101
|
Management of cytoskeleton architecture by molecular chaperones and immunophilins. Cell Signal 2011; 23:1907-20. [PMID: 21864675 DOI: 10.1016/j.cellsig.2011.07.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 11/20/2022]
Abstract
Cytoskeletal structure is continually remodeled to accommodate normal cell growth and to respond to pathophysiological cues. As a consequence, several cytoskeleton-interacting proteins become involved in a variety of cellular processes such as cell growth and division, cell movement, vesicle transportation, cellular organelle location and function, localization and distribution of membrane receptors, and cell-cell communication. Molecular chaperones and immunophilins are counted among the most important proteins that interact closely with the cytoskeleton network, in particular with microtubules and microtubule-associated factors. In several situations, heat-shock proteins and immunophilins work together as a functionally active heterocomplex, although both types of proteins also show independent actions. In circumstances where homeostasis is affected by environmental stresses or due to genetic alterations, chaperone proteins help to stabilize the system. Molecular chaperones facilitate the assembly, disassembly and/or folding/refolding of cytoskeletal proteins, so they prevent aberrant protein aggregation. Nonetheless, the roles of heat-shock proteins and immunophilins are not only limited to solve abnormal situations, but they also have an active participation during the normal differentiation process of the cell and are key factors for many structural and functional rearrangements during this course of action. Cytoskeleton modifications leading to altered localization of nuclear factors may result in loss- or gain-of-function of such factors, which affects the cell cycle and cell development. Therefore, cytoskeletal components are attractive therapeutic targets, particularly microtubules, to prevent pathological situations such as rapidly dividing tumor cells or to favor the process of cell differentiation in other cases. In this review we will address some classical and novel aspects of key regulatory functions of heat-shock proteins and immunophilins as housekeeping factors of the cytoskeletal network.
Collapse
|
102
|
Park JH, Lee SY, Kim WY, Jung YJ, Chae HB, Jung HS, Kang CH, Shin MR, Kim SY, Su'udi M, Yun DJ, Lee KO, Kim MG, Lee SY. Heat-induced chaperone activity of serine/threonine protein phosphatase 5 enhances thermotolerance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2011; 191:692-705. [PMID: 21564098 DOI: 10.1111/j.1469-8137.2011.03734.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
• This study reports that Arabidopsis thaliana protein serine/threonine phosphatase 5 (AtPP5) plays a pivotal role in heat stress resistance. A high-molecular-weight (HMW) form of AtPP5 was isolated from heat-treated A. thaliana suspension cells. AtPP5 performs multiple functions, acting as a protein phosphatase, foldase chaperone, and holdase chaperone. The enzymatic activities of this versatile protein are closely associated with its oligomeric status, ranging from low oligomeric protein species to HMW complexes. • The phosphatase and foldase chaperone functions of AtPP5 are associated primarily with the low-molecular-weight (LMW) form, whereas the HMW form exhibits holdase chaperone activity. Transgenic over-expression of AtPP5 conferred enhanced heat shock resistance to wild-type A. thaliana and a T-DNA insertion knock-out mutant was defective in acquired thermotolerance. A recombinant phosphatase mutant (H290N) showed markedly increased holdase chaperone activity. • In addition, enhanced thermotolerance was observed in transgenic plants over-expressing H290N, which suggests that the holdase chaperone activity of AtPP5 is primarily responsible for AtPP5-mediated thermotolerance. • Collectively, the results from this study provide the first evidence that AtPP5 performs multiple enzymatic activities that are mediated by conformational changes induced by heat-shock stress.
Collapse
Affiliation(s)
- Jin Ho Park
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Sun Yong Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Woe Yeon Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Young Jun Jung
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Ho Byoung Chae
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Hyun Suk Jung
- Division of Electron Microscopic Research, Korea Basic Science Institute, 52 Eoeun-dong, Daejeon 305-333, Korea
| | - Chang Ho Kang
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Mi Rim Shin
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Sun Young Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Mukhamad Su'udi
- National Academy of Agricultural Science, RDA, Suwon 441-856, Korea
| | - Dae Jin Yun
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Kyun Oh Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Min Gab Kim
- National Academy of Agricultural Science, RDA, Suwon 441-856, Korea
| | - Sang Yeol Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| |
Collapse
|
103
|
Allan RK, Ratajczak T. Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones 2011; 16:353-67. [PMID: 21153002 PMCID: PMC3118826 DOI: 10.1007/s12192-010-0248-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/21/2010] [Accepted: 11/24/2010] [Indexed: 12/30/2022] Open
Abstract
The tetratricopeptide repeat (TPR) motif is one of many repeat motifs that form structural domains in proteins that can act as interaction scaffolds in the formation of multi-protein complexes involved in numerous cellular processes such as transcription, the cell cycle, protein translocation, protein degradation and host defence against invading pathogens. The crystal structures of many TPR domain-containing proteins have been determined, showing TPR motifs as two anti-parallel α-helices packed in tandem arrays to form a structure with an amphipathic groove which can bind a target peptide. This is however not the only mode of target recognition by TPR domains, with short amino acid insertions and alternative TPR motif conformations also shown to contribute to protein interactions, highlighting diversity in TPR domains and the versatility of this structure in mediating biological events.
Collapse
Affiliation(s)
- Rudi Kenneth Allan
- Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009 Australia
- The Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009 Australia
| | - Thomas Ratajczak
- Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009 Australia
- The Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009 Australia
| |
Collapse
|
104
|
Salminen A, Ojala J, Kaarniranta K, Hiltunen M, Soininen H. Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer's disease. Prog Neurobiol 2010; 93:99-110. [PMID: 21056617 DOI: 10.1016/j.pneurobio.2010.10.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/19/2010] [Accepted: 10/28/2010] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease is a tauopathy which involves the deposition of microtubule-associated tau proteins into neurofibrillary tangles. Post-translational modifications, in particular site-specific phosphorylations, affect the conformation of tau protein which is an intrinsically disordered protein. These structural changes significantly increase the affinity of tau protein for certain molecular chaperones. Hsp90 is a major cellular chaperone which assembles large complexes with a variety of co-chaperones. The main function of Hsp90 complexes is to maintain protein quality control and assist in protein degradation via proteasomal and autophagic-lysosomal pathways. Tau protein is a client protein for these Hsp90 complexes. If the tau protein is in an abnormal or modified form, then it can trigger the recruitment of CHIP protein, a co-chaperone with E3 activity, to the complex which induces the ubiquitination of tau protein and activates its downstream degradation processes. Large immunophilins, FKBP51 and FKBP52 are also co-chaperones of Hsp90-tau complexes. These proteins contain peptidylprolyl cis/trans isomerase activity which catalyzes phosphorylation-dependent rotation in pSer/Thr-Pro peptide bond. The proline switch in the tau conformation triggers dephosphorylation of Ser/Thr residues phosphorylated, e.g. by two well-known tau kinases Cdk5 and GSK-3β. Binding of PP5 protein phosphatase to Hsp90 complex, can also dephosphorylate tau protein. Subsequently, dephosphorylated tau protein can be shuttled back to the microtubules. It seems that high-affinity binding of abnormal tau to Hsp90 complexes may have some counteracting effects on the aggregation process, since Hsp90 inhibitors can ameliorate the aggregation process in several neurodegenerative diseases. We will review the role of Hsp90 chaperone network in the regulation of tau biology and pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
105
|
Kutuzov MA, Bennett N, Andreeva AV. Protein phosphatase with EF-hand domains 2 (PPEF2) is a potent negative regulator of apoptosis signal regulating kinase-1 (ASK1). Int J Biochem Cell Biol 2010; 42:1816-22. [PMID: 20674765 DOI: 10.1016/j.biocel.2010.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 11/28/2022]
Abstract
The function of protein phosphatases with EF-hand domains (PPEF) in mammals is not known. Large-scale expression profiling experiments suggest that PPEF expression may correlate with stress protective responses, cell survival, growth, proliferation, or neoplastic transformation. Apoptosis signal regulating kinase-1 (ASK1) is a MAP kinase kinase kinase implicated in cancer, cardiovascular and neurodegenerative diseases. ASK1 is activated by oxidative stress and induces pro-apoptotic or inflammatory signalling, largely via sustained activation of MAP kinases p38 and/or JNK. We identify human PPEF2 as a novel interacting partner and a negative regulator of ASK1. In COS-7 or HEK 293A cells treated with H(2)O(2), expression of PPEF2 abrogated sustained activation of p38 and one of the JNK p46 isoforms, and prevented ASK1-dependent caspase-3 cleavage and activation. PPEF2 efficiently suppressed H(2)O(2)-induced activation of ASK1. Overexpessed as well as endogenous ASK1 co-immunoprecipitated with PPEF2. PPEF2 was considerably more potent both as a suppressor of ASK1 activation and as its interacting partner as compared to protein phosphatase 5 (PP5), a well-known negative regulator of ASK1. PPEF2 was found to form complexes with endogenous Hsp70 and to a lesser extent Hsp90, which are also known interacting partners of PP5. These data identify, for the first time, a possible downstream signalling partner of a mammalian PPEF phosphatase, and suggest that, despite structural divergence, PPEF and PP5 phosphatases may share common interacting partners and functions.
Collapse
Affiliation(s)
- Mikhail A Kutuzov
- Department of Pharmacology (MC 868), University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
106
|
Schülke JP, Wochnik GM, Lang-Rollin I, Gassen NC, Knapp RT, Berning B, Yassouridis A, Rein T. Differential impact of tetratricopeptide repeat proteins on the steroid hormone receptors. PLoS One 2010; 5:e11717. [PMID: 20661446 PMCID: PMC2908686 DOI: 10.1371/journal.pone.0011717] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 06/24/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tetratricopeptide repeat (TPR) motif containing co-chaperones of the chaperone Hsp90 are considered control modules that govern activity and specificity of this central folding platform. Steroid receptors are paradigm clients of Hsp90. The influence of some TPR proteins on selected receptors has been described, but a comprehensive analysis of the effects of TPR proteins on all steroid receptors has not been accomplished yet. METHODOLOGY AND PRINCIPAL FINDINGS We compared the influence of the TPR proteins FK506 binding proteins 51 and 52, protein phosphatase-5, C-terminus of Hsp70 interacting protein, cyclophillin 40, hepatitis-virus-B X-associated protein-2, and tetratricopeptide repeat protein-2 on all six steroid hormone receptors in a homogeneous mammalian cell system. To be able to assess each cofactor's effect on the transcriptional activity of on each steroid receptor we employed transient transfection in a reporter gene assay. In addition, we evaluated the interactions of the TPR proteins with the receptors and components of the Hsp90 chaperone heterocomplex by coimmunoprecipitation. In the functional assays, corticosteroid and progesterone receptors displayed the most sensitive and distinct reaction to the TPR proteins. Androgen receptor's activity was moderately impaired by most cofactors, whereas the Estrogen receptors' activity was impaired by most cofactors only to a minor degree. Second, interaction studies revealed that the strongly receptor-interacting co-chaperones were all among the inhibitory proteins. Intriguingly, the TPR-proteins also differentially co-precipitated the heterochaperone complex components Hsp90, Hsp70, and p23, pointing to differences in their modes of action. CONCLUSION AND SIGNIFICANCE The results of this comprehensive study provide important insight into chaperoning of diverse client proteins via the combinatorial action of (co)-chaperones. The differential effects of the TPR proteins on steroid receptors bear on all physiological processes related to steroid hormone activity.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Line, Tumor
- Peptidyl-Prolyl Isomerase F
- Cyclophilins/genetics
- Cyclophilins/metabolism
- HSP40 Heat-Shock Proteins/genetics
- HSP40 Heat-Shock Proteins/metabolism
- Heat-Shock Proteins
- Humans
- Immunoblotting
- Immunoprecipitation
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice
- Molecular Chaperones
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphoprotein Phosphatases/genetics
- Phosphoprotein Phosphatases/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Tacrolimus Binding Proteins/genetics
- Tacrolimus Binding Proteins/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Jan-Philip Schülke
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | - Barbara Berning
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Theo Rein
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
107
|
Wilson JB, Blom E, Cunningham R, Xiao Y, Kupfer GM, Jones NJ. Several tetratricopeptide repeat (TPR) motifs of FANCG are required for assembly of the BRCA2/D1-D2-G-X3 complex, FANCD2 monoubiquitylation and phleomycin resistance. Mutat Res 2010; 689:12-20. [PMID: 20450923 PMCID: PMC2903733 DOI: 10.1016/j.mrfmmm.2010.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 04/02/2010] [Accepted: 04/28/2010] [Indexed: 11/26/2022]
Abstract
The Fanconi anaemia (FA) FANCG protein is an integral component of the FA nuclear core complex that is required for monoubiquitylation of FANCD2. FANCG is also part of another protein complex termed D1-D2-G-X3 that contains FANCD2 and the homologous recombination repair proteins BRCA2 (FANCD1) and XRCC3. Formation of the D1-D2-G-X3 complex is mediated by serine-7 phosphorylation of FANCG and occurs independently of the FA core complex and FANCD2 monoubiquitylation. FANCG contains seven tetratricopeptide repeat (TPR) motifs that mediate protein-protein interactions and here we show that mutation of several of the TPR motifs at a conserved consensus residue ablates the in vivo binding activity of FANCG. Expression of mutated TPR1, TPR2, TPR5 and TPR6 in Chinese hamster fancg mutant NM3 fails to functionally complement its hypersensitivities to mitomycin C (MMC) and phleomycin and fails to restore FANCD2 monoubiquitylation. Using co-immunoprecipitation analysis, we demonstrate that these TPR-mutated FANCG proteins fail to interact with BRCA2, XRCC3, FANCA or FANCF. The interactions of other proteins in the D1-D2-G-X3 complex are also absent, including the interaction of BRCA2 with both the monoubiquitylated (FANCD2-L) and non-ubiquitylated (FANCD2-S) isoforms of FANCD2. Interestingly, a mutation of TPR7 (R563E), that complements the MMC and phleomycin hypersensitivity of human FA-G EUFA316 cells, fails to complement NM3, despite the mutated FANCG protein co-precipitating with FANCA, BRCA2 and XRCC3. Whilst interaction of TPR7-mutated FANCG with FANCF does appear to be reduced in NM3, FANCD2 is monoubiquitylated suggesting that sub-optimal interactions of FANCG in the core complex and the D1-D2-G-X3 complex are responsible for the observed MMC- and phleomycin-hypersensitivity, rather than a defect in FANCD2 monoubiquitylation. Our data demonstrate that FANCG functions as a mediator of protein-protein interactions and is vital for the assembly of multi-protein complexes including the FA core complex and the D1-D2-G-X3 complex.
Collapse
Affiliation(s)
- James B. Wilson
- Molecular Oncology and Stem Cell Research Group, School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZD, UK
| | - Eric Blom
- Department of Clinical Genetics and Human Genetics, VU University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam, The Netherlands
| | - Ryan Cunningham
- Molecular Oncology and Stem Cell Research Group, School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZD, UK
| | - Yuxuan Xiao
- Molecular Oncology and Stem Cell Research Group, School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZD, UK
| | - Gary M. Kupfer
- Departments of Pediatrics and Pathology, Yale University School of Medicine, Section of Hematology/Oncology, 333 Cedar Street, New Haven CT 0652, USA
| | - Nigel J. Jones
- Molecular Oncology and Stem Cell Research Group, School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZD, UK
| |
Collapse
|
108
|
Jayandharan GR, Zhong L, Sack BK, Rivers AE, Li M, Li B, Herzog RW, Srivastava A. Optimized adeno-associated virus (AAV)-protein phosphatase-5 helper viruses for efficient liver transduction by single-stranded AAV vectors: therapeutic expression of factor IX at reduced vector doses. Hum Gene Ther 2010; 21:271-83. [PMID: 19788390 DOI: 10.1089/hum.2009.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract Our studies have shown that coinjection of conventional single-stranded adeno-associated virus 2 (ssAAV2) vectors carrying the enhanced green fluorescent protein (EGFP) gene with self-complementary (sc) AAV2-T cell protein tyrosine phosphatase (TC-PTP) and scAAV2-protein phosphatase-5 (PP5) vectors resulted in an approximately 16-fold increase in EGFP expression in primary murine hepatocytes in vivo [Jayandharan, G.R., Zhong, L., Li, B., Kachniarz, B., and Srivastava, A. (2008). Gene Ther. 15, 1287-1293]. In the present studies, this strategy was further optimized to achieve transgene expression at reduced vector/helper virus doses. These included the use of scAAV helper viruses containing (1) hepatocyte-specific promoters, (2) tyrosine-mutant AAV2 capsids, and (3) additional AAV serotype vectors known to efficiently transduce hepatocytes. The hepatocyte-specific transthyretin (TTR) promoter was approximately 6- to 7-fold more efficient than the Rous sarcoma virus (RSV) promoter; tyrosine-mutant AAV2 capsids were approximately 6- to 11-fold more efficient than the wild-type AAV2 capsids; and the AAV8 serotype helper virus was approximately 16-fold more efficient than AAV2 serotype helper virus. With these modifications, the vector dose of the helper virus could be further reduced by approximately 50-fold. Last, coadministration of scAAV8-PP5 helper virus increased coagulation factor IX expression from an ssAAV2 vector by approximately 7- to 10-fold, thereby achieving therapeutic levels at lower vector doses. No adverse effect on hepatocytes was observed under any of these experimental conditions. The strategy presented here should be adaptable to any ssAAV transgene cassette and, specifically, liver-directed applications of ssAAV2 vectors containing larger genes that cannot be encapsidated in scAAV vectors.
Collapse
Affiliation(s)
- Giridhara R Jayandharan
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32611-3633, USA
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Szöör B. Trypanosomatid protein phosphatases. Mol Biochem Parasitol 2010; 173:53-63. [PMID: 20594956 PMCID: PMC2994645 DOI: 10.1016/j.molbiopara.2010.05.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 01/09/2023]
Abstract
Protein phosphorylation is one of the most important post-translational modifications regulating various signaling processes in all known living organisms. In the cell, protein phosphatases and protein kinases play a dynamic antagonistic role, controlling the phosphorylation state of tyrosine (Tyr), serine (Ser) and threonine (Thr) side chains of proteins. The reversible phosphorylation modulates protein function, through initiating conformational changes, which influences protein complex formation, alteration of enzyme activity and changes in protein stability and subcellular localization. These molecular changes affect signaling cascades regulating the cell cycle, differentiation, cell-cell and cell-substrate interactions, cell motility, the immune response, ion-channel and transporter activities, gene transcription, mRNA translation, and basic metabolism. In addition to these processes, in unicellular parasites, like Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp., additional signaling pathways have evolved to enable the survival of parasites in the changing environment of the vector and host organism. In recent years the genome of five trypanosomatid genomes have been sequenced and annotated allowing complete definition of the composition of the trypanosomatid phosphatomes. The very diverse environments involved in the different stages of the kinetoplastids' life cycle might have played a role to develop a set of trypanosomatid-specific phosphatases in addition to orthologues of many higher eukaryote protein phosphatases present in the kinetoplastid phosphatomes. In spite of their well-described phosphatomes, few trypanosomatid protein phosphatases have been characterized and studied in vivo. The aim of this review is to give an up to date scope of the research, which has been carried out on trypanosomatid protein phosphatases.
Collapse
Affiliation(s)
- Balázs Szöör
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Building, West Mains Road, Edinburgh EH9 3JT, UK.
| |
Collapse
|
110
|
Ham BM, Jayachandran H, Yang F, Jaitly N, Polpitiya AD, Monroe ME, Wang L, Zhao R, Purvine SO, Livesay EA, Camp DG, Rossie S, Smith RD. Novel Ser/Thr protein phosphatase 5 (PP5) regulated targets during DNA damage identified by proteomics analysis. J Proteome Res 2010; 9:945-53. [PMID: 20039704 DOI: 10.1021/pr9008207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The DNA damage response likely includes a global phosphorylation signaling cascade process for sensing the damaged DNA condition and coordinating responses to cope with and repair the perturbed cellular state. We utilized a label-free liquid chromatography-mass spectrometry approach to evaluate changes in protein phosphorylation associated with PP5 activity during the DNA damage response. Biological replicate analyses of bleomycin-treated HeLa cells expressing either WT-PP5 or mutant inactive PP5 lead to the identification of six potential target proteins of PP5 action. Four of these putative targets have been previously reported to be involved in DNA damage responses. Using phospho-site specific antibodies, we confirmed that phosphorylation of one target, ribosomal protein S6, was selectively decreased in cells overexpressing catalytically inactive PP5. Our findings also suggest that PP5 may play a role in controlling translation and in regulating substrates for proline-directed kinases, such as MAP kinases and cyclin-dependent protein kinases that are involved in response to DNA damage.
Collapse
Affiliation(s)
- Bryan M Ham
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
Hsp90 molecular chaperones are required for the stability and activity of a diverse range of client proteins that have critical roles in signal transduction, cellular trafficking, chromatin remodeling, cell growth, differentiation, and reproduction. Mammalian cells contain three types of Hsp90s: cytosolic Hsp90, mitochondrial Trap-1, and Grp94 of the endoplasmic reticulum. Each of the Hsp90s, as well as the bacterial homolog, HtpG, hydrolyze ATP and undergo similar conformational changes. Unlike the other forms of Hsp90, cytosolic Hsp90 function is dependent on a battery of co-chaperone proteins that regulate the ATPase activity of Hsp90 or direct Hsp90 to interact with specific client proteins. This review will summarize what is known about Hsp90's ability to mediate the folding and activation of diverse client proteins that contribute to human diseases, such as cancer and fungal and viral infections.
Collapse
Affiliation(s)
- Abbey Zuehlke
- Department of Microbiology, Molecular Biology and Biochemistry and the Center for Reproductive Biology, University of Idaho, Moscow ID 83844-3052
| | - Jill L. Johnson
- Department of Microbiology, Molecular Biology and Biochemistry and the Center for Reproductive Biology, University of Idaho, Moscow ID 83844-3052
| |
Collapse
|
112
|
Dynia DW, Steinmetz AG, Kocinsky HS. NHE3 function and phosphorylation are regulated by a calyculin A-sensitive phosphatase. Am J Physiol Renal Physiol 2009; 298:F745-53. [PMID: 20015946 DOI: 10.1152/ajprenal.00182.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Na+/H+ exchanger 3 (NHE3) is phosphorylated and regulated by multiple kinases, including PKA, SGK1, and CK2; however, the role of phosphatases in the dephosphorylation and regulation of NHE3 remains unknown. The purpose of this study was to determine whether serine/threonine phosphatases alter NHE3 activity and phosphorylation and, if so, at which sites. To this end, we first examined the effects of calyculin A [a combined protein phosphatase 1 (PP1) and PP2A inhibitor] and okadaic acid (a PP2A inhibitor) on general and site-specific NHE3 phosphorylation. Calyculin A induced a phosphorylation-dependent NHE3 gel mobility shift and increased NHE3 phosphorylation at serines 552 and 605. No change in NHE3 phosphorylation was detected after okadaic acid treatment. An NHE3 gel mobility shift was also evident in calyculin A-treated COS-7 cells transfected with either wild-type or mutant (S552A, S605G, S661A, S716A) rat NHE3. Since the NHE3 gel mobility shift occurred despite mutation of known phosphorylation sites, novel sites of phosphorylation must also exist. Next, we assayed NHE3 activity in response to calyculin A and okadaic acid and found that calyculin A induced a 24% inhibition of NHE3 activity, whereas okadaic acid had no effect. When all known NHE3 phosphorylation sites were mutated, calyculin A induced a stimulation of NHE3 activity, demonstrating a functional significance for the novel phosphorylation sites. Finally, we established that the PP1 catalytic subunit can directly dephosphorylate immunopurified NHE3 in vitro. In conclusion, our data demonstrate that a calyculin A-sensitive phosphatase, most likely PP1, is involved in the regulation and dephosphorylation of NHE3 at known and novel sites.
Collapse
Affiliation(s)
- Diane W Dynia
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
113
|
Abstract
The reversible phosphorylation of proteins is accomplished by opposing activities of kinases and phosphatases. Relatively few protein serine/threonine phosphatases (PSPs) control the specific dephosphorylation of thousands of phosphoprotein substrates. Many PSPs, exemplified by protein phosphatase 1 (PP1) and PP2A, achieve substrate specificity and regulation through combinatorial interactions between conserved catalytic subunits and a large number of regulatory subunits. Other PSPs, represented by PP2C and FCP/SCP, contain both catalytic and regulatory domains within the same polypeptide chain. Here, we discuss biochemical and structural investigations that advance the mechanistic understanding of the three major classes of PSPs, with a focus on PP2A.
Collapse
Affiliation(s)
- Yigong Shi
- Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
114
|
Beck IME, Vanden Berghe W, Vermeulen L, Yamamoto KR, Haegeman G, De Bosscher K. Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr Rev 2009; 30:830-82. [PMID: 19890091 PMCID: PMC2818158 DOI: 10.1210/er.2009-0013] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/18/2009] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroidal ligands for the GC receptor (GR), which can function as a ligand-activated transcription factor. These steroidal ligands and derivatives thereof are the first line of treatment in a vast array of inflammatory diseases. However, due to the general surge of side effects associated with long-term use of GCs and the potential problem of GC resistance in some patients, the scientific world continues to search for a better understanding of the GC-mediated antiinflammatory mechanisms. The reversible phosphomodification of various mediators in the inflammatory process plays a key role in modulating and fine-tuning the sensitivity, longevity, and intensity of the inflammatory response. As such, the antiinflammatory GCs can modulate the activity and/or expression of various kinases and phosphatases, thus affecting the signaling efficacy toward the propagation of proinflammatory gene expression and proinflammatory gene mRNA stability. Conversely, phosphorylation of GR can affect GR ligand- and DNA-binding affinity, mobility, and cofactor recruitment, culminating in altered transactivation and transrepression capabilities of GR, and consequently leading to a modified antiinflammatory potential. Recently, new roles for kinases and phosphatases have been described in GR-based antiinflammatory mechanisms. Moreover, kinase inhibitors have become increasingly important as antiinflammatory tools, not only for research but also for therapeutic purposes. In light of these developments, we aim to illuminate the integrated interplay between GR signaling and its correlating kinases and phosphatases in the context of the clinically important combat of inflammation, giving attention to implications on GC-mediated side effects and therapy resistance.
Collapse
Affiliation(s)
- Ilse M E Beck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
115
|
Chatterjee A, Wang L, Armstrong DL, Rossie S. Activated Rac1 GTPase translocates protein phosphatase 5 to the cell membrane and stimulates phosphatase activity in vitro. J Biol Chem 2009; 285:3872-3882. [PMID: 19948726 DOI: 10.1074/jbc.m109.088427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Physiological studies of ion channel regulation have implicated the Ser/Thr protein phosphatase 5 (PP5) as an effector of Rac1 GTPase signaling, but direct biochemical evidence for PP5 regulation by Rac1 is lacking. In this study we used immunoprecipitation, in vitro binding, cellular fractionation, and immunofluorescence techniques to show that the tetratricopeptide repeat domain of PP5 interacts specifically and directly with active Rac1. Consequently, activation of Rac1 promoted PP5 translocation to the plasma membrane in intact cells and stimulated PP5 phosphatase activity in vitro. In contrast, neither constitutively active RhoA-V14 nor dominant negative Rac1N17, which preferentially binds GDP and retains an inactive conformation, bound PP5 or stimulated its activity. In addition, Rac1N17 and Rac1(PBRM), a mutant lacking the C-terminal polybasic region required for Rac1 association with the membrane, both failed to cause membrane translocation of PP5. Mutation of predicted contact residues in the PP5 tetratricopeptide repeat domain or within Rac1 also disrupted co-immunoprecipitation of Rac1-PP5 complexes and membrane translocation of PP5. Specific binding of PP5 to activated Rac1 provides a direct mechanism by which PP5 can be stimulated and recruited to participate in Rac1-mediated signaling pathways.
Collapse
Affiliation(s)
- Anindya Chatterjee
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 and
| | - Ling Wang
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 and
| | - David L Armstrong
- the Environmental Biology Program, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Sandra Rossie
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 and.
| |
Collapse
|
116
|
Andreeva AV, Kutuzov MA. PPEF/PP7 protein Ser/Thr phosphatases. Cell Mol Life Sci 2009; 66:3103-10. [PMID: 19662497 PMCID: PMC11115641 DOI: 10.1007/s00018-009-0110-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 07/15/2009] [Indexed: 12/14/2022]
Abstract
PPEF/PP7 represents one of the five subfamilies of the PPP protein Ser/Thr phosphatases. Studies published in recent years point to a role of plant PP7 at a crossroad of different pathways of light and stress signalling. In animals, PPEFs are highly expressed in sensory neurons, and Drosophila PPEF phosphatase, rdgC, is essential for dephosphorylation of rhodopsin. Expression profiling suggests that mammalian PPEF may play a role in stress-protective responses, cell survival, growth, proliferation, and oncogenesis. Despite structural similarities of the catalytic domains and the fact that some of these phosphatases are involved in light perception both in animals and in plants, the plant and non-plant representatives of this group have distinct domain architecture and appear not to be orthologues.
Collapse
Affiliation(s)
- Alexandra V. Andreeva
- Department of Pharmacology (M/C 868), College of Medicine, University of Illinois, 909 S. Wolcott Ave., Chicago, IL 60612 USA
| | - Mikhail A. Kutuzov
- Department of Pharmacology (M/C 868), College of Medicine, University of Illinois, 909 S. Wolcott Ave., Chicago, IL 60612 USA
| |
Collapse
|
117
|
Bertini I, Calderone V, Fragai M, Luchinat C, Talluri E. Structural basis of serine/threonine phosphatase inhibition by the archetypal small molecules cantharidin and norcantharidin. J Med Chem 2009; 52:4838-43. [PMID: 19601647 DOI: 10.1021/jm900610k] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inhibition of a subgroup of human serine/threonine protein phosphatases is responsible for the cytotoxicity of cantharidin and norcantharidin against tumor cells. It is shown that the anhydride rings of cantharidin and norcantharidin are hydrolyzed when bound to the catalytic domain of the human serine/threonine protein phosphatases 5 (PP5c), and the high-resolution crystal structures of PP5c complexed with the corresponding dicarboxylic acid derivatives of the two molecules are reported. Norcantharidin shows a unique binding conformation with the catalytically active Mn2PP5c, while cantharidin is characterized by a double conformation in its binding mode to the protein. Different binding modes of norcantharidin are observed depending of whether the starting ligand is in the anhydride or in the dicarboxylic acid form. All these structures will provide the basis for the rational design of new cantharidin-based drugs.
Collapse
Affiliation(s)
- I Bertini
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | |
Collapse
|
118
|
Sanchez-Ortiz E, Hahm BK, Armstrong DL, Rossie S. Protein phosphatase 5 protects neurons against amyloid-beta toxicity. J Neurochem 2009; 111:391-402. [PMID: 19686245 DOI: 10.1111/j.1471-4159.2009.06337.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid-beta (Abeta) is thought to promote neuronal cell loss in Alzheimer's disease, in part through the generation of reactive oxygen species (ROS) and subsequent activation of mitogen-activated protein kinase (MAPK) pathways. Protein phosphatase 5 (PP5) is a ubiquitously expressed serine/threonine phosphatase which has been implicated in several cell stress response pathways and shown to inactivate MAPK pathways through key dephosphorylation events. Therefore, we examined whether PP5 protects dissociated embryonic rat cortical neurons in vitro from cell death evoked by Abeta. As predicted, neurons in which PP5 expression was decreased by small-interfering RNA treatment were more susceptible to Abeta toxicity. In contrast, over-expression of PP5, but not the inactive mutant, PP5(H304Q), prevented MAPK phosphorylation and neurotoxicity induced by Abeta. PP5 also prevented cell death caused by direct treatment with H(2)O(2), but did not prevent Abeta-induced production of ROS. Thus, the neuroprotective effect of PP5 requires its phosphatase activity and lies downstream of Abeta-induced generation of ROS. In summary, our data indicate that PP5 plays a pivotal neuroprotective role against cell death induced by Abeta and oxidative stress. Consequently, PP5 might be an effective therapeutic target in Alzheimer's disease and other neurodegenerative disorders in which oxidative stress is implicated.
Collapse
Affiliation(s)
- Efrain Sanchez-Ortiz
- Department of Biochemistry and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
119
|
Zhang Y, Leung DYM, Nordeen SK, Goleva E. Estrogen inhibits glucocorticoid action via protein phosphatase 5 (PP5)-mediated glucocorticoid receptor dephosphorylation. J Biol Chem 2009; 284:24542-52. [PMID: 19586900 DOI: 10.1074/jbc.m109.021469] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although glucocorticoids suppress proliferation of many cell types and are used in the treatment of certain cancers, trials of glucocorticoid therapy in breast cancer have been a disappointment. Another suggestion that estrogens may affect glucocorticoid action is that the course of some inflammatory diseases tends to be more severe and less responsive to corticosteroid treatment in females. To date, the molecular mechanism of cross-talk between estrogens and glucocorticoids is poorly understood. Here we show that, in both MCF-7 and T47D breast cancer cells, estrogen inhibits glucocorticoid induction of the MKP-1 (mitogen-activated protein kinase phosphatase-1) and serum/glucocorticoid-regulated kinase genes. Estrogen did not affect glucocorticoid-induced glucocorticoid receptor (GR) nuclear translocation but reduced ligand-induced GR phosphorylation at Ser-211, which is associated with the active form of GR. We show that estrogen increases expression of protein phosphatase 5 (PP5), which mediates the dephosphorylation of GR at Ser-211. Gene knockdown of PP5 abolished the estrogen-mediated suppression of GR phosphorylation and induction of MKP-1 and serum/glucocorticoid-regulated kinase. More importantly, after PP5 knockdown estrogen-promoted cell proliferation was significantly suppressed by glucocorticoids. This study demonstrates cross-talk between estrogen-induced PP5 and GR action. It also reveals that PP5 inhibition may antagonize estrogen-promoted events in response to corticosteroid therapy.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
120
|
Begley GS, Horvath AR, Taylor JC, Higgins CF. Cytoplasmic domains of the transporter associated with antigen processing and P-glycoprotein interact with subunits of the proteasome. Mol Immunol 2005; 345:124-31. [PMID: 15488952 DOI: 10.1016/j.canlet.2013.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 02/06/2023]
Abstract
The proteasome is a multi-protein complex that degrades cellular proteins as well as foreign proteins destined for antigen presentation. The latter function involves the immunoproteasome, in which several proteasome subunits are exchanged for gamma-interferon-induced subunits. The transporter associated with antigen processing (TAP) transports proteasome-generated peptides across the membrane of the endoplasmic reticulum (ER) prior to presentation on the plasma membrane. We demonstrate interactions between the cytoplasmic domains of TAP subunits and subunits of both the proteasome and the immunoproteasome, suggesting direct targeting of antigenic peptides to the ER via a TAP-proteasome association. We also show interaction between one of the cytoplasmic domains of P-glycoprotein and a proteasome subunit, but not the corresponding immunoproteasome subunit, suggesting a possible role for P-glycoprotein in the transport of proteasome-derived peptides.
Collapse
Affiliation(s)
- Gail S Begley
- Biology Department, Northeastern University, 330 Huntington Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|