101
|
Davies SS, Bodine C, Matafonova E, Pantazides BG, Bernoud-Hubac N, Harrison FE, Olson SJ, Montine TJ, Amarnath V, Roberts LJ. Treatment with a γ-ketoaldehyde scavenger prevents working memory deficits in hApoE4 mice. J Alzheimers Dis 2012; 27:49-59. [PMID: 21709376 DOI: 10.3233/jad-2011-102118] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Both inflammation and oxidative injury are features of Alzheimer's disease (AD), but the contribution of these intertwined phenomena to the loss of working memory in this disease is unclear. We tested the hypothesis that highly reactive γ-ketoaldehydes that are formed both by non-enzymatic free radical catalyzed lipid peroxidation and by cyclooxygenases may be causally linked to the development of memory impairment in AD. We found that levels of γ-ketoaldehyde protein adducts were increased in the hippocampus of brains obtained postmortem from patients with AD compared to age-matched controls, but that levels of γ-ketoaldehyde protein adducts in the cerebellum were not different in the two groups. Moreover, immunohistochemistry revealed that adducts localized to hippocampal pyramidal neurons. We tested the effect of an orally available γ-ketoaldehyde scavenger, salicylamine, on the development of spatial working memory deficits in hApoE4 targeted replacement mice, a mouse model of dementia. Long-term salicylamine supplementation did not significantly alter body weight or survival, but protected against the development of age-related deficits in spatial working memory in 12-14 month old ApoE4 mice. These findings suggest that γ-ketoaldehyde adduct formation is associated with damage to hippocampal neurons in patients with AD and can contribute to the pathogenesis of spatial working memory deficits in hApoE4 mice. These data provide a rational basis for future studies exploring whether γ-ketoaldehyde scavengers may mitigate the development of cognitive dysfunction in patients with AD.
Collapse
Affiliation(s)
- Sean S Davies
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232-6602, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Zhu Y, Nwabuisi-Heath E, Dumanis SB, Tai LM, Yu C, Rebeck GW, LaDu MJ. APOE genotype alters glial activation and loss of synaptic markers in mice. Glia 2012; 60:559-69. [PMID: 22228589 DOI: 10.1002/glia.22289] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/05/2011] [Indexed: 11/09/2022]
Abstract
The ε4 allele of the Apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), and affects clinical outcomes of chronic and acute brain damages. The mechanisms by which apoE affect diverse diseases and disorders may involve modulation of the glial response to various types of brain damage. We examined glial activation in a mouse model where each of the human APOE alleles are expressed under the endogenous mouse APOE promoter, as well as in APOE knock-out mice. APOE4 mice displayed increased glial activation in response to intracerebroventricular lipopolysaccharide (LPS) compared to APOE2 and APOE3 mice by several measures. There were higher levels of microglia/macrophage, astrocytes, and invading T-cells after LPS injection in APOE4 mice. APOE4 mice also displayed greater and more prolonged increases of cytokines (IL-1β, IL-6, TNF-α) than APOE2 and APOE3 mice. We found that APOE4 mice had greater synaptic protein loss after LPS injection, as measured by three markers: PSD-95, drebin, and synaptophysin. In all assays, APOE knock-out mice responded similar to APOE4 mice, suggesting that the apoE4 protein may lack anti-inflammatory characteristics of apoE2 and apoE3. Together, these findings demonstrate that APOE4 predisposes to inflammation, which could contribute to its association with Alzheimer's disease and other disorders.
Collapse
Affiliation(s)
- Yuangui Zhu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Apolipoprotein E level and cholesterol are associated with reduced synaptic amyloid beta in Alzheimer's disease and apoE TR mouse cortex. Acta Neuropathol 2012; 123:39-52. [PMID: 22020632 DOI: 10.1007/s00401-011-0892-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 12/31/2022]
Abstract
The apolipoprotein E4 allele (APOE4) contributes to Alzheimer's disease (AD) risk and APOE2 is protective, but the relevant cellular mechanisms are unknown. We have used flow cytometry analysis to measure apolipoprotein E (apoE) and amyloid beta peptide (Aβ) levels in large populations of synaptic terminals from AD and aged cognitively normal controls, and demonstrate that modest but significant increases in soluble apoE levels accompany elevated Aβ in AD cortical synapses and in an APP/PS1 rat model of AD. Dual labeling experiments document co-localization of apoE and Aβ in individual synapses with concentration of Aβ in a small population of apoE-positive synapses in both AD and controls. Consistent with a clearance role, the apoE level was higher in Aβ-positive synapses in control cases. In aged targeted replacement mice expressing human apoE, apoE2/4 synaptic terminals demonstrated the highest level of apoE and the lowest level of Aβ compared to apoE3/3 and apoE4/4 lines. In apoE2/4 terminals, the pattern of immunolabeling for apoE and Aβ closely resembled the pattern in human control cases, and elevated apoE was accompanied by elevated free cholesterol in apoE2/4 synaptic terminals. These results are consistent with a role for APOE in Aβ clearance in AD synapses, and suggest that optimal lipidation of apoE2 compared to E3 and E4 makes an important contribution to Aβ clearance and synaptic function.
Collapse
|
104
|
Tai LM, Youmans KL, Jungbauer L, Yu C, Ladu MJ. Introducing Human APOE into Aβ Transgenic Mouse Models. Int J Alzheimers Dis 2011; 2011:810981. [PMID: 22028984 PMCID: PMC3199079 DOI: 10.4061/2011/810981] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/15/2011] [Indexed: 12/29/2022] Open
Abstract
Apolipoprotein E (apoE) and apoE/amyloid-β (Aβ) transgenic (Tg) mouse models are critical to understanding apoE-isoform effects on Alzheimer's disease risk. Compared to wild type, apoE−/− mice exhibit neuronal deficits, similar to apoE4-Tg compared to apoE3-Tg mice, providing a model for Aβ-independent apoE effects on neurodegeneration. To determine the effects of apoE on Aβ-induced neuropathology, apoE−/− mice were crossed with Aβ-Tg mice, resulting in a significant delay in plaque deposition. Surprisingly, crossing human-apoE-Tg mice with apoE−/−/Aβ-Tg mice further delayed plaque deposition, which eventually developed in apoE4/Aβ-Tg mice prior to apoE3/Aβ-Tg. One approach to address hAPOE-induced temporal delay in Aβ pathology is an additional insult, like head injury. Another is crossing human-apoE-Tg mice with Aβ-Tg mice that have rapid-onset Aβ pathology. For example, because 5xFAD mice develop plaques by 2 months, the prediction is that human-apoE/5xFAD-Tg mice develop plaques around 6 months and 12 months before other human-apoE/Aβ-Tg mice. Thus, tractable models for human-apoE/Aβ-Tg mice continue to evolve.
Collapse
Affiliation(s)
- Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
105
|
C-terminal-truncated apolipoprotein (apo) E4 inefficiently clears amyloid-beta (Abeta) and acts in concert with Abeta to elicit neuronal and behavioral deficits in mice. Proc Natl Acad Sci U S A 2011; 108:4236-41. [PMID: 21368138 DOI: 10.1073/pnas.1018381108] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Apolipoprotein (apo) E4 is the major known genetic risk factor for Alzheimer's disease (AD). We have shown in vitro and in vivo that apoE4 preferentially undergoes aberrant cleavage in neurons, yielding neurotoxic C-terminal-truncated fragments. To study the effect of these fragments on amyloid-β (Aβ) clearance/deposition and their potential synergy with Aβ in eliciting neuronal and behavioral deficits, we cross-bred transgenic mice expressing apoE3, apoE4, or apoE4(Δ272-299) with mice expressing human amyloid protein precursor (APP) harboring familial AD mutations (hAPP(FAD)). At 6-8 mo of age, hAPP(FAD) mice expressing apoE3 or apoE4 had lower levels of hippocampal Aβ (94% and 89%, respectively) and less Aβ deposition (89% and 87%) than hAPP(FAD) mice without apoE, whereas hAPP(FAD) mice expressing mouse apoE had higher Aβ levels. Thus, human apoE stimulates Aβ clearance, but mouse apoE does not. Expression of apoE4(Δ272-299) reduced total Aβ levels by only 63% and Aβ deposition by 46% compared with hAPP(FAD) mice without apoE. Unlike apoE3 and apoE4, the C-terminal-truncated apoE4 bound poorly with Aβ peptides, leading to decreased Aβ clearance and increased Aβ deposition. Despite their lower levels of Aβ and Aβ deposition, hAPP(FAD)/apoE4(Δ272-299) mice accumulated pathogenic Aβ oligomers and displayed neuronal and behavioral deficits similar to or more severe than those in hAPP(FAD) mice. Thus, the C-terminal-truncated apoE4 fragment inefficiently clears Aβ peptides and acts in concert with low levels of Aβ to elicit neuronal and behavioral deficits in mice.
Collapse
|
106
|
Banko JL, Trotter J, Weeber EJ. Insights into synaptic function from mouse models of human cognitive disorders. FUTURE NEUROLOGY 2011; 6:113-125. [DOI: 10.2217/fnl.10.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modern approaches to the investigation of the molecular mechanisms underlying human cognitive disease often include multidisciplinary examination of animal models engineered with specific mutations that spatially and temporally restrict expression of a gene of interest. This approach not only makes possible the development of animal models that demonstrate phenotypic similarities to their respective human disorders, but has also allowed for significant progress towards understanding the processes that mediate synaptic function and memory formation in the nondiseased state. Examples of successful mouse models where genetic manipulation of the mouse resulted in recapitulation of the symptomatology of the human disorder and was used to significantly expand our understanding of the molecular mechanisms underlying normal synaptic plasticity and memory formation are discussed in this article. These studies have broadened our knowledge of several signal transduction cascades that function throughout life to mediate synaptic physiology. Defining these events is key for developing therapies to address disorders of cognitive ability.
Collapse
Affiliation(s)
- Jessica L Banko
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, University of South Florida, Tampa, FL, USA
| | - Justin Trotter
- Department of Molecular Pharmacology & Physiology, USF Health Byrd Alzheimer’s Research Institute, University of South Florida, 4001 East Fletcher Ave, Tampa, FL 33612, USA
| | | |
Collapse
|
107
|
Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J Neurosci 2010; 30:13707-17. [PMID: 20943911 DOI: 10.1523/jneurosci.4040-10.2010] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Apolipoprotein E4 (apoE4) is the major genetic risk factor for Alzheimer's disease. However, the underlying mechanisms are unclear. We found that female apoE4 knock-in (KI) mice had an age-dependent decrease in hilar GABAergic interneurons that correlated with the extent of learning and memory deficits, as determined in the Morris water maze, in aged mice. Treating apoE4-KI mice with daily peritoneal injections of the GABA(A) receptor potentiator pentobarbital at 20 mg/kg for 4 weeks rescued the learning and memory deficits. In neurotoxic apoE4 fragment transgenic mice, hilar GABAergic interneuron loss was even more pronounced and also correlated with the extent of learning and memory deficits. Neurodegeneration and tauopathy occurred earliest in hilar interneurons in apoE4 fragment transgenic mice; eliminating endogenous Tau prevented hilar GABAergic interneuron loss and the learning and memory deficits. The GABA(A) receptor antagonist picrotoxin abolished this rescue, while pentobarbital rescued learning deficits in the presence of endogenous Tau. Thus, apoE4 causes age- and Tau-dependent impairment of hilar GABAergic interneurons, leading to learning and memory deficits in mice. Consequently, reducing Tau and enhancing GABA signaling are potential strategies to treat or prevent apoE4-related Alzheimer's disease.
Collapse
|
108
|
Klein RC, Mace BE, Moore SD, Sullivan PM. Progressive loss of synaptic integrity in human apolipoprotein E4 targeted replacement mice and attenuation by apolipoprotein E2. Neuroscience 2010; 171:1265-72. [PMID: 20951774 DOI: 10.1016/j.neuroscience.2010.10.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/22/2010] [Accepted: 10/12/2010] [Indexed: 01/30/2023]
Abstract
Inheritance of the APOE4 allele is a well established genetic risk factor linked to the development of late onset Alzheimer's disease. As the major lipid transport protein in the central nervous system, apolipoprotein (apo) E plays an important role in the assembly and maintenance of synaptic connections. Our previous work showed that 7 month old human apoE4 targeted replacement (TR) mice displayed significant synaptic deficits in the principal neurons of the lateral amygdala, a region that is critical for memory formation and also one of the primary regions affected in Alzheimer's disease, compared to apoE3 TR mice. In the current study, we determined how age and varying APOE genotype affect synaptic integrity of amygdala neurons by comparing electrophysiological and morphometric properties in C57BL6, apoE knockout, and human apoE3, E4 and E2/4 TR mice at 1 month and 7 months. The apoE4 TR mice exhibited the lowest level of excitatory synaptic activity and dendritic arbor compared to other cohorts at both ages, and became progressively worse by 7 months. In contrast, the apoE3 TR mice exhibited the highest synaptic activity and dendritic arbor of all cohorts at both ages. C57BL6 mice displayed virtually identical synaptic activity to apoE3 TR mice at 1 month; however this activity decreased by 7 months. ApoE knockout mice exhibited a similar synaptic activity profile with apoE4 TR mice at 7 months. Consistent with previous reports that APOE2 confers protection, the apoE4-dependent deficits in excitatory activity were significantly attenuated in apoE2/4 TR mice at both ages. These findings demonstrate that expression of human apoE4 contributes to functional deficits in the amygdala very early in development and may be responsible for altering neuronal circuitry that eventually leads to cognitive and affective disorders later in life.
Collapse
Affiliation(s)
- R C Klein
- Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
109
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide insights into recent advances in mechanisms linking apolipoprotein (apo) E isoforms to cardiovascular and neurological diseases. RECENT FINDINGS Human apoE has three common isoforms (apoE2, apoE3, and apoE4) with different structural and biophysical properties and different effects on lipid and neuronal homeostasis. ApoE is a protein constituent of different plasma lipoproteins and serves as a high-affinity ligand for several receptors. By interacting with its receptors, apoE mediates the clearance of different lipoproteins from the circulation. Absence or structural mutations of apoE cause significant disorders in lipid metabolism and cardiovascular disease. ApoE also has significant roles in neurobiology. ApoE4 is the major known genetic risk factor for Alzheimer's disease. It increases the occurrence and lowers the age of onset of Alzheimer's disease. ApoE4 carriers account for 65-80% of all Alzheimer's disease cases, highlighting the importance of apoE4 in Alzheimer's disease pathogenesis. ApoE4 has both amyloid beta-dependent and amyloid beta-independent roles in Alzheimer's disease pathogenesis. SUMMARY Emerging data suggest that apoE isoforms, with their multiple cellular origins and multiple structural and biophysical properties, contribute to cardiovascular and neurological diseases by interacting with different factors through various pathways.
Collapse
Affiliation(s)
- Yadong Huang
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA.
| |
Collapse
|
110
|
Schreurs BG. The effects of cholesterol on learning and memory. Neurosci Biobehav Rev 2010; 34:1366-79. [PMID: 20470821 PMCID: PMC2900496 DOI: 10.1016/j.neubiorev.2010.04.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 02/07/2023]
Abstract
Cholesterol is vital to normal brain function including learning and memory but that involvement is as complex as the synthesis, metabolism and excretion of cholesterol itself. Dietary cholesterol influences learning tasks from water maze to fear conditioning even though cholesterol does not cross the blood brain barrier. Excess cholesterol has many consequences including peripheral pathology that can signal brain via cholesterol metabolites, pro-inflammatory mediators and antioxidant processes. Manipulations of cholesterol within the central nervous system through genetic, pharmacological, or metabolic means circumvent the blood brain barrier and affect learning and memory but often in animals already otherwise compromised. The human literature is no less complex. Cholesterol reduction using statins improves memory in some cases but not others. There is also controversy over statin use to alleviate memory problems in Alzheimer's disease. Correlations of cholesterol and cognitive function are mixed and association studies find some genetic polymorphisms are related to cognitive function but others are not. In sum, the field is in flux with a number of seemingly contradictory results and many complexities. Nevertheless, understanding cholesterol effects on learning and memory is too important to ignore.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Blanchette Rockefeller Neurosciences Institute and Department of Physiology and Pharmacology, West Virginia University School of Medicine, BRNI Building, Morgantown, WV 26505-3409-08, USA.
| |
Collapse
|
111
|
Abeta-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer's disease. Trends Mol Med 2010; 16:287-94. [PMID: 20537952 DOI: 10.1016/j.molmed.2010.04.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/11/2010] [Accepted: 04/13/2010] [Indexed: 11/24/2022]
Abstract
Human apolipoprotein (APO) E has three common isoforms that differentially affect lipid and neuronal homeostasis. APOE4, the major known genetic risk factor for Alzheimer's disease (AD), increases the occurrence and lowers the age of onset of AD. APOE4 carriers account for 65-80% of all AD cases, highlighting the importance of APOE4 in AD pathogenesis. Emerging data suggest that APOE4 contributes to AD through various pathways, some of which are dependent on amyloid-beta (Abeta). Although these Abeta-dependent roles of APOE4 have been widely studied, APOE4 has detrimental effects on neurons independent of Abeta: aberrant proteolysis of APOE4 generates neurotoxic fragments, stimulates Tau phosphorylation, which disrupts the cytoskeleton, and impairs mitochondrial function.
Collapse
|
112
|
Siegel JA, Haley GE, Raber J. Apolipoprotein E isoform-dependent effects on anxiety and cognition in female TR mice. Neurobiol Aging 2010; 33:345-58. [PMID: 20400205 DOI: 10.1016/j.neurobiolaging.2010.03.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 10/30/2009] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
Compared with apoE3, apoE4 is associated with increased risk to develop age-related cognitive decline, particularly in women. In this study, young, middle-aged, and old female mice expressing human apoE under control of the mouse apoE promoter were behaviorally analyzed. Cognitive performance in the water maze decreased with age in all mice. Compared with apoE2 and apoE3 mice, apoE4 mice showed better cognitive performance and higher measures of anxiety than apoE2 and apoE3 mice. Measures of anxiety correlated with cognitive performance in the water maze and passive avoidance tests and might have contributed to the enhanced cognitive performance of the apoE4 mice. ApoE4 mice showed better water maze learning and higher cortical apoE levels than mice expressing apoE4 in astrocytes under control of the GFAP promoter. This was not seen in apoE3 mice. There were no line differences in either genotype in spatial memory retention in the probe trial following the last day of hidden platform training. Thus, the promoter used to express apoE4 critically modulates its effects on brain function.
Collapse
Affiliation(s)
- Jessica A Siegel
- Department of Behavioral Neuroscience, Oregon Health and Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | |
Collapse
|
113
|
Kornecook TJ, McKinney AP, Ferguson MT, Dodart JC. Isoform-specific effects of apolipoprotein E on cognitive performance in targeted-replacement mice overexpressing human APP. GENES BRAIN AND BEHAVIOR 2010; 9:182-92. [DOI: 10.1111/j.1601-183x.2009.00545.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
114
|
Li G, Bien-Ly N, Andrews-Zwilling Y, Xu Q, Bernardo A, Ring K, Halabisky B, Deng C, Mahley RW, Huang Y. GABAergic interneuron dysfunction impairs hippocampal neurogenesis in adult apolipoprotein E4 knockin mice. Cell Stem Cell 2009; 5:634-45. [PMID: 19951691 PMCID: PMC2992822 DOI: 10.1016/j.stem.2009.10.015] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/09/2009] [Accepted: 10/14/2009] [Indexed: 02/02/2023]
Abstract
Apolipoprotein (apo) E, a polymorphic protein with three isoforms (apoE2, apoE3, and apoE4), is essential for lipid homeostasis. Carriers of apoE4 are at higher risk for developing Alzheimer's disease. We have investigated adult neurogenesis in mice with knockout (KO) for apoE or with knockin (KI) alleles for human apoE3 or apoE4, and we report that neurogenesis is reduced in both apoE-KO and apoE4-KI mice. In apoE-KO mice, increased BMP signaling promoted glial differentiation at the expense of neurogenesis. In contrast, in apoE4-KI mice, presynaptic GABAergic input-mediated maturation of newborn neurons was diminished. Tau phosphorylation, an Alzheimer's disease characteristic, and levels of neurotoxic apoE fragments were both elevated in apoE4-KI hippocampal neurons concomitant with decreased GABAergic interneuron survival. Potentiating GABAergic signaling restored neuronal maturation and neurogenesis in apoE4-KI mice to normal levels. These findings suggest that GABAergic signaling can be targeted to mitigate the deleterious effects of apoE4 on neurogenesis.
Collapse
Affiliation(s)
- Gang Li
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
- Department of Neurology, University of California, San Francisco, California 94143, USA
| | - Nga Bien-Ly
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, California 94143, USA
| | - Yaisa Andrews-Zwilling
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
- Department of Neurology, University of California, San Francisco, California 94143, USA
| | - Qin Xu
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
| | - Aubrey Bernardo
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
| | - Karen Ring
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, California 94143, USA
| | - Brian Halabisky
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
| | - Changhui Deng
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | - Robert W. Mahley
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
- Department of Medicine, University of California, San Francisco, California 94143, USA
- Department of Pathology, University of California, San Francisco, California 94143, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, California 94143, USA
- Department of Pathology, University of California, San Francisco, California 94143, USA
- Department of Neurology, University of California, San Francisco, California 94143, USA
| |
Collapse
|
115
|
Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer's disease. Neuron 2009; 63:287-303. [PMID: 19679070 PMCID: PMC3044446 DOI: 10.1016/j.neuron.2009.06.026] [Citation(s) in RCA: 1070] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 06/22/2009] [Accepted: 06/25/2009] [Indexed: 01/17/2023]
Abstract
The epsilon4 allele of apolipoprotein E (APOE) is the major genetic risk factor for Alzheimer's disease (AD). Although there have been numerous studies attempting to elucidate the underlying mechanism for this increased risk, how apoE4 influences AD onset and progression has yet to be proven. However, prevailing evidence suggests that the differential effects of apoE isoforms on Abeta aggregation and clearance play the major role in AD pathogenesis. Other potential mechanisms, such as the differential modulation of neurotoxicity and tau phosphorylation by apoE isoforms as well as its role in synaptic plasticity and neuroinflammation, have not been ruled out. Inconsistent results among studies have made it difficult to define whether the APOE epsilon4 allele represents a gain of toxic function, a loss of neuroprotective function, or both. Therapeutic strategies based on apoE propose to reduce the toxic effects of apoE4 or to restore the physiological, protective functions of apoE.
Collapse
Affiliation(s)
- Jungsu Kim
- Department of Neurology, Developmental Biology, Hope Center for Neurological Disorders, Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|