulfurase, Nfs1. Here, in the absence of Yfh1, Isu1 was found to exist in two forms, one mostly monomeric with limited tendency to dimerize, and one with a strong propensity to oligomerize. Whereas the monomeric form is stabilized by zinc, the loss of zinc promotes formation of dimer and higher order oligomers. However, upon binding to oligomeric Yfh1, both forms take on a similar symmetrical trimeric configuration that places the Fe-S cluster coordinating residues of Isu1 in close proximity of iron-binding residues of Yfh1. This configuration is suitable for docking of Nfs1 in a manner that provides a structural context for coordinate iron and sulfur donation to the scaffold. Moreover, distinct structural features suggest that in physiological conditions the zinc-regulated abundance of monomeric vs. oligomeric Isu1 yields [Yfh1]·[Isu1] complexes with different Isu1 configurations that afford unique functional properties for Fe-S cluster assembly and delivery.
Collapse
Affiliation(s)
- B. K. Galeano
- Department of Pediatric & Adolescent Medicine , Mayo Clinic , Rochester , Minnesota , USA . ;
- Department of Biochemistry & Molecular Biology , Mayo Clinic , Rochester , Minnesota , USA
- Mayo Clinic Graduate School of Biomedical Sciences , Rochester , Minnesota , USA
| | - W. Ranatunga
- Department of Pediatric & Adolescent Medicine , Mayo Clinic , Rochester , Minnesota , USA . ;
- Mayo Clinic Children's Research Center , Rochester , Minnesota , USA
| | - O. Gakh
- Department of Pediatric & Adolescent Medicine , Mayo Clinic , Rochester , Minnesota , USA . ;
- Mayo Clinic Children's Research Center , Rochester , Minnesota , USA
| | - D. Y. Smith
- Department of Pediatric & Adolescent Medicine , Mayo Clinic , Rochester , Minnesota , USA . ;
- Mayo Clinic Children's Research Center , Rochester , Minnesota , USA
| | - J. R. Thompson
- Department of Biochemistry & Molecular Biology , Mayo Clinic , Rochester , Minnesota , USA
| | - G. Isaya
- Department of Pediatric & Adolescent Medicine , Mayo Clinic , Rochester , Minnesota , USA . ;
- Department of Biochemistry & Molecular Biology , Mayo Clinic , Rochester , Minnesota , USA
- Mayo Clinic Children's Research Center , Rochester , Minnesota , USA
| |
Collapse
|
121
|
Vo A, Fleischman NM, Froehlich MJ, Lee CY, Cosman JA, Glynn CA, Hassan ZO, Perlstein DL. Identifying the Protein Interactions of the Cytosolic Iron–Sulfur Cluster Targeting Complex Essential for Its Assembly and Recognition of Apo-Targets. Biochemistry 2017; 57:2349-2358. [DOI: 10.1021/acs.biochem.7b00072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Amanda Vo
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | | | - Mary J. Froehlich
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Claudia Y. Lee
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Jessica A. Cosman
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Calina A. Glynn
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Zanub O. Hassan
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Deborah L. Perlstein
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
122
|
Abstract
The NEET proteins mitoNEET (mNT) and nutrient-deprivation autophagy factor-1 (NAF-1) are required for cancer cell proliferation and resistance to oxidative stress. NAF-1 and mNT are also implicated in a number of other human pathologies including diabetes, neurodegeneration and cardiovascular disease, as well as in development, differentiation and aging. Previous studies suggested that mNT and NAF-1 could function in the same pathway in mammalian cells, preventing the over-accumulation of iron and reactive oxygen species (ROS) in mitochondria. Nevertheless, it is unknown whether these two proteins directly interact in cells, and how they mediate their function. Here we demonstrate, using yeast two-hybrid, in vivo bimolecular fluorescence complementation (BiFC), direct coupling analysis (DCA), RNA-sequencing, ROS and iron imaging, and single and double shRNA lines with suppressed mNT, NAF-1 and mNT/NAF-1 expression, that mNT and NAF-1 directly interact in mammalian cells and could function in the same cellular pathway. We further show using an in vitro cluster transfer assay that mNT can transfer its clusters to NAF-1. Our study highlights the possibility that mNT and NAF-1 function as part of an iron-sulfur (2Fe-2S) cluster relay to maintain the levels of iron and Fe-S clusters under control in the mitochondria of mammalian cells, thereby preventing the activation of apoptosis and/or autophagy and supporting cellular proliferation.
Collapse
|
123
|
Applying a systems approach to thyroid physiology: Looking at the whole with a mitochondrial perspective instead of judging single TSH values or why we should know more about mitochondria to understand metabolism. BBA CLINICAL 2017; 7:127-140. [PMID: 28417080 PMCID: PMC5390562 DOI: 10.1016/j.bbacli.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022]
Abstract
Classical thinking in endocrine physiology squeezes our diagnostic handling into a simple negative feedback mechanism with a controller and a controlled variable. In the case of the thyroid this is reduced to TSH and fT3 and fT4, respectively. The setting of this tight notion has no free space for any additions. In this paper we want to challenge this model of limited application by proposing a construct based on a systems approach departing from two basic considerations. In first place since the majority of cases of thyroid disease develop and appear during life it has to be considered as an acquired condition. In the second place, our experience with the reversibility of morphological changes makes the autoimmune theory inconsistent. While medical complexity can expand into the era of OMICS as well as into one where manipulations with the use of knock-outs and -ins are common in science, we have preferred to maintain a simple and practical approach. We will describe the interactions of iron, magnesium, zinc, selenium and coenzyme Q10 with the thyroid axis. The discourse will be then brought into the context of ovarian function, i.e. steroid hormone production. Finally the same elemental players will be presented in relation to the basic mitochondrial machinery that supports the endocrine. We propose that an intact mitochondrial function can guard the normal endocrine function of both the thyroid as well as of the ovarian axis. The basic elements required for this function appear to be magnesium and iron. In the case of the thyroid, magnesium-ATP acts in iodine uptake and the heme protein peroxidase in thyroid hormone synthesis. A similar biochemical process is found in steroid synthesis with cholesterol uptake being the initial energy-dependent step and later the heme protein ferredoxin 1 which is required for steroid synthesis. Magnesium plays a central role in determining the clinical picture associated with thyroid disease and is also involved in maintaining fertility. With the aid of 3D sonography patients needing selenium and/or coenzyme Q10 can be easily identified. By this we firmly believe that physicians should know more about basic biochemistry and the way it fits into mitochondrial function in order to understand metabolism. Contemplating only TSH is highly reductionistic. Outline Author's profiles and motivation for this analysis The philosophical alternatives in science and medicine Reductionism vs. systems approach in clinical thyroid disease guidelines The entry into complexity: the involvement of the musculoskeletal system Integrating East and West: teachings from Chinese Medicine and from evidence based medicine (EBM) Can a mathematical model represent complexity in the daily thyroid practice? How effective is thyroxine treatment? Resolving the situation of residual symptoms in treated patients with thyroid disease Importance of iron, zinc and magnesium in relation to thyroid function Putting together new concepts related to thyroid function for a systems approach Expanding our model into general aspects of medicine
Collapse
|
124
|
Maio N, Kim KS, Singh A, Rouault TA. A Single Adaptable Cochaperone-Scaffold Complex Delivers Nascent Iron-Sulfur Clusters to Mammalian Respiratory Chain Complexes I-III. Cell Metab 2017; 25:945-953.e6. [PMID: 28380382 DOI: 10.1016/j.cmet.2017.03.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/27/2017] [Accepted: 03/15/2017] [Indexed: 12/31/2022]
Abstract
The iron-sulfur (Fe-S) cluster of the Rieske protein, UQCRFS1, is essential for Complex III (CIII) activity, though the mechanism for Fe-S cluster transfer has not previously been elucidated. Recent studies have shown that the co-chaperone HSC20, essential for Fe-S cluster biogenesis of SDHB, directly binds LYRM7, formerly described as a chaperone that stabilizes UQCRFS1 prior to its insertion into CIII. Here we report that a transient subcomplex involved in CIII assembly, composed of LYRM7 bound to UQCRFS1, interacts with components of an Fe-S transfer complex, consisting of HSC20, its cognate chaperone HSPA9, and the holo-scaffold ISCU. Binding of HSC20 to the LYR motif of LYRM7 in a pre-assembled UQCRFS1-LYRM7 intermediate in the mitochondrial matrix facilitates Fe-S cluster transfer to UQCRFS1. The five Fe-S cluster subunits of Complex I also interact with HSC20 to acquire their clusters, highlighting the crucial role of HSC20 in the assembly of the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ki Soon Kim
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Anamika Singh
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
125
|
Prasai K. Regulation of mitochondrial structure and function by protein import: A current review. ACTA ACUST UNITED AC 2017; 24:107-122. [PMID: 28400074 DOI: 10.1016/j.pathophys.2017.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022]
Abstract
By generating the majority of a cell's ATP, mitochondria permit a vast range of reactions necessary for life. Mitochondria also perform other vital functions including biogenesis and assembly of iron-sulfur proteins, maintenance of calcium homeostasis, and activation of apoptosis. Accordingly, mitochondrial dysfunction has been linked with the pathology of many clinical conditions including cancer, type 2 diabetes, cardiomyopathy, and atherosclerosis. The ongoing maintenance of mitochondrial structure and function requires the import of nuclear-encoded proteins and for this reason, mitochondrial protein import is indispensible for cell viability. As mitochondria play central roles in determining if cells live or die, a comprehensive understanding of mitochondrial structure, protein import, and function is necessary for identifying novel drugs that may destroy harmful cells while rescuing or protecting normal ones to preserve tissue integrity. This review summarizes our current knowledge on mitochondrial architecture, mitochondrial protein import, and mitochondrial function. Our current comprehension of how mitochondrial functions maintain cell homeostasis and how cell death occurs as a result of mitochondrial stress are also discussed.
Collapse
Affiliation(s)
- Kanchanjunga Prasai
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| |
Collapse
|
126
|
Wachnowsky C, Wesley NA, Fidai I, Cowan JA. Understanding the Molecular Basis of Multiple Mitochondrial Dysfunctions Syndrome 1 (MMDS1)-Impact of a Disease-Causing Gly208Cys Substitution on Structure and Activity of NFU1 in the Fe/S Cluster Biosynthetic Pathway. J Mol Biol 2017; 429:790-807. [PMID: 28161430 DOI: 10.1016/j.jmb.2017.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 01/28/2017] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S)-cluster-containing proteins constitute one of the largest protein classes, with varied functions that include electron transport, regulation of gene expression, substrate binding and activation, and radical generation. Consequently, the biosynthetic machinery for Fe/S clusters is evolutionarily conserved, and mutations in a variety of putative intermediate Fe/S cluster scaffold proteins can cause disease states, including multiple mitochondrial dysfunctions syndrome (MMDS), sideroblastic anemia, and mitochondrial encephalomyopathy. Herein, we have characterized the impact of defects occurring in the MMDS1 disease state that result from a point mutation (Gly208Cys) near the active site of NFU1, an Fe/S scaffold protein, via an in vitro investigation into the structural and functional consequences. Analysis of protein stability and oligomeric state demonstrates that the mutant increases the propensity to dimerize and perturbs the secondary structure composition. These changes appear to underlie the severely decreased ability of mutant NFU1 to accept an Fe/S cluster from physiologically relevant sources. Therefore, the point mutation on NFU1 impairs downstream cluster trafficking and results in the disease phenotype, because there does not appear to be an alternative in vivo reconstitution path, most likely due to greater protein oligomerization from a minor structural change.
Collapse
Affiliation(s)
- Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; The Ohio State Biochemistry Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA
| | - Nathaniel A Wesley
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; The Biophysics Graduate Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; The Ohio State Biochemistry Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA; The Biophysics Graduate Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
127
|
Cai K, Tonelli M, Frederick RO, Markley JL. Human Mitochondrial Ferredoxin 1 (FDX1) and Ferredoxin 2 (FDX2) Both Bind Cysteine Desulfurase and Donate Electrons for Iron-Sulfur Cluster Biosynthesis. Biochemistry 2017; 56:487-499. [PMID: 28001042 PMCID: PMC5267338 DOI: 10.1021/acs.biochem.6b00447] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 12/20/2016] [Indexed: 02/02/2023]
Abstract
Ferredoxins play an important role as an electron donor in iron-sulfur (Fe-S) cluster biosynthesis. Two ferredoxins, human mitochondrial ferredoxin 1 (FDX1) and human mitochondrial ferredoxin 2 (FDX2), are present in the matrix of human mitochondria. Conflicting results have been reported regarding their respective function in mitochondrial iron-sulfur cluster biogenesis. We report here biophysical studies of the interaction of these two ferredoxins with other proteins involved in mitochondrial iron-sulfur cluster assembly. Results from nuclear magnetic resonance spectroscopy show that both FDX1 and FDX2 (in both their reduced and oxidized states) interact with the protein complex responsible for cluster assembly, which contains cysteine desulfurase (NFS1), ISD11 (also known as LYRM4), and acyl carrier protein (Acp). In all cases, ferredoxin residues close to the Fe-S cluster are involved in the interaction with this complex. Isothermal titration calorimetry results showed that FDX2 binds more tightly to the cysteine desulfurase complex than FDX1 does. The reduced form of each ferredoxin became oxidized in the presence of the cysteine desulfurase complex when l-cysteine was added, leading to its conversion to l-alanine and the generation of sulfide. In an in vitro reaction, the reduced form of each ferredoxin was found to support Fe-S cluster assembly on ISCU; the rate of cluster assembly was faster with FDX2 than with FDX1. Taken together, these results show that both FDX1 and FDX2 can function in Fe-S cluster assembly in vitro.
Collapse
Affiliation(s)
- Kai Cai
- Mitochondrial
Protein Partnership, Center for Eukaryotic
Structural Genomics, and National Magnetic Resonance Facility at Madison,
Biochemistry
Department, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Marco Tonelli
- Mitochondrial
Protein Partnership, Center for Eukaryotic
Structural Genomics, and National Magnetic Resonance Facility at Madison,
Biochemistry
Department, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Ronnie O. Frederick
- Mitochondrial
Protein Partnership, Center for Eukaryotic
Structural Genomics, and National Magnetic Resonance Facility at Madison,
Biochemistry
Department, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - John L. Markley
- Mitochondrial
Protein Partnership, Center for Eukaryotic
Structural Genomics, and National Magnetic Resonance Facility at Madison,
Biochemistry
Department, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
128
|
Stiban J, So M, Kaguni LS. Iron-Sulfur Clusters in Mitochondrial Metabolism: Multifaceted Roles of a Simple Cofactor. BIOCHEMISTRY (MOSCOW) 2017; 81:1066-1080. [PMID: 27908232 DOI: 10.1134/s0006297916100059] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron-sulfur metabolism is essential for cellular function and is a key process in mitochondria. In this review, we focus on the structure and assembly of mitochondrial iron-sulfur clusters and their roles in various metabolic processes that occur in mitochondria. Iron-sulfur clusters are crucial in mitochondrial respiration, in which they are required for the assembly, stability, and function of respiratory complexes I, II, and III. They also serve important functions in the citric acid cycle, DNA metabolism, and apoptosis. Whereas the identification of iron-sulfur containing proteins and their roles in numerous aspects of cellular function has been a long-standing research area, that in mitochondria is comparatively recent, and it is likely that their roles within mitochondria have been only partially revealed. We review the status of the field and provide examples of other cellular iron-sulfur proteins to highlight their multifarious roles.
Collapse
Affiliation(s)
- Johnny Stiban
- Birzeit University, Department of Biology and Biochemistry, West Bank Birzeit, 627, Palestine.
| | | | | |
Collapse
|
129
|
Abstract
Mitochondria lie at the crossroads of neuronal survival and cell death. They play important roles in cellular bioenergetics, control intracellular Ca2+ homeostasis, and participate in key metabolic pathways. Mutations in genes involved in mitochondrial quality control cause a myriad of neurodegenerative diseases. Mitochondria have evolved strategies to kill cells when they are not able to continue their vital functions. This review provides an overview of the role of mitochondria in neurologic disease and the cell death pathways that are mediated through mitochondria, including their role in accidental cell death, the regulated cell death pathways of apoptosis and parthanatos, and programmed cell death. It details the current state of parthanatic cell death and discusses potential therapeutic strategies targeting initiators and effectors of mitochondrial-mediated cell death in neurologic disorders.
Collapse
Affiliation(s)
- Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130
- Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana 70130
| |
Collapse
|
130
|
Abstract
INTRODUCTION Mitochondria are cellular organelles that perform numerous bioenergetic, biosynthetic, and regulatory functions and play a central role in iron metabolism. Extracellular iron is taken up by cells and transported to the mitochondria, where it is utilized for synthesis of cofactors essential to the function of enzymes involved in oxidation-reduction reactions, DNA synthesis and repair, and a variety of other cellular processes. Areas covered: This article reviews the trafficking of iron to the mitochondria and normal mitochondrial iron metabolism, including heme synthesis and iron-sulfur cluster biogenesis. Much of our understanding of mitochondrial iron metabolism has been revealed by pathologies that disrupt normal iron metabolism. These conditions affect not only iron metabolism but mitochondrial function and systemic health. Therefore, this article also discusses these pathologies, including conditions of systemic and mitochondrial iron dysregulation as well as cancer. Literature covering these areas was identified via PubMed searches using keywords: Iron, mitochondria, Heme Synthesis, Iron-sulfur Cluster, and Cancer. References cited by publications retrieved using this search strategy were also consulted. Expert commentary: While much has been learned about mitochondrial and its iron, key questions remain. Developing a better understanding of mitochondrial iron and its regulation will be paramount in developing therapies for syndromes that affect mitochondrial iron.
Collapse
Affiliation(s)
- Bibbin T. Paul
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut
| | - David H. Manz
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut
- School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut
| | - Frank M. Torti
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut
| | - Suzy V. Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut
| |
Collapse
|
131
|
Wachnowsky C, Cowan JA. In Vitro Studies of Cellular Iron–Sulfur Cluster Biosynthesis, Trafficking, and Transport. Methods Enzymol 2017; 595:55-82. [DOI: 10.1016/bs.mie.2017.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
132
|
Wachnowsky C, Fidai I, Cowan JA. Cytosolic iron-sulfur cluster transfer-a proposed kinetic pathway for reconstitution of glutaredoxin 3. FEBS Lett 2016; 590:4531-4540. [PMID: 27859051 DOI: 10.1002/1873-3468.12491] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/30/2022]
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitously conserved and play essential cellular roles. The mechanism of Fe-S cluster biogenesis involves multiple proteins in a complex pathway. Cluster biosynthesis primarily occurs in the mitochondria, but key Fe-S proteins also exist in the cytosol. One such protein, glutaredoxin 3 (Grx3), is involved in iron regulation, sensing, and mediating [2Fe-2S] cluster delivery to cytosolic protein targets, but the cluster donor for cytosolic Grx3 has not been elucidated. Herein, we delineate the kinetic transfer of [2Fe-2S] clusters into Grx3 from potential cytosolic carrier/scaffold proteins, IscU and Nfu, to evaluate a possible model for Grx3 reconstitution in vivo.
Collapse
Affiliation(s)
- Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - James A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
133
|
Structural/Functional Properties of Human NFU1, an Intermediate [4Fe-4S] Carrier in Human Mitochondrial Iron-Sulfur Cluster Biogenesis. Structure 2016; 24:2080-2091. [PMID: 27818104 DOI: 10.1016/j.str.2016.08.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/03/2016] [Accepted: 10/05/2016] [Indexed: 01/26/2023]
Abstract
Human mitochondrial NFU1 functions in the maturation of iron-sulfur proteins, and NFU1 deficiency is associated with a fatal mitochondrial disease. We determined three-dimensional structures of the N- and C-terminal domains of human NFU1 by nuclear magnetic resonance spectroscopy and used these structures along with small-angle X-ray scattering (SAXS) data to derive structural models for full-length monomeric apo-NFU1, dimeric apo-NFU1 (an artifact of intermolecular disulfide bond formation), and holo-NFUI (the [4Fe-4S] cluster-containing form of the protein). Apo-NFU1 contains two cysteine residues in its C-terminal domain, and two apo-NFU1 subunits coordinate one [4Fe-4S] cluster to form a cluster-linked dimer. Holo-NFU1 consists of a complex of three of these dimers as shown by molecular weight estimates from SAXS and size-exclusion chromatography. The SAXS-derived structural model indicates that one N-terminal region from each of the three dimers forms a tripartite interface. The activity of the holo-NFU1 preparation was verified by demonstrating its ability to activate apo-aconitase.
Collapse
|
134
|
Exploring the power of yeast to model aging and age-related neurodegenerative disorders. Biogerontology 2016; 18:3-34. [PMID: 27804052 DOI: 10.1007/s10522-016-9666-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Aging is a multifactorial process determined by molecular, cellular and systemic factors and it is well established that advancing age is a leading risk factor for several neurodegenerative diseases. In fact, the close association of aging and neurodegenerative disorders has placed aging as the greatest social and economic challenge of the 21st century, and age-related diseases have also become a key priority for countries worldwide. The growing need to better understand both aging and neurodegenerative processes has led to the development of simple eukaryotic models amenable for mechanistic studies. Saccharomyces cerevisiae has proven to be an unprecedented experimental model to study the fundamental aspects of aging and to decipher the intricacies of neurodegenerative disorders greatly because the molecular mechanisms underlying these processes are evolutionarily conserved from yeast to human. Moreover, yeast offers several methodological advantages allowing a rapid and relatively easy way of establishing gene-protein-function associations. Here we review different aging theories, common cellular pathways driving aging and neurodegenerative diseases and discuss the major contributions of yeast to the state-of-art knowledge in both research fields.
Collapse
|
135
|
Gakh O, Ranatunga W, Smith DY, Ahlgren EC, Al-Karadaghi S, Thompson JR, Isaya G. Architecture of the Human Mitochondrial Iron-Sulfur Cluster Assembly Machinery. J Biol Chem 2016; 291:21296-21321. [PMID: 27519411 PMCID: PMC5076535 DOI: 10.1074/jbc.m116.738542] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/10/2016] [Indexed: 11/06/2022] Open
Abstract
Fe-S clusters, essential cofactors needed for the activity of many different enzymes, are assembled by conserved protein machineries inside bacteria and mitochondria. As the architecture of the human machinery remains undefined, we co-expressed in Escherichia coli the following four proteins involved in the initial step of Fe-S cluster synthesis: FXN42-210 (iron donor); [NFS1]·[ISD11] (sulfur donor); and ISCU (scaffold upon which new clusters are assembled). We purified a stable, active complex consisting of all four proteins with 1:1:1:1 stoichiometry. Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional model of the complex with ∼14 Å resolution. Molecular dynamics flexible fitting of protein structures docked into the EM map of the model revealed a [FXN42-210]24·[NFS1]24·[ISD11]24·[ISCU]24 complex, consistent with the measured 1:1:1:1 stoichiometry of its four components. The complex structure fulfills distance constraints obtained from chemical cross-linking of the complex at multiple recurring interfaces, involving hydrogen bonds, salt bridges, or hydrophobic interactions between conserved residues. The complex consists of a central roughly cubic [FXN42-210]24·[ISCU]24 sub-complex with one symmetric ISCU trimer bound on top of one symmetric FXN42-210 trimer at each of its eight vertices. Binding of 12 [NFS1]2·[ISD11]2 sub-complexes to the surface results in a globular macromolecule with a diameter of ∼15 nm and creates 24 Fe-S cluster assembly centers. The organization of each center recapitulates a previously proposed conserved mechanism for sulfur donation from NFS1 to ISCU and reveals, for the first time, a path for iron donation from FXN42-210 to ISCU.
Collapse
Affiliation(s)
- Oleksandr Gakh
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry Molecular Biology, Mayo Clinic Children's Research Center, and
| | - Wasantha Ranatunga
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry Molecular Biology, Mayo Clinic Children's Research Center, and
| | - Douglas Y Smith
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry Molecular Biology, Mayo Clinic Children's Research Center, and
| | - Eva-Christina Ahlgren
- the Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Salam Al-Karadaghi
- the Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - James R Thompson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905 and
| | - Grazia Isaya
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry Molecular Biology, Mayo Clinic Children's Research Center, and
| |
Collapse
|
136
|
Fidai I, Wachnowsky C, Cowan JA. Glutathione-complexed [2Fe-2S] clusters function in Fe-S cluster storage and trafficking. J Biol Inorg Chem 2016; 21:887-901. [PMID: 27590019 DOI: 10.1007/s00775-016-1387-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/12/2016] [Indexed: 12/19/2022]
Abstract
Glutathione-coordinated [2Fe-2S] complex is a non-protein-bound [2Fe-2S] cluster that is capable of reconstituting the human iron-sulfur cluster scaffold protein IscU. This complex demonstrates physiologically relevant solution chemistry and is a viable substrate for iron-sulfur cluster transport by Atm1p exporter protein. Herein, we report on some of the possible functional and physiological roles for this novel [2Fe-2S](GS4) complex in iron-sulfur cluster biosynthesis and quantitatively characterize its role in the broader network of Fe-S cluster transfer reactions. UV-vis and circular dichroism spectroscopy have been used in kinetic studies to determine second-order rate constants for [2Fe-2S] cluster transfer from [2Fe-2S](GS4) complex to acceptor proteins, such as human IscU, Schizosaccharomyces pombe Isa1, human and yeast glutaredoxins (human Grx2 and Saccharomyces cerevisiae Grx3), and human ferredoxins. Second-order rate constants for cluster extraction from these holo proteins were also determined by varying the concentration of glutathione, and a likely common mechanism for cluster uptake was determined by kinetic analysis. The results indicate that the [2Fe-2S](GS4) complex is stable under physiological conditions, and demonstrates reversible cluster exchange with a wide range of Fe-S cluster proteins, thereby supporting a possible physiological role for such centers.
Collapse
Affiliation(s)
- Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA.,The Biophysics Graduate Program, The Ohio State University, Columbus, USA
| | - Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA. .,The Biophysics Graduate Program, The Ohio State University, Columbus, USA. .,The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA.
| |
Collapse
|
137
|
Frey AG, Palenchar DJ, Wildemann JD, Philpott CC. A Glutaredoxin·BolA Complex Serves as an Iron-Sulfur Cluster Chaperone for the Cytosolic Cluster Assembly Machinery. J Biol Chem 2016; 291:22344-22356. [PMID: 27519415 DOI: 10.1074/jbc.m116.744946] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/11/2016] [Indexed: 11/06/2022] Open
Abstract
Cells contain hundreds of proteins that require iron cofactors for activity. Iron cofactors are synthesized in the cell, but the pathways involved in distributing heme, iron-sulfur clusters, and ferrous/ferric ions to apoproteins remain incompletely defined. In particular, cytosolic monothiol glutaredoxins and BolA-like proteins have been identified as [2Fe-2S]-coordinating complexes in vitro and iron-regulatory proteins in fungi, but it is not clear how these proteins function in mammalian systems or how this complex might affect Fe-S proteins or the cytosolic Fe-S assembly machinery. To explore these questions, we use quantitative immunoprecipitation and live cell proximity-dependent biotinylation to monitor interactions between Glrx3, BolA2, and components of the cytosolic iron-sulfur cluster assembly system. We characterize cytosolic Glrx3·BolA2 as a [2Fe-2S] chaperone complex in human cells. Unlike complexes formed by fungal orthologs, human Glrx3-BolA2 interaction required the coordination of Fe-S clusters, whereas Glrx3 homodimer formation did not. Cellular Glrx3·BolA2 complexes increased 6-8-fold in response to increasing iron, forming a rapidly expandable pool of Fe-S clusters. Fe-S coordination by Glrx3·BolA2 did not depend on Ciapin1 or Ciao1, proteins that bind Glrx3 and are involved in cytosolic Fe-S cluster assembly and distribution. Instead, Glrx3 and BolA2 bound and facilitated Fe-S incorporation into Ciapin1, a [2Fe-2S] protein functioning early in the cytosolic Fe-S assembly pathway. Thus, Glrx3·BolA is a [2Fe-2S] chaperone complex capable of transferring [2Fe-2S] clusters to apoproteins in human cells.
Collapse
Affiliation(s)
- Avery G Frey
- From the Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Daniel J Palenchar
- From the Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892 and
| | | | - Caroline C Philpott
- From the Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
138
|
Abstract
INTRODUCTION Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by expansion of a GAA·TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Repeat expansion results in transcriptional silencing through an epigenetic mechanism, resulting in significant decreases in frataxin protein in affected individuals. Since the FXN protein coding sequence is unchanged in FRDA, an attractive therapeutic approach for this disease would be to increase transcription of pathogenic alleles with small molecules that target the silencing mechanism. AREAS COVERED We review the evidence that histone postsynthetic modifications and heterochromatin formation are responsible for FXN gene silencing in FRDA, along with efforts to reverse silencing with drugs that target histone modifying enzymes. Chemical and pharmacological properties of histone deacetylase (HDAC) inhibitors, which reverse silencing, together with enzyme target profiles and kinetics of inhibition, are discussed. Two HDAC inhibitors have been studied in human clinical trials and the properties of these compounds are compared and contrasted. Efforts to improve on bioavailability, metabolic stability, and target activity are reviewed. EXPERT OPINION 2-aminobenzamide class I HDAC inhibitors are attractive therapeutic small molecules for FRDA. These molecules increase FXN gene expression in human neuronal cells derived from patient induced pluripotent stem cells, and in two mouse models for the disease, as well as in circulating lymphocytes in patients treated in a phase Ib clinical trial. Medicinal chemistry efforts have identified compounds with improved brain penetration, metabolic stability and efficacy in the human neuronal cell model. A clinical candidate will soon be identified for further human testing.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 USA
| | - Joel M Gottesfeld
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 USA
| |
Collapse
|
139
|
Parkinson's Disease: The Mitochondria-Iron Link. PARKINSONS DISEASE 2016; 2016:7049108. [PMID: 27293957 PMCID: PMC4886095 DOI: 10.1155/2016/7049108] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of Parkinson's disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only in increased reactive oxygen species production but also in decreased iron-sulfur cluster synthesis and unorthodox activation of Iron Regulatory Protein 1 (IRP1), a key regulator of cell iron homeostasis. In turn, IRP1 activation results in iron accumulation and hydroxyl radical-mediated damage. These three occurrences-mitochondrial dysfunction, iron accumulation, and oxidative damage-generate a positive feedback loop of increased iron accumulation and oxidative stress. Here, we review the evidence that points to a link between mitochondrial dysfunction and iron accumulation as early events in the development of sporadic and genetic cases of Parkinson's disease. Finally, an attempt is done to contextualize the possible relationship between mitochondria dysfunction and iron dyshomeostasis. Based on published evidence, we propose that iron chelation-by decreasing iron-associated oxidative damage and by inducing cell survival and cell-rescue pathways-is a viable therapy for retarding this cycle.
Collapse
|
140
|
Abstract
XPD, as part of the TFIIH complex, has classically been linked to the damage verification step of nucleotide excision repair (NER). However, recent data indicate that XPD, due to its iron-sulfur center interacts with the iron sulfur cluster assembly proteins, and may interact with other proteins in the cell to mediate a diverse set of biological functions including cell cycle regulation, mitosis, and mitochondrial function. In this perspective, after first reviewing the function and some of the key disease causing variants that affect XPD's interaction with TFIIH and the CDK-activating kinase complex (CAK), we investigate these intriguing cellular roles of XPD and highlight important unanswered questions that provide a fertile ground for further scientific exploration.
Collapse
Affiliation(s)
- Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Jochen Kuper
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
| | - Caroline Kisker
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
141
|
Camaschella C, Pagani A, Nai A, Silvestri L. The mutual control of iron and erythropoiesis. Int J Lab Hematol 2016; 38 Suppl 1:20-6. [PMID: 27161430 DOI: 10.1111/ijlh.12505] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Iron is essential for hemoglobin synthesis during terminal erythropoiesis. To supply adequate iron the carrier transferrin is required together with transferrin receptor endosomal cycle and normal mitochondrial iron utilization. Iron and iron protein deficiencies result in different types of anemia. Iron-deficiency anemia is the commonest anemia worldwide due to increased requirements, malnutrition, chronic blood losses and malabsorption. Mutations of transferrin, transferrin receptor cycle proteins, enzymes of the first step of heme synthesis and iron sulfur cluster biogenesis lead to rare anemias, usually accompanied by iron overload. Hepcidin plays an indirect role in erythropoiesis by controlling plasma iron. Inappropriately high hepcidin levels characterize the rare genetic iron-refractory iron-deficiency anemia (IRIDA) and the common anemia of chronic disease. Iron modulates both effective and ineffective erythropoiesis: iron restriction reduces heme and alpha-globin synthesis that may be of benefit in thalassemia. MATERIAL AND METHODS This review relies on the analysis of the most recent literature and personal data. RESULTS Erythropoiesis controls iron homeostasis, by releasing erythroferrone that inhibits hepcidin transcription to increase iron acquisition in iron deficiency, hypoxia and EPO treatment. Erythroferrone, produced by EPO-stimulated erythropoiesis, inhibits hepcidin only when the activity of BMP/SMAD pathway is low, suggesting that EPO somehow modulates the latter signaling. Erythroblasts sense circulating iron through the second transferrin receptor (TFR2) that, in animal models, modulates the sensitivity of the erythroid cells to EPO. DISCUSSION The advanced knowledge of the regulation of systemic iron homeostasis and erythropoiesis-mediated hepcidin regulation is leading to the development of targeted therapies for anemias and iron disorders.
Collapse
Affiliation(s)
- C Camaschella
- Vita Salute University and San Raffaele Scientific Institute, Milano, Italy
| | - A Pagani
- Vita Salute University and San Raffaele Scientific Institute, Milano, Italy
| | - A Nai
- Vita Salute University and San Raffaele Scientific Institute, Milano, Italy
| | - L Silvestri
- Vita Salute University and San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
142
|
Ranatunga W, Gakh O, Galeano BK, Smith DY, Söderberg CAG, Al-Karadaghi S, Thompson JR, Isaya G. Architecture of the Yeast Mitochondrial Iron-Sulfur Cluster Assembly Machinery: THE SUB-COMPLEX FORMED BY THE IRON DONOR, Yfh1 PROTEIN, AND THE SCAFFOLD, Isu1 PROTEIN. J Biol Chem 2016; 291:10378-98. [PMID: 26941001 PMCID: PMC4858984 DOI: 10.1074/jbc.m115.712414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/26/2016] [Indexed: 12/18/2022] Open
Abstract
The biosynthesis of Fe-S clusters is a vital process involving the delivery of elemental iron and sulfur to scaffold proteins via molecular interactions that are still poorly defined. We reconstituted a stable, functional complex consisting of the iron donor, Yfh1 (yeast frataxin homologue 1), and the Fe-S cluster scaffold, Isu1, with 1:1 stoichiometry, [Yfh1]24·[Isu1]24 Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional reconstruction of this complex at a resolution of ∼17 Å. In addition, via chemical cross-linking, limited proteolysis, and mass spectrometry, we identified protein-protein interaction surfaces within the complex. The data together reveal that [Yfh1]24·[Isu1]24 is a roughly cubic macromolecule consisting of one symmetric Isu1 trimer binding on top of one symmetric Yfh1 trimer at each of its eight vertices. Furthermore, molecular modeling suggests that two subunits of the cysteine desulfurase, Nfs1, may bind symmetrically on top of two adjacent Isu1 trimers in a manner that creates two putative [2Fe-2S] cluster assembly centers. In each center, conserved amino acids known to be involved in sulfur and iron donation by Nfs1 and Yfh1, respectively, are in close proximity to the Fe-S cluster-coordinating residues of Isu1. We suggest that this architecture is suitable to ensure concerted and protected transfer of potentially toxic iron and sulfur atoms to Isu1 during Fe-S cluster assembly.
Collapse
Affiliation(s)
- Wasantha Ranatunga
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry and Molecular Biology, and the Mayo Clinic Children's Research Center, and
| | - Oleksandr Gakh
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry and Molecular Biology, and the Mayo Clinic Children's Research Center, and
| | - Belinda K Galeano
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry and Molecular Biology, and the Mayo Clinic Children's Research Center, and
| | - Douglas Y Smith
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry and Molecular Biology, and the Mayo Clinic Children's Research Center, and
| | - Christopher A G Söderberg
- the Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Salam Al-Karadaghi
- the Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - James R Thompson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905 and
| | - Grazia Isaya
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry and Molecular Biology, and the Mayo Clinic Children's Research Center, and
| |
Collapse
|
143
|
Wu X, Kim H, Seravalli J, Barycki JJ, Hart PJ, Gohara DW, Di Cera E, Jung WH, Kosman DJ, Lee J. Potassium and the K+/H+ Exchanger Kha1p Promote Binding of Copper to ApoFet3p Multi-copper Ferroxidase. J Biol Chem 2016; 291:9796-806. [PMID: 26966178 DOI: 10.1074/jbc.m115.700500] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 01/24/2023] Open
Abstract
Acquisition and distribution of metal ions support a number of biological processes. Here we show that respiratory growth of and iron acquisition by the yeast Saccharomyces cerevisiae relies on potassium (K(+)) compartmentalization to the trans-Golgi network via Kha1p, a K(+)/H(+) exchanger. K(+) in the trans-Golgi network facilitates binding of copper to the Fet3p multi-copper ferroxidase. The effect of K(+) is not dependent on stable binding with Fet3p or alteration of the characteristics of the secretory pathway. The data suggest that K(+) acts as a chemical factor in Fet3p maturation, a role similar to that of cations in folding of nucleic acids. Up-regulation of KHA1 gene in response to iron limitation via iron-specific transcription factors indicates that K(+) compartmentalization is linked to cellular iron homeostasis. Our study reveals a novel functional role of K(+) in the binding of copper to apoFet3p and identifies a K(+)/H(+) exchanger at the secretory pathway as a new molecular factor associated with iron uptake in yeast.
Collapse
Affiliation(s)
- Xiaobin Wu
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China 200234
| | - Heejeong Kim
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664
| | - Javier Seravalli
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664
| | - Joseph J Barycki
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664
| | - P John Hart
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - David W Gohara
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea 456-756, and
| | - Daniel J Kosman
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14214-3000
| | - Jaekwon Lee
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664,
| |
Collapse
|
144
|
Maio N, Ghezzi D, Verrigni D, Rizza T, Bertini E, Martinelli D, Zeviani M, Singh A, Carrozzo R, Rouault TA. Disease-Causing SDHAF1 Mutations Impair Transfer of Fe-S Clusters to SDHB. Cell Metab 2016; 23:292-302. [PMID: 26749241 PMCID: PMC4749439 DOI: 10.1016/j.cmet.2015.12.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
SDHAF1 mutations cause a rare mitochondrial complex II (CII) deficiency, which manifests as infantile leukoencephalopathy with elevated levels of serum and white matter succinate and lactate. Here, we demonstrate that SDHAF1 contributes to iron-sulfur (Fe-S) cluster incorporation into the Fe-S subunit of CII, SDHB. SDHAF1 transiently binds to aromatic peptides of SDHB through an arginine-rich region in its C terminus and specifically engages a Fe-S donor complex, consisting of the scaffold, holo-ISCU, and the co-chaperone-chaperone pair, HSC20-HSPA9, through an LYR motif near its N-terminal domain. Pathogenic mutations of SDHAF1 abrogate binding to SDHB, which impairs biogenesis of holo-SDHB and results in LONP1-mediated degradation of SDHB. Riboflavin treatment was found to ameliorate the neurologic condition of patients. We demonstrate that riboflavin enhances flavinylation of SDHA and reduces levels of succinate and Hypoxia-Inducible Factor (HIF)-1α and -2α, explaining the favorable response of patients to riboflavin.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, 20892, Bethesda, MD, USA
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, Foundation Carlo Besta Neurological Institute, Istituto di Ricovero e Cura a Carattere Scientifico, 20126 Milan, Italy
| | - Daniela Verrigni
- Unit for Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00165 Rome, Italy
| | - Teresa Rizza
- Unit for Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00165 Rome, Italy
| | - Enrico Bertini
- Unit for Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00165 Rome, Italy
| | - Diego Martinelli
- Unit of Metabolism, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00165 Rome, Italy
| | - Massimo Zeviani
- Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, UK
| | - Anamika Singh
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, 20892, Bethesda, MD, USA
| | - Rosalba Carrozzo
- Unit for Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00165 Rome, Italy
| | - Tracey A Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, 20892, Bethesda, MD, USA.
| |
Collapse
|
145
|
Ciesielski SJ, Schilke B, Marszalek J, Craig EA. Protection of scaffold protein Isu from degradation by the Lon protease Pim1 as a component of Fe-S cluster biogenesis regulation. Mol Biol Cell 2016; 27:1060-8. [PMID: 26842892 PMCID: PMC4814215 DOI: 10.1091/mbc.e15-12-0815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/25/2016] [Indexed: 01/04/2023] Open
Abstract
Fe–S clusters are built on and transferred from the scaffold Isu. Isu is a substrate of Lon protease. Binding Nfs1, the sulfur donor for cluster assembly, or Jac1, the protein initiating cluster transfer, protects Isu from degradation. Such protection increases Isu levels, likely serving to rapidly up-regulate cellular Fe–S cluster biogenesis capacity. Iron–sulfur (Fe–S) clusters, essential protein cofactors, are assembled on the mitochondrial scaffold protein Isu and then transferred to recipient proteins via a multistep process in which Isu interacts sequentially with multiple protein factors. This pathway is in part regulated posttranslationally by modulation of the degradation of Isu, whose abundance increases >10-fold upon perturbation of the biogenesis process. We tested a model in which direct interaction with protein partners protects Isu from degradation by the mitochondrial Lon-type protease. Using purified components, we demonstrated that Isu is indeed a substrate of the Lon-type protease and that it is protected from degradation by Nfs1, the sulfur donor for Fe–S cluster assembly, as well as by Jac1, the J-protein Hsp70 cochaperone that functions in cluster transfer from Isu. Nfs1 and Jac1 variants known to be defective in interaction with Isu were also defective in protecting Isu from degradation. Furthermore, overproduction of Jac1 protected Isu from degradation in vivo, as did Nfs1. Taken together, our results lead to a model of dynamic interplay between a protease and protein factors throughout the Fe–S cluster assembly and transfer process, leading to up-regulation of Isu levels under conditions when Fe–S cluster biogenesis does not meet cellular demands.
Collapse
Affiliation(s)
- Szymon J Ciesielski
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Brenda Schilke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Jaroslaw Marszalek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80307, Poland
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
146
|
Holt SH, Darash-Yahana M, Sohn YS, Song L, Karmi O, Tamir S, Michaeli D, Luo Y, Paddock ML, Jennings PA, Onuchic JN, Azad RK, Pikarsky E, Cabantchik IZ, Nechushtai R, Mittler R. Activation of apoptosis in NAF-1-deficient human epithelial breast cancer cells. J Cell Sci 2015; 129:155-65. [PMID: 26621032 PMCID: PMC4732299 DOI: 10.1242/jcs.178293] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/11/2015] [Indexed: 01/04/2023] Open
Abstract
Maintaining iron (Fe) ion and reactive oxygen species homeostasis is essential for cellular function, mitochondrial integrity and the regulation of cell death pathways, and is recognized as a key process underlying the molecular basis of aging and various diseases, such as diabetes, neurodegenerative diseases and cancer. Nutrient-deprivation autophagy factor 1 (NAF-1; also known as CISD2) belongs to a newly discovered class of Fe-sulfur proteins that are localized to the outer mitochondrial membrane and the endoplasmic reticulum. It has been implicated in regulating homeostasis of Fe ions, as well as the activation of autophagy through interaction with BCL-2. Here we show that small hairpin (sh)RNA-mediated suppression of NAF-1 results in the activation of apoptosis in epithelial breast cancer cells and xenograft tumors. Suppression of NAF-1 resulted in increased uptake of Fe ions into cells, a metabolic shift that rendered cells more susceptible to a glycolysis inhibitor, and the activation of cellular stress pathways that are associated with HIF1α. Our studies suggest that NAF-1 is a major player in the metabolic regulation of breast cancer cells through its effects on cellular Fe ion distribution, mitochondrial metabolism and the induction of apoptosis.
Collapse
Affiliation(s)
- Sarah H Holt
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Merav Darash-Yahana
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Luhua Song
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Ola Karmi
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Sagi Tamir
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Dorit Michaeli
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Yuting Luo
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Mark L Paddock
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Patricia A Jennings
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics and Department of Physics, 239 Brockman Hall, 6100 Main Street-MS-61, Rice University, Houston, TX 77005, USA
| | - Rajeev K Azad
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA Department of Mathematics, University of North Texas, Denton, TX 76203, USA
| | - Eli Pikarsky
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ioav Z Cabantchik
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Ron Mittler
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
147
|
Lipper CH, Paddock ML, Onuchic JN, Mittler R, Nechushtai R, Jennings PA. Cancer-Related NEET Proteins Transfer 2Fe-2S Clusters to Anamorsin, a Protein Required for Cytosolic Iron-Sulfur Cluster Biogenesis. PLoS One 2015; 10:e0139699. [PMID: 26448442 PMCID: PMC4598119 DOI: 10.1371/journal.pone.0139699] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/15/2015] [Indexed: 11/18/2022] Open
Abstract
Iron-sulfur cluster biogenesis is executed by distinct protein assembly systems. Mammals have two systems, the mitochondrial Fe-S cluster assembly system (ISC) and the cytosolic assembly system (CIA), that are connected by an unknown mechanism. The human members of the NEET family of 2Fe-2S proteins, nutrient-deprivation autophagy factor-1 (NAF-1) and mitoNEET (mNT), are located at the interface between the mitochondria and the cytosol. These proteins have been implicated in cancer cell proliferation, and they can transfer their 2Fe-2S clusters to a standard apo-acceptor protein. Here we report the first physiological 2Fe-2S cluster acceptor for both NEET proteins as human Anamorsin (also known as cytokine induced apoptosis inhibitor-1; CIAPIN-1). Anamorsin is an electron transfer protein containing two iron-sulfur cluster-binding sites that is required for cytosolic Fe-S cluster assembly. We show, using UV-Vis spectroscopy, that both NAF-1 and mNT can transfer their 2Fe-2S clusters to apo-Anamorsin with second order rate constants similar to those of other known human 2Fe-2S transfer proteins. A direct protein-protein interaction of the NEET proteins with apo-Anamorsin was detected using biolayer interferometry. Furthermore, electrospray mass spectrometry of holo-Anamorsin prepared by cluster transfer shows that it receives both of its 2Fe-2S clusters from the NEETs. We propose that mNT and NAF-1 can provide parallel routes connecting the mitochondrial ISC system and the CIA. 2Fe-2S clusters assembled in the mitochondria are received by NEET proteins and when needed transferred to Anamorsin, activating the CIA.
Collapse
Affiliation(s)
- Colin H. Lipper
- Departments of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, United States of America
| | - Mark L. Paddock
- Departments of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, United States of America
| | - José N. Onuchic
- Center for Theoretical Biological Physics and Department of Physics, Rice University, Houston, TX, 77005, United States of America
| | - Ron Mittler
- Department of Biology, University of North Texas, Denton, TX, 76203, United States of America
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, 91904, Israel
| | - Patricia A. Jennings
- Departments of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, United States of America
- * E-mail:
| |
Collapse
|
148
|
Abstract
Mitochondrial dysfunction underlies many human disorders, including those that affect the visual system. The retinal ganglion cells, whose axons form the optic nerve, are often damaged by mitochondrial-related diseases which result in blindness. Both mitochondrial DNA (mtDNA) and nuclear gene mutations impacting many different mitochondrial processes can result in optic nerve disease. Of particular importance are mutations that impair mitochondrial network dynamics (fusion and fission), oxidative phosphorylation (OXPHOS), and formation of iron-sulfur complexes. Current genetic knowledge can inform genetic counseling and suggest strategies for novel gene-based therapies. Identifying new optic neuropathy-causing genes and defining the role of current and novel genes in disease will be important steps toward the development of effective and potentially neuroprotective therapies.
Collapse
Affiliation(s)
- Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, Massachusetts 02114;
| |
Collapse
|
149
|
McCarthy EL, Booker SJ. Bridging a gap in iron-sulfur cluster assembly. eLife 2015; 4. [PMID: 26350572 PMCID: PMC4562213 DOI: 10.7554/elife.10479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The cellular machinery that incorporates iron-sulfur clusters into proteins is directed to particular targets by adaptor proteins.
Collapse
Affiliation(s)
- Erin L McCarthy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, United States
| | - Squire J Booker
- Departments of Biochemistry and Molecular Biology and of Chemistry, Pennsylvania State University, University Park, United States
| |
Collapse
|
150
|
Saha PP, Srivastava S, Kumar S K P, Sinha D, D'Silva P. Mapping Key Residues of ISD11 Critical for NFS1-ISD11 Subcomplex Stability: IMPLICATIONS IN THE DEVELOPMENT OF MITOCHONDRIAL DISORDER, COXPD19. J Biol Chem 2015; 290:25876-90. [PMID: 26342079 DOI: 10.1074/jbc.m115.678508] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 11/06/2022] Open
Abstract
Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.
Collapse
Affiliation(s)
- Prasenjit Prasad Saha
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka and
| | - Shubhi Srivastava
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka and
| | - Praveen Kumar S K
- the Department of Biochemistry, Karnatak University, Dharwad 580003, Karnataka, India
| | - Devanjan Sinha
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka and
| | - Patrick D'Silva
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka and
| |
Collapse
|