101
|
You X, Xing Q, Tuo J, Song W, Zeng Y, Hu H. Optimizing surfactant content to improve oral bioavailability of ibuprofen in microemulsions: Just enough or more than enough? Int J Pharm 2014; 471:276-84. [DOI: 10.1016/j.ijpharm.2014.05.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/22/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022]
|
102
|
Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides 2014; 57:78-94. [PMID: 24795041 DOI: 10.1016/j.peptides.2014.04.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/19/2014] [Accepted: 04/19/2014] [Indexed: 01/24/2023]
Abstract
Efficient delivery of therapeutic and diagnostic molecules to the cells and tissues is a difficult challenge. The cellular membrane is very effective in its role as a selectively permeable barrier. While it is essential for cell survival and function, also presents a major barrier for intracellular delivery of cargo such as therapeutic and diagnostic agents. In recent years, cell-penetrating peptides (CPPs), that are relatively short cationic and/or amphipathic peptides, received great attention as efficient cellular delivery vectors due to their intrinsic ability to enter cells and mediate uptake of a wide range of macromolecular cargo such as plasmid DNA (pDNA), small interfering RNA (siRNAs), drugs, and nanoparticulate pharmaceutical carriers. This review discusses the various uptake mechanisms of these peptides. Furthermore, we discuss recent advances in the use of CPP for the efficient delivery of nanoparticles, nanocarriers, DNA, siRNA, and anticancer drugs to the cells. In addition, we have been highlighting new results for improving endosomal escape of CPP-cargo molecules. Finally, pH-responsive and activable CPPs for tumor-targeting therapy have been described.
Collapse
Affiliation(s)
- Samad Mussa Farkhani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| | - Hadi Karami
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Sardasht, 38481 Arak, Iran.
| | - Samane Mohammadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| | - Nasrin Sohrabi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| | - Fariba Badrzadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| |
Collapse
|
103
|
Gu G, Hu Q, Feng X, Gao X, Menglin J, Kang T, Jiang D, Song Q, Chen H, Chen J. PEG-PLA nanoparticles modified with APTEDB peptide for enhanced anti-angiogenic and anti-glioma therapy. Biomaterials 2014; 35:8215-26. [PMID: 24974009 DOI: 10.1016/j.biomaterials.2014.06.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022]
Abstract
Tumor neovasculature and tumor cells dual-targeting chemotherapy can not only destroy the tumor neovasculature, cut off the supply of nutrition and starve the tumor cells, but also directly kill tumor cells, holding great potential in overcoming the drawbacks of anti-angiogenic therapy only and improving the anti-glioma efficacy. In the present study, by taking advantage of the specific expression of fibronectin extra domain B (EDB) on both glioma neovasculature endothelial cells and glioma cells, we constructed EDB-targeted peptide APTEDB-modified PEG-PLA nanoparticles (APT-NP) for paclitaxel (PTX) loading to enable tumor neovasculature and tumor cells dual-targeting chemotherapy. PTX-loaded APT-NP showed satisfactory encapsulated efficiency, loading capacity and size distribution. In human umbilical vein endothelial cells, APT-NP exhibited significantly elevated cellular accumulation via energy-dependent, caveolae and lipid raft-involved endocytosis, and improved PTX-induced apoptosis therein. Both in vitro tube formation assay and in vivo matrigel angiogenesis analysis confirmed that APT-NP significantly improved the antiangiogenic ability of PTX. In U87MG cells, APT-NP showed elevated cellular internalization and also enhanced the cytotoxicity of the loaded PTX. Following intravenous administration, as shown by both in vivo live animal imaging and tissue distribution analysis, APT-NP achieved a much higher and specific accumulation within the glioma. As a result, APT-NP-PTX exhibited improved anti-glioma efficacy over unmodified nanoparticles and Taxol(®) in both subcutaneous and intracranial U87MG xenograft models. These findings collectively indicated that APTEDB-modified nanoparticles might serve as a promising nanocarrier for tumor cells and neovasculature dual-targeting chemotherapy and hold great potential in improving the efficacy anti-glioma therapy.
Collapse
Affiliation(s)
- Guangzhi Gu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China; Shanghai Institute for Food and Drug Control (SIFDC), 479 Futexi First Road, Shanghai 200131, PR China
| | - Quanyin Hu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Xingye Feng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Jiang Menglin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Ting Kang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Di Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Qingxiang Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|
104
|
Du R, Zhong T, Zhang WQ, Song P, Song WD, Zhao Y, Wang C, Tang YQ, Zhang X, Zhang Q. Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid-paclitaxel (CLA-PTX) on B16-F10 melanoma. Int J Nanomedicine 2014; 9:3091-105. [PMID: 25028548 PMCID: PMC4077607 DOI: 10.2147/ijn.s65664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In the present study, we prepared a novel delivery system of iRGD (CRGDK/RGPD/EC)-modified sterically stabilized liposomes (SSLs) containing conjugated linoleic acid–paclitaxel (CLA-PTX). The anti-tumor effect of iRGD-SSL-CLA-PTX was investigated on B16-F10 melanoma in vitro and in vivo. The in vitro targeting effect of iRGD-modified SSLs was investigated in a real-time confocal microscopic analysis experiment. An endocytosis-inhibition assay was used to evaluate the endocytosis pathways of the iRGD-modified SSLs. In addition, the in vitro cellular uptake and in vitro cytotoxicity of iRGD-SSL-CLA-PTX were evaluated in B16-F10 melanoma cells. In vivo biodistribution and in vivo antitumor effects of iRGD-SSL-CLA-PTX were investigated in B16-F10 tumor-bearing mice. The induction of apoptosis by iRGD-SSL-CLA-PTX was evaluated in tumor-tissue sections. Real-time confocal microscopic analysis results indicated that the iRGD-modified SSLs internalized into B16-F10 cells faster than SSLs. The identified endocytosis pathway of iRGD-modified SSLs indicated that energy- and lipid raft-mediated endocytosis played a key role in the liposomes’ cellular uptake. The results of the cellular uptake experiment indicated that the increased cellular uptake of CLA-PTX in the iRGD-SSL-CLA-PTX-treated group was 1.9-, 2.4-, or 2.1-fold compared with that in the CLA-PTX group after a 2-, 4-, or 6-hour incubation, respectively. In the biodistribution test, the CLA-PTX level in tumor tissues from iRGD-SSL-CLA-PTX-treated mice at 1 hour (1.84±0.17 μg/g) and 4 hours (1.17±0.28 μg/g) was 2.3- and 2.0-fold higher than that of CLA-PTX solution at 1 hour (0.79±0.06 μg/g) and 4 hours (0.58±0.04 μg/g). The value of the area under the curve for the first 24 hours in the tumors of iRGD-SSL-CLA-PTX-treated mice was significantly higher than that in the SSL-CLA-PTX and CLA-PTX solution-treated groups (P<0.01). The in vivo antitumor results indicated that iRGD-SSL-CLA-PTX significantly inhibited the growth of B16-F10 tumors compared with the SSL-CLA-PTX or CLA-PTX solution-treatment groups (P<0.01). The results of tumor-cell apoptosis showed that tumors from the iRGD-SSL-CLA-PTX-treated group exhibited more advanced cell apoptosis compared with the control, CLA-PTX solution-, and SSL-CLA-PTX-treated groups. In conclusion, the antitumor effect of iRGD-SSL-CLA-PTX was confirmed on B16-F10 melanoma in vitro and in vivo.
Collapse
Affiliation(s)
- Ruo Du
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Ting Zhong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Wei-Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Ping Song
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Wen-Ding Song
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Yang Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Chao Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Yi-Qun Tang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xuan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing ; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing ; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| |
Collapse
|
105
|
Kang T, Gao X, Hu Q, Jiang D, Feng X, Zhang X, Song Q, Yao L, Huang M, Jiang X, Pang Z, Chen H, Chen J. iNGR-modified PEG-PLGA nanoparticles that recognize tumor vasculature and penetrate gliomas. Biomaterials 2014; 35:4319-32. [DOI: 10.1016/j.biomaterials.2014.01.082] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/31/2014] [Indexed: 01/01/2023]
|
106
|
Shao K, Ding N, Huang S, Ren S, Zhang Y, Kuang Y, Guo Y, Ma H, An S, Li Y, Jiang C. Smart nanodevice combined tumor-specific vector with cellular microenvironment-triggered property for highly effective antiglioma therapy. ACS NANO 2014; 8:1191-1203. [PMID: 24397286 DOI: 10.1021/nn406285x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Malignant glioma, a highly aggressive tumor, is one of the deadliest types of cancer associated with dismal outcome despite optimal chemotherapeutic regimens. One explanation for this is the failure of most chemotherapeutics to accumulate in the tumors, additionally causing serious side effects in periphery. To solve these problems, we sought to develop a smart therapeutic nanodevice with cooperative dual characteristics of high tumor-targeting ability and selectively controlling drug deposition in tumor cells. This nanodevice was fabricated with a cross-linker, containing disulfide linkage to form an inner cellular microenvironment-responsive "-S-S-" barrier, which could shield the entrapped drug leaking in blood circulation. In addition, dehydroascorbic acid (DHA), a novel small molecular tumor-specific vector, was decorated on the nanodevice for tumor-specific recognition via GLUT1, a glucose transporter highly expressed on tumor cells. The drug-loaded nanodevice was supposed to maintain high integrity in the bloodstream and increasingly to specifically bind with tumor cells through the association of DHA with GLUT1. Once within the tumor cells, the drug release was triggered by a high level of intracellular glutathione. When these two features were combined, the smart nanodevice could markedly improve the drug tumor-targeting delivery efficiency, meanwhile decreasing systemic toxicity. Herein, this smart nanodevice showed promising potential as a powerful platform for highly effective antiglioma treatment.
Collapse
Affiliation(s)
- Kun Shao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, ‡Department of Pharmaceutics, School of Pharmacy, and §Department of Medical Chemistry, School of Pharmacy, Fudan University , Shanghai 201203, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Cellular density effect on RGD ligand internalization in glioblastoma for MRI application. PLoS One 2013; 8:e82777. [PMID: 24386117 PMCID: PMC3873929 DOI: 10.1371/journal.pone.0082777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/28/2013] [Indexed: 01/12/2023] Open
Abstract
Cellular density is a parameter measured for glioma grade and invasiveness diagnosis. The characterization of the cellular density can be performed, non invasively, by magnetic resonance imaging (MRI), since, this technique displays a good resolution. Nevertheless MRI sensitivity is critical. Development of smart contrast agents appears useful to increase MRI signal to noise ratio (SNR). Tumor invasiveness is correlated with high expression of integrins that can be targeted by RGD motif. In this study, MRI contrast agents or fluorescent probes linked to RGD-peptides were used, in a glioma model, to assess the relation between RGD uptake/signal improvement/cell density and consequently tumor invasiveness. Experiments were performed in vitro with U87-MG glioma cells. Flow cytometry and microscopy experiments with RGD and iRGD-alexa488 demonstrated that cell internalization was dependent on cell density. The internalization involved a clathrin-dependent endocytosis. Cytoskeleton and particularly the microtubules were concerned. Actin filaments played a minor role. The internalization was also dependent on the glycolysis and the oxidative phosphorylations. The cellular density modulated the importance of the endocytosis pathways and of the metabolism but not the cytoskeleton contribution. The internalization of the RGD-peptide associated to gadolinium chelate increased the SNR of U87 cells. Moreover, following the cell density augmentation, the SNR increased with a low amplitude but a trend was clearly determined. In conclusion, RGD-peptide internalization appeared, in vitro, as a marker of cellular density. In perspective, the combination of these peptides with contrast agents associated to more sensitive MRI techniques could improve the MRI signal allowing the characterization of cellular density for tumor diagnosis.
Collapse
|
108
|
Yan Z, Yang Y, Wei X, Zhong J, Wei D, Liu L, Xie C, Wang F, Zhang L, Lu W, He D. Tumor-Penetrating Peptide Mediation: An Effective Strategy for Improving the Transport of Liposomes in Tumor Tissue. Mol Pharm 2013; 11:218-25. [DOI: 10.1021/mp400393a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhiqiang Yan
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics
and New Drug Development, Institutes for
Advanced Interdisciplinary Research, East China Normal University, Shanghai 200062, P.R. China
| | - Yiyi Yang
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xiaoli Wei
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department
of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Jian Zhong
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
| | - Daixu Wei
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
| | - Lu Liu
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
| | - Cao Xie
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department
of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Fei Wang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department
of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Lin Zhang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department
of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department
of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Dannong He
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
109
|
Wang J, Lei Y, Xie C, Lu W, Yan Z, Gao J, Xie Z, Zhang X, Liu M. Targeted gene delivery to glioblastoma using a C-end rule RGERPPR peptide-functionalised polyethylenimine complex. Int J Pharm 2013; 458:48-56. [DOI: 10.1016/j.ijpharm.2013.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 01/13/2023]
|
110
|
Shen J, Meng Q, Sui H, Yin Q, Zhang Z, Yu H, Li Y. iRGD conjugated TPGS mediates codelivery of paclitaxel and survivin shRNA for the reversal of lung cancer resistance. Mol Pharm 2013; 11:2579-91. [PMID: 24236909 DOI: 10.1021/mp400576f] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multidrug resistance (MDR) is one of the major obstacles in tumor treatment. Herein, we reported an active targeting strategy with peptide-mediated nanoparticles deep into tumor parenchyma, which iRGD conjugated d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) mediated codelivery of paclitaxel (PTX) and survivin shRNA (shSur) for the reversal of lung cancer resistance. Pluronic P85-polyethyleneimine/TPGS complex nanoparticles incorporated with iRGD-TPGS conjugate codelivering PTX and shSur systems (iPTPNs) could induce effective cellular uptake, RNAi effects, and cytotoxicity on A549 and A549/T cells. In particular, iPTPNs showed superiority in biodistribution, survivin expression, tumor apoptosis, and antitumor efficacy by simultaneously exerting an enhanced permeability and retention (EPR) effect and iRGD mediated active targeting effects. iPTPNs significantly enhanced the accumulation of PTX and shSur, down-regulated survivin expression, and induced cell apoptosis in tumor tissue. The in vivo antitumor efficacy showed the tumor volume of iPTPNs group (10 mg/kg) was only 12.7% of the Taxol group. Therefore, the iRGD mediated PTX and shSur codelivery system could be a very powerful approach for the reversal and therapy of lung cancer resistance.
Collapse
Affiliation(s)
- Jianan Shen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
Glioblastoma-targeted drug delivery systems facilitate efficient delivery of chemotherapeutic agents to malignant gliomas, while minimizing systemic toxicity and side effects. Taking advantage of the fibrin deposition that is characteristic of tumors, we constructed spherical, Cy7-labeled, targeting micelles to glioblastoma through the addition of the fibrin-binding pentapeptide, cysteine–arginine–glutamic acid–lysine–alanine, or CREKA. Conjugation of the CREKA peptide to Cy7-micelles increased the average particle size and zeta potential. Upon intravenous administration to GL261 glioma bearing mice, Cy7-micelles passively accumulated at the brain tumor site via the enhanced permeability and retention (EPR) effect, and Cy7-CREKA-micelles displayed enhanced tumor homing via active targeting as early as 1 h after administration, as confirmed via in vivo and ex vivo imaging and immunohistochemistry. Biodistribution of micelles showed an accumulation within the liver and kidneys, leading to micelle elimination via renal clearance and the reticuloendothelial system (RES). Histological evaluation showed no signs of cytotoxicity or tissue damage, confirming the safety and utility of this nanoparticle system for delivery to glioblastoma. Our findings offer strong evidence for the glioblastoma-targeting potential of CREKA-micelles and provide the foundation for CREKA-mediated, targeted therapy of glioma.
Collapse
|