101
|
Al-Ansari M, Craik JD. Decreased erythrocyte nucleoside transport and hENT1 transporter expression in glucose 6-phosphate dehydrogenase deficiency. BMC HEMATOLOGY 2015; 15:17. [PMID: 26688730 PMCID: PMC4684917 DOI: 10.1186/s12878-015-0038-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 12/03/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with erythrocyte sensitivity to oxidative damage and hemolytic crises. In β-thalassemia major, where hemoglobin instability imposes oxidative stress, erythrocytes show reduced hENT1 nucleoside transporter expression and decreased nucleoside uptake. This study investigated hENT1 expression and nucleoside transport in G6PD-deficient erythrocytes to determine if decreased hENT1 activity might be a contributory feature in the variable pathology of this enzymopathy. METHODS Uptake of (3)H-uridine was measured at room temperature using an inhibitor-oil stop protocol and 5-s incubations. Erythrocyte membranes were analyzed by SDS-PAGE and nucleoside (hENT1), glucose (GLUT-1), and anion exchange (Band 3) transporter polypeptides quantitated on immunoblots. RESULTS In G6PD-deficient cells, uridine uptake (mean 8.18, 95 % CI 5.6-10.7 vs controls mean 12.35, 95 % CI 9.2-15.5, pmol uridine/gHb/min; P = 0.031) and expression of hENT1 (mean 50.4 %, 95 % CI 38.1-62.7 %, arbitrary units n = 11 vs controls mean 95.23 %, 95 % CI 88.38-102.1 % arbitrary units, n = 8; P < 0.001) were significantly lower; expression of GLUT-1 (mean 106.9 %, vs control mean 99.75 %; P = 0.308) and Band 3 polypeptides (mean 100.1 %, vs control mean 102.84 %; P = 0.329) were unchanged. CONCLUSIONS Nucleoside transporter activity in human erythrocytes sustains intracellular purine nucleotide levels and assists in control of plasma adenosine levels; decreased hENT1 expression and activity in G6PD-deficiency could affect red metabolism and influence a wide spectrum of responses mediated by adenosine receptors.
Collapse
Affiliation(s)
- Mohammad Al-Ansari
- Department of Biochemistry, Faculty of Medicine, Health Sciences Center, Kuwait University, PO Box 24923, Safat, 13110 Kuwait
| | - James D. Craik
- Department of Biochemistry, Faculty of Medicine, Health Sciences Center, Kuwait University, PO Box 24923, Safat, 13110 Kuwait
| |
Collapse
|
102
|
Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein. Int J Mol Sci 2015; 16:28657-68. [PMID: 26633385 PMCID: PMC4691071 DOI: 10.3390/ijms161226124] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 12/11/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients.
Collapse
|
103
|
Ley B, Luter N, Espino FE, Devine A, Kalnoky M, Lubell Y, Thriemer K, Baird JK, Poirot E, Conan N, Kheong CC, Dysoley L, Khan WA, Dion-Berboso AG, Bancone G, Hwang J, Kumar R, Price RN, von Seidlein L, Domingo GJ. The challenges of introducing routine G6PD testing into radical cure: a workshop report. Malar J 2015; 14:377. [PMID: 26416229 PMCID: PMC4587750 DOI: 10.1186/s12936-015-0896-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/12/2015] [Indexed: 12/11/2022] Open
Abstract
The only currently available drug that effectively removes malaria hypnozoites from the human host is primaquine. The use of 8-aminoquinolines is hampered by haemolytic side effects in glucose-6-phosphate dehydrogenase (G6PD) deficient individuals. Recently a number of qualitative and a quantitative rapid diagnostic test (RDT) format have been developed that provide an alternative to the current standard G6PD activity assays. The WHO has recently recommended routine testing of G6PD status prior to primaquine radical cure whenever possible. A workshop was held in the Philippines in early 2015 to discuss key challenges and knowledge gaps that hinder the introduction of routine G6PD testing. Two point-of-care (PoC) test formats for the measurement of G6PD activity are currently available: qualitative tests comparable to malaria RDT as well as biosensors that provide a quantitative reading. Qualitative G6PD PoC tests provide a binomial test result, are easy to use and some products are comparable in price to the widely used fluorescent spot test. Qualitative test results can accurately classify hemizygous males, heterozygous females, but may misclassify females with intermediate G6PD activity. Biosensors provide a more complex quantitative readout and are better suited to identify heterozygous females. While associated with higher costs per sample tested biosensors have the potential for broader use in other scenarios where knowledge of G6PD activity is relevant as well. The introduction of routine G6PD testing is associated with additional costs on top of routine treatment that will vary by setting and will need to be assessed prior to test introduction. Reliable G6PD PoC tests have the potential to play an essential role in future malaria elimination programmes, however require an improved understanding on how to best integrate routine G6PD testing into different health settings.
Collapse
Affiliation(s)
- Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT, 0811, Australia.
| | - Nick Luter
- PATH, Diagnostics Program, Seattle, WA, USA.
| | | | - Angela Devine
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand. .,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | | | - Yoel Lubell
- Research Institute of Tropical Medicine, Manila, Philippines. .,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT, 0811, Australia.
| | - J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia. .,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | - Eugenie Poirot
- The Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA, USA.
| | | | - Chong Chee Kheong
- Disease Control Division, Ministry of Health Malaysia, Kuala Lumpur, Malaysia.
| | - Lek Dysoley
- National Center for Parasitology Entomology and Malaria Control, Phnom Penh, Cambodia. .,School of Public Health, National Institution of Public Health, Phnom Penh, Cambodia.
| | - Wasif Ali Khan
- International Center for Diarrheal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh.
| | - April G Dion-Berboso
- Newborn Screening Center, Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila, Philippines.
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mae Sot, Tak Province, Thailand.
| | - Jimee Hwang
- The Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA, USA. .,Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | - Ritu Kumar
- PATH, Diagnostics Program, Seattle, WA, USA.
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT, 0811, Australia. .,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand. .,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | | |
Collapse
|
104
|
Fujii J, Kurahashi T, Konno T, Homma T, Iuchi Y. Oxidative stress as a potential causal factor for autoimmune hemolytic anemia and systemic lupus erythematosus. World J Nephrol 2015; 4:213-222. [PMID: 25949934 PMCID: PMC4419130 DOI: 10.5527/wjn.v4.i2.213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/05/2015] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
The kidneys and the blood system mutually exert influence in maintaining homeostasis in the body. Because the kidneys control erythropoiesis by producing erythropoietin and by supporting hematopoiesis, anemia is associated with kidney diseases. Anemia is the most prevalent genetic disorder, and it is caused by a deficiency of glucose 6-phosphate dehydrogenase (G6PD), for which sulfhydryl oxidation due to an insufficient supply of NADPH is a likely direct cause. Elevated reactive oxygen species (ROS) result in the sulfhydryl oxidation and hence are another potential cause for anemia. ROS are elevated in red blood cells (RBCs) under superoxide dismutase (SOD1) deficiency in C57BL/6 mice. SOD1 deficient mice exhibit characteristics similar to autoimmune hemolytic anemia (AIHA) and systemic lupus erythematosus (SLE) at the gerontic stage. An examination of AIHA-prone New Zealand Black (NZB) mice, which have normal SOD1 and G6PD genes, indicated that ROS levels in RBCs are originally high and further elevated during aging. Transgenic overexpression of human SOD1 in erythroid cells effectively suppresses ROS elevation and ameliorates AIHA symptoms such as elevated anti-RBC antibodies and premature death in NZB mice. These results support the hypothesis that names oxidative stress as a risk factor for AIHA and other autoimmune diseases such as SLE. Herein we discuss the association between oxidative stress and SLE pathogenesis based mainly on the genetic and phenotypic characteristics of NZB and New Zealand white mice and provide insight into the mechanism of SLE pathogenesis.
Collapse
|
105
|
|
106
|
Kafkas NV, Liakos CI, Mouzarou AG. Antiplatelet and invasive treatment in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency and acute coronary syndrome. The safety of aspirin. J Clin Pharm Ther 2015; 40:349-52. [PMID: 25807896 DOI: 10.1111/jcpt.12262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/22/2015] [Indexed: 01/24/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Aspirin is an important drug in acute coronary syndromes (ACS) and percutaneous coronary interventions (PCI). However, its use is contraindicated in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency (risk for haemolytic anaemia). We report the management of 2 patients with class II G6PD deficiency and non-ST-segment elevation ACS (NSTE-ACS). CASE DESCRIPTION The two patients were safely and efficiently treated with dual antiplatelet treatment (DAPT, aspirin plus ticagrelor) and PCI using new-generation drug-eluting stent (DES) despite G6PD deficiency. WHAT IS NEW AND CONCLUSION NSTE-ACS management with DAPT and DES is probably safe and effective in class II G6PD-deficient patients.
Collapse
Affiliation(s)
- N V Kafkas
- Cardiology Department, 'KAT' General Hospital of Attica, 14561, Athens, Greece
| | | | | |
Collapse
|
107
|
Satyagraha AW, Sadhewa A, Baramuli V, Elvira R, Ridenour C, Elyazar I, Noviyanti R, Coutrier FN, Harahap AR, Baird JK. G6PD deficiency at Sumba in Eastern Indonesia is prevalent, diverse and severe: implications for primaquine therapy against relapsing Vivax malaria. PLoS Negl Trop Dis 2015; 9:e0003602. [PMID: 25746733 PMCID: PMC4351883 DOI: 10.1371/journal.pntd.0003602] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/06/2015] [Indexed: 12/23/2022] Open
Abstract
Safe treatment of Plasmodium vivax requires diagnosis of both the infection and status of erythrocytic glucose-6-phosphate dehydrogenase (G6PD) activity because hypnozoitocidal therapy against relapse requires primaquine, which causes a mild to severe acute hemolytic anemia in G6PD deficient patients. Many national malaria control programs recommend primaquine therapy without G6PD screening but with monitoring due to a broad lack of G6PD deficiency screening capacity. The degree of risk in doing so hinges upon the level of residual G6PD activity among the variants present in any given area. We conducted studies on Sumba Island in eastern Indonesia in order to assess the potential threat posed by primaquine therapy without G6PD screening. We sampled 2,033 residents of three separate districts in western Sumba for quantitative G6PD activity and 104 (5.1%) were phenotypically deficient (<4.6U/gHb; median normal 10U/gHb). The villages were in two distinct ecosystems, coastal and inland. A positive correlation occurred between the prevalence of malaria and G6PD deficiency: 5.9% coastal versus inland 0.2% for malaria (P<0.001), and 6.7% and 3.1% for G6PD deficiency (P<0.001) at coastal and inland sites, respectively. The dominant genotypes of G6PD deficiency were Vanua Lava, Viangchan, and Chatham, accounting for 98.5% of the 70 samples genotyped. Subjects expressing the dominant genotypes all had less than 10% of normal enzyme activities and were thus considered severe variants. Blind administration of anti-relapse primaquine therapy at Sumba would likely impose risk of serious harm. G6PD deficiency affects over 400 million people worldwide. This enormously diverse disorder causes acute hemolytic anemia upon exposure to oxidizing chemicals, e.g., naphthalene, some sulfa drugs, and certain antimalarials, including primaquine. The primary public health concern with G6PD deficiency involves that latter drug, the only one available for the radical cure of vivax and ovale malarias. Absent primaquine therapy, patients will suffer multiple recurrent attacks called relapses in the two years following the primary attack. Primaquine in G6PD-deficient patients triggers a mild to severe acute hemolytic anemia, depending upon dose administered and the specific variant involved. Relatively high therapeutic doses in severely deficient variants will threaten life. Malaria therapeutic policy and practice regarding primaquine may hinge upon the prevalence and severity of G6PD deficiency weighed against the therapeutic benefit of averting risk of relapse and attendant morbidity, mortality and onward transmission. In the current study we aimed to inform that weighing by characterizing the frequency and type of G6PD deficiency occurring in populations enduring endemic vivax malaria transmission on a single island in eastern Indonesia. The findings infer risk of serious harm caused by primaquine administered to residents of unknown G6PD status.
Collapse
Affiliation(s)
| | | | | | - Rosalie Elvira
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Chase Ridenour
- University of Northern Arizona, Flagstaff, Arizona, United States of America
| | - Iqbal Elyazar
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | | | | | | | - J. Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
108
|
Kitcharoen S, Dechyotin S, Khemtonglang N, Kleesuk C. Relationship among glucose-6-phosphate dehydrogenase (G-6-PD) activity, G-6-PD variants and reticulocytosis in neonates of northeast Thailand. Clin Chim Acta 2015; 442:125-9. [PMID: 25632835 DOI: 10.1016/j.cca.2015.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/30/2014] [Accepted: 01/03/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Misdiagnosis of G-6-PD deficiency in neonates, at risk of severe hemolytic episodes, extreme hyperbilirubinemia, and bilirubin encephalopathy, could possibly occur due to presence of reticulocytes, which contain higher amounts of G-6-PD than mature erythrocytes. G-6-PD mutations in the population might also affect G-6-PD activity. This study evaluated the relationship among G-6-PD activity, G-6-PD variants and reticulocytosis in northeastern Thai neonates. METHODS Blood samples obtained from routine fluorescence spot test examination for G-6-PD deficiency were analyzed using a quantitative enzymatic assay and for common G-6-PD mutations by restriction fragment length polymorphism (RFLP)-PCR. Correlation between G-6-PD activity and percent reticulocytosis was determined. RESULTS Among 106G-6-PD-deficient (G-6PD activity<7.0U/g Hb) neonates, no significant association is observed between G-6PD activity and percent reticulocytosis (r=0.125, p-value=0.201), but there is a weak correlation in G-6-PD-normal neonates (r=0.377, p-value=0.014). There is a high frequency of G-6-PD Viangchan in male hemizygous and female heterozygous G-6-PD-deficient and G-6-PD-normal neonates. CONCLUSIONS A high reticulocytosis does not bias measurements of enzyme activity in G-6-PD-deficient neonates. Also, G-6-PD activity varies among female heterozygous neonates, and G-6-PD mutation analysis provides a reliable method to detect G-6-PD deficiency.
Collapse
Affiliation(s)
- Suttiphan Kitcharoen
- Department of Clinical Microscopy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.
| | | | | | - Chanudda Kleesuk
- Diagnostic Microscopy Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
109
|
Lee SM, Geetha D. Dapsone induced hemolysis in a patient with ANCA associated glomerulonephritis and normal G6PD level and implications for clinical practice: case report and review of the literature. SPRINGERPLUS 2015; 4:29. [PMID: 25628986 PMCID: PMC4305048 DOI: 10.1186/s40064-015-0816-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/14/2015] [Indexed: 12/05/2022]
Abstract
Dapsone is a commonly used second line drug for prophylaxis of pneumocystis jirovecii pneumonia (PJP) in immunocompromised patients. Oxidant hemolysis, caused by dapsone’s metabolite hydroxylamine, is a common side effect, and screening for glucose-6-phosphate dehydrogenase (G6PD) deficiency is recommended before the drug is started in order to prevent potential hemolytic reactions. We report a case of dapsone induced hemolytic anemia in a patient with ANCA associated glomerulonephritis and normal G6PD level. Her anemia improved after cessation of therapy with dapsone. We review the literature of dapsone induced hemolysis in patients who have normal G6PD level and discuss potential pathways leading to hemolytic anemia and its implications for clinical practice.
Collapse
Affiliation(s)
- Scott M Lee
- Division of Nephrology, Johns Hopkins University, 301 Mason Lord Drive, Baltimore, MD 21224 USA
| | - Duvuru Geetha
- Division of Nephrology, Johns Hopkins University, 301 Mason Lord Drive, Baltimore, MD 21224 USA
| |
Collapse
|
110
|
Germline oncopharmacogenetics, a promising field in cancer therapy. Cell Oncol (Dordr) 2015; 38:65-89. [PMID: 25573079 DOI: 10.1007/s13402-014-0214-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 12/14/2022] Open
Abstract
Pharmacogenetics (PGx) is the study of the relationship between inter-individual genetic variation and drug responses. Germline variants of genes involved in drug metabolism, drug transport, and drug targets can affect individual response to medications. Cancer therapies are characterized by an intrinsically high toxicity; therefore, the application of pharmacogenetics to cancer patients is a particularly promising method for avoiding the use of inefficacious drugs and preventing the associated adverse effects. However, despite continuing efforts in this field, very few labels include information about germline genetic variants associated with drug responses. DPYD, TPMT, UGT1A1, G6PD, CYP2D6, and HLA are the sole loci for which the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) report specific information. This review highlights the germline PGx variants that have been approved to date for anticancer treatments, and also provides some insights about other germline variants with potential clinical applications. The continuous and rapid evolution of next-generation sequencing applications, together with the development of computational methods, should help to refine the implementation of personalized medicine. One day, clinicians may be able to prescribe the best treatment and the correct drug dosage based on each patient's genotype. This approach would improve treatment efficacy, reduce toxicity, and predict non-responders, thereby decreasing chemotherapy-associated morbidity and improving health benefits.
Collapse
|
111
|
Yang H, Wang Q, Zheng L, Zhan XF, Lin M, Lin F, Tong X, Luo ZY, Huang Y, Yang LY. Incidence and molecular characterization of Glucose-6-Phosphate Dehydrogenase deficiency among neonates for newborn screening in Chaozhou, China. Int J Lab Hematol 2014; 37:410-9. [PMID: 25440321 DOI: 10.1111/ijlh.12303] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/02/2014] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Glucose-6-phosphate dehydrogenase (G6PD) deficiency is highly prevalent in southern China. The aim of this study is to assess the extent of this disease in Chinese neonates and determine its molecular characteristics using a novel molecular screening method. METHODS A total of 2500 neonates were routinely screened for G6PD deficiency using a modified fluorescent spot test (FST). PCR-high-resolution melting (HRM) analysis was then used for the molecular assay. RESULTS The overall incidence of G6PD deficiency was 2.68% in our study cohort. Frequency in male population was 3.22% (44 neonates of 1365 male neonates), and in female population was 2.03% (23 neonates of 1135 female neonates). Of the 67 newborns suspected to be G6PD deficient based on FST (44 males, 23 females), 58 of 67 (87%) were detected with gene alterations. Seven kinds of mutations [c.95A>G, c.392G>T, c.493A>G, c.871G>A, c.1360C>T, c.1376G>T, and c.1388G>A] were identified by HRM analysis. CONCLUSION Routine newborn screening in Chaozhou, China with a relatively high prevalence of G6PD deficiency is justified and meets the World Health Organization recommendation. The usage of molecular diagnosis can favor the detection of heterozygotes which can be a supplement to regular newborn screening and useful for premarital and prenatal diagnosis for G6PD deficiency.
Collapse
Affiliation(s)
- H Yang
- Laboratory Medical Center, Chaozhou Central Hospital Affiliated to Southern Medical University, Chaozhou, China; Laboratory Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Gómez-Manzo S, Terrón-Hernández J, De la Mora-De la Mora I, González-Valdez A, Marcial-Quino J, García-Torres I, Vanoye-Carlo A, López-Velázquez G, Hernández-Alcántara G, Oria-Hernández J, Reyes-Vivas H, Enríquez-Flores S. The stability of G6PD is affected by mutations with different clinical phenotypes. Int J Mol Sci 2014; 15:21179-201. [PMID: 25407525 PMCID: PMC4264219 DOI: 10.3390/ijms151121179] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 11/29/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide, causing a wide spectrum of conditions with severity classified from the mildest (Class IV) to the most severe (Class I). To correlate mutation sites in the G6PD with the resulting phenotypes, we studied four naturally occurring G6PD variants: Yucatan, Nashville, Valladolid and Mexico City. For this purpose, we developed a successful over-expression method that constitutes an easier and more precise method for obtaining and characterizing these enzymes. The k(cat) (catalytic constant) of all the studied variants was lower than in the wild-type. The structural rigidity might be the cause and the most evident consequence of the mutations is their impact on protein stability and folding, as can be observed from the protein yield, the T50 (temperature where 50% of its original activity is retained) values, and differences on hydrophobic regions. The mutations corresponding to more severe phenotypes are related to the structural NADP+ region. This was clearly observed for the Classes III and II variants, which became more thermostable with increasing NADP+, whereas the Class I variants remained thermolabile. The mutations produce repulsive electric charges that, in the case of the Yucatan variant, promote increased disorder of the C-terminus and consequently affect the binding of NADP+, leading to enzyme instability.
Collapse
Affiliation(s)
- Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, México D.F. 04530, Mexico.
| | | | | | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico.
| | | | - Itzhel García-Torres
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, México D.F. 04530, Mexico.
| | - America Vanoye-Carlo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, México D.F. 04530, Mexico.
| | - Gabriel López-Velázquez
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, México D.F. 04530, Mexico.
| | - Gloria Hernández-Alcántara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico.
| | - Jesús Oria-Hernández
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, México D.F. 04530, Mexico.
| | - Horacio Reyes-Vivas
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, México D.F. 04530, Mexico.
| | - Sergio Enríquez-Flores
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, México D.F. 04530, Mexico.
| |
Collapse
|
113
|
Abstract
In this issue of Blood, Makarona et al demonstrate that histone deacetylase (HDAC) inhibitors (HDACis) in glucose-6-phosphate dehydrogenase (G6PD)-deficient cells reinstates enzyme activity by boosting gene transcription. This therapeutic approach opens new avenues for preclinical and clinical studies to treat not only chronic nonspherocytic hemolytic anemia caused by severe G6PD variants, but also other genetic diseases.
Collapse
|
114
|
Mboowa G. Genetics of Sub-Saharan African Human Population: Implications for HIV/AIDS, Tuberculosis, and Malaria. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2014:108291. [PMID: 25202468 PMCID: PMC4151494 DOI: 10.1155/2014/108291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/09/2014] [Accepted: 08/01/2014] [Indexed: 12/19/2022]
Abstract
Sub-Saharan Africa has continued leading in prevalence and incidence of major infectious disease killers such as HIV/AIDS, tuberculosis, and malaria. Epidemiological triad of infectious diseases includes susceptible host, pathogen, and environment. It is imperative that all aspects of vertices of the infectious disease triad are analysed to better understand why this is so. Studies done to address this intriguing reality though have mainly addressed pathogen and environmental components of the triad. Africa is the most genetically diverse region of the world as well as being the origin of modern humans. Malaria is relatively an ancient infection in this region as compared to TB and HIV/AIDS; from the evolutionary perspective, we would draw lessons that this ancestrally unique population now under three important infectious diseases both ancient and exotic will be skewed into increased genetic diversity; moreover, other evolutionary forces are also still at play. Host genetic diversity resulting from many years of malaria infection has been well documented in this population; we are yet to account for genetic diversity from the trio of these infections. Effect of host genetics on treatment outcome has been documented. Host genetics of sub-Saharan African population and its implication to infectious diseases are an important aspect that this review seeks to address.
Collapse
Affiliation(s)
- Gerald Mboowa
- Department of Medical Microbiology, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- School of Allied Health Sciences, International Health Sciences University, P.O. Box 7782, Kampala, Uganda
| |
Collapse
|
115
|
Perdigones N, Morales M, Mason P, Bessler M. Case Report: Paroxysmal nocturnal hemoglobinuria in a woman heterozygous for G6PD A-. F1000Res 2014; 3:194. [PMID: 25713697 PMCID: PMC4335595 DOI: 10.12688/f1000research.4980.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 01/27/2023] Open
Abstract
We describe a case of paroxysmal nocturnal hemoglobinuria (PNH) in a woman who is heterozygous for the glucose-6-phosphate dehydrogenase A- (
G6PDA-) allele. PNH is associated with one or more clones of cells that lack complement inhibition due to loss of function somatic mutations in the
PIGA gene.
PIGA encodes the enzyme phosphatidylinositol glycan anchor biosynthesis, class A, which catalyses the first step of glycosylphosphatidylinisotol (
GPI) anchor synthesis. Two GPI anchored red cell surface antigens regulate complement lysis. G6PD catalyses the first step of the pentose phosphate pathway and enzyme variants, frequent in some populations have been selected because they confer resistance to malaria, are associated with hemolysis in the presence of oxidizing agents including several drugs. The patient had suffered a hemolytic attack after taking co-trimoxazole, a drug that precipitates hemolysis in G6PD deficient individuals. Since both
G6PD and
PIGA are X-linked we hypothesized that the
PIGA mutation was on the X-chromosome carrying the
G6PDA- allele. Investigations showed that in fact the
PIGA mutation was on the X-chromosome carrying the normal
G6PD B allele. We speculate that complement activation on
G6PD A- red cells exposed to Bactrim might have triggered complement activation inducing the lysis of
G6PD B PNH Type II red blood cells or that the patient may have had a PNH clone expressing
G6PDA- at the time of the hemolytic episode.
Collapse
Affiliation(s)
- Nieves Perdigones
- Division of Hematology, Department of Pediatrics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, 19104, USA
| | - Mariela Morales
- Division of Hematology, Department of Pediatrics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, 19104, USA
| | - Philip Mason
- Division of Hematology, Department of Pediatrics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, 19104, USA
| | - Monica Bessler
- Division of Hematology, Department of Pediatrics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, 19104, USA ; Division of Hematology, University of Pennsylvania School of Medicine, Philadelphia, 19104-4318, USA
| |
Collapse
|
116
|
Monteiro WM, Val FFA, Siqueira AM, Franca GP, Sampaio VS, Melo GC, Almeida ACG, Brito MAM, Peixoto HM, Fuller D, Bassat Q, Romero GAS, Maria Regina F O, Marcus Vinícius G L. G6PD deficiency in Latin America: systematic review on prevalence and variants. Mem Inst Oswaldo Cruz 2014; 109:553-68. [PMID: 25141282 PMCID: PMC4156449 DOI: 10.1590/0074-0276140123] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/02/2014] [Indexed: 01/14/2023] Open
Abstract
Plasmodium vivax radical cure requires the use of primaquine (PQ), a drug that induces haemolysis in glucose-6-phosphate dehydrogenase deficient (G6PDd) individuals, which further hampers malaria control efforts. The aim of this work was to study the G6PDd prevalence and variants in Latin America (LA) and the Caribbean region. A systematic search of the published literature was undertaken in August 2013. Bibliographies of manuscripts were also searched and additional references were identified. Low prevalence rates of G6PDd were documented in Argentina, Bolivia, Mexico, Peru and Uruguay, but studies from Curaçao, Ecuador, Jamaica, Saint Lucia, Suriname and Trinidad, as well as some surveys carried out in areas of Brazil, Colombia and Cuba, have shown a high prevalence (> 10%) of G6PDd. The G6PD A-202A mutation was the variant most broadly distributed across LA and was identified in 81.1% of the deficient individuals surveyed. G6PDd is a frequent phenomenon in LA, although certain Amerindian populations may not be affected, suggesting that PQ could be safely used in these specific populations. Population-wide use of PQ as part of malaria elimination strategies in LA cannot be supported unless a rapid, accurate and field-deployable G6PDd diagnostic test is made available.
Collapse
Affiliation(s)
- Wuelton M Monteiro
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira
Dourado, Manaus, AM, Brasil
- Escola Superior de Ciências da Saúde, Universidade do Estado do
Amazonas, Manaus, AM, Brasil
| | - Fernando FA Val
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira
Dourado, Manaus, AM, Brasil
- Escola Superior de Ciências da Saúde, Universidade do Estado do
Amazonas, Manaus, AM, Brasil
| | - André M Siqueira
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira
Dourado, Manaus, AM, Brasil
- Escola Superior de Ciências da Saúde, Universidade do Estado do
Amazonas, Manaus, AM, Brasil
| | - Gabriel P Franca
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira
Dourado, Manaus, AM, Brasil
| | - Vanderson S Sampaio
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira
Dourado, Manaus, AM, Brasil
- Escola Superior de Ciências da Saúde, Universidade do Estado do
Amazonas, Manaus, AM, Brasil
| | - Gisely C Melo
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira
Dourado, Manaus, AM, Brasil
- Escola Superior de Ciências da Saúde, Universidade do Estado do
Amazonas, Manaus, AM, Brasil
| | - Anne CG Almeida
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira
Dourado, Manaus, AM, Brasil
- Escola Superior de Ciências da Saúde, Universidade do Estado do
Amazonas, Manaus, AM, Brasil
| | - Marcelo AM Brito
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira
Dourado, Manaus, AM, Brasil
- Escola Superior de Ciências da Saúde, Universidade do Estado do
Amazonas, Manaus, AM, Brasil
| | - Henry M Peixoto
- Faculdade de Medicina, Universidade de Brasília, Brasília, DF,
Brasil
| | - Douglas Fuller
- Department of Geography and Regional Studies, University of Miami, Coral
Gables, FL, USA
| | - Quique Bassat
- Barcelona Centre for International Health Research, Hospital Clinic,
University of Barcelona, Barcelona, Spain
| | - Gustavo AS Romero
- Faculdade de Medicina, Universidade de Brasília, Brasília, DF,
Brasil
- Instituto Nacional de Ciência e Tecnologia para Avaliação de Tecnologias
em Saúde, Porto Alegre, RS, Brasil
| | - Oliveira Maria Regina F
- Faculdade de Medicina, Universidade de Brasília, Brasília, DF,
Brasil
- Instituto Nacional de Ciência e Tecnologia para Avaliação de Tecnologias
em Saúde, Porto Alegre, RS, Brasil
| | - Lacerda Marcus Vinícius G
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira
Dourado, Manaus, AM, Brasil
- Escola Superior de Ciências da Saúde, Universidade do Estado do
Amazonas, Manaus, AM, Brasil
| |
Collapse
|
117
|
Siqueira AM, Cavalcante JA, Vítor-Silva S, Reyes-Lecca RC, Alencar AC, Monteiro WM, Alexandre MAA, Maria Paula G M, Guinovart C, Bassat Q, Alecrim MDGC, Lacerda MVG. Influence of age on the haemoglobin concentration of malaria-infected patients in a reference centre in the Brazilian Amazon. Mem Inst Oswaldo Cruz 2014; 109:569-76. [PMID: 25141283 PMCID: PMC4156450 DOI: 10.1590/0074-0276140132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/23/2014] [Indexed: 12/28/2022] Open
Abstract
Anaemia is amongst the major complications of malaria, a major public health problem in the Amazon Region in Latin America. We examined the haemoglobin (Hb) concentrations of malaria-infected patients and compared it to that of malaria-negative febrile patients and afebrile controls. The haematological parameters of febrile patients who had a thick-blood-smear performed at an infectious diseases reference centre of the Brazilian Amazon between December 2009-January 2012 were retrieved together with clinical data. An afebrile community control group was composed from a survey performed in a malaria-endemic area. Hb concentrations and anaemia prevalence were analysed according to clinical-epidemiological status and demographic characteristics. In total, 7,831 observations were included. Patients with Plasmodium falciparum infection had lower mean Hb concentrations (10.5 g/dL) followed by P. vivax-infected individuals (12.4 g/dL), community controls (12.8 g/dL) and malaria-negative febrile patients (13.1 g/dL) (p < 0.001). Age, gender and clinical-epidemiological status were strong independent predictors for both outcomes. Amongst malaria-infected individuals, women in the reproductive age had considerably lower Hb concentrations. In this moderate transmission intensity setting, both vivax and falciparum malaria are associated with reduced Hb concentrations and risk of anaemia throughout a wide age range.
Collapse
Affiliation(s)
- Andre M Siqueira
- Universidade do Estado do Amazonas, Manaus, AM, Brasil
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | - Shelia Vítor-Silva
- Universidade do Estado do Amazonas, Manaus, AM, Brasil
- Universidade Nilton Lins, Manaus, AM, Brasil
| | | | | | - Wuelton M Monteiro
- Universidade do Estado do Amazonas, Manaus, AM, Brasil
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Márcia AA Alexandre
- Universidade do Estado do Amazonas, Manaus, AM, Brasil
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Universidade Nilton Lins, Manaus, AM, Brasil
| | - Mourão Maria Paula G
- Universidade do Estado do Amazonas, Manaus, AM, Brasil
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Caterina Guinovart
- Clinics Hospital, Barcelona Centre for International Health Research,
University of Barcelona, Barcelona, Spain
| | - Quique Bassat
- Clinics Hospital, Barcelona Centre for International Health Research,
University of Barcelona, Barcelona, Spain
| | - Maria das Graças C Alecrim
- Universidade do Estado do Amazonas, Manaus, AM, Brasil
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Marcus VG Lacerda
- Universidade do Estado do Amazonas, Manaus, AM, Brasil
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| |
Collapse
|
118
|
DNA hypermethylation and X chromosome inactivation are major determinants of phenotypic variation in women heterozygous for G6PD mutations. Blood Cells Mol Dis 2014; 53:241-5. [PMID: 24958328 DOI: 10.1016/j.bcmd.2014.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/01/2014] [Indexed: 11/24/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked incompletely dominant enzyme deficiency that results from G6PD gene mutations. Women heterozygous for G6PD mutations exhibit variation in the loss of enzyme activity but the cause of this phenotypic variation is unclear. We determined DNA methylation and X-inactivation patterns in 71 G6PD-deficient female heterozygotes and 68 G6PD non-deficient controls with the same missense mutations (G6PD Canton c.1376G>T or Kaiping c.1388G>A) to correlate determinants with variable phenotypes. Specific CpG methylations within the G6PD promoter were significantly higher in G6PD-deficient heterozygotes than in controls. Preferential X-inactivation of the G6PD wild-type allele was determined in heterozygotes. The incidence of preferential X-inactivation was 86.2% in the deficient heterozygote group and 31.7% in the non-deficient heterozygote group. A significant negative correlation was observed between X-inactivation ratios of the wild-type allele and G6PD/6-phosphogluconate dehydrogenase (6PGD) ratios in heterozygous G6PD Canton (r=-0.657, p<0.001) or Kaiping (r=-0.668, p<0.001). Multivariate logistic regression indicated that heterozygotes with hypermethylation of specific CpG sites in the G6PD promoter and preferential X-inactivation of the wild-type allele were at risk of enzyme deficiency.
Collapse
|
119
|
Gómez-Manzo S, Terrón-Hernández J, de la Mora-de la Mora I, García-Torres I, López-Velázquez G, Reyes-Vivas H, Oria-Hernández J. Cloning, expression, purification and characterization of his-tagged human glucose-6-phosphate dehydrogenase: a simplified method for protein yield. Protein J 2014; 32:585-92. [PMID: 24146346 DOI: 10.1007/s10930-013-9518-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first step of the pentose phosphate pathway. In erythrocytes, the functionality of the pathway is crucial to protect these cells against oxidative damage. G6PD deficiency is the most frequent enzymopathy in humans with a global prevalence of 4.9 %. The clinical picture is characterized by chronic or acute hemolysis in response to oxidative stress, which is related to the low cellular activity of G6PD in red blood cells. The disease is heterogeneous at genetic level with around 160 mutations described, mostly point mutations causing single amino acid substitutions. The biochemical studies aimed to describe the detrimental effects of mutations on the functional and structural properties of human G6PD are indispensable to understand the molecular physiopathology of this disease. Therefore, reliable systems for efficient expression and purification of the protein are highly desirable. In this work, human G6PD was heterologously expressed in Escherichia coli and purified by immobilized metal affinity chromatography in a single chromatographic step. The structural and functional characterization indicates that His-tagged G6PD resembles previous preparations of recombinant G6PD. In contrast with previous protein yield systems, our method is based on commonly available resources and fully accessible laboratory equipment; therefore, it can be readily implemented.
Collapse
Affiliation(s)
- Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaria de Salud, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Delegación Coyoacán, 04530, Mexico, D.F., Mexico
| | | | | | | | | | | | | |
Collapse
|
120
|
Roberts DA, Freed JA. Rasburicase-induced methemoglobinemia in two African-American female patients: an under-recognized and continued problem. Eur J Haematol 2014; 94:83-5. [DOI: 10.1111/ejh.12350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel A. Roberts
- Department of Medicine; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston MA USA
| | - Jason A. Freed
- Department of Medicine; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston MA USA
| |
Collapse
|
121
|
Relling MV, McDonagh EM, Chang T, Caudle KE, McLeod HL, Haidar CE, Klein T, Luzzatto L. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for rasburicase therapy in the context of G6PD deficiency genotype. Clin Pharmacol Ther 2014; 96:169-74. [PMID: 24787449 DOI: 10.1038/clpt.2014.97] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/27/2014] [Indexed: 02/02/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with development of acute hemolytic anemia (AHA) induced by a number of drugs. We provide guidance as to which G6PD genotypes are associated with G6PD deficiency in males and females. Rasburicase is contraindicated in G6PD-deficient patients due to the risk of AHA and possibly methemoglobinemia. Unless preemptive genotyping has established a positive diagnosis of G6PD deficiency, quantitative enzyme assay remains the mainstay of screening prior to rasburicase use. The purpose of this article is to help interpret the results of clinical G6PD genotype tests so that they can guide the use of rasburicase. Detailed guidelines on other aspects of the use of rasburicase, including analyses of cost-effectiveness, are beyond the scope of this document. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines are published and updated periodically on https://www.pharmgkb.org/page/cpic to reflect new developments in the field.
Collapse
Affiliation(s)
- M V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - E M McDonagh
- Department of Genetics, Stanford University, Stanford, California, USA
| | - T Chang
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - K E Caudle
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - H L McLeod
- Personalized Medicine Institute, Moffitt Cancer Center, Tampa, Florida, USA
| | - C E Haidar
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - T Klein
- Department of Genetics, Stanford University, Stanford, California, USA
| | - L Luzzatto
- Department of Hematology, Istituto Toscano Tumori, Firenze, Italy
| | | |
Collapse
|
122
|
Wang YP, Zhou LS, Zhao YZ, Wang SW, Chen LL, Liu LX, Ling ZQ, Hu FJ, Sun YP, Zhang JY, Yang C, Yang Y, Xiong Y, Guan KL, Ye D. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J 2014; 33:1304-20. [PMID: 24769394 DOI: 10.1002/embj.201387224] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re-expression of wild-type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2-dependent manner. The SIRT2-mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China
| | - Li-Sha Zhou
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China
| | - Yu-Zheng Zhao
- School of Pharmacy East China University of Science and Technology, Shanghai, China
| | - Shi-Wen Wang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China
| | - Lei-Lei Chen
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China
| | - Li-Xia Liu
- Key Laboratory of Synthetic Biology, Bioinformatics Center and Laboratory of Systems Biology, Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital Zhejiang Cancer Center, Hangzhou, China
| | - Fu-Jun Hu
- Department of Radiotherapy, Zhejiang Province Cancer Hospital Zhejiang Cancer Center, Hangzhou, China
| | - Yi-Ping Sun
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China
| | - Jing-Ye Zhang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China
| | - Chen Yang
- Key Laboratory of Synthetic Biology, Bioinformatics Center and Laboratory of Systems Biology, Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Yi Yang
- School of Pharmacy East China University of Science and Technology, Shanghai, China
| | - Yue Xiong
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Kun-Liang Guan
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Dan Ye
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College College of Life Science Fudan University, Shanghai, China
| |
Collapse
|
123
|
Okebe J, Amambua-Ngwa A, Parr J, Nishimura S, Daswani M, Takem EN, Affara M, Ceesay SJ, Nwakanma D, D'Alessandro U. The prevalence of glucose-6-phosphate dehydrogenase deficiency in Gambian school children. Malar J 2014; 13:148. [PMID: 24742291 PMCID: PMC3999733 DOI: 10.1186/1475-2875-13-148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Primaquine, the only available drug effective against Plasmodium falciparum sexual stages, induces also a dose-dependent haemolysis, especially in glucose-6-phosphate dehydrogenase deficient (G6PDd) individuals. Therefore, it is important to determine the prevalence of this deficiency in areas that would potentially benefit from its use. The prevalence of G6PD deficiency by genotype and enzyme activity was determined in healthy school children in The Gambia. METHODS Blood samples from primary school children collected during a dry season malaria survey were screened for G6PDd and malaria infection. Genotypes for allele mutations reported in the country; 376, 202A-, 968A- and 542 were analysed while enzyme activity (phenotype) was assayed using a semi-quantitative commercial test kit. Enzyme activity values were fitted in a finite mixture model to determine the distribution and calculate a cut-off for deficiency. The association between genotype and phenotype for boys and girls as well as the association between mutant genotype and deficient phenotype was analysed. RESULTS Samples from 1,437 children; 51% boys were analysed. The prevalence of P. falciparum malaria infection was 14%. The prevalence of the 202A-, 968 and 542 mutations was 1.8%, 2.1% and 1.0%, respectively, and higher in boys than in girls. The prevalence of G6PDd phenotype was 6.4% (92/1,437), 7.8% (57/728) in boys and 4.9% (35/709) in girls with significantly higher odds in the former (OR 1.64, 95% CI 1.05, 2.53, p = 0.026). The deficient phenotype was associated with reduced odds of malaria infection (OR 0.77, 95% CI 0.36, 1.62, p = 0.49). CONCLUSIONS There is a weak association between genotype and phenotype estimates of G6PDd prevalence. The phenotype expression of deficiency represents combinations of mutant alleles rather than specific mutations. Genotype studies in individuals with a deficient phenotype would help identify alleles responsible for haemolysis.
Collapse
Affiliation(s)
- Joseph Okebe
- Medical Research Council Unit, Atlantic Boulevard, Fajara, The Gambia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Cheah F, Peskin AV, Wong F, Ithnin A, Othman A, Winterbourn CC. Increased basal oxidation of peroxiredoxin 2 and limited peroxiredoxin recycling in glucose‐6‐phosphate dehydrogenase‐deficient erythrocytes from newborn infants. FASEB J 2014; 28:3205-10. [DOI: 10.1096/fj.14-250050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Fook‐Choe Cheah
- Department of PaediatricsUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia
| | - Alexander V. Peskin
- Centre for Free Radical ResearchDepartment of PathologyUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Fei‐Liang Wong
- Department of PaediatricsUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia
| | - Azlin Ithnin
- Department of PathologyUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia
| | - Ainoon Othman
- Department of PathologyUniversiti Sains Islam MalaysiaKuala LumpurMalaysia
| | - Christine C. Winterbourn
- Centre for Free Radical ResearchDepartment of PathologyUniversity of Otago ChristchurchChristchurchNew Zealand
- Gravida National Centre for Growth and DevelopmentUniversity of Otago ChristchurchChristchurchNew Zealand
| |
Collapse
|
125
|
Budak H, Ceylan H, Kocpinar EF, Gonul N, Erdogan O. Expression of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in oxidative stress induced by long-term iron toxicity in rat liver. J Biochem Mol Toxicol 2014; 28:217-23. [PMID: 24599681 DOI: 10.1002/jbt.21556] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/14/2014] [Accepted: 02/01/2014] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive and oxygen-containing molecules that are derived by metabolic activities or from environmental sources. Toxicity of heavy metals including iron has the ability to generate ROS in all living organisms. The pentose phosphate pathway enzymes, which are glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, produce nicotinamide adenine dinucleotide phosphate (NADPH) that enables cells to counterbalance the oxidative stress via the action of the glutathione system. The results presented here have shown that toxic and nontoxic levels of iron have a strong effect on the expression of both genes. While toxic levels of iron exhibited significant changes in enzyme activity, nontoxic levels had no effect on enzymes in rat liver. Our results are the first evidence to elucidate how oxidative stress induced by long-term iron toxicity affects both enzymes at the enzymatic and molecular level and also to determine any possible correlation between the enzymatic and molecular levels.
Collapse
Affiliation(s)
- Harun Budak
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Turkey.
| | | | | | | | | |
Collapse
|
126
|
Cox SE, Makani J, Soka D, L'Esperence VS, Kija E, Dominguez-Salas P, Newton CRJ, Birch AA, Prentice AM, Kirkham FJ. Haptoglobin, alpha-thalassaemia and glucose-6-phosphate dehydrogenase polymorphisms and risk of abnormal transcranial Doppler among patients with sickle cell anaemia in Tanzania. Br J Haematol 2014; 165:699-706. [PMID: 24666344 PMCID: PMC4154124 DOI: 10.1111/bjh.12791] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/05/2014] [Indexed: 02/04/2023]
Abstract
Transcranial Doppler ultrasonography measures cerebral blood flow velocity (CBFv) of basal intracranial vessels and is used clinically to detect stroke risk in children with sickle cell anaemia (SCA). Co‐inheritance in SCA of alpha‐thalassaemia and glucose‐6‐phosphate dehydrogenase (G6PD) polymorphisms is reported to associate with high CBFv and/or risk of stroke. The effect of a common functional polymorphism of haptoglobin (HP) is unknown. We investigated the effect of co‐inheritance of these polymorphisms on CBFv in 601 stroke‐free Tanzanian SCA patients aged <24 years. Homozygosity for alpha‐thalassaemia 3·7 deletion was significantly associated with reduced mean CBFv compared to wild‐type (β‐coefficient −16·1 cm/s, P = 0·002) adjusted for age and survey year. Inheritance of 1 or 2 alpha‐thalassaemia deletions was associated with decreased risk of abnormally high CBFv, compared to published data from Kenyan healthy control children (Relative risk ratio [RRR] = 0·53 [95% confidence interval (CI):0·35–0·8] & RRR = 0·43 [95% CI:0·23–0·78]), and reduced risk of abnormally low CBFv for 1 deletion only (RRR = 0·38 [95% CI:0·17–0·83]). No effects were observed for G6PD or HP polymorphisms. This is the first report of the effects of co‐inheritance of common polymorphisms, including the HP polymorphism, on CBFv in SCA patients resident in Africa and confirms the importance of alpha‐thalassaemia in reducing risk of abnormal CBFv.
Collapse
Affiliation(s)
- Sharon E Cox
- MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, UK; Muhimbili Wellcome Programme, Muhimbili University of Health & Allied Sciences, Dar es Salaam, Tanzania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Luzzatto L, Seneca E. G6PD deficiency: a classic example of pharmacogenetics with on-going clinical implications. Br J Haematol 2014; 164:469-80. [PMID: 24372186 PMCID: PMC4153881 DOI: 10.1111/bjh.12665] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
That primaquine and other drugs can trigger acute haemolytic anaemia in subjects who have an inherited mutation of the glucose 6-phosphate dehydrogenase (G6PD) gene has been known for over half a century: however, these events still occur, because when giving the drug either the G6PD status of a person is not known, or the risk of this potentially life-threatening complication is under-estimated. Here we review briefly the genetic basis of G6PD deficiency, and then the pathophysiology and the clinical features of drug-induced haemolysis; we also update the list of potentially haemolytic drugs (which includes rasburicase). It is now clear that it is not good practice to give one of these drugs before testing a person for his/her G6PD status, especially in populations in whom G6PD deficiency is common. We discuss therefore how G6PD testing can be done reconciling safety with cost; this is once again becoming of public health importance, as more countries are moving along the pathway of malaria elimination, that might require mass administration of primaquine. Finally, we sketch the triangular relationship between malaria, antimalarials such as primaquine, and G6PD deficiency: which is to some extent protective against malaria, but also a genetically determined hazard when taking primaquine.
Collapse
Affiliation(s)
- Lucio Luzzatto
- Istituto Toscano Tumori and Department of Haematology, University of FlorenceFirenze, Italy
| | - Elisa Seneca
- Department of Haematology, University of Naples Federico IINapoli, Italy
| |
Collapse
|
128
|
|
129
|
Spatial distribution of G6PD deficiency variants across malaria-endemic regions. Malar J 2013; 12:418. [PMID: 24228846 PMCID: PMC3835423 DOI: 10.1186/1475-2875-12-418] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/28/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Primaquine is essential for malaria control and elimination since it is the only available drug preventing multiple clinical attacks by relapses of Plasmodium vivax. It is also the only therapy against the sexual stages of Plasmodium falciparum infectious to mosquitoes, and is thus useful in preventing malaria transmission. However, the difficulties of diagnosing glucose-6-phosphate dehydrogenase deficiency (G6PDd) greatly hinder primaquine's widespread use, as this common genetic disorder makes patients susceptible to potentially severe and fatal primaquine-induced haemolysis. The risk of such an outcome varies widely among G6PD gene variants. METHODS A literature review was conducted to identify surveys of G6PD variant frequencies among representative population groups. Informative surveys were assembled into two map series: (1) those showing the relative proportions of the different variants among G6PDd individuals; and (2) those showing allele frequencies of G6PD variants based on population surveys without prior G6PDd screening. RESULTS Variants showed conspicuous geographic patterns. A limited repertoire of variants was tested for across sub-Saharan Africa, which nevertheless indicated low genetic heterogeneity predominated by the G6PD A(-202A) mutation, though other mutations were common in western Africa. The severe G6PD Mediterranean variant was widespread across western Asia. Further east, a sharp shift in variants was identified, with high variant heterogeneity in the populations of China and the Asia-Pacific where no single variant dominated. CONCLUSIONS G6PD variants exhibited distinctive region-specific distributions with important primaquine policy implications. Relative homogeneity in the Americas, Africa, and western Asia contrasted sharply with the heterogeneity of variants in China, Southeast Asia and Oceania. These findings will inform rational risk assessments for primaquine in developing public health strategies for malaria control and elimination, and support the future development of regionally targeted policies. The major knowledge gaps highlighted here strongly advocate for further investigation of G6PD variant diversity and their primaquine-sensitivity phenotypes.
Collapse
|
130
|
Domingo GJ, Satyagraha AW, Anvikar A, Baird K, Bancone G, Bansil P, Carter N, Cheng Q, Culpepper J, Eziefula C, Fukuda M, Green J, Hwang J, Lacerda M, McGray S, Menard D, Nosten F, Nuchprayoon I, Oo NN, Bualombai P, Pumpradit W, Qian K, Recht J, Roca A, Satimai W, Sovannaroth S, Vestergaard LS, Von Seidlein L. G6PD testing in support of treatment and elimination of malaria: recommendations for evaluation of G6PD tests. Malar J 2013; 12:391. [PMID: 24188096 PMCID: PMC3830439 DOI: 10.1186/1475-2875-12-391] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022] Open
Abstract
Malaria elimination will be possible only with serious attempts to address asymptomatic infection and chronic infection by both Plasmodium falciparum and Plasmodium vivax. Currently available drugs that can completely clear a human of P. vivax (known as "radical cure"), and that can reduce transmission of malaria parasites, are those in the 8-aminoquinoline drug family, such as primaquine. Unfortunately, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency risk having severe adverse reactions if exposed to these drugs at certain doses. G6PD deficiency is the most common human enzyme defect, affecting approximately 400 million people worldwide.Scaling up radical cure regimens will require testing for G6PD deficiency, at two levels: 1) the individual level to ensure safe case management, and 2) the population level to understand the risk in the local population to guide Plasmodium vivax treatment policy. Several technical and operational knowledge gaps must be addressed to expand access to G6PD deficiency testing and to ensure that a patient's G6PD status is known before deciding to administer an 8-aminoquinoline-based drug.In this report from a stakeholder meeting held in Thailand on October 4 and 5, 2012, G6PD testing in support of radical cure is discussed in detail. The focus is on challenges to the development and evaluation of G6PD diagnostic tests, and on challenges related to the operational aspects of implementing G6PD testing in support of radical cure. The report also describes recommendations for evaluation of diagnostic tests for G6PD deficiency in support of radical cure.
Collapse
|
131
|
Francis RO, Jhang JS, Pham HP, Hod EA, Zimring JC, Spitalnik SL. Glucose-6-phosphate dehydrogenase deficiency in transfusion medicine: the unknown risks. Vox Sang 2013; 105:271-82. [PMID: 23815264 DOI: 10.1111/vox.12068] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/05/2013] [Accepted: 06/05/2013] [Indexed: 12/21/2022]
Abstract
The hallmark of glucose-6-phosphate dehydrogenase (G6PD) deficiency is red blood cell (RBC) destruction in response to oxidative stress. Patients requiring RBC transfusions may simultaneously receive oxidative medications or have concurrent infections, both of which can induce haemolysis in G6PD-deficient RBCs. Although it is not routine practice to screen healthy blood donors for G6PD deficiency, case reports identified transfusion of G6PD-deficient RBCs as causing haemolysis and other adverse events. In addition, some patient populations may be more at risk for complications associated with transfusions of G6PD-deficient RBCs because they receive RBCs from donors who are more likely to have G6PD deficiency. This review discusses G6PD deficiency, its importance in transfusion medicine, changes in the RBC antioxidant system (of which G6PD is essential) during refrigerated storage and mechanisms of haemolysis. In addition, as yet unanswered questions that could be addressed by translational and clinical studies are identified and discussed.
Collapse
Affiliation(s)
- R O Francis
- Department of Pathology and Cell Biology, Laboratory of Transfusion Biology, Columbia University Medical Center-New York Presbyterian Hospital, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
132
|
De Niz M, Eziefula AC, Othieno L, Mbabazi E, Nabukeera D, Ssemmondo E, Gonahasa S, Tumwebaze P, Diliberto D, Maiteki-Sebuguzi C, Staedke SG, Drakeley C. Tools for mass screening of G6PD deficiency: validation of the WST8/1-methoxy-PMS enzymatic assay in Uganda. Malar J 2013; 12:210. [PMID: 23782846 PMCID: PMC3691584 DOI: 10.1186/1475-2875-12-210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/11/2013] [Indexed: 01/03/2023] Open
Abstract
Background The distribution of the enzymopathy glucose-6-phosphate dehydrogenase (G6PD) deficiency is linked to areas of high malaria endemicity due to its association with protection from disease. G6PD deficiency is also identified as the cause of severe haemolysis following administration of the anti-malarial drug primaquine and further use of this drug will likely require identification of G6PD deficiency on a population level. Current conventional methods for G6PD screening have various disadvantages for field use. Methods The WST8/1-methoxy PMS method, recently adapted for field use, was validated using a gold standard enzymatic assay (R&D Diagnostics Ltd ®) in a study involving 235 children under five years of age, who were recruited by random selection from a cohort study in Tororo, Uganda. Blood spots were collected by finger-prick onto filter paper at routine visits, and G6PD activity was determined by both tests. Performance of the WST8/1-methoxy PMS test under various temperature, light, and storage conditions was evaluated. Results The WST8/1-methoxy PMS assay was found to have 72% sensitivity and 98% specificity when compared to the commercial enzymatic assay and the AUC was 0.904, suggesting good agreement. Misclassifications were at borderline values of G6PD activity between mild and normal levels, or related to outlier haemoglobin values (<8.0 gHb/dl or >14 gHb/dl) associated with ongoing anaemia or recent haemolytic crises. Although severe G6PD deficiency was not found in the area, the test enabled identification of low G6PD activity. The assay was found to be highly robust for field use; showing less light sensitivity, good performance over a wide temperature range, and good capacity for medium-to-long term storage. Conclusions The WST8/1-methoxy PMS assay was comparable to the currently used standard enzymatic test, and offers advantages in terms of cost, storage, portability and use in resource-limited settings. Such features make this test a potential key tool for deployment in the field for point of care assessment prior to primaquine administration in malaria-endemic areas. As with other G6PD tests, outlier haemoglobin levels may confound G6PD level estimation.
Collapse
Affiliation(s)
- Mariana De Niz
- Malaria Centre, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Piel FB, Howes RE, Nyangiri OA, Moyes CL, Williams TN, Weatherall DJ, Hay SI. Online biomedical resources for malaria-related red cell disorders. Hum Mutat 2013; 34:937-44. [PMID: 23568771 PMCID: PMC3738938 DOI: 10.1002/humu.22330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/01/2013] [Indexed: 01/01/2023]
Abstract
Warnings about the expected increase of the global public health burden of malaria-related red cell disorders are accruing. Past and present epidemiological data are necessary to track spatial and temporal changes in the frequencies of these genetic disorders. A number of open access biomedical databases including data on malaria-related red cell disorders have been launched over the last two decades. Here, we review the content of these databases, most of which focus on genetic diversity, and we describe a new epidemiological resource developed by the Malaria Atlas Project. To tackle upcoming public health challenges, the integration of epidemiological and genetic data is important. As many countries are considering implementing national screening programs, strategies to make such data more accessible are also needed.
Collapse
Affiliation(s)
- Frédéric B Piel
- Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
134
|
Pan M, Lin M, Yang L, Wu J, Zhan X, Zhao Y, Wen Y, Liu G, Yang L, Cai Y. Glucose-6-phosphate dehydrogenase (G6PD) gene mutations detection by improved high-resolution DNA melting assay. Mol Biol Rep 2013; 40:3073-82. [PMID: 23275194 DOI: 10.1007/s11033-012-2381-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 12/17/2012] [Indexed: 02/05/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited disorder worldwide including southern China. G6PD gene mutations cause deficiency of the enzyme and a large spectrum of diseases. High-resolution DNA melting (HRM) assay was recently introduced as a rapid, inexpensive and effective method for genotyping. But there was a shortcoming of this method that hemizygous and homozygous genotypes were not easily distinguished from wild-types. Here we used improved HRM method for a small-scale screening of G6PD-deficient variants among people of Meizhou region. Then all amplicons were ascertained by direct DNA sequencing. These results indicated that HRM method was a major technical advance for G6PD mutations screening.
Collapse
Affiliation(s)
- Meichen Pan
- Medical Laboratory, First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041 Guangdong, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Howes RE, Battle KE, Satyagraha AW, Baird JK, Hay SI. G6PD deficiency: global distribution, genetic variants and primaquine therapy. ADVANCES IN PARASITOLOGY 2013; 81:133-201. [PMID: 23384623 DOI: 10.1016/b978-0-12-407826-0.00004-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is a potentially pathogenic inherited enzyme abnormality and, similar to other human red blood cell polymorphisms, is particularly prevalent in historically malaria endemic countries. The spatial extent of Plasmodium vivax malaria overlaps widely with that of G6PD deficiency; unfortunately the only drug licensed for the radical cure and relapse prevention of P. vivax, primaquine, can trigger severe haemolytic anaemia in G6PD deficient individuals. This chapter reviews the past and current data on this unique pharmacogenetic association, which is becoming increasingly important as several nations now consider strategies to eliminate malaria transmission rather than control its clinical burden. G6PD deficiency is a highly variable disorder, in terms of spatial heterogeneity in prevalence and molecular variants, as well as its interactions with P. vivax and primaquine. Consideration of factors including aspects of basic physiology, diagnosis, and clinical triggers of primaquine-induced haemolysis is required to assess the risks and benefits of applying primaquine in various geographic and demographic settings. Given that haemolytically toxic antirelapse drugs will likely be the only therapeutic options for the coming decade, it is clear that we need to understand in depth G6PD deficiency and primaquine-induced haemolysis to determine safe and effective therapeutic strategies to overcome this hurdle and achieve malaria elimination.
Collapse
|
136
|
Gu XJ, Chen SP, Ge SJ, Zheng LQ, Wang DW, Shen FX. G6PD deficiency-induced hemolysis in a Chinese diabetic patient: a case report with clinical and molecular analysis. Acta Diabetol 2013; 50:89-92. [PMID: 21080005 DOI: 10.1007/s00592-010-0236-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/27/2010] [Indexed: 01/18/2023]
Abstract
A 59-year-old Chinese male patient was admitted at diagnosis of type 1 diabetes with ketoacidosis. During the normalization of blood glucose with insulin, the patient developed acute hemolysis. The factors predisposing to hemolysis were not found, except the significantly diminished activity of glucose-6-phosphate dehydrogenase (G6PD). DNA analysis did not show any coding or intronic mutation in the G6PD gene. This is the first reported case of a Chinese patient in diabetic ketoacidosis with hemolysis induced by G6PD deficiency in the absence of mutations in the G6PD gene.
Collapse
Affiliation(s)
- Xue-Jiang Gu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical College, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
137
|
Laouini N, Bibi A, Ammar H, Kazdaghli K, Ouali F, Othmani R, Amdouni S, Haloui S, Sahli CA, Jouini L, Hadj Fredj S, Siala H, Ben Romdhane N, Toumi NE, Fattoum S, Messsaoud T. Glucose-6-phosphate dehydrogenase deficiency in Tunisia: molecular data and phenotype-genotype association. Mol Biol Rep 2012; 40:851-6. [PMID: 23065279 DOI: 10.1007/s11033-012-2124-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/03/2012] [Indexed: 12/18/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. In this study, we aimed to perform a molecular investigation of G6PD deficiency in Tunisia and to associate clinical manifestations and the degree of deficiency with the genotype. A total of 161 Tunisian subjects of both sexes were screened by spectrophotometric assay for enzyme activity. Out of these, 54 unrelated subjects were selected for screening of the most frequent mutations in Tunisia by PCR/RFLP, followed by size-based separation of double-stranded fragments under non-denaturing conditions on a denaturing high performance liquid chromatography system. Of the 56 altered chromosomes examined, 75 % had the GdA(-) mutation, 14.28 % showed the GdB(-) mutation and no mutations were identified in 10.72 % of cases. Hemizygous males with GdA(-) mutation were mostly of class III, while those with GdB(-) mutation were mainly of class II. The principal clinical manifestation encountered was favism. Acute hemolytic crises induced by drugs or infections and neonatal jaundice were also noted. Less severe clinical features such as low back pain were present in heterozygous females and in one homozygous female. Asymptomatic individuals were in majority heterozygote females and strangely one hemizygous male. The spectrum of mutations seems to be homogeneous and similar to that of Mediterranean countries; nevertheless 10.72 % of cases remain with undetermined mutation thus suggesting a potential heterogeneity of the deficiency at the molecular level. On the other hand, we note a better association of the molecular defects with the severity of the deficiency than with clinical manifestations.
Collapse
Affiliation(s)
- N Laouini
- Biochemistry Laboratory, Research Laboratory LR00SP03, Children's Hospital, Bab Saadoun Square, Tunis, Tunisia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Dallol A, Banni H, Gari MA, Al-Qahtani MH, Abuzenadeh AM, Al-Sayes F, Chaudhary AG, Bidwell J, Kafienah W. Five novel glucose-6-phosphate dehydrogenase deficiency haplotypes correlating with disease severity. J Transl Med 2012; 10:199. [PMID: 23006493 PMCID: PMC3492101 DOI: 10.1186/1479-5876-10-199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/19/2012] [Indexed: 12/05/2022] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) deficiency is caused by one or more mutations in the G6PD gene on chromosome X. An association between enzyme levels and gene haplotypes remains to be established. Methods In this study, we determined G6PD enzyme levels and sequenced the coding region, including the intron-exon boundaries, in a group of individuals (163 males and 86 females) who were referred to the clinic with suspected G6PD deficiency. The sequence data were analysed by physical linkage analysis and PHASE haplotype reconstruction. Results All previously reported G6PD missense changes, including the AURES, MEDITERRANEAN, A-, SIBARI, VIANGCHAN and ANANT, were identified in our cohort. The AURES mutation (p.Ile48Thr) was the most common variant in the cohort (30% in males patients) followed by the Mediterranean variant (p.Ser188Phe) detectable in 17.79% in male patients. Variant forms of the A- mutation (p.Val68Met, p.Asn126Asp or a combination of both) were detectable in 15.33% of the male patients. However, unique to this study, several of such mutations co-existed in the same patient as shown by physical linkage in males or PHASE haplotype reconstruction in females. Based on 6 non-synonymous variants of G6PD, 13 different haplotypes (13 in males, 8 in females) were identified. Five of these were previously unreported (Jeddah A, B, C, D and E) and were defined by previously unreported combinations of extant mutations where patients harbouring these haplotypes exhibited severe G6PD deficiency. Conclusions Our findings will help design a focused population screening approach and provide better management for G6PD deficiency patients.
Collapse
Affiliation(s)
- Ashraf Dallol
- School of Cellular and Molecular Medicine, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Arese P, Gallo V, Pantaleo A, Turrini F. Life and Death of Glucose-6-Phosphate Dehydrogenase (G6PD) Deficient Erythrocytes - Role of Redox Stress and Band 3 Modifications. ACTA ACUST UNITED AC 2012; 39:328-34. [PMID: 23801924 DOI: 10.1159/000343123] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/04/2012] [Indexed: 11/19/2022]
Abstract
SUMMARY G6PD catalyzes the first, pace-making reaction of pentosephosphate cycle (PPC) which produces NADPH. NADPH maintains glutathione and thiol groups of proteins and enzymes in the reduced state which is essential for protection against oxidative stress. Individuals affected by G6PD deficiency are unable to regenerate reduced glutathione (GSH) and are undefended against oxidative stress. G6PD deficiency accelerates normal senescence and enhances the precocious removal of chronologically young, yet biologically old cells. The term hemolytic anemia is misleading because RBCs do not lyse but are removed by phagocytosis. Acute hemolysis by fava bean ingestion in G6PD deficient individuals (favism) is described being the best-studied natural model of oxidant damage. It bears strong analogies to hemolysis by oxidant drugs or chemicals. Membrane alterations observed in vivo during favism are superimposable to changes in senescent RBCs. In summary, RBC membranes isolated from favic patients contained elevated amounts of complexes between IgG and the complement fragment C3b/C3c and were prone to vesiculation. Anti-band 3 IgG reacted to aggregated band 3-complement complexes. In favism extensive clustering of band 3 and membrane deposition of hemichromes were also observed. Severely damaged RBCs isolated from early crises had extensive membrane cross-bonding and very low GSH levels and were phagocytosed 10-fold more intensely compared to normal RBCs.
Collapse
Affiliation(s)
- Paolo Arese
- Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy
| | | | | | | |
Collapse
|
140
|
Benmansour I, Moradkhani K, Moumni I, Wajcman H, Hafsia R, Ghanem A, Abbès S, Préhu C. Two new class III G6PD variants [G6PD Tunis (c.920A>C: p.307Gln>Pro) and G6PD Nefza (c.968T>C: p.323 Leu>Pro)] and overview of the spectrum of mutations in Tunisia. Blood Cells Mol Dis 2012; 50:110-4. [PMID: 22963789 DOI: 10.1016/j.bcmd.2012.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 11/18/2022]
Abstract
We screened 423 patients referred to our laboratory after hemolysis triggered by fava beans ingestion, neonatal jaundice or drug hemolysis. Others were asymptomatic but belonged to a family with a history of G6PD deficiency. The determination of enzymatic activity using spectrophotometric method, revealed 293 deficient (143 males and 150 females). The molecular analysis was performed by a combination of PCR-RFLP and DNA sequencing to characterize the mutations causing G6PD deficiency. 14 different genotypes have been identified : G6PD A(-) (376A>G;202G>A) (46.07%) and G6PD Med (33.10%) were the most common variants followed by G6PD Santamaria (5.80%), G6PD Kaiping (3.75%), the association [c.1311T and IVS11 93c] (3.75%), G6PD Chatham (2.04%), G6PD Aures (1.70%), G6PD A(-) Betica (0.68%), the association [ 376G;c.1311T;IVS11 93c] (0.68%), G6PD Malaga, G6PD Canton and G6PD Abeno respectively (0.34%). Two novel missense mutations were identified (c.920A>C: p.307Gln>Pro and c.968T>C: p.323 Leu>Pro). We designated these two class III variants as G6PD Tunis and G6PD Nefza. A mechanism which could account for the defective activity is discussed.
Collapse
Affiliation(s)
- Ikbel Benmansour
- Laboratoire d'hématologie moléculaire et cellulaire, Institut Pasteur de Tunis, 13 place Pasteur, Tunis-Le-Belvédère, Tunisia.
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Thangarajh M, Yang G, Fuchs D, Ponisio MR, McKinstry RC, Jaju A, Noetzel MJ, Casella JF, Barron-Casella E, Hooper WC, Boulet SL, Bean CJ, Pyle ME, Payne AB, Driggers J, Trau HA, Vendt BA, Rodeghier M, DeBaun MR. Magnetic resonance angiography-defined intracranial vasculopathy is associated with silent cerebral infarcts and glucose-6-phosphate dehydrogenase mutation in children with sickle cell anaemia. Br J Haematol 2012; 159:352-9. [PMID: 22958163 DOI: 10.1111/bjh.12034] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/16/2012] [Indexed: 01/02/2023]
Abstract
Silent cerebral infarct (SCI) is the most commonly recognized cause of neurological injury in sickle cell anaemia (SCA). We tested the hypothesis that magnetic resonance angiography (MRA)-defined vasculopathy is associated with SCI. Furthermore, we examined genetic variations in glucose-6-phosphate dehydrogenase (G6PD) and HBA (α-globin) genes to determine their association with intracranial vasculopathy in children with SCA. Magnetic resonance imaging (MRI) of the brain and MRA of the cerebral vasculature were available in 516 paediatric patients with SCA, enrolled in the Silent Infarct Transfusion (SIT) Trial. All patients were screened for G6PD mutations and HBA deletions. SCI were present in 41·5% (214 of 516) of SIT Trial children. The frequency of intracranial vasculopathy with and without SCI was 15·9% and 6·3%, respectively (P < 0·001). Using a multivariable logistic regression model, only the presence of a SCI was associated with increased odds of vasculopathy (P = 0·0007, odds ratio (OR) 2·84; 95% Confidence Interval (CI) = 1·55-5·21). Among male children with SCA, G6PD status was associated with vasculopathy (P = 0·04, OR 2·78; 95% CI = 1·04-7·42), while no significant association was noted for HBA deletions. Intracranial vasculopathy was observed in a minority of children with SCA, and when present, was associated with G6PD status in males and SCI.
Collapse
Affiliation(s)
- Mathula Thangarajh
- Department of Neurology and Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Al-Sweedan SA, Awwad N. Molecular characterization of glucose-6-phosphate dehydrogenase deficiency among Jordanians. Acta Haematol 2012; 128:195-202. [PMID: 22906837 DOI: 10.1159/000339505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/08/2012] [Indexed: 01/30/2023]
Abstract
BACKGROUND/AIMS In Jordan, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a significant health problem, and the incidence was reported to be about 3.6%. The aims of this study are to investigate the most common molecular mutations of the G6PD gene among Jordanians in northern Jordan and to examine the correlation between the genotype and phenotype of this enzyme deficiency. METHODS Seventy-five blood samples were collected from patients attending King Abdullah University Hospital and Princess Rahma Teaching Hospital. The G6PD gene was scanned for mutations using a DNA sequencing technique. RESULTS Our results showed 11 variations (7 exonic and 4 intronic) as follows: c.202 G>A (rs1050828), c.376 A>G (rs1050829), c.404 A>C (CM962574 single-nucleotide polymorphism), c.542 A>T (rs5030872), c.563 C>T (rs5030868), c.1003 G>A (rs5030869), c.1311 C>T (rs2230037), c.486-90 C>T, c.486-60 C>G (rs2515904), c.770+175 C>T (rs2515905) and c.1311 C>T (rs2230037). Among these, G6PD Mediterranean (c.563 C>T) was the most common in our patients, with a frequency of 76.2%, followed by G6PD A- (c.202 G>A + c.376 A>G) with 19%, and an equal frequency of 1.6% was found for G6PD Chatham (c.1003 G>A), G6PD Santamaria (c.542 A>T + c.376 A>G) and G6PD Cairo (c.404 A>C). CONCLUSION This is the first report of G6PD Santamaria and Cairo among our Jordanian population.
Collapse
|
143
|
Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 2012; 53:421-36. [PMID: 22580150 DOI: 10.1016/j.freeradbiomed.2012.05.006] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 04/14/2012] [Accepted: 05/03/2012] [Indexed: 01/10/2023]
Abstract
The pentose phosphate pathway, one of the main antioxidant cellular defense systems, has been related for a long time almost exclusively to its role as a provider of reducing power and ribose phosphate to the cell. In addition to this "traditional" correlation, in the past years multiple roles have emerged for this metabolic cascade, involving the cell cycle, apoptosis, differentiation, motility, angiogenesis, and the response to anti-tumor therapy. These findings make the pentose phosphate pathway a very interesting target in tumor cells. This review summarizes the latest discoveries relating the activity of the pentose phosphate pathway to various aspects of tumor metabolism, such as cell proliferation and death, tissue invasion, angiogenesis, and resistance to therapy, and discusses the possibility that drugs modulating the pathway could be used as potential tools in tumor therapy.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Genetics, Biology, and Biochemistry, University of Torino, Turin, Italy.
| | | | | | | | | |
Collapse
|
144
|
|
145
|
Van Malderen C, Van Geertruyden JP, Machevo S, González R, Bassat Q, Talisuna A, Yeka A, Nabasumba C, Piola P, Daniel A, Turyakira E, Forret P, Van Overmeir C, Van Loen H, Robert A, D’ Alessandro U. Glucose-6-phosphate dehydrogenase deficiency, chlorproguanil-dapsone with artesunate and post-treatment haemolysis in African children treated for uncomplicated malaria. Malar J 2012; 11:139. [PMID: 22546009 PMCID: PMC3393623 DOI: 10.1186/1475-2875-11-139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/30/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a leading cause of mortality, particularly in sub-Saharan African children. Prompt and efficacious treatment is important as patients may progress within a few hours to severe and possibly fatal disease. Chlorproguanil-dapsone-artesunate (CDA) was a promising artemisinin-based combination therapy (ACT), but its development was prematurely stopped because of safety concerns secondary to its associated risk of haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. The objective of the study was to assess whether CDA treatment and G6PD deficiency are risk factors for a post-treatment haemoglobin drop in African children<5 years of age with uncomplicated malaria. METHODS This case-control study was performed in the context of a larger multicentre randomized clinical trial comparing safety and efficacy of four different ACT in children with uncomplicated malaria. Children, who after treatment experienced a haemoglobin drop≥2 g/dl (cases) within the first four days (days 0, 1, 2, and 3), were compared with those without an Hb drop (controls). Cases and controls were matched for study site, sex, age and baseline haemoglobin measurements. Data were analysed using a conditional logistic regression model. RESULTS G6PD deficiency prevalence, homo- or hemizygous, was 8.5% (10/117) in cases and 6.8% (16/234) in controls (p=0.56). The risk of a Hb drop≥2 g/dl was not associated with either G6PD deficiency (adjusted odds ratio (AOR): 0.81; p=0.76) or CDA treatment (AOR: 1.28; p=0.37) alone. However, patients having both risk factors tended to have higher odds (AOR: 11.13; p=0.25) of experiencing a Hb drop≥2 g/dl within the first four days after treatment, however this finding was not statistically significant, mainly because G6PD deficient patients treated with CDA were very few. In non-G6PD deficient individuals, the proportion of cases was similar between treatment groups while in G6PD-deficient individuals, haemolytic anaemia occurred more frequently in children treated with CDA (56%) than in those treated with other ACT (29%), though the difference was not significant (p=0.49). CONCLUSION The use of CDA for treating uncomplicated malaria may increase the risk of haemolytic anaemia in G6PD-deficient children.
Collapse
Affiliation(s)
- Carine Van Malderen
- Faculté de pharmacie et des sciences biomédicales, Université catholique de Louvain, Brussels, Belgium
- Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Sonia Machevo
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Raquel González
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
- Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Quique Bassat
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
- Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ambrose Talisuna
- Department of Epidemiology and Biostatistics, Makerere University School of Public Health, P.O Box 7072, Kampala, Uganda
- Malaria Public Health and Epidemiology Group (MPHEG), University of Oxford-KEMRI-Wellcome Trust Research Program, Nairobi, Kenya
| | - Adoke Yeka
- Department of Epidemiology and Biostatistics, Makerere University School of Public Health, P.O Box 7072, Kampala, Uganda
| | | | | | | | | | | | | | | | - Annie Robert
- Université catholique de Louvain. Brussels Health Sector – Institut de recherche expérimentale et clinique Pôle, Epidémiologie et biostatistique B1.30.13, Brussels, Belgium
| | | |
Collapse
|
146
|
Sirdah M, Reading NS, Perkins SL, Shubair M, Aboud L, Prchal JT. Hemolysis and Mediterranean G6PD mutation (c.563 C>T) and c.1311 C>T polymorphism among Palestinians at Gaza Strip. Blood Cells Mol Dis 2012; 48:203-8. [DOI: 10.1016/j.bcmd.2012.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 01/26/2012] [Indexed: 01/08/2023]
|
147
|
Bamgbola O. Resistance to erythropoietin-stimulating agents: etiology, evaluation, and therapeutic considerations. Pediatr Nephrol 2012; 27:195-205. [PMID: 21424525 DOI: 10.1007/s00467-011-1839-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 01/10/2023]
Abstract
Routine clinical and laboratory assessments facilitate diagnosis of erythropoietin (EPO) resistant anemia by allowing early identification of patients with non-adherence. Any new event that impairs response to EPO (e.g., catheter sepsis) must be promptly controlled. Because of the confounding interaction of its risk factors, initial evaluation should include nutrition, dialysis adequacy, hemorrhage, bone mineral metabolism, and inflammation. Prevention of EPO resistance is more cost effective and should include adequate dialysis and nutritional supplements. Blood loss during hemodialysis (HD) procedures should be minimized. If there is laboratory proof of iron deficit intravenous repletion is most effective. Oxidative stress may be attenuated by vitamins E and C, while optimal control of hyperparathyroidism will enhance EPO stimulation. Contaminated dialysates should be suspected if there is EPO-stimulating agents (ESA) resistance at the same time among most members of a dialysis program. Heavy metal toxicity should be suspected in high-risk patients. The impact of co-morbidities such as hemoglobinopathy, glucose 6 phosphate dehydrogenase (G6PD) deficiency and connective tissue diseases must be excluded in an appropriate setting. In conclusion, given the multiple risk factors of EPO resistance promotion of the overall health status will most likely yield an enduring benefit. Finally, there are experimental trials of gene-based (therapy) to stimulate endogenous EPO synthesis with the goal of avoiding the off-target effect of excessive dosing.
Collapse
Affiliation(s)
- Oluwatoyin Bamgbola
- Percy Rosenbaum Professorship of Pediatric Nephrology, Children's Hospital/LSU Health Science Center, New Orleans, LA, USA.
| |
Collapse
|
148
|
Phompradit P, Kuesap J, Chaijaroenkul W, Rueangweerayut R, Hongkaew Y, Yamnuan R, Na-Bangchang K. Prevalence and distribution of glucose-6-phosphate dehydrogenase (G6PD) variants in Thai and Burmese populations in malaria endemic areas of Thailand. Malar J 2011; 10:368. [PMID: 22171972 PMCID: PMC3286437 DOI: 10.1186/1475-2875-10-368] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 12/15/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND G6PD deficiency is common in malaria endemic regions and is estimated to affect more than 400 million people worldwide. Treatment of malaria patients with the anti-malarial drug primaquine or other 8-aminoquinolines may be associated with potential haemolytic anaemia. The aim of the present study was to investigate the prevalence of G6PD variants in Thai population who resided in malaria endemic areas (western, northern, north-eastern, southern, eastern and central regions) of Thailand, as well as the Burmese population who resided in areas along the Thai-Myanmar border. METHODS The ten common G6PD variants were investigated in dried blood spot samples collected from 317 Thai (84 males, 233 females) and 183 Burmese (11 males, 172 females) populations residing in malaria endemic areas of Thailand using PCR-RFLP method. RESULTS Four and seven G6PD variants were observed in samples collected from Burmese and Thai population, with prevalence of 6.6% (21/317) and 14.2% (26/183), respectively. Almost all (96.2%) of G6PD mutation samples collected from Burmese population carried G6PD Mahidol variant; only one sample (3.8%) carried G6PD Kaiping variant. For the Thai population, G6PD Mahidol (8/21: 38.1%) was the most common variant detected, followed by G6PD Viangchan (4/21: 19.0%), G6PD Chinese 4 (3/21: 14.3%), G6PD Canton (2/21: 9.5%), G6PD Union (2/21: 9.5%), G6PD Kaiping (1/21: 4.8%), and G6PD Gaohe (1/21: 4.8%). No G6PD Chinese 3, Chinese 5 and Coimbra variants were found. With this limited sample size, there appeared to be variation in G6PD mutation variants in samples obtained from Thai population in different regions particularly in the western region. CONCLUSIONS Results indicate difference in the prevalence and distribution of G6PD gene variants among the Thai and Burmese populations in different malaria endemic areas. Dosage regimen of primaquine for treatment of both Plasmodium falciparum and Plasmodium vivax malaria may need to be optimized, based on endemic areas with supporting data on G6PD variants. Larger sample size from different malaria endemic is required to obtain accurate genetic mapping of G6PD variants in Burmese and Thai population residing in malaria endemic areas of Thailand.
Collapse
Affiliation(s)
- Papichaya Phompradit
- Thailand center of Excellence on Drug Discovery and Development, Thammasat University (Rangsit campus), Patumthani 12121, Thailand
| | | | | | | | | | | | | |
Collapse
|
149
|
Shimo H, Nishino T, Tomita M. Predicting the Kinetic Properties Associated with Redox Imbalance after Oxidative Crisis in G6PD-Deficient Erythrocytes: A Simulation Study. Adv Hematol 2011; 2011:398945. [PMID: 21977034 PMCID: PMC3184397 DOI: 10.1155/2011/398945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 12/05/2022] Open
Abstract
It is well known that G6PD-deficient individuals are highly susceptible to oxidative stress. However, the differences in the degree of metabolic alterations among patients during an oxidative crisis have not been extensively studied. In this study, we applied mathematical modeling to assess the metabolic changes in erythrocytes of various G6PD-deficient patients during hydrogen peroxide- (H(2)O(2)-) induced perturbation and predict the kinetic properties that elicit redox imbalance after exposure to an oxidative agent. Simulation results showed a discrepancy in the ability to restore regular metabolite levels and redox homeostasis among patients. Two trends were observed in the response of redox status (GSH/GSSG) to oxidative stress, a mild decrease associated with slow recovery and a drastic decline associated with rapid recovery. The former was concluded to apply to patients with severe clinical symptoms. Low V(max) and high K(mG6P) of G6PD were shown to be kinetic properties that enhance consequent redox imbalance.
Collapse
Affiliation(s)
- Hanae Shimo
- Institute for Advanced Biosciences, Keio University, 403-1, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
- Department of Environment and Information Studies, Keio University, Endo 5322, Fujisawa, Kanagawa 252-8520, Japan
| | - Taiko Nishino
- Institute for Advanced Biosciences, Keio University, 403-1, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-8520, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 403-1, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
- Department of Environment and Information Studies, Keio University, Endo 5322, Fujisawa, Kanagawa 252-8520, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-8520, Japan
| |
Collapse
|
150
|
|