101
|
Pu X, Ma S, Gao Y, Xu T, Chang P, Dong L. Mesenchymal Stem Cell-Derived Exosomes: Biological Function and Their Therapeutic Potential in Radiation Damage. Cells 2020; 10:cells10010042. [PMID: 33396665 PMCID: PMC7823972 DOI: 10.3390/cells10010042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation-induced damage is a common occurrence in cancer patients who undergo radiotherapy. In this setting, radiation-induced damage can be refractory because the regeneration responses of injured tissues or organs are not well stimulated. Mesenchymal stem cells have become ideal candidates for managing radiation-induced damage. Moreover, accumulating evidence suggests that exosomes derived from mesenchymal stem cells have a similar effect on repairing tissue damage mainly because these exosomes carry various bioactive substances, such as miRNAs, proteins and lipids, which can affect immunomodulation, angiogenesis, and cell survival and proliferation. Although the mechanisms by which mesenchymal stem cell-derived exosomes repair radiation damage have not been fully elucidated, we intend to translate their biological features into a radiation damage model and aim to provide new insight into the management of radiation damage.
Collapse
Affiliation(s)
- Xiaoyu Pu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Siyang Ma
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Yan Gao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Tiankai Xu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Pengyu Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China
- Correspondence: (P.C.); (L.D.); Tel.: +86-431-8878-3840 (P.C. & L.D.)
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
- National Health Commission Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: (P.C.); (L.D.); Tel.: +86-431-8878-3840 (P.C. & L.D.)
| |
Collapse
|
102
|
Zhang L, Ouyang P, He G, Wang X, Song D, Yang Y, He X. Exosomes from microRNA-126 overexpressing mesenchymal stem cells promote angiogenesis by targeting the PIK3R2-mediated PI3K/Akt signalling pathway. J Cell Mol Med 2020; 25:2148-2162. [PMID: 33350092 PMCID: PMC7882955 DOI: 10.1111/jcmm.16192] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
microRNA‐126 (miR‐126), an endothelial‐specific miRNA, is associated with vascular homeostasis and angiogenesis. However, the efficiency of miR‐126‐based treatment is partially compromised due to the low efficiency of miRNA delivery in vivo. Lately, exosomes have emerged as a natural tool for therapeutic molecule delivery. Herein, we investigated whether exosomes derived from bone marrow mesenchymal stem cells (BMMSCs) can be utilized to deliver miR‐126 to promote angiogenesis. Exosomes were isolated from BMMSCs overexpressed with miR‐126 (Exo‐miR‐126) by ultracentrifugation. In vitro study, Exo‐miR‐126 treatment promoted the proliferation, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, the gene/protein expression of angiogenesis‐related vascular endothelial growth factor (VEGF) and angiotensin‐1 (Ang‐1) were up‐regulated after incubation with Exo‐miR‐126. Additionally, the expression level of phosphoinositol‐3 kinase regulatory subunit 2 (PIK3R2) showed an inverse correlation with miR‐126 in HUVECs. Particularly, the Exo‐miR‐126 treatment contributed to enhanced angiogenesis of HUVECs by targeting PIK3R2 to activate the PI3K/Akt signalling pathway. Similarly, Exo‐miR‐126 administration profoundly increased the number of newly formed capillaries in wound sites and accelerated the wound healing in vivo. The results demonstrate that exosomes derived from BMMSCs combined with miR‐126 may be a promising strategy to promote angiogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.,Department of Orthopaedic Surgery, Xi'an Children's Hospital, Xi'an, Shaanxi Province, China
| | - Pengrong Ouyang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Gaole He
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiaowei Wang
- Department of Orthopaedic Surgery, Xi'an Children's Hospital, Xi'an, Shaanxi Province, China
| | - Defu Song
- Department of Orthopaedic Surgery, Xi'an Children's Hospital, Xi'an, Shaanxi Province, China
| | - Yijun Yang
- Department of Orthopaedic Surgery, Xi'an Children's Hospital, Xi'an, Shaanxi Province, China
| | - Xijing He
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.,Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| |
Collapse
|
103
|
Xu H, Lee CW, Wang YF, Huang S, Shin LY, Wang YH, Wan Z, Zhu X, Yung PSH, Lee OKS. The Role of Paracrine Regulation of Mesenchymal Stem Cells in the Crosstalk With Macrophages in Musculoskeletal Diseases: A Systematic Review. Front Bioeng Biotechnol 2020; 8:587052. [PMID: 33324622 PMCID: PMC7726268 DOI: 10.3389/fbioe.2020.587052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022] Open
Abstract
The phenotypic change of macrophages (Mφs) plays a crucial role in the musculoskeletal homeostasis and repair process. Although mesenchymal stem cells (MSCs) have been shown as a novel approach in tissue regeneration, the therapeutic potential of MSCs mediated by the interaction between MSC-derived paracrine mediators and Mφs remains elusive. This review focused on the elucidation of paracrine crosstalk between MSCs and Mφs during musculoskeletal diseases and injury. The search method was based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and Cochrane Guidelines. The search strategies included MeSH terms and other related terms of MSC-derived mediators and Mφs. Ten studies formed the basis of this review. The current finding suggested that MSC administration promoted proliferation and activation of CD163+ or CD206+ M2 Mφs in parallel with reduction of proinflammatory cytokines and increase in anti-inflammatory cytokines. During such period, Mφs also induced MSCs into a motile and active phenotype via the influence of proinflammatory cytokines. Such crosstalk between Mφs and MSCs further strengthens the effect of paracrine mediators from MSCs to regulate Mφs phenotypic alteration. In conclusion, MSCs in musculoskeletal system, mediated by the interaction between MSC paracrine and Mφs, have therapeutic potential in musculoskeletal diseases.
Collapse
Affiliation(s)
- Hongtao Xu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chien-Wei Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Developmental and Regenerative Biology TRP, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Fan Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuting Huang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Lih-Ying Shin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Hsuan Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Zihao Wan
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaobo Zhu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick Shu Hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Oscar Kuang-Sheng Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Faculty of Medicine, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopadics, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
104
|
Zhu T, Gao W, Fang D, Liu Z, Wu G, Zhou M, Wan M, Mao C. Bifunctional polymer brush-grafted coronary stent for anticoagulation and endothelialization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111725. [PMID: 33545876 DOI: 10.1016/j.msec.2020.111725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023]
Abstract
At present, cardiovascular stent intervention faces clinical complications such as delayed endothelialization, late thrombosis and restenosis after implantation. In this work, a kind of bifunctional polymer brush-grafted coronary stent with anticoagulant and endothelial functions was developed. First, a block copolymer brush with zwitterionic structure consisting of sulfoethyl methacrylate (SBMA) and glycidyl methacrylate (GMA) was surface-induced grafted onto the surface of bare metal coronary stent by atom transfer radical polymerization. The diethylenetriamine NONOate (DETA NONOate), acted as nitric oxide (NO) donor to promote endothelialization, was then attached to polyglycidyl methacrylate (PGMA) brush by a reactive epoxy group to produce NO. The process of chemical modification and the release behavior of NO were characterized in detail. Moreover, the results of anticoagulant test, cytotoxicity test, endothelial cells (ECs) proliferation test and animal experiment of this bifunctional polymer brush-grafted coronary stent we proposed indicate that the zwitterion modified and NO supplied bifunctional coatings has good anticoagulant property, no cytotoxicity and significant endothelialization effect. This work opens the door to combine biological activity of NO and anticoagulant effect of zwitterions, which has great potential to address post-operative side effects associated with restenosis and late stent thrombosis.
Collapse
Affiliation(s)
- Tianyu Zhu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wentao Gao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Guangyan Wu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
105
|
Zhang C, Shang Y, Chen X, Midgley AC, Wang Z, Zhu D, Wu J, Chen P, Wu L, Wang X, Zhang K, Wang H, Kong D, Yang Z, Li Z, Chen X. Supramolecular Nanofibers Containing Arginine-Glycine-Aspartate (RGD) Peptides Boost Therapeutic Efficacy of Extracellular Vesicles in Kidney Repair. ACS NANO 2020; 14:12133-12147. [PMID: 32790341 DOI: 10.1021/acsnano.0c05681] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSC-EVs) have been recognized as a promising cell-free therapy for acute kidney injury (AKI), which avoids safety concerns associated with direct cell engraftment. However, low stability and retention of MSC-EVs have limited their therapeutic efficacy. RGD (Arg-Gly-Asp) peptide binds strongly to integrins, which have been identified on the surface of MSC-EV membranes; yet RGD has not been applied to EV scaffolds to enhance and prolong bioavailability. Here, we developed RGD hydrogels, which we hypothesized could augment MSC-EV efficacy in the treatment of AKI models. In vivo tracking of the labeled EVs revealed that RGD hydrogels increased retention and stability of EVs. Integrin gene knockdown experiments confirmed that EV-hydrogel interaction was mediated by RGD-integrin binding. Upon intrarenal injection into mouse AKI models, EV-RGD hydrogels provided superior rescuing effects to renal function, attenuated histopathological damage, decreased tubular injury, and promoted cell proliferation in early phases of AKI. RGD hydrogels also augmented antifibrotic effects of MSC-EVs in chronic stages. Further analysis revealed that the presence of microRNA let-7a-5p in MSC-EVs served as the mechanism contributing to the reduced cell apoptosis and elevated cell autophagy in AKI. In conclusion, RGD hydrogels facilitated MSC-derived let-7a-5p-containing EVs, improving reparative potential against AKI. This study developed an RGD scaffold to increase the EV integrin-mediated loading and in turn improved therapeutic efficacy in renal repair; therefore this strategy shed light on MSC-EV application as a cell-free treatment for potentiated efficiency.
Collapse
Affiliation(s)
- Chuyue Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yuna Shang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Xiaoniao Chen
- Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Zhongyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Dashuai Zhu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jie Wu
- Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Pu Chen
- Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Lingling Wu
- Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xu Wang
- Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Kaiyue Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Hongfeng Wang
- Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin 300071, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan 453003, China
| | - Xiangmei Chen
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
106
|
Al-Sowayan B, Alammari F, Alshareeda A. Preparing the Bone Tissue Regeneration Ground by Exosomes: From Diagnosis to Therapy. Molecules 2020; 25:E4205. [PMID: 32937850 PMCID: PMC7570455 DOI: 10.3390/molecules25184205] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Bone tissue engineering employs acellular scaffolds or scaffolds, along with cells and growth factors, to provide the mechanical support needed, as well as serve as a delivery vehicle for bioactive molecules to the injury sites. As tissue engineering continues to evolve, it has integrated two emerging fields: stem cells and nanotechnology. A paracrine factor that is found to be responsible for the major regenerative effect in stem cell transplantation is an extracellular vesicle called an 'exosome'. Recent advances in nanotechnology have allowed the 'exosome' to be distinguished from other extracellular vesicles and be polymerized into a well-defined concept. Scientists are now investigating exosome uses in clinical applications. For bone-related diseases, exosomes are being explored as biomarkers for different bone pathologies. They are also being explored as a therapeutic agent where progenitor cell-derived exosomes are used to regenerate damaged bone tissue. In addition, exosomes are being tested as immune modulators for bone tissue inflammation, and finally as a delivery vehicle for therapeutic agents. This review discusses recently published literature on the clinical utilization of exosomes in bone-related applications and the correlated advantages. A particular focus will be placed on the potential utilization of regenerative cell-derived exosomes as a natural biomaterial for tissue regeneration.
Collapse
Affiliation(s)
- Batla Al-Sowayan
- Stem Cells and Regenerative Medicine Unit, Cell Therapy & Cancer Research Department, King Abdullah International Medical Research Center/King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia;
| | | | - Alaa Alshareeda
- Stem Cells and Regenerative Medicine Unit, Cell Therapy & Cancer Research Department, King Abdullah International Medical Research Center/King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia;
| |
Collapse
|
107
|
Brennan MÁ, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909125. [PMID: 32952493 PMCID: PMC7494127 DOI: 10.1002/adfm.201909125] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Indexed: 05/05/2023]
Abstract
The therapeutic benefits of mesenchymal stromal cell (MSC) transplantation have been attributed to their secreted factors, including extracellular vesicles (EVs) and soluble factors. The potential of employing the MSC secretome as an alternative acellular approach to cell therapy is being investigated in various tissue injury indications, but EVs administered via bolus injections are rapidly sequestered and cleared. However, biomaterials offer delivery platforms to enhance EV retention rates and healing efficacy. In this review, we highlight the mechanisms underpinning the therapeutic effects of MSC-EVs and soluble factors as effectors of immunomodulation and tissue regeneration, conferred primarily via their nucleic acid and protein contents. We discuss how manipulating the cell culture microenvironment or genetic modification of MSCs can further augment the potency of their secretions. The most recent advances in the development of EV-functionalized biomaterials that mediate enhanced angiogenesis and cell survival, while attenuating inflammation and fibrosis, are presented. Finally, some technical challenges to be considered for the clinical translation of biomaterials carrying MSC-secreted bioactive cargo are discussed.
Collapse
Affiliation(s)
- Meadhbh Á Brennan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Pierre Layrolle
- INSERM, UMR 1238, PHY-OS, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
108
|
Steens J, Unger K, Klar L, Neureiter A, Wieber K, Hess J, Jakob HG, Klump H, Klein D. Direct conversion of human fibroblasts into therapeutically active vascular wall-typical mesenchymal stem cells. Cell Mol Life Sci 2020; 77:3401-3422. [PMID: 31712992 PMCID: PMC7426315 DOI: 10.1007/s00018-019-03358-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
Cell-based therapies using adult stem cells are promising options for the treatment of a number of diseases including autoimmune and cardiovascular disorders. Among these, vascular wall-derived mesenchymal stem cells (VW-MSCs) might be particularly well suited for the protection and curative treatment of vascular damage because of their tissue-specific action. Here we report a novel method for the direct conversion of human skin fibroblasts towards MSCs using a VW-MSC-specific gene code (HOXB7, HOXC6 and HOXC8) that directs cell fate conversion bypassing pluripotency. This direct programming approach using either a self-inactivating (SIN) lentiviral vector expressing the VW-MSC-specific HOX-code or a tetracycline-controlled Tet-On system for doxycycline-inducible gene expressions of HOXB7, HOXC6 and HOXC8 successfully mediated the generation of VW-typical MSCs with classical MSC characteristics in vitro and in vivo. The induced VW-MSCs (iVW-MSCs) fulfilled all criteria of MSCs as defined by the International Society for Cellular Therapy (ISCT). In terms of multipotency and clonogenicity, which are important specific properties to discriminate MSCs from fibroblasts, iVW-MSCs behaved like primary ex vivo isolated VW-MSCs and shared similar molecular and DNA methylation signatures. With respect to their therapeutic potential, these cells suppressed lymphocyte proliferation in vitro, and protected mice against vascular damage in a mouse model of radiation-induced pneumopathy in vivo, as well as ex vivo cultured human lung tissue. The feasibility to obtain patient-specific VW-MSCs from fibroblasts in large amounts by a direct conversion into induced VW-MSCs could potentially open avenues towards novel, MSC-based therapies.
Collapse
Affiliation(s)
- Jennifer Steens
- Institute for Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, Ger-45122, Essen, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics and Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lea Klar
- Institute for Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, Ger-45122, Essen, Germany
| | - Anika Neureiter
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karolin Wieber
- Institute for Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, Ger-45122, Essen, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics and Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Heinz G Jakob
- Department of Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University Duisburg-Essen, Essen, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, Ger-45122, Essen, Germany.
| |
Collapse
|
109
|
Zhang K, Chen X, Li H, Feng G, Nie Y, Wei Y, Li N, Han Z, Han ZC, Kong D, Guo Z, Zhao Q, Li Z. A nitric oxide-releasing hydrogel for enhancing the therapeutic effects of mesenchymal stem cell therapy for hindlimb ischemia. Acta Biomater 2020; 113:289-304. [PMID: 32663662 DOI: 10.1016/j.actbio.2020.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Therapeutic angiogenesis with mesenchymal stem cells (MSCs) is promising for the clinical treatment of peripheral artery disease (PAD). However, the heterogeneous proangiogenic nature of MSCs is a key challenge in developing more effective treatments with MSCs for therapeutic angiogenesis purposes. Here, we propose to enhance the therapeutic function of human placenta-derived MSCs (hP-MSCs) in hindlimb ischemia therapy by using nitric oxide (NO)-releasing chitosan hydrogel (CS-NO). Our data showed that the co-transplantation of CS-NO hydrogel with hP-MSCs remarkably improved the grafting of hP-MSCs and ameliorated the functional recovery of ischemic hindlimbs. Moreover, we found that the neovascularization of damaged hindlimbs was significantly increased after co-transplanting CS-NO hydrogel and hP-MSCs, as confirmed by bioluminescence imaging (BLI). Further analysis revealed an endothelial-like status transformation of hP-MSCs in the presence of NO, which was identified as a potential mechanism contributing to the enhanced endothelium-protective and proangiogenic capacities of hP-MSCs that promote angiogenesis in mouse models of hindlimb ischemia. In conclusion, this study provides a promising approach for using NO hydrogel to improve the proangiogenic potency of MSCs in ischemic diseases, and the strategy used here facilitates the development of controlled-release scaffolds for enhancing the therapeutic efficiency of MSCs in angiogenic therapy. STATEMENT OF SIGNIFICANCE: The heterogeneous proangiogenic nature of mesenchymal stem cells (MSCs) is a key challenge in developing more effective treatments with MSCs for therapeutic angiogenesis purposes. In this study, we investigated whether nitric oxide (NO)-releasing chitosan hydrogel (CS-NO) could improve the proangiogenic potency of MSCs in ischemic diseases. Our results revealed an endothelial-like status transformation of human placenta-derived MSCs (hP-MSCs) in the presence of NO, which was identified as a potential mechanism contributing to the enhanced endothelium-protective and proangiogenic capacities of hP-MSCs that promote angiogenesis in mouse models of hindlimb ischemia. The strategy for enhancing the pro-angiogenic activity of MSCs with biomaterials provides a practical idea for overcoming the challenges associated with the clinical application of MSCs in therapeutic angiogenesis.
Collapse
Affiliation(s)
- Kaiyue Zhang
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life Sciences, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoniao Chen
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Huifang Li
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, China
| | - Guowei Feng
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, China
| | - Yan Nie
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, China
| | - Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life Sciences, 94 Weijin Road, Tianjin 300071, China
| | - Nana Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan 453003, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China; Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China; Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China; Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China; Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life Sciences, 94 Weijin Road, Tianjin 300071, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan 453003, China.
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life Sciences, 94 Weijin Road, Tianjin 300071, China.
| | - Zongjin Li
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life Sciences, 94 Weijin Road, Tianjin 300071, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan 453003, China.
| |
Collapse
|
110
|
Zhang K, Chen S, Sun H, Wang L, Li H, Zhao J, Zhang C, Li N, Guo Z, Han Z, Han ZC, Zheng G, Chen X, Li Z. In vivo two-photon microscopy reveals the contribution of Sox9 + cell to kidney regeneration in a mouse model with extracellular vesicle treatment. J Biol Chem 2020; 295:12203-12213. [PMID: 32641493 PMCID: PMC7443503 DOI: 10.1074/jbc.ra120.012732] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/02/2020] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been shown to stimulate regeneration in the treatment of kidney injury. Renal regeneration is also thought to be stimulated by the activation of Sox9+ cells. However, whether and how the activation mechanisms underlying EV treatment and Sox9+ cell-dependent regeneration intersect is unclear. We reasoned that a high-resolution imaging platform in living animals could help to untangle this system. To test this idea, we first applied EVs derived from human placenta-derived MSCs (hP-MSCs) to a Sox9-CreERT2; R26mTmG transgenic mouse model of acute kidney injury (AKI). Then, we developed an abdominal imaging window in the mouse and tracked the Sox9+ cells in the inducible Sox9-Cre transgenic mice via in vivo lineage tracing with two-photon intravital microscopy. Our results demonstrated that EVs can travel to the injured kidneys post intravenous injection as visualized by Gaussia luciferase imaging and markedly increase the activation of Sox9+ cells. Moreover, the two-photon living imaging of lineage-labeled Sox9+ cells showed that the EVs promoted the expansion of Sox9+ cells in kidneys post AKI. Histological staining results confirmed that the descendants of Sox9+ cells contributed to nephric tubule regeneration which significantly ameliorated the renal function after AKI. In summary, intravital lineage tracing with two-photon microscopy through an embedded abdominal imaging window provides a practical strategy to investigate the beneficial functions and to clarify the mechanisms of regenerative therapies in AKI.
Collapse
Affiliation(s)
- Kaiyue Zhang
- Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, the College of Life Sciences, Nankai University, Tianjin, China
| | - Shang Chen
- Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, the College of Life Sciences, Nankai University, Tianjin, China
| | - Huimin Sun
- Nankai University School of Medicine, Tianjin, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huifang Li
- Nankai University School of Medicine, Tianjin, China
| | - Jinglei Zhao
- Nankai University School of Medicine, Tianjin, China
| | - Chuyue Zhang
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Nana Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China; Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China; Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China; Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiangmei Chen
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, the College of Life Sciences, Nankai University, Tianjin, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
111
|
Yu M, Liu W, Li J, Lu J, Lu H, Jia W, Liu F. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Res Ther 2020; 11:350. [PMID: 32787917 PMCID: PMC7425015 DOI: 10.1186/s13287-020-01824-2] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/20/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Mesenchymal stem cell (MSC)-derived exosomes emerge as promising candidates for treating delayed wound healing in diabetes due to the promotion of angiogenesis. Preconditioned MSC with chemical or biological factors could possibly enhance the biological activities of MSC-derived exosomes. The purpose of this research focused on whether exosomes derived from the bone marrow MSC (BMSC) pretreated with atorvastatin (ATV), could exhibit better pro-angiogenic ability in diabetic wound healing or not and its underlying molecular mechanism. Methods We isolated exosomes from non-pretreated BMSC (Exos) and ATV pretreated BMSC (ATV-Exos) and evaluated their characterization by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and Western blotting. In vivo, we made full-thickness skin defects in streptozotocin (STZ)-induced diabetic rats and the defects received multiple-point injection with PBS, Exos, or ATV-Exos. Two weeks later, histological analysis was conducted to evaluate the impact of different treatments on wound healing and the neovascularization was measured by micro-CT. In vitro, cell proliferation, migration, tube formation, and vascular endothelial growth factor (VEGF) secretion were measured in human umbilical vein endothelial cells (HUVEC). The role of miRNAs and AKT/eNOS signaling pathway in the promoted angiogenesis of ATV-Exos were assessed with their inhibitors. Results No significant difference in morphology, structure, and concentration was observed between ATV-Exos and Exos. In STZ-induced diabetic rats, ATV-Exos exhibited excellent abilities in facilitating the wound regeneration by promoting the formation of blood vessels compared with Exos without influencing liver and kidney function. Meanwhile, ATV-Exos promoted the proliferation, migration, tube formation, and VEGF level of endothelial cells in vitro. And AKT/eNOS pathway was activated by ATV-Exos and the pro-angiogenic effects of ATV-Exo were attenuated after the pathway being blocked. MiR-221-3p was upregulated by ATV-Exos stimulation, and miR-221-3p inhibitor suppressed the pro-angiogenesis effect of ATV-Exos. Conclusions Exosomes originated from ATV-pretreated MSCs might serve as a potential strategy for the treatment of diabetic skin defects through enhancing the biological function of endothelial cells via AKT/eNOS pathway by upregulating the miR-221-3p.
Collapse
Affiliation(s)
- Muyu Yu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wei Liu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Junxian Li
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Junxi Lu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Huijuan Lu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
112
|
Duan L, Huang H, Zhao X, Zhou M, Chen S, Wang C, Han Z, Han ZC, Guo Z, Li Z, Cao X. Extracellular vesicles derived from human placental mesenchymal stem cells alleviate experimental colitis in mice by inhibiting inflammation and oxidative stress. Int J Mol Med 2020; 46:1551-1561. [PMID: 32945344 PMCID: PMC7447323 DOI: 10.3892/ijmm.2020.4679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent cells that can be applied to the treatment of immune disorders, including inflammatory bowel disease (IBD). The therapeutic effects of MSCs have been mostly attributed to the secretion of soluble factors with paracrine actions, such as extracellular vesicles (EVs), which may play a relevant role in the repair of damaged tissues. In the present study, a mouse model of colitis was induced with the use of trinitrobenzene sulfonic acid (TNBS). EVs derived from human placental mesenchymal stem cells (hP‑MSCs) were used for the treatment of colitis by in situ injection. Clinical scores were applied to verify the therapeutic effects of EVs on mice with colitis. Inflammation in the colon was evaluated by measuring the levels of various inflammatory cytokines. The content of reactive oxygen species (ROS) was detected by the use of molecular imaging methods for real‑time tracking and the therapeutic effects of EVs on mucosal healing in mice with colitis were evaluated. The results revealed that the injection of EVs regulated the balance of pro‑inflammatory and anti‑inflammatory cytokines in colon tissue. Treatment with EVs also suppressed oxidative stress by decreasing the activity of myeloperoxidase (MPO) and ROS. Histological analysis further confirmed that the EVs significantly promoted mucosal healing, as reflected by the promotion of the proliferation of colonic epithelial cells and the maintenance of tight junctions. Taken together, the findings of the present study demonstrated that EVs derived from hP‑MSCs alleviated TNBS‑induced colitis by inhibiting inflammation and oxidative stress. These findings may provide a novel theoretical basis for the EV‑based treatment of IBD.
Collapse
Affiliation(s)
- Liyun Duan
- Department of Hepato-Gastroenterology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300071, P.R. China
| | - Haoyan Huang
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Xiaotong Zhao
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Manqian Zhou
- Department of Radiation Oncology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Shang Chen
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Chen Wang
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Zhibo Han
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health and Biotech Co., Beijing 100176, P.R. China
| | - Zhong-Chao Han
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health and Biotech Co., Beijing 100176, P.R. China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Xiaocang Cao
- Department of Hepato-Gastroenterology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300071, P.R. China
| |
Collapse
|
113
|
Xing X, Han S, Li Z, Li Z. Emerging role of exosomes in craniofacial and dental applications. Theranostics 2020; 10:8648-8664. [PMID: 32754269 PMCID: PMC7392016 DOI: 10.7150/thno.48291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes, a specific subgroup of extracellular vesicles that are secreted by cells, have been recognized as important mediators of intercellular communication. They participate in a diverse range of physiological and pathological processes. Given the capability of exosomes to carry molecular cargos and transfer bioactive components, exosome-based disease diagnosis and therapeutics have been extensively studied over the past few decades. Herein, we highlight the emerging applications of exosomes as biomarkers and therapeutic agents in the craniofacial and dental field. Moreover, we discuss the current challenges and future perspectives of exosomes in clinical applications.
Collapse
Affiliation(s)
| | | | - Zhi Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
114
|
miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury. Stem Cell Res Ther 2020; 11:260. [PMID: 32600449 PMCID: PMC7322840 DOI: 10.1186/s13287-020-01761-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Backgrounds/aims Mesenchymal stromal cell-derived exosomes (MSC-EXs) could exert protective effects on recipient cells by transferring the contained microRNAs (miRs), and miR-132-3p is one of angiogenic miRs. However, whether the combination of MSC-EXs and miR-132-3p has better effects in ischemic cerebrovascular disease remains unknown. Methods Mouse MSCs transfected with scrambler control or miR-132-3p mimics were used to generate MSC-EXs and miR-132-3p-overexpressed MSC-EXs (MSC-EXsmiR-132-3p). The effects of EXs on hypoxia/reoxygenation (H/R)-injured ECs in ROS generation, apoptosis, and barrier function were analyzed. The levels of RASA1, Ras, phosphorylations of PI3K, Akt and endothelial nitric oxide synthesis (eNOS), and tight junction proteins (Claudin-5 and ZO-1) were measured. Ras and PI3K inhibitors were used for pathway analysis. In transient middle cerebral artery occlusion (tMCAO) mouse model, the effects of MSC-EXs on the cerebral vascular ROS production and apoptosis, cerebral vascular density (cMVD), Evans blue extravasation, brain water content, neurological deficit score (NDS), and infarct volume were determined. Results MSC-EXs could deliver their carried miR-132-3p into target ECs, which functionally downregulated the target protein RASA1, while upregulated the expression of Ras and the downstream PI3K phosphorylation. Compared to MSC-EXs, MSC-EXsmiR-132-3p were more effective in decreasing ROS production, apoptosis, and tight junction disruption in H/R-injured ECs. These effects were associated with increased levels of phosphorylated Akt and eNOS, which could be abolished by PI3K inhibitor (LY294002) or Ras inhibitor (NSC 23766). In the tMCAO mouse model, the infusion of MSC-EXsmiR-132-3p was more effective than MSC-EXs in reducing cerebral vascular ROS production, BBB dysfunction, and brain injury. Conclusion Our results suggest that miR-132-3p promotes the beneficial effects of MSC-EXs on brain ischemic injury through protecting cerebral EC functions.
Collapse
|
115
|
Cao X, Duan L, Hou H, Liu Y, Chen S, Zhang S, Liu Y, Wang C, Qi X, Liu N, Han Z, Zhang D, Han ZC, Guo Z, Zhao Q, Li Z. IGF-1C hydrogel improves the therapeutic effects of MSCs on colitis in mice through PGE 2-mediated M2 macrophage polarization. Am J Cancer Res 2020; 10:7697-7709. [PMID: 32685014 PMCID: PMC7359093 DOI: 10.7150/thno.45434] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Mesenchymal stem cell (MSC)-based therapies hold great promise for the treatment of inflammatory bowel disease (IBD). In order to optimize and maximize the therapeutic benefits of MSCs, we investigated whether cotransplantation of a chitosan (CS)-based injectable hydrogel with immobilized IGF-1 C domain peptide (CS-IGF-1C) and human placenta-derived MSCs (hP-MSCs) could ameliorate colitis in mice. Methods: IGF-1C hydrogel was generated by immobilizing IGF-1C to CS hydrogel. Colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice. We initially applied hP-MSCs and CS-IGF-1C hydrogel for the treatment of colitis by in situ injection, and molecular imaging methods were used for real-time imaging of reactive oxygen species (ROS) and tracking of transplanted hP-MSCs by bioluminescence imaging (BLI). Furthermore, the effects of CS-IGF-1C hydrogel on prostaglandin E2 (PGE2) secretion of hP-MSCs and polarization of M2 macrophages were investigated as well. Results: The CS-IGF-1C hydrogel significantly increased hP-MSC proliferation and promoted the production of PGE2 from hP-MSCs in vitro. Moreover, in vivo studies indicated that the CS-IGF-1C hydrogel promoted hP-MSC survival as visualized by BLI and markedly alleviated mouse colitis, which was possibly mediated by hP-MSC production of PGE2 and interleukin-10 (IL-10) production by polarized M2 macrophages. Conclusions: The CS-IGF-1C hydrogel improved the engraftment of transplanted hP-MSCs, ameliorated inflammatory responses, and further promoted the functional and structural recovery of colitis through PGE2-mediated M2 macrophage polarization. Molecular imaging approaches and therapeutic strategies for hydrogel application provide a versatile platform for exploring the promising therapeutic potential of MSCs in the treatment of IBD.
Collapse
|
116
|
Gangadaran P, Rajendran RL, Oh JM, Hong CM, Jeong SY, Lee SW, Lee J, Ahn BC. Extracellular vesicles derived from macrophage promote angiogenesis In vitro and accelerate new vasculature formation In vivo. Exp Cell Res 2020; 394:112146. [PMID: 32561287 DOI: 10.1016/j.yexcr.2020.112146] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ischemia is the partial or complete blockage of blood supply to tissues. Extracellular vesicles (EVs) are emerging as a therapeutic tool for ischemic diseases. Most EV-based ischemia therapies are based on various stem cells. Here, we propose an alternative cell source for the isolation of pro-angiogenic EVs. METHODS EVs were isolated from a mouse macrophage cell line (Raw 264.7). The characteristic features of the macrophage-derived EVs (MAC-EVs) were assessed using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting (WB) analysis. WB and qRT-PCR were performed to identify the pro-angiogenic VEGF and Wnt3a proteins and microRNAs (miR-210, miR-126, and miR-130a) in the MAC-EVs. In vitro and in vivo Matrigel plug assays were performed to investigate the capacity of the MAC-EVs for tube (blood vessel-like) formation and new blood vessel formation and assessed by histology. RESULTS The MAC-EVs was positive for ALIX and negative for calnexin, with a round shape and an average size of 189 ± 65.1 nm. WB and qRT-PCR results revealed that VEGF, Wnt3a and miR-130a were more abundant in the MAC-EVs than cells. MAC-EVs treatment resulted in increased endothelial cellular proliferation, migration, and tube formation in vitro. In vivo assay results revealed that MAC-EVs increased the formation of new and larger blood vessels in the Matrigel plug of mice compared to the formation in the control group. CONCLUSION Our results suggest that MAC-EVs have the potential to induce angiogenesis in vitro and in vivo, could serve as a pro-angiogenic alternative for ischemic diseases.
Collapse
Affiliation(s)
- Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea.
| |
Collapse
|
117
|
Ran P, Chen W, Wei J, Qiu B, Chen M, Xie S, Li X. Macrophage Spheroids with Chronological Phenotype Shifting To Promote Therapeutic Angiogenesis in Critical Limb Ischemia. ACS APPLIED BIO MATERIALS 2020; 3:3707-3717. [DOI: 10.1021/acsabm.0c00333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Weijia Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Bo Qiu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Maohua Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Songzhi Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
118
|
Han G, Zheng Z, Pan Z, Lin Y, Gan S, Jiao Y, Li H, Zhou C, Ding S, Li L. Sulfated chitosan coated polylactide membrane enhanced osteogenic and vascularization differentiation in MC3T3-E1s and HUVECs co-cultures system. Carbohydr Polym 2020; 245:116522. [PMID: 32718626 DOI: 10.1016/j.carbpol.2020.116522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/22/2022]
Abstract
This study aimed to compare the effects of the two type chitosan derivatives, sulfated chitosan (SCS) and phosphorylated chitosan (PCS), coated on poly(d,l-lactide) (PDLLA) membrane via polydopamine, respectively, on vascularization and osteogenesis in vitro. Mouse preosteoblast cells (MC3T3-E1s) and human umbilical vein endothelial cells (HUVECs) were used as co-cultures system. The effects of two type membranes on calcium deposition, alkaline phosphatase (ALP) activity, vascularization related factors nitric oxide (NO) and angiogenic growth factor vascular endothelial growth factor (VEGF) were assessed. The changes of osteogenic and angiogenic related gene, and protein expression were evaluated too. In fact, SCS modified PDLLA membrane had the highest related gene and protein expression than other PDLLA membranes. Our results demonstrated that the SCS maybe a promising matrix for bone regeneration by co-cultures of ECs and OCs than PCS.
Collapse
Affiliation(s)
- Guijuan Han
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Zexiang Zheng
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Zhicheng Pan
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Yucheng Lin
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Shuchun Gan
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, PR China; Engineering Research Centre of Artificial Organs & Materials, Jinan University, Guangzhou 510632, PR China
| | - Hong Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, PR China; Engineering Research Centre of Artificial Organs & Materials, Jinan University, Guangzhou 510632, PR China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, PR China; Engineering Research Centre of Artificial Organs & Materials, Jinan University, Guangzhou 510632, PR China
| | - Shan Ding
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, PR China; Engineering Research Centre of Artificial Organs & Materials, Jinan University, Guangzhou 510632, PR China.
| | - Lihua Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, PR China; Engineering Research Centre of Artificial Organs & Materials, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
119
|
The Proosteogenic and Proangiogenic Effects of Small Extracellular Vesicles Derived from Bone Marrow Mesenchymal Stem Cells Are Attenuated in Steroid-Induced Osteonecrosis of the Femoral Head. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4176926. [PMID: 32461986 PMCID: PMC7229539 DOI: 10.1155/2020/4176926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022]
Abstract
Small extracellular vesicles (sEVs) derived from bone marrow mesenchymal stem cells (BMMSCs) from individuals with steroid-induced osteonecrosis of the femoral head (ONFH) have not been studied. The objective of the present study was to compare the proosteogenic and proangiogenic effects of sEVs derived from BMMSCs from rats with steroid-induced ONFH (oBMMSCs-sEVs) and sEVs derived from BMMSCs from normal rats (nBMMSCs-sEVs). BMMSCs were isolated from steroid-induced ONFH rats and healthy rats. sEVs were isolated and characterized by Western blotting analysis of exosomal surface biomarkers and by transmission electron microscopy. The impacts of nBMMSCs-sEVs and oBMMSCs-sEVs on the proliferation and osteogenic differentiation of BMMSCs were determined via cell proliferation assay, alizarin red staining, and alkaline phosphatase activity assay. Enzyme-linked immunosorbent assay and tube formation assay were conducted to investigate the effect of nBMMSCs-sEVs and oBMMSCs-sEVs on the angiogenic potential of human umbilical vein endothelial cells (HUVECs). The expression of relevant genes was detected by quantitative real-time polymerase chain reaction analysis, and the expression of β-catenin was detected by immunofluorescence. Both nBMMSCs-sEVs and oBMMSCs-sEVs promoted proliferation, osteogenic differentiation, and β-catenin expression of BMMSCs and enhanced angiogenesis of HUVECs. However, compared with nBMMSCs-sEVs, oBMMSCs-sEVs exhibited attenuated effects. Our findings indicated that the proosteogenic and proangiogenic effects of sEVs were partially attenuated in steroid-induced ONFH. Therefore, this study might offer guidance for the selection of source cells for sEV therapy in the future.
Collapse
|
120
|
IGF-1C domain-modified chitosan hydrogel accelerates cutaneous wound healing by promoting angiogenesis. Future Med Chem 2020; 12:1239-1251. [PMID: 32351127 DOI: 10.4155/fmc-2020-0071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Complete regeneration after skin injury remains a critical clinical challenge. Hydrogels, modified with growth factors or mimicking peptides, have been applied for functional tissue regeneration by increasing the bioactivity of engineered matrices. Methodology & results: We synthesized an injectable biological hydrogel, C domain of IGF-1 (IGF-1C)-modified chitosan (CS-IGF-1C) hydrogel. Mouse model of cutaneous wound healing was established to investigate whether this hydrogel could promote wound healing. Our results demonstrated that CS-IGF-1C hydrogel exhibited superior proangiogenic effects, resulting in accelerated wound closure and improved extracellular matrix remodeling. Bioluminescence imaging and histology analysis confirmed the proangiogenic role of CS-IGF-1C hydrogel. Conclusion: CS-IGF-1C hydrogel could accelerate cutaneous wound healing by stimulating angiogenesis.
Collapse
|
121
|
Bian X, Li B, Yang J, Ma K, Sun M, Zhang C, Fu X. Regenerative and protective effects of dMSC-sEVs on high-glucose-induced senescent fibroblasts by suppressing RAGE pathway and activating Smad pathway. Stem Cell Res Ther 2020; 11:166. [PMID: 32349787 PMCID: PMC7191792 DOI: 10.1186/s13287-020-01681-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Fibroblasts are crucial for supporting normal wound healing. However, the functional state of these cells is impaired in diabetics because of a high-glucose (HG) microenvironment. Small extracellular vesicles (sEVs) have emerged as a promising tool for skin wound treatment. The aim of this study was to investigate the effects of sEVs derived from human decidua-derived mesenchymal stem cells (dMSC-sEVs) on HG-induced human dermal fibroblast (HDF) senescence and diabetic wound healing and explore the underlying mechanism. Methods We first created a HDF senescent model induced by HG in vitro. dMSC-conditioned medium (dMSC-CM) and dMSC-sEVs were collected and applied to treat the HG-induced HDFs. We then examined the proliferation, migration, differentiation, and senescence of these fibroblasts. At the same time, the expressions of RAGE, p21 RAS, Smad2/3, and pSmad2/3 were also analyzed. Furthermore, pSmad2/3 inhibitor (SB431542) was used to block the expression of pSmad2/3 to determine whether dMSC-sEVs improved HDF senescence by activating Smad pathway. Finally, we assessed the effect of dMSC-sEVs on diabetic wound healing. Results The HG microenvironment impaired the proliferation, migration, and differentiation abilities of the HDFs and accelerated their senescence. dMSC-CM containing sEVs improved the proliferation and migration abilities of the HG-induced fibroblasts. dMSC-sEVs internalized by HG-induced HDFs not only significantly promoted HDF proliferation, migration, and differentiation, but also improved the senescent state. Furthermore, dMSC-sEVs inhibited the expression of RAGE and stimulated the activation of Smad signaling pathway in these cells. However, SB431542 (pSmad2/3 inhibitor) could partially alleviate the anti-senescent effects of dMSC-sEVs on HG-induced HDFs. Moreover, the local application of dMSC-sEVs accelerated collagen deposition and led to enhanced wound healing in diabetic mice. The detection of PCNA, CXCR4, α-SMA, and p21 showed that dMSC-sEVs could enhance HDF proliferation, migration, and differentiation abilities and improve HDF senescent state in vivo. Conclusion dMSC-sEVs have regenerative and protective effects on HG-induced senescent fibroblasts by suppressing RAGE pathway and activating Smad pathway, thereby accelerating diabetic wound healing. This indicates that dMSC-sEVs may be a promising candidate for diabetic wound treatment.
Collapse
Affiliation(s)
- Xiaowei Bian
- Tianjin Medical University, No. 22, Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China.,Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, People's Republic of China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, People's Republic of China.,Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, People's Republic of China
| | - Bingmin Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, People's Republic of China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, People's Republic of China.,Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, People's Republic of China
| | - Jie Yang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, People's Republic of China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, People's Republic of China.,Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, People's Republic of China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, People's Republic of China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, People's Republic of China.,Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, People's Republic of China
| | - Mengli Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, People's Republic of China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, People's Republic of China.,Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, People's Republic of China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, People's Republic of China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, People's Republic of China. .,Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, People's Republic of China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, People's Republic of China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, People's Republic of China. .,Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, People's Republic of China.
| |
Collapse
|
122
|
Liu Y, Cui J, Wang H, Hezam K, Zhao X, Huang H, Chen S, Han Z, Han ZC, Guo Z, Li Z. Enhanced therapeutic effects of MSC-derived extracellular vesicles with an injectable collagen matrix for experimental acute kidney injury treatment. Stem Cell Res Ther 2020; 11:161. [PMID: 32321594 PMCID: PMC7178991 DOI: 10.1186/s13287-020-01668-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been shown to have therapeutic potential for ischemic diseases and are considered an alternative to cell therapy. However, the low retention and poor stability of EVs post-transplantation in vivo remain obstacle prior to the clinical application of EVs. METHODS This study was designed to investigate whether collagen matrix could increase the retention and stability of EVs and further improve the therapeutic effects in murine acute kidney injury (AKI) model. EVs were isolated from human placental MSCs (hP-MSC-EVs) and encapsulated in a collagen matrix. Then, we investigated whether collagen matrix can prolong the retention of EVs in vivo, further enhancing the therapeutic efficiency of EVs in AKI. RESULTS Our results indicated that collagen matrix could effectively encapsulate EVs, significantly increase the stability of EVs, and promote the sustained release of EVs. Collagen matrix has improved the retention of EVs in the AKI model, which was proved by Gaussia luciferase (Gluc) imaging. The application of collagen matrix remarkably facilitated the proliferation of renal tubular epithelial cells in AKI compared with EVs alone. Moreover, collagen matrix could further augment the therapeutic effects of hP-MSC-EVs as revealed by angiogenesis, fibrosis and apoptosis, and functional analysis. Finally, we found that EVs play a therapeutic role by inhibiting endoplasmic reticulum (ER) stress. CONCLUSIONS Collagen matrix markedly enhanced the retention of EVs and further augmented the therapeutic effects of EVs for AKI. This strategy for improving the efficacy of EVs therapy provides a new direction for cell-free therapy.
Collapse
Affiliation(s)
- Yue Liu
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life Science, Tianjin, 300071, China
| | - Jian Cui
- Department of Intensive Care Unit (ICU), People's Hospital of Rizhao, Rizhao, 276826, Shandong, China
| | - Hongfen Wang
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 102218, China
| | - Kamal Hezam
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiaotong Zhao
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Haoyan Huang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shang Chen
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, 334001, Jiangxi, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, 334001, Jiangxi, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China.
| | - Zongjin Li
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China. .,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life Science, Tianjin, 300071, China. .,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 102218, China. .,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China.
| |
Collapse
|
123
|
Jeske R, Bejoy J, Marzano M, Li Y. Human Pluripotent Stem Cell-Derived Extracellular Vesicles: Characteristics and Applications. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:129-144. [PMID: 31847715 PMCID: PMC7187972 DOI: 10.1089/ten.teb.2019.0252] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are found to play an important role in various biological processes and maintaining tissue homeostasis. Because of the protective effects, stem cell-derived EVs can be used to reduce oxidative stress and apoptosis in the recipient cells. In addition, EVs/exosomes have been used as directional communication tools between stem cells and parenchymal cells, giving them the ability to serve as biomarkers. Likewise, altered EVs/exosomes can be utilized for drug delivery by loading with proteins, small interfering RNAs, and viral vectors, in particular, because EVs/exosomes are able to cross the blood-brain barrier. In this review article, the properties of human induced pluripotent stem cell (iPSC)-derived EVs are discussed. The biogenesis, that is, how EVs originate in the endosomal compartment or from the cell layer of microvesicles, EV composition, the available methods of purification, and characterizations of EVs/exosomes are summarized. In particular, EVs/exosomes derived from iPSCs of different lineage specifications and the applications of these stem cell-derived exosomes in neurological diseases are discussed. Impact statement In this review, we summarized the work related to extracellular vesicles (EVs) derived from human pluripotent stem cells (hPSCs). In particular, EVs/exosomes derived from hPSCs of different lineage specifications and the applications of these stem cell-derived exosomes in neurological diseases are discussed. The results highlight the important role of cell-cell interactions in neural cellular phenotype and neurodegeneration. The findings reported in this article are significant for pluripotent stem cell-derived cell-free products toward applications in stem cell-based therapies.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| | - Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| | - Mark Marzano
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| |
Collapse
|
124
|
The dual character of exosomes in osteoarthritis: Antagonists and therapeutic agents. Acta Biomater 2020; 105:15-25. [PMID: 32006653 DOI: 10.1016/j.actbio.2020.01.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
Exosomes have gained increasing attention as they participate in cell cross-talk in pathological environments and are functional paracrine factors of therapeutic stem cells. Osteoarthritis (OA) is a common age-related degenerative joint disease, leading to a debilitating lifestyle for sufferers. However, currently no drugs on the market promote cartilage repair, and the patients usually have to undergo arthroplasty in the late stage of OA. Although significant progress has been made in the development of stem cells for the treatment of OA and cartilage injury, problems like immune rejection remain. Recently, increasing evidence has demonstrated that exosomes from the joint microenvironment ("negative" exosomes) could play vital and complicated roles in the progression of OA. Moreover, exosomes from therapeutic cells ("therapeutic" exosomes) have also shown enormous potential for OA therapy/cartilage repair. Here, we first discuss the definition and biological background of exosomes. Then, we critically examine the roles of the "negative" exosomes in OA-affected joint. Then, we will cover the potential of the "therapeutic" exosomes for OA therapy/cartilage repair. Next, the recent progress of tissue engineering with exosomes, especially for OA therapy/cartilage repair, will also be discussed. Finally, the limitations and opportunities of exosome-based OA therapy will be outlined. STATEMENT OF SIGNIFICANCE: As natural extracellular vesicles, exosomes participate in the intercellular communication. On the basis of biological characteristics of exosomes, exosomes have their two sides for osteoarthritis (OA). On the one hand, exosomes in the OA microenvironment are involved in pathology of OA. On the other hand, exosomes from therapeutic cells have the potential as advanced strategies for OA therapy. In addition, the development of tissue engineering technology is beneficial to the exosome-based OA therapy. According to the latest research status, exosomes are of great significance and interest for the personalized and precision treatment of OA in the future, despite the limitations and challenges.
Collapse
|
125
|
Balbi C, Costa A, Barile L, Bollini S. Message in a Bottle: Upgrading Cardiac Repair into Rejuvenation. Cells 2020; 9:cells9030724. [PMID: 32183455 PMCID: PMC7140681 DOI: 10.3390/cells9030724] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ischaemic cardiac disease is associated with a loss of cardiomyocytes and an intrinsic lack of myocardial renewal. Recent work has shown that the heart retains limited cardiomyocyte proliferation, which remains inefficient when facing pathological conditions. While broadly active in the neonatal mammalian heart, this mechanism becomes quiescent soon after birth, suggesting loss of regenerative potential with maturation into adulthood. A key question is whether this temporary regenerative window can be enhanced via appropriate stimulation and further extended. Recently the search for novel therapeutic approaches for heart disease has centred on stem cell biology. The “paracrine effect” has been proposed as a promising strategy to boost endogenous reparative and regenerative mechanisms from within the cardiac tissue by exploiting the modulatory potential of soluble stem cell-secreted factors. As such, growing interest has been specifically addressed towards stem/progenitor cell-secreted extracellular vesicles (EVs), which can be easily isolated in vitro from cell-conditioned medium. This review will provide a comprehensive overview of the current paradigm on cardiac repair and regeneration, with a specific focus on the role and mechanism(s) of paracrine action of EVs from cardiac stromal progenitors as compared to exogenous stem cells in order to discuss the optimal choice for future therapy. In addition, the challenges to overcoming translational EV biology from bench to bedside for future cardiac regenerative medicine will be discussed.
Collapse
Affiliation(s)
- Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland;
| | - Ambra Costa
- Regenerative Medicine Laboratory, Dept. of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Correspondence: (L.B.); (S.B.)
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Dept. of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
- Correspondence: (L.B.); (S.B.)
| |
Collapse
|
126
|
Kang ML, Kim HS, You J, Choi YS, Kwon BJ, Park CH, Baek W, Kim MS, Lee YJ, Im GI, Yoon JK, Lee JB, Sung HJ. Hydrogel cross-linking-programmed release of nitric oxide regulates source-dependent angiogenic behaviors of human mesenchymal stem cell. SCIENCE ADVANCES 2020; 6:eaay5413. [PMID: 32133403 PMCID: PMC7043909 DOI: 10.1126/sciadv.aay5413] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/04/2019] [Indexed: 05/12/2023]
Abstract
Angiogenesis is stimulated by nitric oxide (NO) production in endothelial cells (ECs). Although proangiogenic actions of human mesenchymal stem cells (hMSCs) have been extensively studied, the mechanistic role of NO in this action remains obscure. Here, we used a gelatin hydrogel that releases NO upon crosslinking by a transglutaminase reaction ("NO gel"). Then, the source-specific behaviors of bone marrow versus adipose tissue-derived hMSCs (BMSCs versus ADSCs) were monitored in the NO gels. NO inhibition resulted in significant decreases in their angiogenic activities. The NO gel induced pericyte-like characteristics in BMSCs in contrast to EC differentiation in ADSCs, as evidenced by tube stabilization versus tube formation, 3D colocalization versus 2D coformation with EC tube networks, pericyte-like wound healing versus EC-like vasculogenesis in gel plugs, and pericyte versus EC marker production. These results provide previously unidentified insights into the effects of NO in regulating hMSC source-specific angiogenic mechanisms and their therapeutic applications.
Collapse
Affiliation(s)
- Mi-Lan Kang
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- TMD LAB Co., Ltd., Seoul 03722, Republic of Korea
| | - Hye-Seon Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin You
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young Sik Choi
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Byeong-Ju Kwon
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chan Hee Park
- Metareceptome Research Center, College of Pharmacy, Chung-Ang University, Seoul 06911, Republic of Korea
| | - Wooyeol Baek
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Min Sup Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yong Jae Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Gun-Il Im
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung Bok Lee
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Corresponding author.
| |
Collapse
|
127
|
Current Knowledge and Future Perspectives on Mesenchymal Stem Cell-Derived Exosomes as a New Therapeutic Agent. Int J Mol Sci 2020; 21:ijms21030727. [PMID: 31979113 PMCID: PMC7036914 DOI: 10.3390/ijms21030727] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are on the cusp of regenerative medicine due to their differentiation capacity, favorable culture conditions, ability to be manipulated in vitro, and strong immunomodulatory activity. Recent studies indicate that the pleiotropic effects of MSCs, especially their immunomodulatory potential, can be largely attributed to paracrine factors. Exosomes, vesicles that are 30-150 nanometers in diameter that function in cell-cell communication, are one of the key paracrine effectors. MSC-derived exosomes are enriched with therapeutic miRNAs, mRNAs, cytokines, lipids, and growth factors. Emerging evidences support the compelling possibility of using MSC-derived exosomes as a new form of therapy for treating several different kinds of disease such as heart, kidney, immune diseases, neural injuries, and neurodegenerative disease. This review provides a summary of current knowledge and discusses engineering of MSC-derived exosomes for their use in translational medicine.
Collapse
|
128
|
Midgley AC, Wei Y, Li Z, Kong D, Zhao Q. Nitric-Oxide-Releasing Biomaterial Regulation of the Stem Cell Microenvironment in Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1805818. [PMID: 31423672 DOI: 10.1002/adma.201805818] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 06/06/2019] [Indexed: 06/10/2023]
Abstract
Stem cell therapy has proven to be an attractive solution for the treatment of degenerative diseases or injury. However, poor cell engraftment and survival within injured tissues limits the successful use of stem cell therapy within the clinical setting. Nitric oxide (NO) is an important signaling molecule involved in various physiological processes. Emerging evidence supports NO's diverse roles in modulating stem cell behavior, including survival, migration, differentiation, and paracrine secretion of proregenerative factors. Thus, there has been a shift in research focus to concentrate efforts on the delivery of therapeutic concentration ranges of NO to the target tissue sites. Combinatory therapies utilizing biomaterials that control NO generation and support stem cell delivery can be holistic and synergistic approaches to significantly improve tissue regeneration. Here, the focus is on recent developments of various therapeutic platforms, engineered to both transport NO and to enhance stem-cell-mediated regeneration of damaged tissues. New and emerging revelations of how the stem cell microenvironment can be regulated by NO-releasing biomaterials are also highlighted.
Collapse
Affiliation(s)
- Adam C Midgley
- Rongxiang Xu Center for Regenerative Life Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zongjin Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- Rongxiang Xu Center for Regenerative Life Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
129
|
Yang L, Zhai Y, Hao Y, Zhu Z, Cheng G. The Regulatory Functionality of Exosomes Derived from hUMSCs in 3D Culture for Alzheimer's Disease Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906273. [PMID: 31840420 DOI: 10.1002/smll.201906273] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Reducing amyloid-β (Aβ) accumulation could be a potential therapeutic approach for Alzheimer's disease (AD). Particular functional biomolecules in exosomes vested by the microenvironment in which the original cells resided can be transferred to recipient cells to improve pathological conditions. However, there are few reports addressing whether exosomes derived from cells cultured on scaffolds with varying dimension can reduce Aβ deposition or ameliorate cognitive decline for AD therapy. Herein, both 3D graphene scaffold and 2D graphene film are used as the matrix for human umbilical cord mesenchymal stem cell culture, from which the supernatants are obtained to isolate exosomes. The levels of 195 kinds of miRNAs and proteins, including neprilysin, insulin-degrading enzyme and heat shock protein 70, in 3D-cultured exosomes (3D-Exo) are dramatically different from those obtained from 2D culture. Hence, 3D-Exo could up-regulate the expression of α-secretase and down-regulate the β-secretase to reduce Aβ production in both AD pathology cells and transgenic mice, through their special cargo. With rescuing Aβ pathology, 3D-Exo exerts enhanced therapeutic effects on ameliorating the memory and cognitive deficits in AD mice. These findings provide a novel clinical application for scaffold materials and functional exosomes derived from stem cells.
Collapse
Affiliation(s)
- Lingyan Yang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Yuanxin Zhai
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Zhanchi Zhu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guosheng Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
130
|
Wang B, Huang C, Chen L, Xu D, Zheng G, Zhou Y, Wang X, Zhang X. The Emerging Roles of the Gaseous Signaling Molecules NO, H2S, and CO in the Regulation of Stem Cells. ACS Biomater Sci Eng 2019; 6:798-812. [PMID: 33464852 DOI: 10.1021/acsbiomaterials.9b01681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lijie Chen
- Department of Surgical Oncology, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Daoliang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang, China
| |
Collapse
|
131
|
Hu X, Yi Y, Zhu Y, Wang Z, Wu S, Zhang J, Wang J, Nie J. [Effect of adipose-derived stem cell derived exosomes on angiogenesis after skin flap transplantation in rats]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:1560-1565. [PMID: 31823559 DOI: 10.7507/1002-1892.201904023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective To investigate the effect of adipose-derived stem cell derived exosomes (ADSC-Exos) on angiogenesis after skin flap transplantation in rats. Methods ADSCs were isolated and cultured by enzymatic digestion from voluntary donated adipose tissue of patients undergoing liposuction. The 3rd generation cells were observed under microscopy and identified by flow cytometry and oil red O staining at 14 days after induction of adipogenesis. After cells were identified as ADSCs, ADSC-Exos was extracted by density gradient centrifugation. And the morphology was observed by transmission electron microscopy, the surface marker proteins (CD63, TSG101) were detected by Western blot, and particle size distribution was measured by nanoparticle size tracking analyzer. Twenty male Sprague Dawley rats, weighing 250-300 g, were randomly divided into ADSC-Exos group and PBS group with 10 rats in each group. ADSC-Exos (ADSC-Exos group) and PBS (PBS group) were injected into the proximal, middle, and distal regions of the dorsal free flaps with an area of 9 cm×3 cm along the long axis in the two groups. The survival rate of the flap was measured on the 7th day, and then the flap tissue was harvested. The tissue morphology was observed by HE staining, and mean blood vessel density (MVD) was measured by CD31 immunohistochemical staining. Results ADSCs were identified by microscopy, flow cytometry, and adipogenic induction culture. ADSC-Exos was a round or elliptical membrane vesicle with clear edge and uniform size. It has high expression of CD63 and TSG101, and its size distribution was 30-200 nm, which was in accordance with the size range of Exos. The distal necrosis of the flaps in the ADSC-Exos group was milder than that in the PBS group. On the 7th day, the survival rate of the flaps in the ADSC-Exos group was 64.2%±11.5%, which was significantly higher than that in the PBS group (31.0%±6.6%; t=7.945, P=0.000); the skin appendages in the middle region of the flap in the ADSC-Exos group were more complete, the edema in the proximal region was lighter and the vasodilation was more extensive. MVD of the ADSC-Exos group was (103.3±27.0) /field, which was significantly higher than that of the PBS group [(45.3±16.2)/field; t=3.190, P=0.011]. Conclusion ADSC-Exos can improve the blood supply of skin flaps by promoting the formation of neovascularization after skin flap transplantation, thereby improve the survival rate of skin flaps in rats.
Collapse
Affiliation(s)
- Xuan Hu
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Yangyan Yi
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006,
| | - Yuanzheng Zhu
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Zhaohui Wang
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Shu Wu
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Jing Zhang
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Jiangwen Wang
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Jiaying Nie
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| |
Collapse
|
132
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles for Corneal Wound Repair. Stem Cells Int 2019; 2019:5738510. [PMID: 31885617 PMCID: PMC6925772 DOI: 10.1155/2019/5738510] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/14/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022] Open
Abstract
With the immunoregulation potential, mesenchymal stem cells (MSCs) have been used for tissue regeneration by relieving inflammation in the injured tissues. When this repair process is interfered by immune disorders or pathological angiogenesis, the delays in corneal epithelial wound healing can lead to a persistent epithelial defect. Stem cell-derived extracellular vesicles (EVs), which carry abundant bioactive molecules from stem cells, have provided an alternative to regeneration therapy. In this study, we aimed to investigate if EVs from human placenta-derived MSCs (hP-MSCs) could ameliorate alkali injury of the cornea in the mouse model. 33.33 μg/μL EVs in 10 μL PBS were applied to the cornea. Repeat application three times, and 100 μg EVs (in 30 μL PBS) in total were administrated per day for two weeks. Our results revealed that EVs from hP-MSCs had preferable functions including enhancing proliferation and anti-inflammation and suppressing apoptosis of corneal epithelial cells. Furthermore, hP-MSC-derived EVs ameliorated mouse corneal wound healing by inhibiting angiogenesis and inflammation. Taken together, our current data suggested that hP-MSC-derived EVs have the beneficial effects of corneal wound healing, which provide alternative cell-free therapy with great practical value.
Collapse
|
133
|
Patil M, Henderson J, Luong H, Annamalai D, Sreejit G, Krishnamurthy P. The Art of Intercellular Wireless Communications: Exosomes in Heart Disease and Therapy. Front Cell Dev Biol 2019; 7:315. [PMID: 31850349 PMCID: PMC6902075 DOI: 10.3389/fcell.2019.00315] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanoscale membrane-bound extracellular vesicles secreted by most eukaryotic cells in the body that facilitates intercellular communication. Exosomes carry several signaling biomolecules, including miRNA, proteins, enzymes, cell surface receptors, growth factors, cytokines and lipids that can modulate target cell biology and function. Due to these capabilities, exosomes have emerged as novel intercellular signaling mediators in both homeostasis and pathophysiological conditions. Recent studies document that exosomes (both circulating or released from heart tissue) have been actively involved in cardiac remodeling in response to stressors. Also, exosomes released from progenitor/stem cells have protective effects in heart diseases and shown to have regenerative potential in the heart. In this review we discuss- the critical role played by circulating exosomes released from various tissues and from cells within the heart in cardiac health; the gap in knowledge that needs to be addressed to promote future research; and exploitation of recent advances in exosome engineering to develop novel therapy.
Collapse
Affiliation(s)
- Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John Henderson
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hien Luong
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Divya Annamalai
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gopalkrishna Sreejit
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
134
|
Liang B, Liang JM, Ding JN, Xu J, Xu JG, Chai YM. Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway. Stem Cell Res Ther 2019; 10:335. [PMID: 31747933 PMCID: PMC6869275 DOI: 10.1186/s13287-019-1410-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/25/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Background Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidate agents for treating critical-sized bone defects; they promote angiogenesis and may be an alternative to cell therapy. In this study, we evaluated whether exosomes derived from bone marrow-derived MSCs (BMSCs) preconditioned with a low dose of dimethyloxaloylglycine (DMOG), DMOG-MSC-Exos, exert superior proangiogenic activity in bone regeneration and the underlying mechanisms involved. Methods To investigate the effects of these exosomes, scratch wound healing, cell proliferation, and tube formation assays were performed in human umbilical vein endothelial cells (HUVECs). To test the effects in vivo, a critical-sized calvarial defect rat model was established. Eight weeks after the procedure, histological/histomorphometrical analysis was performed to measure bone regeneration, and micro-computerized tomography was used to measure bone regeneration and neovascularization. Results DMOG-MSC-Exos activated the AKT/mTOR pathway to stimulate angiogenesis in HUVECs. This contributed to bone regeneration and angiogenesis in the critical-sized calvarial defect rat model in vivo. Conclusions Low doses of DMOG trigger exosomes to exert enhanced proangiogenic activity in cell-free therapeutic applications.
Collapse
Affiliation(s)
- Bo Liang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Jia-Ming Liang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Jia-Ning Ding
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Jian-Guang Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Yi-Min Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
135
|
Cobiella D, Gram D, Santoro D. Noninvasive evaluation of vascular endothelial growth factor-A (VEGF-A) protein concentrations in the stratum corneum and serum of healthy and atopic dogs. Vet Dermatol 2019; 31:102-105. [PMID: 31696573 DOI: 10.1111/vde.12798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is a cytokine involved primarily in angiogenesis. In human atopic dermatitis (AD), VEGF has been detected in the stratum corneum and blood. OBJECTIVE To evaluate VEGF-A expression in the serum and stratum corneum of healthy and atopic dogs, and its possible correlation with disease severity in atopic dogs. ANIMAL Fifteen atopic and 15 healthy, privately owned dogs. METHODS AND MATERIALS The severity of clinical signs associated with AD was evaluated with the Canine Atopic Dermatitis Extent and Severity Index (CADESI-04). For all dogs, a single blood sample was performed and serum collected. Tape stripping (15 times) was performed on the left periocular area (lesional skin). A commercially available canine-specific VEGF-A enzyme-linked immunosorbent assay was performed with all samples. RESULTS Vascular endothelial growth factor-A was undetectable in the serum. In the stratum corneum, there was no significant difference in VEGF-A concentrations between healthy (mean 89.4 ± 59.5 pg/ml) and atopic dogs (mean 100.3 ± 77.1pg/ml) (P = 0.71). There was no correlation between stratum corneum VEGF-A concentrations and CADESI-04 scores. CONCLUSIONS AND CLINICAL IMPORTANCE The role of VEGF in canine AD is unclear. Because of many variants, VEGF-C and VEGF-D or VEGF-A isotopes should be explored in the skin to better evaluate the role of VEGF in canine atopy. Full-thickness skin biopsy, molecular biology and histopathological investigation may be necessary to further assess cutaneous VEGF expression.
Collapse
Affiliation(s)
- Danielle Cobiella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| | - Dunbar Gram
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| |
Collapse
|
136
|
Park KS, Bandeira E, Shelke GV, Lässer C, Lötvall J. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2019; 10:288. [PMID: 31547882 PMCID: PMC6757418 DOI: 10.1186/s13287-019-1398-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
After the initial investigations into applications of mesenchymal stem cells (MSCs) for cell therapy, there was increased interest in their secreted soluble factors. Following studies of MSCs and their secreted factors, extracellular vesicles (EVs) released from MSCs have emerged as a new mode of intercellular crosstalk. MSC-derived EVs have been identified as essential signaling mediators under both physiological and pathological conditions, and they appear to be responsible for many of the therapeutic effects of MSCs. In several in vitro and in vivo models, EVs have been observed to have supportive functions in modulating the immune system, mainly mediated by EV-associated proteins and nucleic acids. Moreover, stimulation of MSCs with biophysical or biochemical cues, including EVs from other cells, has been shown to influence the contents and biological activities of subsequent MSC-derived EVs. This review provides on overview of the contents of MSC-derived EVs in terms of their supportive effects, and it provides different perspectives on the manipulation of MSCs to improve the secretion of EVs and subsequent EV-mediated activities. In this review, we discuss the possibilities for manipulating MSCs for EV-based cell therapy and for using EVs to affect the expression of elements of interest in MSCs. In this way, we provide a clear perspective on the state of the art of EVs in cell therapy focusing on MSCs, and we raise pertinent questions and suggestions for knowledge gaps to be filled.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Elga Bandeira
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ganesh V Shelke
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
137
|
Liu Y, Zhao S, Luo L, Wang J, Zhu Z, Xiang Q, Deng Y, Zhao Z. Mesenchymal stem cell-derived exosomes ameliorate erection by reducing oxidative stress damage of corpus cavernosum in a rat model of artery injury. J Cell Mol Med 2019; 23:7462-7473. [PMID: 31512385 PMCID: PMC6815831 DOI: 10.1111/jcmm.14615] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Erectile dysfunction (ED) is a common ageing male's disease, and vascular ED accounts for the largest proportion of all types of ED. One of the mechanisms of vascular ED in the clinic is arterial insufficiency, which mainly caused by atherosclerosis, trauma and surgical. Moreover, oxidative stress damage after tissue ischemia usually aggravated the progress of ED. As a new way of acellular therapy, mesenchymal stem cell-derived exosomes (MSC-Exos) have great potential in ED treatment. In the current study, we have explored the mechanism of MSC-Exos therapy in a rat model of internal iliac artery injury-induced ED. Compared with intracavernous (IC) injection of phosphate-buffered saline after artery injury, of note, we observed that both mesenchymal stem cells (MSCs) and MSC-Exos through IC injection could improve the erectile function to varying degrees. More specifically, IC injection MSC-Exos could promote cavernous sinus endothelial formation, reduce the organization oxidative stress damage, and improve the nitric oxide synthase and smooth muscle content in the corpus cavernosum. With similar potency compared with the stem cell therapy and other unique advantages, IC injection of MSC- Exos could be an effective treatment to ameliorate erectile function in a rat model of arterial injury.
Collapse
Affiliation(s)
- Yangzhou Liu
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shankun Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, Zhejiang Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Lianmin Luo
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiamin Wang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiguo Zhu
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Xiang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yihan Deng
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhigang Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
138
|
Wu X, Wu C, Gu W, Ji H, Zhu L. Serum Exosomal MicroRNAs Predict Acute Respiratory Distress Syndrome Events in Patients with Severe Community-Acquired Pneumonia. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3612020. [PMID: 31467883 PMCID: PMC6699276 DOI: 10.1155/2019/3612020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/25/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Severe community-acquired pneumonia (SCAP) requiring intensive care unit (ICU) treatment commonly causes acute respiratory distress syndrome (ARDS) with high mortality. This study was aimed at evaluating whether microRNAs (miRNAs) in circulating exosomes have the predictive values for patients at risk of developing ARDS due to SCAP. METHODS ARDS/ALI-relevant miRNAs were obtained by literature search. Exosomes in serum were isolated by ultracentrifugation method and identified by Transmission Electron Microscopy. Then the miR profiling in the exosomes using real-time PCR was analyzed in SCAP patients with or without ARDS. Moreover, multivariate Cox proportional regression analysis was performed to estimate the odds ratio of miRNA for the occurrence of ARDS and prognosis. The receiver operating characteristics (ROC) curves were calculated to discriminate ARDS cases. Finally, the Kaplan-Meier curve using log-rank method was performed to test the equality for survival distributions with different miRNA classifiers. RESULTS A total of 53 SCAP patients were finally recruited. Ten miRNAs were picked out. Further, a subset of exosomal miRNAs, including the miR-146a, miR-27a, miR-126, and miR-155 in ARDS group exhibited significantly elevated levels than those in non-ARDS group. The combined expression of miR-126, miR-27a, miR-146a, and miR-155 predicted ARDS with an area under the curve of 0.909 (95 % CI 0.815 -1). Only miR-126 was selected to have potential to predict the 28-day mortality (OR=1.002, P=0.024) with its median value classifier. CONCLUSIONS The altered levels of circulating exosomal microRNAs may be useful biologic confirmation of ARDS in patients with SCAP.
Collapse
Affiliation(s)
- Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chengzhi Wu
- Department of Laboratory, Qihe People's Hospital, Dezhou, 251100, China
| | - Wenyu Gu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Rd., Shanghai, 200072, China
| | - Haiying Ji
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
139
|
Wei Y, Hou H, Zhang L, Zhao N, Li C, Huo J, Liu Y, Zhang W, Li Z, Liu D, Han Z, Zhang L, Song B, Chi Y, Han Z. JNKi- and DAC-programmed mesenchymal stem/stromal cells from hESCs facilitate hematopoiesis and alleviate hind limb ischemia. Stem Cell Res Ther 2019; 10:186. [PMID: 31234947 PMCID: PMC6591900 DOI: 10.1186/s13287-019-1302-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Background Mesenchymal stem/stromal cells (MSCs) derived from human embryonic stem cells (hESCs) are attractive for their hematopoietic-supporting or potential therapeutic effects. However, procedures for high-effective and scalable generation of MSCs from hESCs within 2 weeks are still unestablished, which also hinder the development and mechanism study of mesengenesis. Methods In this study, we aimed to establish a strategy for programming hESC differentiation into MSCs by practicing small-scale chemical compound screening. Then, we used flow cytometry, multi-lineage differentiation, and karyotype analyses to investigate the biological phenotypes of the derived hESC-MSCs. Also, to explore whether the derived cells had hematopoietic-supporting ability in vitro, we carried out the cobblestone formation and megakaryocytic differentiation experiments. To further evaluate the function of hESC-MSCs in vivo, we transplanted the cells into a mouse model with hind limb ischemia. Results By simultaneous treatments with a JAK/STAT antagonist and a DNA methylation inhibitor, the efficiency of generating hESCs into CD73+ hESC-MPCs could reach 60% within 7 days. The derived cells further matured into hESC-MSCs, with comparable characteristics to those of adult MSCs in terms of surface markers, normal karyotype, and the potential for adipogenic, osteogenic, and chondrogenic differentiation. Functionally, hESC-MSCs had hematopoietic-supporting effects in vitro and could notably relieve symptoms of hind limb ischemia. Conclusions In the study, we established a high-efficient procedure for large-scale generation of MSCs from hESCs, which would be of great help for genesis and mechanism studies of MSCs. Meanwhile, the derived cells provide an alternative for translational clinical research. Electronic supplementary material The online version of this article (10.1186/s13287-019-1302-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yimeng Wei
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Huixing Hou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, 300052, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Leisheng Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,School of Medicine, Nankai University, Tianjin, 300071, China. .,The Postdoctoral Research Station, College of Life Science, Nankai University, Tianjin, 300071, China. .,The Enterprise Postdoctoral Working Station, Tianjin Chase Sun Pharmaceutical Co., Ltd., Tianjin, 301700, China. .,Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China.
| | - Nianhuan Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, 300052, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chengwen Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Jiali Huo
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Ying Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Wenxia Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, 300071, China.,The Postdoctoral Research Station, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Dengke Liu
- The Enterprise Postdoctoral Working Station, Tianjin Chase Sun Pharmaceutical Co., Ltd., Tianjin, 301700, China
| | - Zhibo Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Baoquan Song
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| | - Zhongchao Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China.
| |
Collapse
|
140
|
Bian X, Ma K, Zhang C, Fu X. Therapeutic angiogenesis using stem cell-derived extracellular vesicles: an emerging approach for treatment of ischemic diseases. Stem Cell Res Ther 2019; 10:158. [PMID: 31159859 PMCID: PMC6545721 DOI: 10.1186/s13287-019-1276-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ischemic diseases, which are caused by a reduction of blood supply that results in reduced oxygen transfer and nutrient uptake, are becoming the leading cause of disabilities and deaths. Therapeutic angiogenesis is key for the treatment of these diseases. Stem cells have been used in animal models and clinical trials to treat various ischemic diseases. Recently, the efficacy of stem cell therapy has increasingly been attributed to exocrine functions, particularly extracellular vesicles. Extracellular vesicles are thought to act as intercellular communication vehicles to transport informational molecules including proteins, mRNA, microRNAs, DNA fragments, and lipids. Studies have demonstrated that extracellular vesicles promote angiogenesis in cellular experiments and animal models. Herein, recent reports on the use of extracellular vesicles for therapeutic angiogenesis during ischemic diseases are presented and discussed. We believe that extracellular vesicles-based therapeutics will be an ideal treatment method for patients with ischemic diseases.
Collapse
Affiliation(s)
- Xiaowei Bian
- Tianjin Medical University, No. 22, Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China.,Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, People's Republic of China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, People's Republic of China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, People's Republic of China.
| | - Xiaobing Fu
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, People's Republic of China.
| |
Collapse
|
141
|
Exosomes Derived from Mesenchymal Stem Cells Ameliorate Hypoxia/Reoxygenation-Injured ECs via Transferring MicroRNA-126. Stem Cells Int 2019; 2019:2831756. [PMID: 31281371 PMCID: PMC6589209 DOI: 10.1155/2019/2831756] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) show protective effects on ischemia/reperfusion- (I/R-) induced endothelial cell (EC) injury and vascular damage. Stem cell-released exosomes (EXs) could modulate target cell functions by delivering their cargos, and exert therapeutic effects as their mother cells. miR-126 is an important regulator of EC functions and angiogenesis. In this study, we determined whether EXs released from MSC-EXs provided beneficial effects on hypoxia/reoxygenation- (H/R-) injured ECs by transferring miR-126. MSCs were transfected with a miR-126 mimic or miR-126 short hairpin RNA to obtain miR-126-overexpressing MSC-EXs (MSC-EXsmiR-126) and miR-126 knockdown MSC-EXs (MSC-EXsSimiR-126). For functional studies, H/R-injured ECs were coincubated with various MSC-EXs. The viability, migration, tube formation ability, and apoptosis of ECs were measured. miR-126 and proangiogenic/growth factor (VEGF, EGF, PDGF, and bFGF) expressions were detected by qRT-PCR. Akt, p-Akt, p-eNOS, and cleaved caspase-3 expressions were examined by western blot. The PI3K inhibitor (LY294002) was used in pathway analysis. We found that overexpression/knockdown of miR-126 increased/decreased the proliferation of MSCs, as well as miR-126 expression in their derived MSC-EXs. MSC-EXsmiR-126 were more effective in promoting proliferation, migration, and tube formation ability of H/R-injured ECs than MSC-EXs. These effects were associated with the increase in p-Akt/Akt and p-eNOS, which could be abolished by LY294002. Besides, MSC-EXsmiR-126 were more effective than MSC-EXs in reducing the apoptosis of ECs, coupled with the decrease in cleaved caspase-3. Moreover, compared to MSC-EXs, MSC-EXsmiR-126 significantly upregulated the level of VEGF, EGF, PDGF, and bFGF in H/R-injured ECs. Downregulation of miR-126 in MSC-EXs inhibited these effects of MSC-EXs. The results suggest that MSC-EXs could enhance the survival and angiogenic function of H/R-injured ECs via delivering miR-126 to ECs and subsequently activate the PI3K/Akt/eNOS pathway, decrease cleaved caspase-3 expression, and increase angiogenic and growth factors.
Collapse
|
142
|
Wu J, Chen L, Wang R, Song Z, Shen Z, Zhao Y, Huang S, Lin Z. Exosomes Secreted by Stem Cells from Human Exfoliated Deciduous Teeth Promote Alveolar Bone Defect Repair through the Regulation of Angiogenesis and Osteogenesis. ACS Biomater Sci Eng 2019; 5:3561-3571. [PMID: 33405738 DOI: 10.1021/acsbiomaterials.9b00607] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinyan Wu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| | - Lingling Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| | - Runfu Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| | - Zhi Song
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| | - Zongshan Shen
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| | - Yiming Zhao
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| | - Shuheng Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| | - Zhengmei Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| |
Collapse
|
143
|
Zhao N, Yue Z, Cui J, Yao Y, Song X, Cui B, Qi X, Han Z, Han ZC, Guo Z, He ZX, Li Z. IGF-1C domain-modified hydrogel enhances therapeutic potential of mesenchymal stem cells for hindlimb ischemia. Stem Cell Res Ther 2019; 10:129. [PMID: 31036073 PMCID: PMC6489284 DOI: 10.1186/s13287-019-1230-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/03/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Poor cell engraftment and survival after transplantation limited the application of stem cell therapy. Synthetic biomaterials could provide an artificial microenvironment for stem cells, thereby improve cell survival and enhance the therapeutic efficiency of stem cells. METHODS We synthesized a hydrogel by conjugating C domain peptide of insulin-like growth factor-1 (IGF-1C) onto chitosan (CS-IGF-1C hydrogel). Human placenta-derived mesenchymal stem cells (hP-MSCs), which constitutively express a red fluorescent protein (RFP) and renilla luciferase (Rluc), were co-transplanted with CS-IGF-1C hydrogel into a murine hindlimb ischemia model. Transgenic mice expressing firefly luciferase (Fluc) under the promoter of vascular endothelial growth factor receptor 2 (VEGFR2-Luc) were used. Dual bioluminescence imaging (BLI) was applied for tracking the survival of hP-MSCs by Rluc imaging and the VEGFR2 signal pathway activation by Fluc imaging. To investigate the therapeutic mechanism of CS-IGF-1C hydrogel, angiographic, real-time PCR, and histological analysis were carried out. RESULTS CS-IGF-1C hydrogel could improve hP-MSCs survival as well as promote angiogenesis as confirmed by dual BLI. These results were consistent with accelerated skeletal muscle structural and functional recovery. Histology analysis confirmed that CS-IGF-1C hydrogel robustly prevented fibrosis as shown by reduced collagen deposition, along with increased angiogenesis. In addition, the protective effects of CS-IGF-1C hydrogel, such as inhibiting H2O2-induced apoptosis and reducing inflammatory responses, were proved by in vitro experiments. CONCLUSIONS Taken together, IGF-1Cs provides a conducive niche for hP-MSCs to exert pro-mitogenic, anti-apoptotic, and pro-angiogenic effects, as well as to inhibit fibrosis. Thus, the incorporation of functional peptide into bioscaffolds represents a safe and feasible approach to augment the therapeutic efficacy of stem cells.
Collapse
Affiliation(s)
- Nianhuan Zhao
- Department of Nuclear Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003 China
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071 China
- The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Science, Nankai University, Tianjin, 300071 China
| | - Zhiwei Yue
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071 China
- The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Science, Nankai University, Tianjin, 300071 China
| | - Jian Cui
- Department of Intensive Care Unit (ICU), People’s Hospital of Rizhao, Rizhao, 276826 Shandong China
| | - Yong Yao
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218 China
| | - Xianghe Song
- Department of Cardiology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, 276800 Shandong China
| | - Bangping Cui
- Department of Nuclear Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003 China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121 China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, 334001 Jiangxi China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, 334001 Jiangxi China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003 China
| | - Zuo-Xiang He
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218 China
| | - Zongjin Li
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071 China
- The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Science, Nankai University, Tianjin, 300071 China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003 China
| |
Collapse
|
144
|
Sung DK, Chang YS, Sung SI, Ahn SY, Park WS. Thrombin Preconditioning of Extracellular Vesicles Derived from Mesenchymal Stem Cells Accelerates Cutaneous Wound Healing by Boosting Their Biogenesis and Enriching Cargo Content. J Clin Med 2019; 8:jcm8040533. [PMID: 31003433 PMCID: PMC6517934 DOI: 10.3390/jcm8040533] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to determine the optimal preconditioning regimen for the wound healing therapeutic efficacy of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs). To this end, we compared various preconditioning regimens for both the quantitative and qualitative production of MSC-derived EVs, and their therapeutic efficacy for proangiogenic activity in vitro and cutaneous wound healing in vivo. After preconditioning with thrombin (40 U), H2O2 (50 μM), lipopolysaccharide (1 μg/mL), or hypoxia (10% O2), EV secretion was assessed quantitatively by measuring production per cell and protein quantification, and qualitatively by measuring a proteome profiler and an enzyme-linked immunosorbent assay (ELISA) contained within EVs. The therapeutic efficacy of EVs was assessed in vitro by proliferation, migration and tube formation assays of human umbilical cord blood endothelial cells (HUVECs), and in vivo by quantification of cutaneous wound healing. Thrombin preconditioning optimally boosted EV production and enriched various growth factors including vascular endothelial growth factor and angiogenin contained within EVs compared to other preconditioning regimens. Thrombin preconditioning optimally enhanced proliferation, the migration and tube formation of HUVECs in vitro via pERK1/2 and pAKT signaling pathways, and cutaneous wound healing in vivo compared to other preconditioning regimens. Thrombin preconditioning exhibited optimal therapeutic efficacy compared with other preconditioning regimens in promoting proangiogenic activity in vitro and in enhancing cutaneous wound healing in vivo. These preconditioning regimen-dependent variations in therapeutic efficacy might be mediated by boosting EV production and enriching their cargo content.
Collapse
Affiliation(s)
- Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Samsung Biomedical Research Institute, Seoul 06351, Korea.
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Samsung Biomedical Research Institute, Seoul 06351, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea.
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Samsung Biomedical Research Institute, Seoul 06351, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea.
| |
Collapse
|
145
|
Augustine R, Prasad P, Khalaf IMN. Therapeutic angiogenesis: From conventional approaches to recent nanotechnology-based interventions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:994-1008. [DOI: 10.1016/j.msec.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 12/27/2022]
|
146
|
Cao H, Yue Z, Gao H, Chen C, Cui K, Zhang K, Cheng Y, Shao G, Kong D, Li Z, Ding D, Wang Y. In Vivo Real-Time Imaging of Extracellular Vesicles in Liver Regeneration via Aggregation-Induced Emission Luminogens. ACS NANO 2019; 13:3522-3533. [PMID: 30844245 DOI: 10.1021/acsnano.8b09776] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extracellular vesicles (EVs) attract much attention in liver pathology because they regulate cell-cell communication and many pathophysiological events by transferring their cargos. Monitoring and understanding the in vivo fate and therapeutic capacity of these EVs is critical for the development and optimization of EV-based diagnosis and therapy. Herein, we demonstrate the use of an aggregation-induced emission luminogen, DPA-SCP, for the real-time tracking of EVs derived from human placenta-derived mesenchymal stem cells (MSCs) and their therapeutic effects in a mouse acute liver injury (ALI) model. In vitro, DPA-SCP does not alter the inherent characteristics of MSC-derived EVs and shows extremely low toxicity. Moreover, DPA-SCP exhibited superior labeling efficiency and tracking capability to the most popular commercial EV trackers, PKH26 and DiI. In vivo, DPA-SCP precisely and quantitatively tracked the behaviors of EVs for 7 days in the mouse ALI model without influencing their regenerative capacity and therapeutic efficacy. The therapeutic effects of EVs may attribute to their ability for reducing inflammatory cell infiltration, enhancing cell survival and antiapoptotic effects. In conclusion, DPA-SCP with an AIE signature serves as a favorable and safe tracker for in vivo real-time imaging of EVs in liver regeneration.
Collapse
Affiliation(s)
- Hongmei Cao
- Nankai University School of Medicine , Tianjin 300071 , China
| | - Zhiwei Yue
- Nankai University School of Medicine , Tianjin 300071 , China
| | - Heqi Gao
- The Key Laboratory of Bioactive Materials, Ministry of Education , Nankai University, The College of Life Science , Tianjin 300071 , China
| | - Chao Chen
- The Key Laboratory of Bioactive Materials, Ministry of Education , Nankai University, The College of Life Science , Tianjin 300071 , China
| | - Kaige Cui
- Nankai University School of Medicine , Tianjin 300071 , China
| | - Kaiyue Zhang
- Nankai University School of Medicine , Tianjin 300071 , China
| | - Yuanqiu Cheng
- Nankai University School of Medicine , Tianjin 300071 , China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital , Nanjing Medical University , Nanjing 210006 , China
| | - Deling Kong
- The Key Laboratory of Bioactive Materials, Ministry of Education , Nankai University, The College of Life Science , Tianjin 300071 , China
| | - Zongjin Li
- Nankai University School of Medicine , Tianjin 300071 , China
| | - Dan Ding
- The Key Laboratory of Bioactive Materials, Ministry of Education , Nankai University, The College of Life Science , Tianjin 300071 , China
| | - Yuebing Wang
- Nankai University School of Medicine , Tianjin 300071 , China
| |
Collapse
|
147
|
Wei Y, Wu Y, Zhao R, Zhang K, Midgley AC, Kong D, Li Z, Zhao Q. MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials 2019; 204:13-24. [PMID: 30875515 DOI: 10.1016/j.biomaterials.2019.01.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 02/07/2023]
Abstract
Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling molecules that play important roles in tissue regeneration, such as microRNA and cytokines. In this study, a sEVs-functionalized vascular graft was developed, and in vivo performance was systematically evaluated in a rat model of hyperlipidemia. Electrospun poly (ε-caprolactone) (PCL) vascular grafts were first modified with heparin, to enhance the anti-thrombogenicity. MSC-derived sEVs were loaded onto the heparinized PCL grafts to obtain functional vascular grafts. As-prepared vascular grafts were implanted to replace a segment of rat abdominal artery (1 cm) for up to 3 months. Results showed that the incorporation of MSC-derived sEVs effectively inhibited thrombosis and calcification, thus enhancing the patency of vascular grafts. Furthermore, regeneration of the endothelium and vascular smooth muscle was markedly enhanced, as attributed to the bioactive molecules within the sEVs, including vascular endothelial growth factor (VEGF), miRNA126, and miRNA145. More importantly, MSC-derived sEVs demonstrated a robust immunomodulatory effect, that is, they induced the transition of macrophages from a pro-inflammatory and atherogenic (M1) phenotype to an anti-inflammatory and anti-osteogenic (M2c) phenotype. This phenotypic switch was confirmed in both in vitro and in vivo analyses. Taken together, these results suggest that fabrication of vascular grafts with immunomodulatory function can provide an effective approach to improve vascular performance and functionality, with translational implication in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yifan Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Runxia Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Kaiyue Zhang
- Nankai University School of Medicine, Tianjin 300071, PR China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin 300071, PR China.
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
148
|
Wang P, Wang H, Huang Q, Peng C, Yao L, Chen H, Qiu Z, Wu Y, Wang L, Chen W. Exosomes from M1-Polarized Macrophages Enhance Paclitaxel Antitumor Activity by Activating Macrophages-Mediated Inflammation. Theranostics 2019; 9:1714-1727. [PMID: 31037133 PMCID: PMC6485189 DOI: 10.7150/thno.30716] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022] Open
Abstract
Objective: Exosomes (Exos) are membrane-encased vesicles derived by nearly all cell types for intercellular communication and regulation. They also received attention for their use as natural therapeutic platforms and drug delivery system. Classically activated M1 macrophages suppress tumor growth by releasing pro-inflammatory factors. This study investigated the suitability of M1-exosomes (M1-Exos) as drug carrier and their effect on the NF-κB signal pathway and further detected whether macrophages repolarization can potentiate the antitumor activities of chemotherapeutics. Methods: M1-Exos were isolated from M1-macrophages by ultracentrifugation and characterized by transmission electron, nanoparticle tracking analysis, dynamic light scattering and western blot. Then M1-Exos were used as Paclitaxel (PTX) carriers to prepare a nano-formulation (PTX- M1-Exos). A relatively simple slight sonication method was used to prepare the drug delivery system (PTX-M1-Exos). The cytotoxicity of PTX-M1-Exos on cancer cells was detected by MTT and flow cytometry in vitro. 4T1 tumor bearing mice were used to perform the therapeutic effect of PTX-M1-Exos in vivo. Results: The expression of caspase-3 in breast cancer cells was increased when co-incubated with macrophages in the presence of M1-Exos in vitro. The production of pro-inflammatory cytokines was increased after exposure of macrophages in M1-Exos. M1-Exos provided a pro-inflammatory environment which enhanced the anti-tumor activity via caspase-3 mediated pathway. The treatment of M1-Exos to the tumor bearing mice exhibit anti-tumor effects in vivo. Meanwhile, the treatment of PTX-M1-Exos demonstrated higher anti-tumor effects than the M1-Exos or PTX group. Conclusion: The results in our study indicate that the M1-Exos act as the carrier to deliver PTX into the tumor tissues, and also enhance the anti-tumor effects of chemotherapeutics in tumor bearing mice.
Collapse
Affiliation(s)
- Piaopiao Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Huihui Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Qianqian Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, Anhui, 230012, China
| | - Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Hong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Zhen Qiu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yifan Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, Anhui, 230012, China
| |
Collapse
|
149
|
Huang A, Liu D, Qi X, Yue Z, Cao H, Zhang K, Lei X, Wang Y, Kong D, Gao J, Li Z, Liu N, Wang Y. Self-assembled GFFYK peptide hydrogel enhances the therapeutic efficacy of mesenchymal stem cells in a mouse hindlimb ischemia model. Acta Biomater 2019; 85:94-105. [PMID: 30550934 DOI: 10.1016/j.actbio.2018.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/28/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation has emerged as a very promising strategy for the treatments of peripheral artery disease (PAD). However, MSC-based therapies are limited by low cell retention and survival rate in the ischemic zone. Small molecular (SM) hydrogels have shown attractive abilities to enhance the therapeutic effects of human MSCs via promoting their proliferation or maintaining their differentiation potential. Here, we designed and synthesized a new bioactive and biocompatible hydrogel, Nap-GFFYK-Thiol, using disulfide bonds as cleavable linkers to control the molecular self-assembly and we hypothesized this hydrogel could enhance the retention and engraftment of human placenta-derived MSCs (hP-MSCs) in a mouse ischemic hindlimb model. In vitro results demonstrated that the Nap-GFFYK-Thiol hydrogel increased cell viability through paracrine effects. Moreover, it enhanced the proangiogenic and anti-apoptotic effects of hP-MSCs. In vivo, Nap-GFFYK-Thiol hydrogel improved the hP-MSC retention in the murine ischemic hindlimb model as visualized by bioluminescence imaging. Furthermore, cotransplantation of hP-MSCs with hydrogel improved blood perfusion, leading to superior limb salvage. These therapeutic effects may attribute to reduced inflammatory cell infiltration, enhanced angiogenesis as well as suppressed collagen deposition. In conclusion, the Nap-GFFYK-Thiol hydrogel fabricated using disulfide bonds as cleavable linkers serves as an artificial niche for promoting hP-MSC survival and proangiogenic factor secretion in PAD therapy and thereby provide an alternative strategy for PAD therapy. STATEMENT OF SIGNIFICANCE: Although several phase I/II clinical trials of MSC-based treatments for critical limb ischemia (CLI) are ongoing, MSC-based therapies are still challenged by the low quality and quantity of cells in the ischemic zone, especially in cases of extensive or irreversible damage. Hydrogels have favorable biocompatibility and safety records in the medical field. In the current study, we engineered a new bioactive and biocompatible hydrogel, Nap-GFFYK-Thiol, using disulfide bonds as cleavable linkers to enhance the therapeutic efficacy of human placenta-derived MSCs (hP-MSCs) in mouse limb ischemia model. Notably, Nap-GFFYK-Thiol hydrogel acts as an artificial niche for promoting hP-MSC survival and proangiogenic factor secretion in PAD therapy, which further promoted the restoration of blood perfusion and regeneration of muscle cells. Considering the proangiogenic effect of Nap-GFFYK-Thiol on hP-MSCs, our results may provide a new strategy for the treatment of PAD.
Collapse
Affiliation(s)
- Anan Huang
- Nankai University School of Medicine, Tianjin 300071, China; Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, China
| | - Danni Liu
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, China.
| | - Zhiwei Yue
- Nankai University School of Medicine, Tianjin 300071, China
| | - Hongmei Cao
- Nankai University School of Medicine, Tianjin 300071, China
| | - Kaiyue Zhang
- Nankai University School of Medicine, Tianjin 300071, China
| | - Xudan Lei
- Nankai University School of Medicine, Tianjin 300071, China
| | - Youzhi Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin 300071, China
| | - Deling Kong
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin 300071, China
| | - Jie Gao
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin 300071, China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin 300071, China; The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin 300071, China
| | - Na Liu
- Nankai University School of Medicine, Tianjin 300071, China; The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin 300071, China.
| | - Yuebing Wang
- Nankai University School of Medicine, Tianjin 300071, China; The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin 300071, China.
| |
Collapse
|
150
|
Choi M, Park S, Park K, Jeong H, Hong J. Nitric Oxide Delivery Using Biocompatible Perfluorocarbon Microemulsion for Antibacterial Effect. ACS Biomater Sci Eng 2019; 5:1378-1383. [DOI: 10.1021/acsbiomaterials.9b00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyungtae Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyejoong Jeong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|