101
|
Abstract
PURPOSE OF REVIEW Lipid rafts are potentially modifiable by diet, particularly (but not exclusively) by dietary fatty acids. This review examines the potential for dietary modification of raft structure and function in the immune system, brain and retinal tissue, the gut, and in cancer cells. RECENT FINDINGS In-vitro and ex-vivo studies suggest that dietary n-3 polyunsaturated fatty acids (PUFAs) may exert immunosuppressive and anticancer effects through changes in lipid raft organization. In addition, gangliosides and cholesterol may modulate lipid raft organization in a number of tissues, and recent work has highlighted sphingolipids in membrane microdomains as potential targets for inhibition of tumor growth. The roles of fatty acids and gangliosides, especially in relation to lipid rafts, in cognitive development, age-related cognitive decline, psychiatric disorders, and Alzheimer's disease are poorly understood and require further investigation. The roles of lipid rafts in cancer, in microbial pathogenesis, and in insulin resistance are starting to emerge, and indicate compelling evidence for the growing importance of membrane microdomains in health and disease. SUMMARY In-vitro and animal studies show that n-3 PUFAs, cholesterol, and gangliosides modulate the structure and composition of lipid rafts, potentially influencing a wide range of biological processes, including immune function, neuronal signaling, cancer cell growth, entry of pathogens through the gut barrier, and insulin resistance in metabolic disorders. The physiological, clinical, and nutritional relevance of these observations remains to be determined.
Collapse
Affiliation(s)
- Parveen Yaqoob
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK.
| | | |
Collapse
|
102
|
Valsecchi M, Aureli M, Mauri L, Illuzzi G, Chigorno V, Prinetti A, Sonnino S. Sphingolipidomics of A2780 human ovarian carcinoma cells treated with synthetic retinoids. J Lipid Res 2010; 51:1832-40. [PMID: 20194109 DOI: 10.1194/jlr.m004010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dihydroceramide, ceramide, sphingomyelin, lactosylceramide, and ganglioside species of A2780 human ovarian carcinoma cells treated with the synthetic retinoids N-(4-hydroxyphenyl)retinamide (fenretinide, 4-HPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) in culture were characterized by ESI-MS. We characterized 32 species of ceramide and dihydroceramide, 15 of sphingomyelin, 12 of lactosylceramide, 9 of ganglioside GM2, and 6 of ganglioside GM3 differing for the long-chain base and fatty acid structures. Our results indicated that treatment with both 4-HPR and 4-oxo-4-HPR led to a marked increase in dihydroceramide species, while only 4-oxo-4-HPR led to a minor increase of ceramide species. Dihydroceramides generated in A2780 cells in response to 4-HPR or 4-oxo-4-HPR differed for their fatty acid content, suggesting that the two drugs differentially affect the early steps of sphingolipid synthesis. Dihydroceramides produced upon treatments with the drugs were further used for the synthesis of complex dihydrosphingolipids, whose levels dramatically increased in drug-treated cells.
Collapse
Affiliation(s)
- Manuela Valsecchi
- Department of Medical Chemistry, Biochemistry and Biotechnology, Center of Excellence on Neurodegenerative Diseases, University of Milano, 20090 Segrate, Italy
| | | | | | | | | | | | | |
Collapse
|
103
|
Maccarrone M. Membrane environment and endocannabinoid signaling. Front Physiol 2010; 1:140. [PMID: 21423380 PMCID: PMC3059985 DOI: 10.3389/fphys.2010.00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 01/01/2023] Open
Affiliation(s)
- Mauro Maccarrone
- Department of Biomedical Sciences, University of Teramo Teramo, Italy.
| |
Collapse
|
104
|
Gupta G, Surolia A. Glycosphingolipids in microdomain formation and their spatial organization. FEBS Lett 2009; 584:1634-41. [PMID: 19941856 DOI: 10.1016/j.febslet.2009.11.070] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/17/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
Abstract
Plasma membranes regulate the influx and efflux of molecules across themselves and are also responsible for primary signal transduction between cells or within the same cell. Presence of lateral heterogeneity and the ability of reorganization are essential requirements for effective functioning of biomembranes. Lipid rafts are small, heterogeneous, dynamic domains enriched in glycosphingolipids, sphingomyelin and cholesterol, and profoundly influence membrane organization. Glycosphingolipids are inclined towards formation of liquid-ordered phases in membranes, both with and without cholesterol; they are therefore prime players in domain formation. Here, we discuss the role of glycosphingolipids in microdomain formation and their spatial organization within these rafts.
Collapse
Affiliation(s)
- Garima Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
105
|
Morris RJ. Ionic control of the metastable inner leaflet of the plasma membrane: Fusions natural and artefactual. FEBS Lett 2009; 584:1665-9. [PMID: 19913542 DOI: 10.1016/j.febslet.2009.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/02/2009] [Accepted: 11/07/2009] [Indexed: 10/20/2022]
Abstract
The phospholipids of the inner and outer leaflets of the plasma membrane face chemically very different environments, and are specialized to serve different needs. While lipids of the outer leaflet are inherently stable in a lamellar (bilayer) phase, the main lipid of the inner layer, phosphatidylethanolamine (PE), does not form a lamellar phase unless evenly mixed with phosphatidylserine (PS(-)). This mixture can be readily perturbed by factors that include an influx of Ca(2+) that chelates the negatively charged PS(-), thereby destabilizing PE. The implications of this metastability of the inner leaflet for vesicular trafficking, and experimentally for the isolation of detergent-resistant membrane domains (DRMs) at physiological temperature, are considered.
Collapse
Affiliation(s)
- Roger J Morris
- Wolfson Centre for Age-Related Disease, Guy's Campus, King's College London, UK.
| |
Collapse
|
106
|
Hakomori SI. Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility. FEBS Lett 2009; 584:1901-6. [PMID: 19874824 DOI: 10.1016/j.febslet.2009.10.065] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 01/11/2023]
Abstract
Glycosphingolipids (GSLs) GM3 (NeuAcalpha3Galbeta4Glcbeta1Cer) and GM2 (GalNAcbeta4[NeuAcalpha3]Galbeta4Glcbeta1Cer) inhibit (i) cell growth through inhibition of tyrosine kinase associated with growth factor receptor (GFR), (ii) cell adhesion/motility through inhibition of integrin-dependent signaling via Src kinases, or (iii) both cell growth and motility by blocking "cross-talk" between integrins and GFRs. These inhibitory effects are enhanced when GM3 or GM2 are in complex with specific tetraspanins (TSPs) (CD9, CD81, CD82). Processes (i)-(iii) occur through specific organization of GSLs with key molecules (TSPs, caveolins, GFRs, integrins) in the glycosynaptic microdomain. Some of these processes are shared with epithelial-mesenchymal transition induced by TGFbeta or under hypoxia, particularly that associated with cancer progression.
Collapse
Affiliation(s)
- Sen-itiroh Hakomori
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, WA 98122, USA.
| |
Collapse
|
107
|
Norris C, Fong B, MacGibbon A, McJarrow P. Analysis of Phospholipids in Rat Brain Using Liquid Chromatography–Mass Spectrometry. Lipids 2009; 44:1047-54. [DOI: 10.1007/s11745-009-3357-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 09/28/2009] [Indexed: 12/12/2022]
|
108
|
Aureli M, Prioni S, Mauri L, Loberto N, Casellato R, Ciampa MG, Chigorno V, Prinetti A, Sonnino S. Photoactivable sphingosine as a tool to study membrane microenvironments in cultured cells. J Lipid Res 2009; 51:798-808. [PMID: 19820263 DOI: 10.1194/jlr.m001974] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human fibroblasts from normal subjects and Niemann-Pick A (NPA) disease patients were fed with two labeled metabolic precursors of sphingomyelin (SM), [(3)H]choline and photoactivable sphingosine, that entered into the biosynthetic pathway allowing the synthesis of radioactive phosphatidylcholine and SM, and of radioactive and photoactivable SM ([(3)H]SM-N(3)). Detergent resistant membrane (DRM) fractions prepared from normal and NPA fibroblasts resulted as highly enriched in [(3)H]SM-N(3). However, lipid and protein analysis showed strong differences between the two cell types. After cross-linking, different patterns of SM-protein complexes were found, mainly associated with the detergent soluble fraction of the gradient containing most cell proteins. After cell surface biotinylation, DRMs were immunoprecipitated using streptavidin. In conditions that maintain the integrity of domain, SM-protein complexes were detectable only in normal fibroblasts, whereas disrupting the membrane organization, these complexes were not recovered in the immunoprecipitate, suggesting that they involve proteins belonging to the inner membrane layer. These data suggest that differences in lipid and protein compositions of these cell lines determine specific lipid-protein interactions and different clustering within plasma membrane. In addition, our experiments show that photoactivable sphingolipids metabolically synthesized in cells can be used to study sphingolipid protein environments and sphingolipid-protein interactions.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Chemistry Biochemistry and Biotechnology Center of Excellence on Neurodegenerative Diseases, University of Milano, Segrate, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Quinn PJ. Long N-acyl fatty acids on sphingolipids are responsible for miscibility with phospholipids to form liquid-ordered phase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2267-76. [DOI: 10.1016/j.bbamem.2009.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/18/2009] [Accepted: 06/25/2009] [Indexed: 01/06/2023]
|
110
|
Lopez PHH, Schnaar RL. Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol 2009; 19:549-57. [PMID: 19608407 DOI: 10.1016/j.sbi.2009.06.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 06/10/2009] [Indexed: 12/16/2022]
Abstract
Gangliosides, sialic acid-bearing glycosphingolipids, are expressed on all vertebrate cells, and are the major glycans on nerve cells. They are anchored to the plasma membrane through their ceramide lipids with their varied glycans extending into the extracellular space. Through sugar-specific interactions with glycan-binding proteins on apposing cells, gangliosides function as receptors in cell-cell recognition, regulating natural killer cell cytotoxicity via Siglec-7, myelin-axon interactions via Siglec-4 (myelin-associated glycoprotein), and inflammation via E-selectin. Gangliosides also interact laterally in their own membranes, regulating the responsiveness of signaling proteins including the insulin, epidermal growth factor, and vascular endothelial growth factor receptors. In these ways, gangliosides act as regulatory elements in the immune system, in the nervous system, in metabolic regulation, and in cancer progression.
Collapse
Affiliation(s)
- Pablo H H Lopez
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
111
|
Zhai X, Malakhova ML, Pike HM, Benson LM, Bergen HR, Sugár IP, Malinina L, Patel DJ, Brown RE. Glycolipid acquisition by human glycolipid transfer protein dramatically alters intrinsic tryptophan fluorescence: insights into glycolipid binding affinity. J Biol Chem 2009; 284:13620-13628. [PMID: 19270338 PMCID: PMC2679463 DOI: 10.1074/jbc.m809089200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/23/2009] [Indexed: 01/28/2023] Open
Abstract
Glycolipid transfer proteins (GLTPs) are small, soluble proteins that selectively accelerate the intermembrane transfer of glycolipids. The GLTP fold is conformationally unique among lipid binding/transfer proteins and serves as the prototype and founding member of the new GLTP superfamily. In the present study, changes in human GLTP tryptophan fluorescence, induced by membrane vesicles containing glycolipid, are shown to reflect glycolipid binding when vesicle concentrations are low. Characterization of the glycolipid-induced "signature response," i.e. approximately 40% decrease in Trp intensity and approximately 12-nm blue shift in emission wavelength maximum, involved various modes of glycolipid presentation, i.e. microinjection/dilution of lipid-ethanol solutions or phosphatidylcholine vesicles, prepared by sonication or extrusion and containing embedded glycolipids. High resolution x-ray structures of apo- and holo-GLTP indicate that major conformational alterations are not responsible for the glycolipid-induced GLTP signature response. Instead, glycolipid binding alters the local environment of Trp-96, which accounts for approximately 70% of total emission intensity of three Trp residues in GLTP and provides a stacking platform that aids formation of a hydrogen bond network with the ceramide-linked sugar of the glycolipid headgroup. The changes in Trp signal were used to quantitatively assess human GLTP binding affinity for various lipids including glycolipids containing different sugar headgroups and homogenous acyl chains. The presence of the glycolipid acyl chain and at least one sugar were essential for achieving a low-to-submicromolar dissociation constant that was only slightly altered by increased sugar headgroup complexity.
Collapse
Affiliation(s)
- Xiuhong Zhai
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912
| | | | - Helen M Pike
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912
| | - Linda M Benson
- Mayo Proteomics Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - H Robert Bergen
- Mayo Proteomics Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - István P Sugár
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029
| | - Lucy Malinina
- Structural Biology, CIC bioGUNE, Parque Tecnológico de Vizcaya, Ed. 800, Derio 48160, Spain.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065.
| | - Rhoderick E Brown
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912.
| |
Collapse
|