101
|
Ge Z, Yang L, Xiao F, Wu Y, Yu T, Chen J, Lin J, Zhang Y. Graphene Family Nanomaterials: Properties and Potential Applications in Dentistry. Int J Biomater 2018; 2018:1539678. [PMID: 30627167 PMCID: PMC6304494 DOI: 10.1155/2018/1539678] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/11/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023] Open
Abstract
Graphene family nanomaterials, with superior mechanical, chemical, and biological properties, have grabbed appreciable attention on the path of researches seeking new materials for future biomedical applications. Although potential applications of graphene had been highly reviewed in other fields of medicine, especially for their antibacterial properties and tissue regenerative capacities, in vivo and in vitro studies related to dentistry are very limited. Therefore, based on current knowledge and latest progress, this article aimed to present the recent achievements and provide a comprehensive literature review on potential applications of graphene that could be translated into clinical reality in dentistry.
Collapse
Affiliation(s)
- Ziyu Ge
- Department of General Dentistry, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310052, China
| | | | | | - Yani Wu
- Department of General Dentistry, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310052, China
| | | | | | | | - Yanzhen Zhang
- Department of General Dentistry, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310052, China
| |
Collapse
|
102
|
Chen M, Jiang S, Zhang F, Li L, Hu H, Wang H. Graphene Oxide Immobilized PLGA-polydopamine Nanofibrous Scaffolds for Growth Inhibition of Colon Cancer Cells. Macromol Biosci 2018; 18:e1800321. [PMID: 30408347 DOI: 10.1002/mabi.201800321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/20/2018] [Indexed: 12/22/2022]
Abstract
Graphene oxide (GO)/poly (lactide-co-glycolic acid) (PLGA) scaffolds have promising applications in the biomedical field. However, greater attention is focused on the incorporated system and its applications in normal cells. In this work, a novel GO immobilized PLGA nanofibrous scaffold assisted by polydopamine (PLGA-PDA-GO) is developed for growth inhibition of HT-29 colon cancer cells. The interactions between GO and PDA are attributed to a π-π conjugate interaction and electrostatic attraction. In addition to the enhancement of thermal stability and mechanical strength, the surface roughness, hydrophilicity, and electro-activity of the scaffolds are significantly improved by immobilization of GO. The scaffolds show good inhibition of HT-29, and immobilized GO is observed to be in contact with but not internalized in HT-29 cells. The cytotoxicity mechanism of scaffolds toward HT-29 is attributed to intracellular activated reactive oxygen species that result from the physical interaction of the sharp GO edges and electrical signals of π-π stacking between PDA and GO.
Collapse
Affiliation(s)
- Minmin Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Suwei Jiang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Feng Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Linlin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hailiang Hu
- First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
103
|
Kumar N, Yadav N, Amarnath N, Sharma V, Shukla S, Srivastava A, Prasad P, Kumar A, Garg S, Singh S, Sehrawat S, Lochab B. Integrative natural medicine inspired graphene nanovehicle-benzoxazine derivatives as potent therapy for cancer. Mol Cell Biochem 2018; 454:123-138. [PMID: 30390174 DOI: 10.1007/s11010-018-3458-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/05/2018] [Indexed: 01/20/2023]
Abstract
Natural products from medicinal plants have always attracted a lot of attention due to their diverse and interesting therapeutic properties. We have employed the principles of green chemistry involving isomerization, coupling and condensation reaction to synthesize a class of compounds derived from eugenol, a naturally occurring bioactive phytophenol. The compounds were characterized structurally by 1H-, 13C-NMR, FT-IR spectroscopy and mass spectrometry analysis. The purity of compounds was detected by HPLC. The synthesized compounds exhibited anti-cancer activity. A 10-12-fold enhancement in efficiency of drug molecules (~ 1 µM) was observed when delivered with graphene oxide (GO) as a nanovehicle. Our data suggest cell death via apoptosis in a dose-dependent manner due to increase in calcium levels in specific cancer cell lines. Interestingly, the benzoxazine derivatives of eugenol with GO nanoparticle exhibited enhanced therapeutic potential in cancer cells. In addition to anti-cancer effect, we also observed significant role of these derivatives on parasite suggesting its multi-pharmacological capability.
Collapse
Affiliation(s)
- Naveen Kumar
- Brain Metastasis and NeuroVascular Disease Modelling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Nisha Yadav
- Materials Chemistry Lab, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Nagarjuna Amarnath
- Materials Chemistry Lab, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Vijeta Sharma
- Infectious Disease Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Swapnil Shukla
- Materials Chemistry Lab, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Akriti Srivastava
- Infectious Disease Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Peeyush Prasad
- Brain Metastasis and NeuroVascular Disease Modelling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Anil Kumar
- James Graham Brown Cancer Centre, University of Louisville, 40202, Louisville, KY, USA
| | - Swati Garg
- Infectious Disease Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Shailja Singh
- Infectious Disease Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India.
- Signaling Biology Lab, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Seema Sehrawat
- Brain Metastasis and NeuroVascular Disease Modelling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India.
| | - Bimlesh Lochab
- Materials Chemistry Lab, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NCR, India.
| |
Collapse
|
104
|
Feng X, Chen L, Guo W, Zhang Y, Lai X, Shao L, Li Y. Graphene oxide induces p62/SQSTM-dependent apoptosis through the impairment of autophagic flux and lysosomal dysfunction in PC12 cells. Acta Biomater 2018; 81:278-292. [PMID: 30273743 DOI: 10.1016/j.actbio.2018.09.057] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022]
Abstract
Graphene oxide (GO), as a two-dimensional carbon nanosheet, has been extensively studied for potential biomedical applications due to its notable properties. Although a growing number of studies have investigated the adverse effects of GO nanosheets, the available toxicity data concerning GO's effect on the neuronal cells remain highly limited. In this work, we systematically investigated the toxic responses of commercially available GO on a rat pheochromocytoma-derived PC12 cell line, which was an ideal in vitro model to study the neurotoxicity of GO. GO exerted a significant toxic effect on PC12 cells in a dose- and time-dependent manner. GO treatments under doses of 40, 50, and 60 μg/mL triggered an autophagic response and the blockade of autophagic flux via disrupting lysosome degradation capability. Caspase 9-mediated apoptosis was also observed in GO-treated cells. Moreover, GO-induced apoptosis was relevant to the aberrant accumulation of autophagy substrate p62/SQSTM. Inhibitionofthe accumulation of autophagic substrate alleviated GO-caused apoptotic cell death. Our findings raise a concern for the putative biomedical applications of GO in the form of diagnostic and therapeutic tools, where its systematic biocompatibility should be thoroughly explored. STATEMENT OF SIGNIFICANCE: Graphene oxide (GO) has attracted considerable interests in biomedical fields, which also resulted in numerous safety risks to human bodies. It is urgently required to establish a paradigm for accurately evaluating their adverse effects in biological systems. This study thoroughly explored the neurotoxicity of GO in PC12 cells. We found GO triggered an increased autophagic response and the impairment of autophagic flux, which was functionally involved in cell apoptosis. Inhibitionofexcessive accumulation of autophagic cargo attenuated apoptotic cell death. Our findings highlight deep considerations on the regulation mechanism of autophagy-lysosomes-apotosis-axis, which will contribute to a better understanding of the neurotoxicity of graphene-family nanomaterials, and provide a new insight in the treatment of cancer cells at nanoscale levels.
Collapse
|
105
|
Fernandes AL, Nascimento JP, Santos AP, Furtado CA, Romano LA, Eduardo da Rosa C, Monserrat JM, Ventura-Lima J. Assessment of the effects of graphene exposure in Danio rerio: A molecular, biochemical and histological approach to investigating mechanisms of toxicity. CHEMOSPHERE 2018; 210:458-466. [PMID: 30025363 DOI: 10.1016/j.chemosphere.2018.06.183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Graphene has been shown to induce toxicity in mammals and marine crustaceans; however, information regarding oxidative stress in fish is scarce. The aim of this study was to evaluate the mechanism of graphene toxicity in different tissues of Danio rerio, considering different parameters of stress. Animals were injected intraperitoneally (i.p.) with 10 μL of suspensions containing different graphene concentrations (5 and 50 mg/L); the gills, intestine, muscle and brain were analysed 48 h later. There was no significant difference in the expression of the gclc (glutamate cysteine ligase catalytic subunit) and nrf2 (nuclear factor (erythroid-derived 2)-like 2) genes after exposure. In contrast, glutamate cysteine ligase (GCL) and glutathione-S-transferase (GST) activities were modulated and the glutathione (GSH) concentration was reduced in different tissues and at different concentrations. Lipid damage was observed in the gills. Histological analyses were performed to observe if the exposure could induce pathological damage in these tissues. The results showed pathological effects in all tissues, excluding the intestine, after exposure to both concentrations. Overall, these results indicate that graphene induces different grades of toxicological effects that are dependent on the analysed organ, with distinct pathological effects on some and oxidative effects on others. However, the brain and gills seem to be the primary target organs for graphene toxicity.
Collapse
Affiliation(s)
- Amanda Lucena Fernandes
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil.
| | | | | | | | | | - Carlos Eduardo da Rosa
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | - José Maria Monserrat
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil; Programa de Pós-Graduação em Aquacultura-FURG, Brazil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil; Programa de Pós-Graduação em Aquacultura-FURG, Brazil.
| |
Collapse
|
106
|
Zhao L, Kong J, Krasteva N, Wang D. Deficit in the epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res (Camb) 2018; 7:1061-1070. [PMID: 30510679 PMCID: PMC6220715 DOI: 10.1039/c8tx00136g] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/02/2018] [Indexed: 01/01/2023] Open
Abstract
The developmental basis for the epidermal barrier against the translocation of nanomaterials is still largely unclear in organisms. We here investigated the effect of deficits in the epidermal barrier on the translocation and toxicity of PEG modified graphene oxide (GO-PEG) in Caenorhabditis elegans. In wild-type or NR222 nematodes, GO-PEG exposure did not cause toxicity and affect the expression of epidermal-development related genes. However, GO-PEG exposure resulted in toxicity in mlt-7(RNAi) nematodes with deficit in the function of epidermal barrier. Epidermal RNAi knockdown of mlt-7 allowed GO-PEG accumulation and translocation into targeted organs through the epidermal barrier. Epidermal-development related proteins of BLI-1 and IFB-1 were identified as targets for MLT-7 in the regulation of GO-PEG toxicity and accounted for MLT-7 function in maintaining the epidermal barrier. AAK-2, a catalytic α subunit of AMP-activated protein kinase, was identified as another target for MLT-7 in the regulation of GO-PEG toxicity. AAK-2 functioned synergistically with BLI-1 or IFB-1 in the regulation of GO-PEG toxicity. Our data provide the molecular basis for the role of epidermal barrier against the toxicity and translocation of nanomaterials in organisms.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| | - Jingting Kong
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering , Bulgarian Academy of Science , Sofia 1113 , Bulgaria
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| |
Collapse
|
107
|
Piperno A, Scala A, Mazzaglia A, Neri G, Pennisi R, Sciortino MT, Grassi G. Cellular Signaling Pathways Activated by Functional Graphene Nanomaterials. Int J Mol Sci 2018; 19:E3365. [PMID: 30373263 PMCID: PMC6274994 DOI: 10.3390/ijms19113365] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The paper reviews the network of cellular signaling pathways activated by Functional Graphene Nanomaterials (FGN) designed as a platform for multi-targeted therapy or scaffold in tissue engineering. Cells communicate with each other through a molecular device called signalosome. It is a transient co-cluster of signal transducers and transmembrane receptors activated following the binding of transmembrane receptors to extracellular signals. Signalosomes are thus efficient and sensitive signal-responding devices that amplify incoming signals and convert them into robust responses that can be relayed from the plasma membrane to the nucleus or other target sites within the cell. The review describes the state-of-the-art biomedical applications of FGN focusing the attention on the cell/FGN interactions and signalosome activation.
Collapse
Affiliation(s)
- Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Antonino Mazzaglia
- CNR-ISMN c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20131 Milan, Italy.
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Giovanni Grassi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
108
|
Liang H, Chen A, Lai X, Liu J, Wu J, Kang Y, Wang X, Shao L. Neuroinflammation is induced by tongue-instilled ZnO nanoparticles via the Ca 2+-dependent NF-κB and MAPK pathways. Part Fibre Toxicol 2018; 15:39. [PMID: 30340606 PMCID: PMC6194560 DOI: 10.1186/s12989-018-0274-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/05/2018] [Indexed: 12/29/2022] Open
Abstract
Background The extensive biological applications of zinc oxide nanoparticles (ZnO NPs) in stomatology have created serious concerns about their biotoxicity. In our previous study, ZnO NPs were confirmed to transfer to the central nervous system (CNS) via the taste nerve pathway and cause neurodegeneration after 30 days of tongue instillation. However, the potential adverse effects on the brain caused by tongue-instilled ZnO NPs are not fully known. Methods In this study, the biodistribution of Zn, cerebral histopathology and inflammatory responses were analysed after 30 days of ZnO NPs tongue instillation. Moreover, the molecular mechanisms underlying neuroinflammation in vivo were further elucidated by treating BV2 and PC12 cells with ZnO NPs in vitro. Results This analysis indicated that ZnO NPs can transfer into the CNS, activate glial cells and cause neuroinflammation after tongue instillation. Furthermore, exposure to ZnO NPs led to a reduction in cell viability and induction of inflammatory response and calcium influx in BV2 and PC12 cells. The mechanism underlying how ZnO NPs induce neuroinflammation via the Ca2+-dependent NF-κB, ERK and p38 activation pathways was verified at the cytological level. Conclusion This study provided a new way how NPs, such as ZnO NPs, induce neuroinflammation via the taste nerve translocation pathway, a new mechanism for ZnO NPs-induced neuroinflammation and a new direction for nanomaterial toxicity analysis. Electronic supplementary material The online version of this article (10.1186/s12989-018-0274-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huimin Liang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Aijie Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuan Lai
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junrong Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinying Wang
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.
| |
Collapse
|
109
|
Farahani M, Rezaei-Tavirani M, Zali H, Arefi Oskouie A, Omidi M, Lashay A. Deciphering the transcription factor-microRNA-target gene regulatory network associated with graphene oxide cytotoxicity. Nanotoxicology 2018; 12:1014-1026. [PMID: 30325693 DOI: 10.1080/17435390.2018.1513090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Graphene oxide (GO) has recently emanated as a promising material in cancer treatment. To unveil the underlying mechanisms of microRNAs (miRNAs) and potential target genes involved in GO cytotoxicity, we firstly compiled GO-related miRNAs and genes in human cancer cell lines treated with GO from public databases and published works. Besides miRNAs as post-transcriptional regulators of gene expression, transcription factors (TFs) are also the main regulators at the transcriptional level. In the following, we explored the regulatory relationships between miRNAs, target genes, and TFs. Thereafter, a gene regulatory network consisting of GO-responsive miRNAs, GO-responsive genes, and known human TFs was constructed. Then, 3-node regulatory motif types were detected in the resulting network. Among them, miRNA-FFL (feed-forward loop) was identified as a significant motif type. A total of 184 miRNA-FFLs were found and merged to generate a regulatory sub-network. Pathway analysis of the resulting sub-network highlighted adherens junction, focal adhesion, and TGFβ signaling pathways as the major pathways that previous studies demonstrate them to be the affected pathways in GO-treated cells. Functional investigations displayed that miRNAs might be involved in the control of apoptosis through disruption of cell adhesion in response to cytotoxicity. Moreover, GO-cell interactions can lead to miRNA targeting of genes (i.e. Rac1 and RhoA) involved in the cytoskeleton assembly process. These specific toxic properties support biomedical applications of GO, especially for cancer therapy.
Collapse
Affiliation(s)
- Masoumeh Farahani
- a Faculty of Paramedical Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mostafa Rezaei-Tavirani
- b Proteomics Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Hakimeh Zali
- c Medical Nanotechnology and Tissue Engineering Research Center, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Afsaneh Arefi Oskouie
- a Faculty of Paramedical Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Meisam Omidi
- d Protein Research Center , Shahid Beheshti University , Tehran , Iran
| | - Alireza Lashay
- e Eye Research Center, Farabi Eye Hospital , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
110
|
Wright ZM, Arnold AM, Holt BD, Eckhart KE, Sydlik SA. Functional Graphenic Materials, Graphene Oxide, and Graphene as Scaffolds for Bone Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0081-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
111
|
Hussein KH, Abdelhamid HN, Zou X, Woo HM. Ultrasonicated graphene oxide enhances bone and skin wound regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:484-492. [PMID: 30423733 DOI: 10.1016/j.msec.2018.09.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/28/2018] [Accepted: 09/18/2018] [Indexed: 01/06/2023]
Abstract
In the present study, we investigated the applications of ultrasonicated graphene oxide (UGO) for bone regeneration and skin wound healing. Ultrasonication of a GO suspension increased the dispersion and stability (by increasing the zeta potential) of the GO suspension. UGO has fewer oxygen-containing groups but still displays excellent water dispersion. The UGO supension showed high biocompatibility for human fetal osteoblast (hFOB cells), human endothelial cells (EA.hy 926 cells), and mouse embryonic fibroblasts. Importantly, UGO could support cell attachment and proliferation, in addition to promoting the osteogenesis of seeded cells and the promotion of new bone formation. In addition, a 1% UGO supension enhanced cell migration in an in vitro skin scratch assay and promoted wound closure in an in vivo rat excisional skin defect model. These results showed that UGO offers a good environment for cells involved in bone and skin healing, suggesting its potential application in tissue regeneration.
Collapse
Affiliation(s)
- Kamal Hany Hussein
- Department of Animal Surgery, Faculty of Veterinary Medicine, Assuit University, Assuit, Egypt
| | - Hani Nasser Abdelhamid
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden; Department of Chemistry, Faculty of Science, Assuit University, Assuit, Egypt.
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden.
| | - Heung-Myong Woo
- Stem Cell Institute, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea; College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea.
| |
Collapse
|
112
|
Kim Y, Jeong J, Yang J, Joo SW, Hong J, Choi J. Graphene oxide nano-bio interaction induces inhibition of spermatogenesis and disturbance of fatty acid metabolism in the nematode Caenorhabditis elegans. Toxicology 2018; 410:83-95. [PMID: 30218681 DOI: 10.1016/j.tox.2018.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/02/2018] [Accepted: 09/09/2018] [Indexed: 01/10/2023]
Abstract
Graphene oxide (GO) has the potential for wide applications, which necessitates an intensive investigation of its potential hazard on human and environmental health. Even if previous studies show reproductive toxicity in the nematode Caenorhabditis elegans, the mechanisms of reproductive toxicity by GO are poorly understood. To understand the underlying mechanisms of GO-induced reproductive toxicity, we investigated the interaction between GO and C. elegans using Raman spectroscopy, sperm counts produced by spermatogenesis, progeny and analyzed the fatty acid metabolism using molecular techniques. GO-characteristic Raman spectral bands measured throughout C. elegans, brood size and Hoecst staining of dissected gonads clearly showed GO accumulation in the reproductive organs, reduced progeny and low sperm counts, which are possibly direct results of the reproductive toxicity from GO exposure. Interestingly, reduced fatty acid metabolites, such as stearic, oleic, palmitoleic, and palmitic acids, were found with GO exposure. We found that GO increased intestinal fat accumulation in wild type N2, fat-5(tm420), and fat-7(wa36) mutants, whereas it decreased fat storage in the fat-6(tm331) and nhr-49(nr2041) mutants. GO exposure affected C. elegans fat accumulation and consumption, which was possibly regulated by daf-16 and nhr-80 gene activity. Also, GO exposure suppressed the survival of long-lived fat-5(tm420) mutants, whereas it increased the survival of short-lived nhr-49(nr2041) mutants. Hence, our studies collectively indicated that GO accumulation in reproductive organs, suppression of spermatogenesis, and the alteration of fatty acid metabolism play critical roles in understanding mechanisms of toxicity in C. elegans.
Collapse
Affiliation(s)
- Yongsoon Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jisu Yang
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Sang-Woo Joo
- Department of Information Communication, Materials and Chemistry Convergence Technology, Soongsil University, 369 Sangdo-Ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
113
|
Amrollahi-Sharifabadi M, Koohi MK, Zayerzadeh E, Hablolvarid MH, Hassan J, Seifalian AM. In vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application. Int J Nanomedicine 2018; 13:4757-4769. [PMID: 30174424 PMCID: PMC6110298 DOI: 10.2147/ijn.s168731] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Graphene is considered as a wonder material; it is the strongest material on the planet, super-elastic, and conductive. Its application in biomedicine is huge, with a multibillion-dollar industry, and will revolutionize the diagnostic and treatment of diseases. However, its safety and potential toxicity is the main challenge. Methods This study assessed the potential toxicity of graphene oxide nanoplatelets (GONs) in an in vivo animal model using systemic, hematological, biochemical, and histopathological examinations. Normal saline (control group) or GONs (3–6 layers, lateral dimension=5–10 μm, and thickness=0.8–2 nm) at dose rate of 50, 150, or 500 mg/kg were intraperitoneally injected into adult male Wistar rats (n=5) every 48 hours during 1 week to receive each animal a total of four doses. The animals were allowed 2 weeks to recover after the last dosing. Then, animals were killed and the blood was collected for hematological and biochemical analysis. The organs including the liver, kidney, spleen, lung, intestine, brain, and heart were harvested for histopathological evaluations. Results The results showed GONs prevented body weight gain in animals after 21 days, treated at 500 mg/kg, but not in the animals treated at 150 or 50 mg/kg GONs. The biochemical analysis showed a significant increase in total bilirubin, with a significant decrease in triglycerides and high-density lipoprotein in animals treated at 500 mg/kg. Nonetheless, other hematological and biochemical parameters remained statistically insignificant in all GONs treated animals. The most common histopathological findings in the visceral organs were granulomatous reaction with giant cell formation and accumulation of GONs in capsular regions. Also, small foci of neuronal degeneration and necrosis were the most outstanding findings in the brain, including the cerebellum. Conclusion In conclusion, this study shows that GONs without functionalization are toxic. The future study is a comparison of the functionalized with non-functionalized GONs.
Collapse
Affiliation(s)
| | - Mohammad Kazem Koohi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran,
| | - Ehsan Zayerzadeh
- Department of Biology, Faculty of Food Industry and Agriculture, Standard Research Institute, Karaj, Iran
| | - Mohammad Hassan Hablolvarid
- Department of Pathology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Jalal Hassan
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran,
| | - Alexander M Seifalian
- NanoRegMed ltd, Nanotechnology and Regenerative Medicine Commercialization Centre, The London Bioscience Innovation Centre, London, UK
| |
Collapse
|
114
|
Lee SW, Park HJ, Van Kaer L, Hong S, Hong S. Graphene oxide polarizes iNKT cells for production of TGFβ and attenuates inflammation in an iNKT cell-mediated sepsis model. Sci Rep 2018; 8:10081. [PMID: 29973666 PMCID: PMC6031608 DOI: 10.1038/s41598-018-28396-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Graphene oxide (GO) modulates the functions of antigen-presenting cells including dendritic cells (DCs). Although carbon nanotubes affect expression of the MHC class I-like CD1d molecule, whether GO can influence immune responses of CD1d-dependent invariant natural killer T (iNKT) cells remains unclear. Here, we investigated the impact of GO on inflammatory responses mediated by α-galactosylceramide (α-GalCer), an iNKT cell agonist. We found that in vivo GO treatment substantially inhibited the capacity of α-GalCer to induce the iNKT cell-mediated trans-activation of and cytokine production by innate and innate-like cells, including DCs, macrophages, NK cells, and γδ T cells. Such effects of GO on α-GalCer-induced inflammatory responses closely correlated with iNKT cell polarization towards TGFβ production, which also explains the capacity of GO to expand regulatory T cells. Interestingly, the absence of TLR4, a receptor for GO, failed to downregulate, and instead partially enhanced the anti-inflammatory activity of GO against α-GalCer-elicited responses, implying negative effects of TLR4 signaling on the anti-inflammatory properties of GO. By employing an α-GalCer-induced sepsis model, we further demonstrated that GO treatment significantly protected mice from α-GalCer-induced lethality. Taken together, we provide strong evidence that GO holds promise as an adjuvant to modulate iNKT cell responses for immunotherapy.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, 05006, Korea
- Graphene Research Institute, Sejong University, Seoul, 05006, Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, 05006, Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Suklyun Hong
- Graphene Research Institute, Sejong University, Seoul, 05006, Korea.
- Department of Physics, Sejong University, Seoul, 05006, Korea.
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, 05006, Korea.
| |
Collapse
|
115
|
Dasari Shareena TP, McShan D, Dasmahapatra AK, Tchounwou PB. A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health. NANO-MICRO LETTERS 2018; 10:53. [PMID: 30079344 PMCID: PMC6075845 DOI: 10.1007/s40820-018-0206-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/22/2018] [Indexed: 05/18/2023]
Abstract
Graphene-based nanomaterials (GBNs) have attracted increasing interests of the scientific community due to their unique physicochemical properties and their applications in biotechnology, biomedicine, bioengineering, disease diagnosis and therapy. Although a large amount of researches have been conducted on these novel nanomaterials, limited comprehensive reviews are published on their biomedical applications and potential environmental and human health effects. The present research aimed at addressing this knowledge gap by examining and discussing: (1) the history, synthesis, structural properties and recent developments of GBNs for biomedical applications; (2) GBNs uses as therapeutics, drug/gene delivery and antibacterial materials; (3) GBNs applications in tissue engineering and in research as biosensors and bioimaging materials; and (4) GBNs potential environmental effects and human health risks. It also discussed the perspectives and challenges associated with the biomedical applications of GBNs.
Collapse
Affiliation(s)
| | - Danielle McShan
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA
| | - Asok K Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA.
| |
Collapse
|
116
|
Frontiñán-Rubio J, Gómez MV, Martín C, González-Domínguez JM, Durán-Prado M, Vázquez E. Differential effects of graphene materials on the metabolism and function of human skin cells. NANOSCALE 2018; 10:11604-11615. [PMID: 29892760 DOI: 10.1039/c8nr00897c] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene-related materials (GRMs) such as graphene oxide (GO) and few-layer graphene (FLG) are used in multiple biomedical applications; however, there is still insufficient information available regarding their interactions with the main biological barriers such as skin. In this study, we explored the effects of GO and FLG on HaCaTs human skin keratinocytes, using NMR-based metabolomics and fluorescence microscopy to evaluate the global impact of each GRM on cell fate and damage. GO and FLG at low concentrations (5 μg mL-1) induced a differential remodeling of the metabolome, preceded by an increase in the level of radical oxygen species (ROS) and free cytosolic Ca2+. These changes are linked to a concentration-dependent increase in cell death by triggering apoptosis and necrosis, the latter being predominant at higher concentrations of the nanostructures. In addition, both compounds reduce the ability of HaCaT cells to heal wounds. Our results demonstrate that the GO and FLG used in this study, which mainly differ in their oxidation state, slightly trigger differential effects on HaCaTs cells, but with evident outcomes at the cellular and molecular levels. Their behavior as pro-apoptotic/necrotic substances and their ability to inhibit cell migration, even at low doses, should be considered in the development of future applications.
Collapse
Affiliation(s)
- Javier Frontiñán-Rubio
- Instituto Regional de Investigación Científica Aplicada (IRICA), University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | | | | | | | | | | |
Collapse
|
117
|
Tu Z, Guday G, Adeli M, Haag R. Multivalent Interactions between 2D Nanomaterials and Biointerfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706709. [PMID: 29900600 DOI: 10.1002/adma.201706709] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/15/2018] [Indexed: 05/20/2023]
Abstract
2D nanomaterials, particularly graphene, offer many fascinating physicochemical properties that have generated exciting visions of future biological applications. In order to capitalize on the potential of 2D nanomaterials in this field, a full understanding of their interactions with biointerfaces is crucial. The uptake pathways, toxicity, long-term fate of 2D nanomaterials in biological systems, and their interactions with the living systems are fundamental questions that must be understood. Here, the latest progress is summarized, with a focus on pathogen, mammalian cell, and tissue interactions. The cellular uptake pathways of graphene derivatives will be discussed, along with health risks, and interactions with membranes-including bacteria and viruses-and the role of chemical structure and modifications. Other novel 2D nanomaterials with potential biomedical applications, such as transition-metal dichalcogenides, transition-metal oxide, and black phosphorus will be discussed at the end of this review.
Collapse
Affiliation(s)
- Zhaoxu Tu
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Guy Guday
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Mohsen Adeli
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Department of Chemistry, Faculty of Science, Lorestan University, 68151-44316, Khoramabad, Iran
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
118
|
Wu W, Yan L, Chen S, Li Q, Gu Z, Xu H, Yin ZQ. Investigating oxidation state-induced toxicity of PEGylated graphene oxide in ocular tissue using gene expression profiles. Nanotoxicology 2018; 12:819-835. [PMID: 29888639 DOI: 10.1080/17435390.2018.1480813] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Wu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P. R. China
| | - Liang Yan
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Siyu Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P. R. China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P. R. China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P. R. China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P. R. China
| |
Collapse
|
119
|
Metabolomic response of osteosarcoma cells to nanographene oxide-mediated hyperthermia. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:340-348. [PMID: 30033263 DOI: 10.1016/j.msec.2018.05.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/11/2018] [Accepted: 05/17/2018] [Indexed: 01/26/2023]
Abstract
Nanographene oxide (nGO)-mediated hyperthermia has been increasingly investigated as a localized, minimally invasive anticancer therapeutic approach. Near InfraRed (NIR) light irradiation for inducing hyperthermia is particularly attractive, because biological systems mostly lack chromophores that absorb in this spectral window, facilitating the selective heating and destruction of cells which have internalized the NIR absorbing-nanomaterials. However, little is known about biological effects accompanying nGO-mediated hyperthermia at cellular and molecular levels. In this work, well-characterized pegylated nGO sheets with a hydrodynamic size of 300 nm were incubated with human Saos-2 osteosarcoma cells for 24 h and their internalization verified by flow cytometry and confocal microscopy. No effect on cell viability was observed after nGO uptake by Saos-2 cells. However, a proliferation delay was observed due to the presence of nGO sheets in the cytoplasm. 1H NMR metabolomics was employed to screen for changes in the metabolic profile of cells, as this could help to improve understanding of cellular responses to nanomaterials and provide new endpoint markers of effect. Cells internalizing nGO sheets showed noticeable changes in several metabolites compared to control cells, including decreased levels of several amino acids, taurine and creatine and increased levels of phosphocholine and uridine/adenosine nucleotides. After NIR irradiation, cells showed decreases in glutamate and uridine nucleotides, together with increases in glycerophosphocholine and adenosine monophosphate. Overall, this study has shown that the cellular metabolome sensitively responded to nGO exposure and nGO-mediated hyperthermia and that NMR metabolomics is a powerful tool to investigate treatment responses.
Collapse
|
120
|
Qu Y, He F, Yu C, Liang X, Liang D, Ma L, Zhang Q, Lv J, Wu J. Advances on graphene-based nanomaterials for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:764-780. [PMID: 29853147 DOI: 10.1016/j.msec.2018.05.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/26/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials, such as graphene oxide and reduced graphene oxide, have been attracting increasing attention in the field of biology and biomedicine over the past few years. Incorporation of these novel materials with drug, gene, photosensitizer and other cargos to construct novel delivery systems has witnessed rapid advance on the basis of their large surface area, distinct surface properties, excellent biocompatibility and pH sensitivity. Moreover, the inherent photothermal effect of these appealing materials enables them with the ability of killing targeting cells via a physical mechanism. Recently, more attentions have been attached to tissue engineering, including bone, neural, cardiac, cartilage, musculoskeletal, and skin/adipose tissue engineering, due to the outstanding mechanical strength, stiffness, electrical conductivity, various two-dimensional (2D) and three-dimensional (3D) morphologies of graphene-based nanomaterials. Herein, emerging applications of these nanomaterials in bio-imaging, drug/gene delivery, phototherapy, multimodality therapy and tissue engineering were comprehensively reviewed. Inevitably, the burgeon of this kind of novel materials leads to the endeavor to consider their safety so that this issue has been deeply discussed and summarized in our review. We hope that this review offers an overall understanding of these nanomaterials for later in-depth investigations.
Collapse
Affiliation(s)
- Ying Qu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Feng He
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Chenggong Yu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewu Liang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Dong Liang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Long Ma
- Department of Analytical Chemistry, the testing center of Shandong Bureau, Jinan, Shandong, 250014, China
| | - Qiuqiong Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Jiahui Lv
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Jingde Wu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
121
|
Wang B, Su X, Liang J, Yang L, Hu Q, Shan X, Wan J, Hu Z. Synthesis of polymer-functionalized nanoscale graphene oxide with different surface charge and its cellular uptake, biosafety and immune responses in Raw264.7 macrophages. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:514-522. [PMID: 29853120 DOI: 10.1016/j.msec.2018.04.096] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/21/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022]
Abstract
Polymer-functionalized graphene oxide (GO) has superior properties such as large surface area, extraordinary mechanical strength, high carrier mobility, good stability in physiological media and low cytotoxicity, making it an attractive material for drug and gene delivery. Herein, we successfully synthesized GO with an average size of 168.3 nm by a modified Hummers' method. Branched polyethylenimine (PEI) and 6-armed polyethylene glycol (PEG) functionalized GO complexes (GO-PEI and GO-PEG) with different zeta potentials of 47.2 mV and -43.0 mV, respectively, were successfully synthesized through amide linkages between the COOH groups of GO and the NH2 groups of PEI and PEG. Then, the interactions between GO-PEI and GO-PEG complexes and Raw264.7 mouse monocyte-macrophage cells were investigated. The GO-PEI and GO-PEG complexes could both be internalized by Raw264.7 cells. However, compared with the GO-PEG complex, the GO-PEI complex showed higher intracellular delivery efficiency in Raw264.7 cells. Moreover, it was found that the GO-PEI complex not only gathered in endosomes but also in the cytoplasm, whereas GO-PEG gathered in endosomes only. The MTT tests showed that both GO-PEI and GO-PEG complexes exhibited very low cytotoxicity towards Raw264.7 cells when at a low concentration. The cellular immune response test demonstrated the GO-PEG complex enhanced the secretion of IL-6, illustrating it was more stimulus towards macrophage cells. The above results indicated that the GO-PEI complex, with a positive surface charge, demonstrated better potential to be used in effective drug and gene delivery.
Collapse
Affiliation(s)
- Bing Wang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiaopeng Su
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junlong Liang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lifeng Yang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qinli Hu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinyi Shan
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junmin Wan
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhiwen Hu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
122
|
Esquivel-Gaon M, Nguyen NHA, Sgroi MF, Pullini D, Gili F, Mangherini D, Pruna AI, Rosicka P, Sevcu A, Castagnola V. In vitro and environmental toxicity of reduced graphene oxide as an additive in automotive lubricants. NANOSCALE 2018; 10:6539-6548. [PMID: 29577120 DOI: 10.1039/c7nr08597d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite the ground-breaking potential of nanomaterials, their safe and sustainable incorporation into an array of industrial markets prompts a deep and clear understanding of their potential toxicity for both humans and the environment. Among the many materials with great potential, graphene has shown promise in a variety of applications; however, the impact of graphene based products on living systems remains poorly understood. In this paper, we illustrate that via exploiting the tribological properties of graphene nanosheets, we can successfully improve both the frictional behaviour and the anti-wear capacity of lubricant oil for mechanical transmission. By virtue of reducing friction and enhancing lubricant lifetimes, we can forecast a reduction in friction based energy loss, in addition to a decrease in the carbon footprint of vehicles. The aforementioned positive environmental impact is further strengthened considering the lack of acute toxicity found in our extensive in vitro investigation, in which both eukaryotic and prokaryotic cells were tested. Collectively, our body of work suggests that by the use of safe nanoadditives we could contribute to reducing the environmental impact of transportation and therein take a positive step towards a more sustainable automotive sector. The workflow proposed here for the evaluation of human and environmental toxicity will allow for the study of nanosized bare graphene material and can be broadly applied to the translation of graphene-based nanomaterials into the market.
Collapse
Affiliation(s)
- Margarita Esquivel-Gaon
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Computational simulations and experimental validation of structure- physicochemical properties of pristine and functionalized graphene: Implications for adverse effects on p53 mediated DNA damage response. Int J Biol Macromol 2018; 110:540-549. [DOI: 10.1016/j.ijbiomac.2017.10.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 01/11/2023]
|
124
|
Ibrahim M, Xue Y, Ostermann M, Sauter A, Steinmueller-Nethl D, Schweeberg S, Krueger A, Cimpan MR, Mustafa K. In vitro cytotoxicity assessment of nanodiamond particles and their osteogenic potential. J Biomed Mater Res A 2018; 106:1697-1707. [PMID: 29451353 DOI: 10.1002/jbm.a.36369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/18/2018] [Accepted: 02/01/2018] [Indexed: 12/28/2022]
Abstract
Scaffolds functionalized with nanodiamond particles (nDP) hold great promise with regard to bone tissue formation in animal models. Degradation of the scaffolds over time may leave nDP within the tissues, raising concerns about possible long-term unwanted effects. Human SaOS-2 osteoblast-like cells and U937 monoblastoid cells were exposed to five different concentrations (0.002-2 mg/L) of nDP (size range: 2.36-4.42 nm) for 24 h. Cell viability was assessed by impedance-based methods. The differential expression of stress and toxicity-related genes was evaluated by polymerase chain reaction (PCR) super-array, while the expression of selected inflammatory and cell death markers was determined by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Furthermore, the expression of osteogenic genes by SaOS-2 cells, alkaline phosphatase activity and the extracellular calcium nodule deposition in response to nDP were determined in vitro. Cells responded differently to higher nDP concentrations (≥0.02 mg/L), that is, no loss of viability for SaOS-2 cells and significantly reduced viability for U937 cells. Gene expression showed significant upregulation of several cell death and inflammatory markers, among other toxicity reporter genes, indicating inflammatory and cytotoxic responses in U937 cells. Nanodiamond particles improved the osteogenicity of osteoblast-like cells with no evident cytotoxicity. However, concentration-dependent cytotoxic and inflammatory responses were seen in the U937 cells, negatively affecting osteogenicity in co-cultures. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1697-1707, 2018.
Collapse
Affiliation(s)
- Mohamed Ibrahim
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Centre for International Health, Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Melanie Ostermann
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Alexander Sauter
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | | | - Sarah Schweeberg
- Institute for Organic Chemistry, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Anke Krueger
- Institute for Organic Chemistry, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Mihaela R Cimpan
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
125
|
Quinn MDJ, Wang T, Notley SM. Surfactant-exfoliated graphene as a near-infrared photothermal ablation agent. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaa1d0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
126
|
Sun Y, Dai H, Chen S, Xu M, Wang X, Zhang Y, Xu S, Xu A, Weng J, Liu S, Wu L. Graphene oxide regulates cox2 in human embryonic kidney 293T cells via epigenetic mechanisms: dynamic chromosomal interactions. Nanotoxicology 2018; 12:117-137. [PMID: 29338479 DOI: 10.1080/17435390.2018.1425498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To extend the applications of engineered nanomaterials, such as graphene oxide (GO), it is necessary to minimize cytotoxicity. However, the mechanisms underlying this cytotoxicity are unclear. Dynamic chromosomal interactions have been used to illustrate the molecular bases of gene expression, which offers a more sensitive and cutting-edge technology to elucidate complex biological processes associated with epigenetic regulations. In this study, the role of GO-triggered chromatin interactions in the activation of cox2, a hallmark of inflammation, was investigated in normal human cells. Using chromosome conformation capture technology, we showed that GO triggers physical interactions between the downstream enhancer and the cox2 promoter in human embryonic kidney 293T (293T) via p65 and p300 complex-mediated dynamic chromatin looping, which was required for high cox2 expression. Moreover, tumor necrosis factor-α (TNF-α), located upstream of the p65 signaling pathway, contributed to the regulation of cox2 activation through dynamic chromatin architecture. Compared with pristine GO and aminated GO (GO-NH2), poly (acrylic acid)-functionalized GO (GO-PAA) induced a weaker inflammatory response and a weaker effect on chromatin architecture. Our results mechanistically link GO-mediated chromatin interactions with the regulation of cox2 and suggest that GO derivatives may minimize toxicity in practical applications.
Collapse
Affiliation(s)
- Yuxiang Sun
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Hui Dai
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,b University of Science and Technology of China , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Shaopeng Chen
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Ming Xu
- d State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Xuanyu Wang
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Yajun Zhang
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Shengmin Xu
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - An Xu
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Jian Weng
- e Research Center of Biomedical Engineering, Department of Biomaterials, College of Materials , Xiamen University , Xiamen , People's Republic of China
| | - Sijin Liu
- d State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Lijun Wu
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,b University of Science and Technology of China , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| |
Collapse
|
127
|
Liang C, Luo Y, Yang G, Xia D, Liu L, Zhang X, Wang H. Graphene Oxide Hybridized nHAC/PLGA Scaffolds Facilitate the Proliferation of MC3T3-E1 Cells. NANOSCALE RESEARCH LETTERS 2018; 13:15. [PMID: 29327198 PMCID: PMC5764901 DOI: 10.1186/s11671-018-2432-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Biodegradable porous biomaterial scaffolds play a critical role in bone regeneration. In this study, the porous nano-hydroxyapatite/collagen/poly(lactic-co-glycolic acid)/graphene oxide (nHAC/PLGA/GO) composite scaffolds containing different amount of GO were fabricated by freeze-drying method. The results show that the synthesized scaffolds possess a three-dimensional porous structure. GO slightly improves the hydrophilicity of the scaffolds and reinforces their mechanical strength. Young's modulus of the 1.5 wt% GO incorporated scaffold is greatly increased compared to the control sample. The in vitro experiments show that the nHAC/PLGA/GO (1.5 wt%) scaffolds significantly cell adhesion and proliferation of osteoblast cells (MC3T3-E1). This present study indicates that the nHAC/PLGA/GO scaffolds have excellent cytocompatibility and bone regeneration ability, thus it has high potential to be used as scaffolds in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Chunyong Liang
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Yongchao Luo
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Guodong Yang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Dan Xia
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Xiaomin Zhang
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Hongshui Wang
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China
| |
Collapse
|
128
|
Siew QY, Tham SY, Loh HS, Khiew PS, Chiu WS, Tan MTT. One-step green hydrothermal synthesis of biocompatible graphene/TiO2 nanocomposites for non-enzymatic H2O2 detection and their cytotoxicity effects on human keratinocyte and lung fibroblast cells. J Mater Chem B 2018; 6:1195-1206. [DOI: 10.1039/c7tb02891a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple, safe, and efficient approach to synthesise graphene/titanium dioxide (G/TiO2) nanocomposites with potential in electrochemical sensing application and relatively good biocompatibility to human cells.
Collapse
Affiliation(s)
- Qi Yan Siew
- Department of Electrical and Electronic Engineering
- Faculty of Engineering
- University of Nottingham Malaysia Campus
- 43500 Semenyih
- Malaysia
| | - Shiau Ying Tham
- School of Biosciences
- Faculty of Science
- University of Nottingham Malaysia Campus
- 43500 Semenyih
- Malaysia
| | - Hwei-San Loh
- School of Biosciences
- Faculty of Science
- University of Nottingham Malaysia Campus
- 43500 Semenyih
- Malaysia
| | - Poi Sim Khiew
- Center of Nanotechnology and Advanced Materials
- Faculty of Engineering
- University of Nottingham Malaysia Campus
- 43500 Semenyih
- Malaysia
| | - Wee Siong Chiu
- Low Dimensional Materials Research Center
- Department of Physics
- Faculty of Science
- University Malaya
- 50603 Kuala Lumpur
| | - Michelle T. T. Tan
- Department of Electrical and Electronic Engineering
- Faculty of Engineering
- University of Nottingham Malaysia Campus
- 43500 Semenyih
- Malaysia
| |
Collapse
|
129
|
Experimental and Clinical Applications of Chamaecyparis obtusa Extracts in Dry Eye Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4523673. [PMID: 29441148 PMCID: PMC5758851 DOI: 10.1155/2017/4523673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022]
Abstract
Purpose To investigate the effects of Chamaecyparis obtusa (CO) on human corneal epithelial (HCE) cells, a murine experimental dry eye (EDE) model, and the efficacy of antioxidant eye mask in dry eye disease (DED) patients. Methods 0.001%, 0.01%, and 0.1% CO extracts were used to treat HCE cells, cell viability, and production of antioxidative enzymes, and reactive oxygen species (ROS) were assessed. Afterwards, CO extracts or balanced salt solution (BSS) was applied in EDE. Clinical and experimental parameters were measured at 7 days after treatment. In addition, DED patients were randomly assigned to wear either an eye mask containing CO extracts or a placebo. Clinical parameters were evaluated. Results The viability of HCE cells and antioxidative enzyme expression significantly improved after treatment with 0.1% CO extracts. Mice treated with 0.1% CO extracts showed significant improvement in clinical parameters. During the trial, the clinical parameters significantly improved in the treatment group at 4 weeks after application. Conclusions 0.1% CO extracts could promote the expression of antioxidative proteins and ROS production. In addition, an eye mask containing CO extracts could improve DED clinical parameters. These suggest that CO extracts may be useful as an adjunctive option for the DED treatment.
Collapse
|
130
|
Yu Y, Wu N, Yi Y, Li Y, Zhang L, Yang Q, Miao W, Ding X, Jiang L, Huang H. Dispersible MoS2 Nanosheets Activated TGF-β/Smad Pathway and Perturbed the Metabolome of Human Dermal Fibroblasts. ACS Biomater Sci Eng 2017; 3:3261-3272. [DOI: 10.1021/acsbiomaterials.7b00575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yadong Yu
- Jiangsu
National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Na Wu
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Yanliang Yi
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Yangying Li
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Lei Zhang
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Qi Yang
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Wenjun Miao
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Xuefang Ding
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Ling Jiang
- College
of Food Science and Light Industry, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - He Huang
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| |
Collapse
|
131
|
Lu CJ, Jiang XF, Junaid M, Ma YB, Jia PP, Wang HB, Pei DS. Graphene oxide nanosheets induce DNA damage and activate the base excision repair (BER) signaling pathway both in vitro and in vivo. CHEMOSPHERE 2017; 184:795-805. [PMID: 28645083 DOI: 10.1016/j.chemosphere.2017.06.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 05/22/2023]
Abstract
Graphene oxide (GO) has widespread concerns in the fields of biological sciences and medical applications. Currently, studies have reported that excessive GO exposure can cause cellular DNA damage through reactive oxygen species (ROS) generation. However, DNA damage mediated response of the base excision repair (BER) pathway due to GO exposure is not elucidated yet. Therefore, we exposed HEK293T cells and zebrafish embryos to different concentrations of GO for 24 h, and transcriptional profiles of BER pathway genes, DNA damage, and cell viability were analyzed both in vitro and in vivo. Moreover, the deformation of HEK293T cells before and after GO exposure was also investigated using atomic force microscopy (AFM) to identify the physical changes occurred in the cells' structure. CCK-8 and Comet assay revealed the significant decrease in cell viability and increase in DNA damage in HEK293T cells at higher GO doses (25 and 50 μg/mL). Among the investigated genetic markers in HEK293T cells, BER pathway genes (APEX1, OGG1, CREB1, UNG) were significantly up-regulated upon exposure to higher GO dose (50 μg/mL), however, low exposure concentration (5, 25 μg/mL) failed to induce significant genetic induction except for CREB1 at 25 μg/mL. Additionally, the viscosity of HEK293T cells decreased upon GO exposure. In zebrafish, the results of up-regulated gene expressions (apex1, ogg1, polb, creb1) were consistent with those in the HEK293T cells. Taken all together, the exposure to elevated GO concentration could cause DNA damage to HEK293T cells and zebrafish embryos; BER pathway could be proposed as the possible inner response mechanism.
Collapse
Affiliation(s)
- Chun-Jiao Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xue-Feng Jiang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Bo Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Pan-Pan Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Bin Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
132
|
Ou L, Lin S, Song B, Liu J, Lai R, Shao L. The mechanisms of graphene-based materials-induced programmed cell death: a review of apoptosis, autophagy, and programmed necrosis. Int J Nanomedicine 2017; 12:6633-6646. [PMID: 28924347 PMCID: PMC5595361 DOI: 10.2147/ijn.s140526] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Graphene-based materials (GBMs) are widely used in many fields, including biomedicine. To date, much attention had been paid to the potential unexpected toxic effects of GBMs. Here, we review the recent literature regarding the impact of GBMs on programmed cell death (PCD). Apoptosis, autophagy, and programmed necrosis are three major PCDs. Mechanistic studies demonstrated that the mitochondrial pathways and MAPKs (JNK, ERK, and p38)- and TGF-β-related signaling pathways are implicated in GBMs-induced apoptosis. Autophagy, unlike apoptosis and necroptosis which are already clear cell death types, plays a vital pro-survival role in cell homeostasis, so its role in cell death should be carefully considered. However, GBMs always induce unrestrained autophagy accelerating cell death. GBMs trigger autophagy through inducing autophagosome accumulation and lysosome impairment. Mitochondrial dysfunction, ER stress, TLRs signaling pathways, and p38 MAPK and NF-κB pathways participate in GBMs-induced autophagy. Programmed necrosis can be activated by RIP kinases, PARP, and TLR-4 signaling in macrophages after GBMs exposure. Though apoptosis, autophagy, and necroptosis are distinguished by some characteristics, their numerous signaling pathways comprise an interconnected network and correlate with each other, such as the TLRs, p53 signaling pathways, and the Beclin-1 and Bcl-2 interaction. A better understanding of the mechanisms of PCD induced by GBMs may allow for a thorough study of the toxicology of GBMs and a more precise determination of the consequences of human exposure to GBMs. These determinations will also benefit safety assessments of the biomedical and therapeutic applications of GBMs.
Collapse
Affiliation(s)
- Lingling Ou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Shaoqiang Lin
- Department of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Bin Song
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jia Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Renfa Lai
- Department of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
133
|
Yuan YG, Wang YH, Xing HH, Gurunathan S. Quercetin-mediated synthesis of graphene oxide-silver nanoparticle nanocomposites: a suitable alternative nanotherapy for neuroblastoma. Int J Nanomedicine 2017; 12:5819-5839. [PMID: 28860751 PMCID: PMC5566358 DOI: 10.2147/ijn.s140605] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Graphene and graphene-related materials have gained substantial interest from both academia and industry for the development of unique nanomaterials for biomedical applications. Graphene oxide (GO) and silver nanoparticles (AgNPs) are a valuable platform for the development of nanocomposites, permitting the combination of nanomaterials with different physical and chemical properties to generate novel materials with improved and effective functionalities in a single platform. Therefore, this study was conducted to synthesize a graphene oxide–silver nanoparticle (GO-AgNPs) nanocomposite using the biomolecule quercetin and evaluate the potential cytotoxicity and mechanism of GO-AgNPs in human neuroblastoma cancer cells (SH-SY5Y). Methods The synthesized GO-AgNPs were characterized using various analytical techniques. The potential toxicities of GO-AgNPs were evaluated using a series of biochemical and cellular assays. The expression of apoptotic and anti-apoptotic genes was measured by quantitative real-time reverse transcription polymerase chain reaction. Further, apoptosis was confirmed by caspase-9/3 activity and a terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and GO-AgNPs-induced autophagy was also confirmed by transmission electron microscopy. Results The prepared GO-AgNPs exhibited significantly higher cytotoxicity toward SH-SY5Y cells than GO. GO-AgNPs induced significant cytotoxicity in SH-SY5Y cells by the loss of cell viability, inhibition of cell proliferation, increased leakage of lactate dehydrogenase, decreased level of mitochondrial membrane potential, reduced numbers of mitochondria, enhanced level of reactive oxygen species generation, increased expression of pro-apoptotic genes, and decreased expression of anti-apoptotic genes. GO-AgNPs induced caspase-9/3-dependent apoptosis via DNA fragmentation. Finally, GO-AgNPs induced accumulation of autophagosomes and autophagic vacuoles. Conclusion In this study, we developed an environmentally friendly, facile, dependable, and simple method for the synthesis of GO-AgNPs nanocomposites using quercetin. The synthesized GO-AgNPs exhibited enhanced cytotoxicity compared with that of GO at very low concentrations. This study not only elucidates the potential cytotoxicity against neuroblastoma cancer cells, but also reveals the molecular mechanism of toxicity.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yan-Hong Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Hui-Hui Xing
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
134
|
Kang Y, Liu J, Wu J, Yin Q, Liang H, Chen A, Shao L. Graphene oxide and reduced graphene oxide induced neural pheochromocytoma-derived PC12 cell lines apoptosis and cell cycle alterations via the ERK signaling pathways. Int J Nanomedicine 2017; 12:5501-5510. [PMID: 28814866 PMCID: PMC5546784 DOI: 10.2147/ijn.s141032] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Given the novel applications of graphene materials in biomedical and electronics industry, the health hazards of these particles have attracted extensive worldwide attention. Although many studies have been performed on graphene material-induced toxic effects, toxicological data for the effect of graphene materials on the nervous system are lacking. In this study, we focused on the biological effects of graphene oxide (GO) and reduced graphene oxide (rGO) materials on PC12 cells, a type of traditional neural cell line. We found that GO and rGO exerted significant toxic effects on PC12 cells in a dose- and time-dependent manner. Moreover, apoptosis appeared to be a response to toxicity. A potent increase in the number of PC12 cells at G0/G1 phase after GO and rGO exposure was detected by cell cycle analysis. We found that phosphorylation levels of ERK signaling molecules, which are related to cell cycle regulation and apoptosis, were significantly altered after GO and rGO exposure. In conclusion, our results show that GO has more potent toxic effects than rGO and that apoptosis and cell cycle arrest are the main toxicity responses to GO and rGO treatments, which are likely due to ERK pathway regulation.
Collapse
Affiliation(s)
- Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Junrong Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qian Yin
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Huimin Liang
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Aijie Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
135
|
Surface tailoring of polyacrylate-grafted graphene oxide for controlled interactions at the biointerface. J Colloid Interface Sci 2017; 506:532-542. [PMID: 28756320 DOI: 10.1016/j.jcis.2017.07.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 11/21/2022]
Abstract
The actual surface termination and lateral size of a nanomaterial is crucial in its interaction with biomolecules at the aqueous interface. Graphene oxide (GO) nanosheets have been demonstrated as promising nanoplatform for both diagnostic and therapeutic applications. To this respect, 'smart' GO nanocarriers have been obtained by the surface functionalisation with polymers sensitive, e.g., to pH, as the polyacrylate (PAA) case. In this work, hybrid GO/PAA samples prepared respectively at low (GOPAAthin) or high (GOPAAthick) monomer grafting ratio, were scrutinised both theoretically, by molecular dynamic calculations, and experimentally by a multitechnique approach, including spectroscopic (UV-visible, fluorescence, Raman, Attenuated-total reflectance-Fourier transformed infrared and X-ray photoelectron spectroscopies), spectrometric (time-of-flight secondary ion and electrospray ionisation mass spectrometries) and microscopic (atomic force and confocal microscopies) methods. The actual surface termination, evaluated in terms of the relative ratio between polar and dispersive groups at the surface of the GO/polymer systems, was found to correlate with the average orientation of hydrophilic/hydrophobic domains of albumin, used as model protein. Moreover, the comparison among GO, GO-PAAthin and GO-PAAthick in the optical response at the interface with aqueous solutions, both at acid and at physiological pH, showed that the hybrid GO-polymer platform could be suitable not only to exploit a pH-triggered drug release but also for a modulation of the GO intrinsic emission properties. Energy transfer experiments on the GO/polymer oxide/fluorescein-labelled albumin/doxorubicin assembly showed significant differences for GO and GO-PAA samples, thus demonstrating the occurrence of different electronic processes at the hybrid nano-bio-interfaces. Confocal microscopy studies of cellular uptake in neuroblastoma cells confirmed the promising potentialities of the developed nanoplatform for applications at the biointerface.
Collapse
|
136
|
Cu Nanoparticles in Hydrogels of Chitosan-PVA Affects the Characteristics of Post-Harvest and Bioactive Compounds of Jalapeño Pepper. Molecules 2017; 22:molecules22060926. [PMID: 28574445 PMCID: PMC6152709 DOI: 10.3390/molecules22060926] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 11/17/2022] Open
Abstract
Peppers are consumed all over the world due to the flavor, aroma, and color that they add to food. Additionally, they play a role in human health, as they contain a high concentration of bioactive compounds and antioxidants. The treatments used were an absolute control, Cs-PVA, and four treatments with 0.02, 0.2, 2, and 10 mg (nCu) g−1 (Cs-PVA). The application of Cu nanoparticles in chitosan-PVA hydrogels increases the content of capsaicin by up to 51% compared to the control. This application also increases the content of antioxidants ABTS [2,2′-azino-bis (3-ethylbenzothiazolin-6-sulfonic acid)] and DPPH (2,2-diphenyl-1-picrylhydrazyl), total phenols and flavonoids (4%, 6.6%, 5.9%, and 12.7%, respectively) in jalapeño pepper fruits stored for 15 days at room temperature; under refrigeration, it increases DPPH antioxidants, total phenols, and flavonoids (23.9%, 1.54%, and 17.2%, respectively). The application of Cu nanoparticles in chitosan-PVA hydrogels, even when applied to the substrate, not only has an effect on the development of the jalapeño pepper crop, but also modifies the post-harvest characteristics of the jalapeño pepper fruits.
Collapse
|
137
|
Interaction studies of carbon nanomaterials and plasma activated carbon nanomaterials solution with telomere binding protein. Sci Rep 2017; 7:2636. [PMID: 28572671 PMCID: PMC5454022 DOI: 10.1038/s41598-017-02690-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/13/2017] [Indexed: 11/21/2022] Open
Abstract
Most cancer cells have telomerase activity because they can express the human telomerase reverse transcriptase (hTERT) gene. Therefore, the inhibition of the hTERT expression can play an important role in controlling cancer cell proliferation. Our current study aims to inhibit hTERT expression. For this, we synthesized graphene oxide (GO) and a functionalized multiwall carbon nanotube (f-MWCNT), latter treated them with cold atmospheric pressure plasma for further analysis of the hTERT expression. The inhibition of hTERT expression by GO, f-MWCNT, plasma activated GO solution (PGOS), and plasma activated f-MWCNT solution (PCNTS), was studied using two lung cancer cell lines, A549 and H460. The hTERT experimental results revealed that GO and PGOS sufficiently decreased the hTERT concentration, while f-MWCNT and PCNTS were unable to inhibit the hTERT concentration. Therefore, to understand the inhibition mechanism of hTERT, we studied the binding properties of GO and PGOS with telomere binding protein (AtTRB2). The interaction studies were carried out using circular dichroism, fluorescence, 1H-15N NMR spectroscopy, and size-exclusion chromatography (SEC) binding assay. We also used docking simulation to have an better understanding of the interactions between GO nanosheets and AtTRB2 protein. Our results may provide new insights that can benefit in biomedical treatments.
Collapse
|
138
|
Li P, Xu T, Wu S, Lei L, He D. Chronic exposure to graphene-based nanomaterials induces behavioral deficits and neural damage in Caenorhabditis elegans. J Appl Toxicol 2017; 37:1140-1150. [PMID: 28418071 DOI: 10.1002/jat.3468] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/05/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022]
Abstract
Nanomaterials of graphene and its derivatives have been widely applied in recent years, but whose impacts on the environment and health are still not well understood. In the present study, the potential adverse effects of graphite (G), graphite oxide nanoplatelets (GO) and graphene quantum dots (GQDs) on the motor nervous system were investigated using nematode Caenorhabditis elegans as the assay system. After being characterized using TEM, SEM, XPS and PLE, three nanomaterials were chronically exposed to C. elegans for 6 days. In total, 50-100 mg l-1 GO caused a significant reduction in the survival rate, but G and GDDs showed low lethality on nematodes. After chronic exposure of sub-lethal dosages, three nanomaterials were observed to distribute primarily in the pharynx and intestine; but GQDs were widespread in nematode body. Three graphene-based nanomaterials resulted in significant declines in locomotor frequency of body bending, head thrashing and pharynx pumping. In addition, mean speed, bending angle-frequency and wavelength of the crawling movement were significantly reduced after exposure. Using transgenic nematodes, we found high concentrations of graphene-based nanomaterials induced down-expression of dat-1::GFP and eat-4::GFP, but no significant changes in unc-47::GFP. This indicates that graphene-based nanomaterials can lead to damages in the dopaminergic and glutamatergic neurons. The present data suggest that chronic exposure of graphene-based nanomaterials may cause neurotoxicity risks of inducing behavioral deficits and neural damage. These findings provide useful information to understand the toxicity and safe application of graphene-based nanomaterials. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ping Li
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Tiantian Xu
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Siyu Wu
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Lili Lei
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Defu He
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
139
|
Contreras-Torres FF, Rodríguez-Galván A, Guerrero-Beltrán CE, Martínez-Lorán E, Vázquez-Garza E, Ornelas-Soto N, García-Rivas G. Differential cytotoxicity and internalization of graphene family nanomaterials in myocardial cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:633-642. [DOI: 10.1016/j.msec.2016.12.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/25/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022]
|
140
|
Raman spectroscopy for the detection of organ distribution and clearance of PEGylated reduced graphene oxide and biological consequences. Biomaterials 2017; 131:121-130. [PMID: 28388498 DOI: 10.1016/j.biomaterials.2017.03.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/12/2017] [Accepted: 03/25/2017] [Indexed: 01/12/2023]
Abstract
Graphene, a 2D carbon material has found vast application in biomedical field because of its exciting physico-chemical properties. The large planar sheet like structure helps graphene to act as an effective carrier of drug or biomolecules in enormous amount. However, limited data available on the biocompatibility of graphene upon interaction with the biological system prompts us to evaluate their toxicity in animal model. In this study organ distribution, clearance and toxicity of PEGylated reduced nanographene (PrGO) on Swiss Albino mice was investigated after intraperitoneal and intravenous administration. Biodistribution and blood clearance was monitored using confocal Raman mapping and indicated that PrGO was distributed on major organs such as brain, liver, kidney, spleen and bone marrow. Presence of PrGO in brain tissue suggests that it has the potential to cross blood brain barrier. Small amount of injected PrGO was found to excrete via urine. Repeated administration of PrGO induced acute liver injury, congestion in kidney and increased splenocytes proliferation in days following exposure. Hence the result of the study recommended that PrGO should undergo intensive safety assessment before clinical application or validated to be safe for medical use.
Collapse
|
141
|
Consecutive evaluation of graphene oxide and reduced graphene oxide nanoplatelets immunotoxicity on monocytes. Colloids Surf B Biointerfaces 2017; 153:300-309. [PMID: 28285061 DOI: 10.1016/j.colsurfb.2017.02.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/19/2017] [Accepted: 02/27/2017] [Indexed: 12/19/2022]
Abstract
The biocompatibilities of graphene-family nanomaterials (GFNs) should be thoroughly evaluated before their application in drug delivery and anticancer therapy. The present study aimed to consecutively assess the immunotoxicity of graphene oxide nanoplatelets (GONPs) and reduced GONPs (rGONPs) on THP-1 cells, a human acute monocytic leukemia cell line. GONPs induced the expression of antioxidative enzymes and inflammatory factors, whereas rGONPs had substantially higher cellular uptake rate, higher levels of NF-κB expression. These distinct toxic mechanisms were observed because the two nanomaterials differ in their oxidation state, which imparts different affinities for the cell membrane. Because GONPs have a higher cell membrane affinity and higher impact on membrane proteins compared with rGONPs, macrophages (THP-1a) derived from GONPs treated THP-1cells showed a severer effect on phagocytosis. By consecutive evaluation the effects of GONPs and rGONPs on THP-1 and THP-1a, we demonstrated that their surface oxidation states may cause GFNs to behave differently and cause different immunotoxic effects.
Collapse
|
142
|
Fernandes AL, Josende ME, Nascimento JP, Santos AP, Sahoo SK, da Silva FMR, Romano LA, Furtado CA, Wasielesky W, Monserrat JM, Ventura-Lima J. Exposure to few-layer graphene through diet induces oxidative stress and histological changes in the marine shrimp Litopenaeus vannamei. Toxicol Res (Camb) 2017; 6:205-214. [PMID: 30090491 PMCID: PMC6062256 DOI: 10.1039/c6tx00380j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
The production and use of graphene-based nanomaterials is rapidly increasing. However, few data are available regarding the toxicity of these nanomaterials in aquatic organisms. In the present study, the toxicity of few-layer graphene (FLG) (obtained by chemical exfoliation) was evaluated in different tissues of the shrimp Litopenaeus vannamei following exposure to FLG through a diet for four weeks. Transmission electron microscopy and dynamic light scattering measurements showed a distribution of lateral sheet sizes between 100 and 2000 nm with the average length and width of 800 and 400 nm, respectively. Oxidative stress parameters were analyzed, indicating that FLG exposure led to an increase in the concentration of reactive oxygen species, modulated the activity of antioxidant enzymes such as glutamate cysteine ligase and glutathione-S-transferase, and reduced glutathione levels and total antioxidant capacity. However, the observed modulations were not sufficient to avoid lipid and DNA damage in both gill and hepatopancreas tissues. Furthermore, graphene exposure resulted in morphological changes in hepatopancreas tissues. These results demonstrate that exposure to FLG through the diet induces alterations in the redox state of cells, leading to a subsequent oxidative stress situation. It is therefore clear that nanomaterials presenting these physico-chemical characteristics may be harmful to aquatic biota.
Collapse
Affiliation(s)
- Amanda Lucena Fernandes
- Instituto de Ciências Biológicas (ICB) , Universidade Federal do Rio Grande - FURG , Rio Grande , RS , Brasil . ; ; Tel: +55 5332935249
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada - FURG , Brasil
| | - Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB) , Universidade Federal do Rio Grande - FURG , Rio Grande , RS , Brasil . ; ; Tel: +55 5332935249
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada - FURG , Brasil
| | | | | | - Sangram Keshai Sahoo
- Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN , Belo Horizonte , MG , Brazil
| | - Flávio Manoel Rodrigues da Silva
- Instituto de Ciências Biológicas (ICB) , Universidade Federal do Rio Grande - FURG , Rio Grande , RS , Brasil . ; ; Tel: +55 5332935249
- Programa de Pós-Graduação em Ciências da Saúde - FURG , Brasil
| | | | | | | | - José Marìa Monserrat
- Instituto de Ciências Biológicas (ICB) , Universidade Federal do Rio Grande - FURG , Rio Grande , RS , Brasil . ; ; Tel: +55 5332935249
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada - FURG , Brasil
- Programa de Pós-Graduação em Aquacultura - FURG , Brasil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB) , Universidade Federal do Rio Grande - FURG , Rio Grande , RS , Brasil . ; ; Tel: +55 5332935249
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada - FURG , Brasil
| |
Collapse
|
143
|
Chen H, Li H, Wang D. Graphene Oxide Dysregulates Neuroligin/NLG-1-Mediated Molecular Signaling in Interneurons in Caenorhabditis elegans. Sci Rep 2017; 7:41655. [PMID: 28128356 PMCID: PMC5269675 DOI: 10.1038/srep41655] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/22/2016] [Indexed: 12/03/2022] Open
Abstract
Graphene oxide (GO) can be potentially used in many medical and industrial fields. Using assay system of Caenorhabditis elegans, we identified the NLG-1/Neuroligin-mediated neuronal signaling dysregulated by GO exposure. In nematodes, GO exposure significantly decreased the expression of NLG-1, a postsynaptic cell adhesion protein. Loss-of-function mutation of nlg-1 gene resulted in a susceptible property of nematodes to GO toxicity. Rescue experiments suggested that NLG-1 could act in AIY interneurons to regulate the response to GO exposure. In the AIY interneurons, PKC-1, a serine/threonine protein kinase C (PKC) protein, was identified as the downstream target for NLG-1 in the regulation of response to GO exposure. LIN-45, a Raf protein in ERK signaling pathway, was further identified as the downstream target for PKC-1 in the regulation of response to GO exposure. Therefore, GO may dysregulate NLG-1-mediated molecular signaling in the interneurons, and a neuronal signaling cascade of NLG-1-PKC-1-LIN-45 was raised to be required for the control of response to GO exposure. More importantly, intestinal RNAi knockdown of daf-16 gene encoding a FOXO transcriptional factor in insulin signaling pathway suppressed the resistant property of nematodes overexpressing NLG-1 to GO toxicity, suggesting the possible link between neuronal NLG-1 signaling and intestinal insulin signaling in the regulation of response to GO exposure.
Collapse
Affiliation(s)
- He Chen
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Huirong Li
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
144
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
145
|
Zhao G, Li X, Huang M, Zhen Z, Zhong Y, Chen Q, Zhao X, He Y, Hu R, Yang T, Zhang R, Li C, Kong J, Xu JB, Ruoff RS, Zhu H. The physics and chemistry of graphene-on-surfaces. Chem Soc Rev 2017; 46:4417-4449. [DOI: 10.1039/c7cs00256d] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review describes the major “graphene-on-surface” structures and examines the roles of their properties in governing the overall performance for specific applications.
Collapse
Affiliation(s)
- Guoke Zhao
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Xinming Li
- Department of Electronic Engineering
- The Chinese University of Hong Kong
- China
| | - Meirong Huang
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Zhen Zhen
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Yujia Zhong
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Qiao Chen
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Xuanliang Zhao
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Yijia He
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Ruirui Hu
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Tingting Yang
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Rujing Zhang
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Changli Li
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Jing Kong
- Department of Electrical Engineering and Computer Sciences
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Jian-Bin Xu
- Department of Electronic Engineering
- The Chinese University of Hong Kong
- China
| | - Rodney S. Ruoff
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), and Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan
- Republic of Korea
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
146
|
Yu J, Lin YH, Yang L, Huang CC, Chen L, Wang WC, Chen GW, Yan J, Sawettanun S, Lin CH. Improved Anticancer Photothermal Therapy Using the Bystander Effect Enhanced by Antiarrhythmic Peptide Conjugated Dopamine-Modified Reduced Graphene Oxide Nanocomposite. Adv Healthc Mater 2017; 6. [PMID: 27860462 DOI: 10.1002/adhm.201600804] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/12/2016] [Indexed: 12/13/2022]
Abstract
Despite tremendous efforts toward developing novel near-infrared (NIR)-absorbing nanomaterials, improvement in therapeutic efficiency remains a formidable challenge in photothermal cancer therapy. This study aims to synthesize a specific peptide conjugated polydopamine-modified reduced graphene oxide (pDA/rGO) nanocomposite that promotes the bystander effect to facilitate cancer treatment using NIR-activated photothermal therapy. To prepare a nanoplatform capable of promoting the bystander effect in cancer cells, we immobilized antiarrhythmic peptide 10 (AAP10) on the surface of dopamine-modified rGO (AAP10-pDA/rGO). Our AAP10-pDA/rGO could promote the bystander effect by increasing the expression of connexin 43 protein in MCF-7 breast-cancer cells. Because of its tremendous ability to absorb NIR absorption, AAP10-pDA/rGO offers a high photothermal effect under NIR irradiation. This leads to a massive death of MCF-7 cells via the bystander effect. Using tumor-bearing mice as the model, it is found that NIR radiation effectively ablates breast tumor in the presence of AAP10-pDA/rGO and inhibits tumor growth by ≈100%. Therefore, this research integrates the bystander and photothermal effects into a single nanoplatform in order to facilitate an efficient photothermal therapy. Furthermore, our AAP10-pDA/rGO, which exhibits both hyperthermia and the bystander effect, can prevent breast-cancer recurrence and, therefore, has great potential for future clinical and research applications.
Collapse
Affiliation(s)
- Jiantao Yu
- Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Yu-Hsin Lin
- Department of Food and Beverage Management; Taipei College of Maritime Technology; Taipei 11174 Taiwan
| | - Lingyan Yang
- Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Chih-Ching Huang
- Institute of Bioscience and Biotechnology; National Taiwan Ocean University; Keelung 20224 Taiwan
| | - Liliang Chen
- The National Key Laboratory of Shock Wave and Detonation Physics; Institute of Fluid Physics; CAEP; Mianyang 621900 China
| | - Wen-Cheng Wang
- Research Center for Environmental Changes; Academia Sinica; Taipei 11529 Taiwan
| | - Guan-Wen Chen
- Department of Food Science; National Taiwan Ocean University; Keelung 20224 Taiwan
| | - Junyan Yan
- Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Saranta Sawettanun
- Department of Biotechnology; National Formosa University; Yunlin 63208 Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology; National Formosa University; Yunlin 63208 Taiwan
| |
Collapse
|
147
|
Chatterjee N, Kim Y, Yang J, Roca CP, Joo SW, Choi J. A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO). Nanotoxicology 2016; 11:76-86. [DOI: 10.1080/17435390.2016.1267273] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Youngho Kim
- School of Environmental Engineering, University of Seoul, Seoul, Korea
| | - Jisu Yang
- School of Environmental Engineering, University of Seoul, Seoul, Korea
| | - Carlos P. Roca
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul, Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, Seoul, Korea
| |
Collapse
|
148
|
Holt BD, Arnold AM, Sydlik SA. In It for the Long Haul: The Cytocompatibility of Aged Graphene Oxide and Its Degradation Products. Adv Healthc Mater 2016; 5:3056-3066. [PMID: 27925461 DOI: 10.1002/adhm.201600745] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Indexed: 11/09/2022]
Abstract
Synthetic biomaterials are poised to transform medicine; however, current synthetic options have yet to ideally recapitulate the desirable properties of native tissue. Thus, the development of new synthetic biomaterials remains an active challenge. Due to its excellent properties, including electrical conductivity, water dispersibility, and capacity for functionalization, graphene oxide (GO) holds potential for myriads of applications, including biological devices. While many studies have evaluated the compatibility of freshly prepared GO, understanding the compatibility of GO as it ages in an aqueous environment is crucial for its safe implementation in long-term biological applications. This is a critical disconnect, as GO has been shown to undergo an autodegradation pathway in aqueous conditions, dynamically changing its composition and structure while producing degradation products. Thus, the long-term cytocompatibility of GO is investigated by "aging" GO over time in water and accelerating aging and decomposition via sonication. While age affects the composition and size of GO, it has no effect on cellular vitality and does not alter subcellular structures or DNA melting. Overall, GO is cytocompatible throughout the process of aging, beginning to demonstrate that GO may be utilized for long-term in vivo applications such as implanted tissue engineered scaffolds or biosensors.
Collapse
Affiliation(s)
- Brian D. Holt
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Anne M. Arnold
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Stefanie A. Sydlik
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
149
|
Lim MH, Jeung IC, Jeong J, Yoon SJ, Lee SH, Park J, Kang YS, Lee H, Park YJ, Lee HG, Lee SJ, Han BS, Song NW, Lee SC, Kim JS, Bae KH, Min JK. Graphene oxide induces apoptotic cell death in endothelial cells by activating autophagy via calcium-dependent phosphorylation of c-Jun N-terminal kinases. Acta Biomater 2016; 46:191-203. [PMID: 27640918 DOI: 10.1016/j.actbio.2016.09.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/03/2016] [Accepted: 09/14/2016] [Indexed: 12/25/2022]
Abstract
Despite the rapid expansion of the biomedical applications of graphene oxide (GO), safety issues related to GO, particularly with regard to its effects on vascular endothelial cells (ECs), have been poorly evaluated. To explore possible GO-mediated vasculature cytotoxicity and determine lateral GO size relevance, we constructed four types of GO: micrometer-sized GO (MGO; 1089.9±135.3nm), submicrometer-sized GO (SGO; 390.2±51.4nm), nanometer-sized GO (NGO; 65.5±16.3nm), and graphene quantum dots (GQDs). All types but GQD showed a significant decrease in cellular viability in a dose-dependent manner. Notably, SGO or NGO, but not MGO, potently induced apoptosis while causing no detectable necrosis. Subsequently, SGO or NGO markedly induced autophagy through a process dependent on the c-Jun N-terminal kinase (JNK)-mediated phosphorylation of B-cell lymphoma 2 (Bcl-2), leading to the dissociation of Beclin-1 from the Beclin-1-Bcl-2 complex. Autophagy suppression attenuated the SGO- or NGO-induced apoptotic cell death of ECs, suggesting that SGO- or NGO-induced cytotoxicity is associated with autophagy. Moreover, SGO or NGO significantly induced increased intracellular calcium ion (Ca2+) levels. Intracellular Ca2+ chelation with BAPTA-AM significantly attenuated microtubule-associated protein 1A/1B-light chain 3-II accumulation and JNK phosphorylation, resulting in reduced autophagy. Furthermore, we found that SGO or NGO induced Ca2+ release from the endoplasmic reticulum through the PLC β3/IP3/IP3R signaling axis. These results elucidate the mechanism underlying the size-dependent cytotoxicity of GOs in the vasculature and may facilitate the development of a safer biomedical application of GOs. STATEMENT OF SIGNIFICANCE Graphene oxide (GO) have received considerable attention with respect to their utilization in biomedical applications. However, GO-related safety issues concerning human vasculature are very limited. In this manuscript, we report for the first time the differential size-related biological effects of GOs on endothelial cells (ECs). Notably, Subnanometer- and nanometersized GOs induce apoptotic death in ECs via autophagy activation. We propose a molecular mechanism for the GO-induced autophagic cell death through the PLCβ3/IP3/Ca2+/JNK signaling axis. Our findings could be provide a better understanding of the GO sizedependent cytotoxicity in vasculature and facilitate the future development of safer biomedical applications of GOs.
Collapse
|
150
|
Silva E, Vasconcellos LMRD, Rodrigues BVM, Dos Santos DM, Campana-Filho SP, Marciano FR, Webster TJ, Lobo AO. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:31-39. [PMID: 28183613 DOI: 10.1016/j.msec.2016.11.075] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/24/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022]
Abstract
Herein, we developed honeycomb-like scaffolds by combining poly (d, l-lactic acid) (PDLLA) with a high amount of graphene/multi-walled carbon nanotube oxides (MWCNTO-GO, 50% w/w). From pristine multi-walled carbon nanotubes (MWCNT) powders, we produced MWCNTO-GO via oxygen plasma etching (OPE), which promoted their exfoliation and oxidation. Initially, we evaluated PDLLA and PDLLA/MWCNTO-GO scaffolds for tensile strength tests, cell adhesion and cell viability (with osteoblast-like MG-63 cells), alkaline phosphatase (ALP, a marker of osteoblast differentiation) activity and mineralized nodule formation. In vivo tests were carried out using PDLLA and PDLLA/MWCNTO-GO scaffolds as fillers for critical defects in the tibia of rats. MWCNTO-GO loading was responsible for decreasing the tensile strength and elongation-at-break of PDLLA scaffolds, although the high mechanical performance observed (~600MPa) assures their application in bone tissue regeneration. In vitro results showed that the scaffolds were not cytotoxic and allowed for osteoblast-like cell interactions and the formation of mineralized matrix nodules. Furthermore, MG-63 cells grown on PDLLA/MWCNTO-GO significantly enhanced osteoblast ALP activity compared to controls (cells alone), while the PDLLA group showed similar ALP activity when compared to controls and PDLLA/MWCNTO-GO. Most impressively, in vivo tests suggested that compared to PDLLA scaffolds, PDLLA/MWCNTO-GO had a superior influence on bone cell activity, promoting greater new bone formation. In summary, the results of this study highlighted that this novel scaffold (MWCNTO-GO, 50% w/w) is a promising alternative for bone tissue regeneration and, thus, should be further studied.
Collapse
Affiliation(s)
- Edmundo Silva
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, State University of Sao Paulo (UNESP), Av. Engenheiro Francisco Jose Longo, 777, Sao Jose dos Campos 12245-000, SP, Brazil
| | - Bruno V M Rodrigues
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil; Laboratory of Biomedical Nanotechnology, Biomedical Engineering Innovation Center, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, Brazil
| | - Danilo Martins Dos Santos
- Chemistry Institute of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-Carlense, 400, 13566-590 Sao Carlos, SP, Brazil
| | - Sergio P Campana-Filho
- Chemistry Institute of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-Carlense, 400, 13566-590 Sao Carlos, SP, Brazil
| | - Fernanda Roberta Marciano
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil; Laboratory of Biomedical Nanotechnology, Biomedical Engineering Innovation Center, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, Brazil; Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Anderson Oliveira Lobo
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil; Laboratory of Biomedical Nanotechnology, Biomedical Engineering Innovation Center, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, Brazil; Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|