101
|
McCarroll JA, Dwarte T, Baigude H, Dang J, Yang L, Erlich RB, Kimpton K, Teo J, Sagnella SM, Akerfeldt MC, Liu J, Phillips PA, Rana TM, Kavallaris M. Therapeutic targeting of polo-like kinase 1 using RNA-interfering nanoparticles (iNOPs) for the treatment of non-small cell lung cancer. Oncotarget 2015; 6:12020-34. [PMID: 25557168 PMCID: PMC4494920 DOI: 10.18632/oncotarget.2664] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/27/2014] [Indexed: 01/29/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most common cause of cancer death worldwide due its resistance to chemotherapy and aggressive tumor growth. Polo-like kinase 1 (PLK1) is a serine-threonine protein kinase which is overexpressed in cancer cells, and plays a major role in regulating tumor growth. A number of PLK1 inhibitors are in clinical trial; however, poor tumor bioavailability and off-target effects limit their efficacy. Short-interfering-RNA (siRNA) holds promise as a class of therapeutics, which can selectively silence disease-causing genes. However, siRNA cannot enter cells without a delivery vehicle. Herein, we investigated whether RNAi-interfering nanoparticles could deliver siRNA to NSCLC cells and silence PLK1 expression in vitro and in vivo. iNOP-7 was non-toxic, and delivered siRNA with high efficiency to NSCLC cells. iNOP-7-PLK1 siRNA silenced PLK1 expression and reduced NSCLC growth in vitro. Notably, iNOP-7 delivered siRNA to orthotopic lung tumors in mice, and administration of iNOP-7-PLK1 siRNA reduced lung tumor burden. These novel data show that iNOP-7 can deliver siRNA against PLK1 to NSCLC cells, and decrease cell proliferation both in vitro and in vivo. iNOP-7-PLK1 siRNA may provide a novel therapeutic strategy for the treatment of NSCLC as well as other cancers which aberrantly express this gene.
Collapse
Affiliation(s)
- Joshua A. McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, NSW, Australia
| | - Tanya Dwarte
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
| | - Huricha Baigude
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Jason Dang
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Lu Yang
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
| | - Rafael B. Erlich
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, NSW, Australia
| | - Kathleen Kimpton
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
| | - Joann Teo
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, NSW, Australia
| | - Sharon M. Sagnella
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, NSW, Australia
| | - Mia C. Akerfeldt
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
| | - Jie Liu
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW, NSW, Australia
| | - Phoebe A. Phillips
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, NSW, Australia
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW, NSW, Australia
| | - Tariq M. Rana
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, UNSW Australia (UNSW), NSW, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, NSW, Australia
| |
Collapse
|
102
|
Huang H, Chen AY, Rojanasakul Y, Ye X, Rankin GO, Chen YC. Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis. J Funct Foods 2015; 15:464-475. [PMID: 26113875 DOI: 10.1016/j.jff.2015.03.051] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Galangin and myricetin are flavonoids isolated from vegetables and fruits which exhibit anti-proliferative activity in human cancer cells. In this study, their anti-angiogenic effects were investigated with in vitro (HUVEC) and in vivo (CAM) models, which showed that galangin and myricetin inhibited angiogenesis induced by OVCAR-3 cells. The molecular mechanisms through which galangin and myricetin suppress angiogenesis were also studied. It was observed that galangin and myricetin inhibited secretion of the key angiogenesis mediator vascular endothelial growth factor (VEGF) and decreased levels of p-Akt, p-70S6K and hypoxia-inducible factor-1α (HIF-1α) proteins in A2780/CP70 and OVCAR-3 cells. Transient transfection experiments showed that galangin and myricetin inhibited secretion of VEGF by the Akt/p70S6K/ HIF-1α pathway. Moreover, a novel pathway, p21/HIF-1α/VEGF, was found to be involved in the inhibitory effect of myricetin on angiogenesis in OVCAR-3 cells. These data suggest that galangin and myricetin might serve as potential anti-angiogenic agents in the prevention of ovarian cancers dependent on new blood vessel networks.
Collapse
Affiliation(s)
- Haizhi Huang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, China ; College of Science, Technology & Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - Allen Y Chen
- Department of Pharmaceutical Science, West Virginia University, Morgantown, WV 26506, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Science, West Virginia University, Morgantown, WV 26506, USA
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, China
| | - Gary O Rankin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Yi Charlie Chen
- College of Science, Technology & Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| |
Collapse
|
103
|
Sangwan V, Banerjee S, Jensen K, Chen Z, Chugh R, Dudeja V, Vickers SM, Saluja AK. Primary and liver metastasis-derived cell lines from KrasG12D; Trp53R172H; Pdx-1 Cre animals undergo apoptosis in response to triptolide. Pancreas 2015; 44:583-9. [PMID: 25875797 PMCID: PMC4412369 DOI: 10.1097/mpa.0000000000000317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Pancreatic cancer has a 5-year survival rate of less than 5%, partly because of limited chemotherapeutic options, thereby highlighting the need for novel therapies. Triptolide, a diterpene triepoxide that was derived from a Chinese herb, has shown great promise in preclinical testing against pancreatic cancer using immunocompromised animals. RESULTS In this study, we tested the ability of triptolide to induce cell death in cell lines derived from a primary tumor and adjacent liver metastases of immunocompetent animals (Kras, Trp53, Pdx-1 Cre [KPC]). Both cell lines were more aggressive in their ability to form tumors when compared with other pancreatic cancer cell lines and showed constitutive activation of the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Triptolide induced apoptotic cell death in both cell lines, as evidenced by decreased cell viability as well as increased caspase 3/7 activity, annexin V positivity, and increased terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling positivity in tumors from KPC animals treated with Minnelide. In addition, triptolide decreased levels of HSP70, its transcription factor HSF1, as well as the antiapoptotic proteins Bcl-xL, Bcl-2, and Mcl-1, which are known to be up-regulated in pancreatic cancer. CONCLUSIONS The ability of triptolide to cause cell death in cell lines derived from immunocompetent animals further validates its potential as a novel agent against pancreatic cancer.
Collapse
Affiliation(s)
- Veena Sangwan
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Sulagna Banerjee
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Kelsey Jensen
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Zhiyu Chen
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Rohit Chugh
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Vikas Dudeja
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Selwyn M. Vickers
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Ashok K. Saluja
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455,Corresponding Author: Ashok K. Saluja, Ph.D., Department of Surgery, University of Minnesota, Minneapolis, MN 55455, , 612-624-8108 (phone), 612-614-8109 (fax)
| |
Collapse
|
104
|
Screening and biological evaluation of myricetin as a multiple target inhibitor insulin, epidermal growth factor, and androgen receptor; in silico and in vitro. Invest New Drugs 2015; 33:575-93. [PMID: 25895100 DOI: 10.1007/s10637-015-0240-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/07/2015] [Indexed: 01/04/2023]
Abstract
Myricetin is a naturally omnipresent benzo-α-pyrone flavonoids derivative; has potent anticancer activity. Receptor tyrosine kinases family provides the decisive role in cancer initiation and progression. These receptors have recently caught the attention of the researchers as an attractive target to combat cancer, owing to the evidences endorsed their over-expression on cancer cells. This study is a concerted effort to explore the potent and specific multi-targeted inhibitor against RTKs and AR\ER employing molecular docking approach. IR, IGF1R, EGFR, VEGFR1, VEGFR2, and AR\ER were chosen as a protein and natural compounds as a ligand. Molecular docking procedure followed by using Maestro 9.6 (Schrödinger Inc). All natural compounds were docked with the X-ray crystal structures of selected proteins by employing grid-based ligand docking with energetics Maestro 9.6. IBS natural compounds docked with each selected protein molecules by using GLIDE high throughput virtual screening. On the basis of Gscore, we selected 20 compounds from IBS (50,000 compounds) along with 68 anticancer compounds from published literature for GLIDE extra precision molecular docking. Calculated docking free energy yielded the excellent dock score for the myricetin when docked with proteins EGFR, IR, and AR\ER. Protein-ligand interactions profile highlighted that the lipophilic, hydrogen bonding and π-π stacking interactions play a central role in protein-ligand interactions at the active site. The results of MTT assay reveal that the myricetin inhibit the viability and proliferation of cancer cells in a dose-dependent manner. Treatment with the myricetin led to down-regulation of mRNA expression of EGFR, IR, mTOR, and Bcl-2. Although, further in vitro and in vivo experimental studies are required for the experimental validation of our findings.
Collapse
|
105
|
McCarroll JA, Sharbeen G, Liu J, Youkhana J, Goldstein D, McCarthy N, Limbri LF, Dischl D, Ceyhan GO, Erkan M, Johns AL, Biankin AV, Kavallaris M, Phillips PA. βIII-tubulin: a novel mediator of chemoresistance and metastases in pancreatic cancer. Oncotarget 2015; 6:2235-49. [PMID: 25544769 PMCID: PMC4385848 DOI: 10.18632/oncotarget.2946] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is a leading cause of cancer-related deaths in Western societies. This poor prognosis is due to chemotherapeutic drug resistance and metastatic spread. Evidence suggests that microtubule proteins namely, β-tubulins are dysregulated in tumor cells and are involved in regulating chemosensitivity. However, the role of β-tubulins in pancreatic cancer are unknown. We measured the expression of different β-tubulin isotypes in pancreatic adenocarcinoma tissue and pancreatic cancer cells. Next, we used RNAi to silence βIII-tubulin expression in pancreatic cancer cells, and measured cell growth in the absence and presence of chemotherapeutic drugs. Finally, we assessed the role of βIII-tubulin in regulating tumor growth and metastases using an orthotopic pancreatic cancer mouse model. We found that βIII-tubulin is highly expressed in pancreatic adenocarcinoma tissue and pancreatic cancer cells. Further, we demonstrated that silencing βIII-tubulin expression reduced pancreatic cancer cell growth and tumorigenic potential in the absence and presence of chemotherapeutic drugs. Finally, we demonstrated that suppression of βIII-tubulin reduced tumor growth and metastases in vivo. Our novel data demonstrate that βIII-tubulin is a key player in promoting pancreatic cancer growth and survival, and silencing its expression may be a potential therapeutic strategy to increase the long-term survival of pancreatic cancer patients.
Collapse
Affiliation(s)
- Joshua A. McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Sydney, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, Australia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - Jie Liu
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - Janet Youkhana
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
- Prince of Wales Hospital, Prince of Wales Clinical School, Sydney, NSW, Australia
| | - Nigel McCarthy
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Sydney, Australia
| | - Lydia F. Limbri
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - Dominic Dischl
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Güralp O. Ceyhan
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Mert Erkan
- Department of Surgery Koc University School of Medicine, Istanbul, Turkey
| | - Amber L. Johns
- The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - Andrew V. Biankin
- The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland G61 1BD, United Kingdom
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Sydney, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, Australia
| | - Phoebe A. Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| |
Collapse
|
106
|
Du Q, Xin G, Niu H, Huang W. Hydroquinone analog 4-[(Tetrahydro-2H-pyran-2‑yl) oxy] phenol induces C26 colon cancer cell apoptosis and inhibits tumor growth in vivo. Mol Med Rep 2015; 11:4671-7. [PMID: 25651526 DOI: 10.3892/mmr.2015.3300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 12/02/2014] [Indexed: 02/05/2023] Open
Abstract
The 4[(Tetrahydro‑2H‑pyran‑2‑yl) oxy] phenol (XG‑d) hydroquinone analog, is found in Vaccinium vitis‑idaea L. Although it is known for its antioxidant properties and high level of safety, its antitumor activity remains to be elucidated. In the present study, the anticancer effect of XG‑d was determined in vitro and in vivo. The cytotoxicity of XG‑d against C26 murine colon carcinoma cells was found to occur in a time‑ and concentration‑dependent manner, whereas little effect was observed in the two normal cell lines (HK‑2 and L02) investigated. Oral administration of XG‑d (100 mg/kg) had effects on the tumor growth of tumor‑bearing mice. Furthermore, marked apoptosis was observed using Hoechst 33258 staining and flow cytometric analysis with annexin V/propidium iodide double staining. XG‑d also downregulated the expression of B‑cell lymphoma 2 (Bcl‑2), increased the expression levels of Bcl‑2‑associated X protein and activated caspase‑9, caspase‑3 and poly(adenosine diphosphate‑ribose) polymerase. The present study demonstrated for the first time, to the best of our knowledge, that XG‑d inhibited cancer cell growth via the induction of apoptosis and was also able to inhibit tumor growth in vivo. These results demonstrated that XG‑d may be used as a potential natural agent for cancer therapy with low toxicity.
Collapse
Affiliation(s)
- Qigen Du
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, West China Hospital, West China Medical School and Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guang Xin
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, West China Hospital, West China Medical School and Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hai Niu
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, West China Hospital, West China Medical School and Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wen Huang
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, West China Hospital, West China Medical School and Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
107
|
Singh P, Bast F. High-throughput virtual screening, identification and in vitro biological evaluation of novel inhibitors of signal transducer and activator of transcription 3. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1328-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
108
|
Barcelos RC, Pelizzaro-Rocha KJ, Pastre JC, Dias MP, Ferreira-Halder CV, Pilli RA. A new goniothalamin N-acylated aza-derivative strongly downregulates mediators of signaling transduction associated with pancreatic cancer aggressiveness. Eur J Med Chem 2014; 87:745-58. [PMID: 25305718 DOI: 10.1016/j.ejmech.2014.09.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022]
Abstract
In this study, a novel concise series of molecules based on the structure of goniothalamin (1) was synthesized and evaluated against a highly metastatic human pancreatic cancer cell line (Panc-1). Among them, derivative 8 displayed a low IC50 value (2.7 μM) and its concentration for decreasing colony formation was 20-fold lower than goniothalamin (1). Both compounds reduced the levels of the receptor tyrosine kinase (AXL) and cyclin D1 which are known to be overexpressed in pancreatic cancer cells. Importantly, despite the fact that goniothalamin (1) and derivative 8 caused pancreatic cancer cell cycle arrest and cell death, only derivative 8 was able to downregulate pro-survival and proliferation pathways mediated by mitogen activated protein kinase ERK1/2. Another interesting finding was that Panc-1 cells treated with derivative 8 displayed a strong decrease in the transcription factor (c-Myc), hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) protein levels. Notably, the molecular effects caused by derivative 8 might not be related to ROS generation, since no significant production of ROS was observed in low concentrations of this compound (from 1.5 up to 3 μM). Therefore, the downregulation of important mediators of pancreatic cancer aggressiveness by derivative 8 reveals its great potential for the development of new chemotherapeutic agents for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Rosimeire Coura Barcelos
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil
| | | | - Julio Cezar Pastre
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil
| | - Marina Pereira Dias
- Department of Biochemistry, Biology Institute, University of Campinas, 13083-862, Campinas, São Paulo, Brazil
| | | | - Ronaldo Aloise Pilli
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
109
|
Maggioni D, Nicolini G, Rigolio R, Biffi L, Pignataro L, Gaini R, Garavello W. Myricetin and Naringenin Inhibit Human Squamous Cell Carcinoma Proliferation and Migration In Vitro. Nutr Cancer 2014; 66:1257-67. [DOI: 10.1080/01635581.2014.951732] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
110
|
Yao Y, Xie Y, Hong C, Li G, Shen H, Ji G. Development of a myricetin/hydroxypropyl-β-cyclodextrin inclusion complex: preparation, characterization, and evaluation. Carbohydr Polym 2014; 110:329-337. [PMID: 24906763 DOI: 10.1016/j.carbpol.2014.04.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/19/2014] [Accepted: 04/06/2014] [Indexed: 12/27/2022]
Abstract
Myricetin shows low oral bioavailability (<10%) in rats due to poor aqueous solubility, though it has various pharmacological activities. Complexation with cyclodextrins (CDs) is a potent pharmaceutical method to enhance the bioavailability of poorly soluble compounds. The myricetin/HP-β-CD inclusion complex was prepared and confirmed by DSC, PXRD, and SEM. Here, the inclusion mode is described in detail with regard to structural and energetic aspects using a phase solubility diagram and 1H NMR, NOESY, and FT-IR spectra. The water solubility and dissolution rate of myricetin were greatly enhanced by forming the myricetin/HP-β-CD inclusion complex. Consequently, the oral bioavailability of the myricetin/HP-β-CD inclusion complex in rats was effectively increased 9.4-fold over free myricetin, and its antioxidant activity was also improved. The present study provides useful information for the potential application of complexation with myricetin, a naturally occurring hydrophobic phenolic compound in herbal medicine.
Collapse
Affiliation(s)
- Yashu Yao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Chao Hong
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guowen Li
- Pharmacy Department, Shanghai TCM-Integrated Hospital, Shanghai, China.
| | - Hongyi Shen
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
111
|
In silico molecular docking study of natural compounds on wild and mutated epidermal growth factor receptor. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1090-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
112
|
Vuong QV, Hirun S, Phillips PA, Chuen TLK, Bowyer MC, Goldsmith CD, Scarlett CJ. Fruit-derived phenolic compounds and pancreatic cancer: perspectives from Australian native fruits. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:227-242. [PMID: 24463158 DOI: 10.1016/j.jep.2013.12.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pancreatic cancer is a devastating cancer that presents late, is rapidly progressive and has current therapeutics with only limited efficacy. Bioactive compounds are ubiquitously present in fruits and numerous studies in vitro are addressing the activity of these compounds against pancreatic cancer, thus studies of specific bioactive compounds could lead to new anti-pancreatic cancer strategies. Australian native fruits have been used as foods and medicines by Australian Aboriginals for thousands of years, and preliminary studies have found these fruits to contain rich and diversified bioactive components with high antioxidant activity. Thus, Australian native fruits may possess key components for preventing or delaying the onset of tumorigenesis, or for the treatment of existing cancers, including pancreatic cancer. MATERIALS AND METHODS Numerous databases including PubMed, SciFinder, Web of Knowledge, Scopus, and Sciencedirect were analysed for correlations between bioactive components from fruits and pancreatic cancer, as well as studies concerning Australian native fruits. RESULTS In this review, we comprehensively highlight the proposed mechanisms of action of fruit bioactives as anti-cancer agents, update the potential anti-pancreatic cancer activity of various major classes of bioactive compounds derived from fruits, and discuss the existence of bioactive compounds identified from a selection Australian native fruits for future studies. CONCLUSION Bioactive compounds derived from fruits possess the potential for the discovery of new anti-pancreatic cancer strategies. Further, Australian native fruits are rich in polyphenols including some flora that contain unique phenolic compounds, thereby warranting further investigations into their anti-cancer properties.
Collapse
Affiliation(s)
- Q V Vuong
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, Australia; School of Environmental and Life Sciences, University of Newcastle, NSW, Australia
| | - S Hirun
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, Australia; School of Environmental and Life Sciences, University of Newcastle, NSW, Australia
| | - P A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - T L K Chuen
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, Australia; School of Environmental and Life Sciences, University of Newcastle, NSW, Australia
| | - M C Bowyer
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, Australia; School of Environmental and Life Sciences, University of Newcastle, NSW, Australia
| | - C D Goldsmith
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, Australia; School of Environmental and Life Sciences, University of Newcastle, NSW, Australia
| | - C J Scarlett
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, Australia; School of Environmental and Life Sciences, University of Newcastle, NSW, Australia; Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| |
Collapse
|
113
|
Saxena R, Fatima I, Chandra V, Blesson CS, Kharkwal G, Hussain MK, Hajela K, Roy BG, Dwivedi A. Benzopyran derivative CDRI-85/287 induces G2-M arrest in estrogen receptor-positive breast cancer cells via modulation of estrogen receptors α- and β-mediated signaling, in parallel to EGFR signaling and suppresses the growth of tumor xenograft. Steroids 2013; 78:1071-86. [PMID: 23891847 DOI: 10.1016/j.steroids.2013.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 05/07/2013] [Accepted: 07/15/2013] [Indexed: 12/27/2022]
Abstract
In an endeavor to develop novel and improved selective estrogen receptor modulators as anti-breast cancer agents, the benzopyran compounds have been synthesized and identified which act as potent anti-estrogen at uterine level. The present study evaluates the anti-tumor activity of 2-[piperidinoethoxyphenyl]-3-phenyl-2H-benzo(b)pyran (CDRI-85/287) and explores the mechanism of action with a view to describe its potential to inhibit proliferation in ER-positive breast cancer cells MCF-7 and T47D. The compound decreased the expression of ERα while increased the expression of ERβ thereby altering ERα/ERβ ratio in both cell lines. Although the compound showed low binding affinity to ERs, it acted as ERα antagonist and ERβ agonist in decreasing ERE- or AP-1-mediated transcriptional activation in these cells. Transactivation studies in ERα/β-transfected MDA-MB231 cells suggested that at cyclin D1 promoter, compound antagonized the action of ERα-mediated E2 response while acted as estrogen agonist via ERβ. Further, the compound led to decreased expression of ERα-dependent proliferation markers and ERβ-dependent cell cycle progression markers. The expression of cell cycle inhibitory protein p21 was increased leading to G2/M phase arrest. In parallel, compound also interfered with EGFR activation, caused inhibition of PI-3-K/Akt pathway and subsequent induction of apoptosis via intrinsic pathway. A significant reduction in tumor mass and volume was observed in 85/287-treated mice bearing MCF-7 xenograft. We conclude that compound 85/287 exhibits significant anti-tumor activity via modulation of genomic as well as non-genomic mechanisms involved in cellular growth and arrested the cells in G2 phase in both MCF-7 and T47D breast cancer cells. Study suggests that CDRI-85/287 may have therapeutic potential in ER-positive breast cancer.
Collapse
Affiliation(s)
- Ruchi Saxena
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Gaascht F, Dicato M, Diederich M. Venus Flytrap (Dionaea muscipula Solander ex Ellis) Contains Powerful Compounds that Prevent and Cure Cancer. Front Oncol 2013; 3:202. [PMID: 23971004 PMCID: PMC3747514 DOI: 10.3389/fonc.2013.00202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/24/2013] [Indexed: 12/11/2022] Open
Abstract
Chemoprevention uses natural or synthetic molecules without toxic effects to prevent and/or block emergence and development of diseases including cancer. Many of these natural molecules modulate mitogenic signals involved in cell survival, apoptosis, cell cycle regulation, angiogenesis, or on processes involved in the development of metastases occur naturally, especially in fruits and vegetables bur also in non-comestible plants. Carnivorous plants including the Venus flytrap (Dionaea muscipula Solander ex Ellis) are much less investigated, but appear to contain a wealth of potent bioactive secondary metabolites. Aim of this review is to give insight into molecular mechanisms triggered by compounds isolated from these interesting plants with either therapeutic or chemopreventive potential.
Collapse
Affiliation(s)
- François Gaascht
- Laboratory for Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratory for Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
115
|
Büchter C, Ackermann D, Havermann S, Honnen S, Chovolou Y, Fritz G, Kampkötter A, Wätjen W. Myricetin-mediated lifespan extension in Caenorhabditis elegans is modulated by DAF-16. Int J Mol Sci 2013; 14:11895-914. [PMID: 23736695 PMCID: PMC3709762 DOI: 10.3390/ijms140611895] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 12/11/2022] Open
Abstract
Myricetin is a naturally occurring flavonol found in many plant based food sources. It increases the lifespan of Caenorhabditis elegans, but the molecular mechanisms are not yet fully understood. We have investigated the impact of this flavonoid on the transcription factors DAF-16 (C. elegans FoxO homologue) and SKN-1 (Nrf2 homologue), which have crucial functions in the regulation of ageing. Myricetin is rapidly assimilated by the nematode, causes a nuclear translocation of DAF-16 but not of SKN-1, and finally prolongs the mean adult lifespan of C. elegans by 32.9%. The lifespan prolongation was associated with a decrease in the accumulation of reactive oxygen species (ROS) detected by DCF. Myricetin also decreases the formation of lipofuscin, a pigment consisting of highly oxidized and cross-linked proteins that is considered as a biomarker of ageing in diverse species. The lifespan extension was completely abolished in a daf-16 loss-of-function mutant strain (CF1038). Consistently with this result, myricetin was also not able to diminish stress-induced ROS accumulation in the mutant. These results strongly indicate that the pro-longevity effect of myricetin is dependent on DAF-16 and not on direct anti-oxidative effects of the flavonoid.
Collapse
Affiliation(s)
- Christian Büchter
- Institute of Agricultural and Nutritional Sciences, Faculty III, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22 (Biozentrum), 06120 Halle/Saale, Germany; E-Mails: (C.B.); (S.H.)
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Daniela Ackermann
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Susannah Havermann
- Institute of Agricultural and Nutritional Sciences, Faculty III, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22 (Biozentrum), 06120 Halle/Saale, Germany; E-Mails: (C.B.); (S.H.)
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Sebastian Honnen
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Yvonni Chovolou
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Gerhard Fritz
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
| | - Andreas Kampkötter
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
- Global Drug Development, Safety and Pharmacokinetics, Bayer Animal Health GmbH, Bayer HealthCare, Building 6700 Monheim, 51368 Leverkusen, Germany
| | - Wim Wätjen
- Institute of Agricultural and Nutritional Sciences, Faculty III, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22 (Biozentrum), 06120 Halle/Saale, Germany; E-Mails: (C.B.); (S.H.)
- Institute of Toxicology, Heinrich-Heine-Universität Düsseldorf, P.O. Box 101007, 40001 Düsseldorf, Germany; E-Mails: (D.A.); (S.H.); (Y.C.); (G.F.); (A.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-0345-5522-381; Fax: +49-0345-5522-382
| |
Collapse
|
116
|
Romagnolo DF, Selmin OI. Flavonoids and cancer prevention: a review of the evidence. J Nutr Gerontol Geriatr 2012; 31:206-38. [PMID: 22888839 DOI: 10.1080/21551197.2012.702534] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The objective of this work is to review data from epidemiological and preclinical studies addressing the potential benefits of diets based on flavonoids for cancer prevention. Flavonoids are subdivided into subclasses including flavonols, flavones, flavanones, flavan-3-ols, anthocyanidins, and isoflavones. Epidemiological studies suggest dietary intake of flavonoids may reduce the risk of tumors of the breast, colon, lung, prostate, and pancreas. However, some studies have reported inconclusive or even harmful associations. A major challenge in the interpretation of epidemiological studies is that most of the data originate from case-control studies and retrospective acquisition of flavonoid intake. Differences in agricultural, sociodemographics, and lifestyle factors contribute to the heterogeneity in the intake of flavonoids among populations residing in the United States, Europe, and Asia. Dose and timing of exposure may influence the anticancer response to flavonoid-rich diets. A limited number of intervention trials of flavonoids have documented cancer preventative effects. Proposed anticancer mechanisms for flavonoids are inhibition of proliferation, inflammation, invasion, metastasis, and activation of apoptosis. Prospective studies with larger sample sizes are needed to develop biomarkers of flavonoid intake and effect. Mechanistic studies are needed to ascertain how flavonoid-rich diets influence gene regulation for cancer prevention.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721-0038, USA.
| | | |
Collapse
|
117
|
Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells. Food Chem Toxicol 2012; 50:4136-43. [PMID: 22926442 DOI: 10.1016/j.fct.2012.08.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/29/2012] [Accepted: 08/11/2012] [Indexed: 01/06/2023]
Abstract
This study investigated the inhibitory effect of luteolin on MDA-MB-231 estrogen receptor (ER) negative breast tumor growth both in vitro and in vivo. Study results showed that luteolin suppresses (3)H thymidine incorporation indicating cell growth inhibition, and this was accompanied by cell cycle arrest at the G2/M and S stages and apoptotic activity. Further analyses showed that luteolin exhibited cell cycle arrest and apoptotic activity by decreasing AKT, PLK1, cyclin B(1), cyclin A, CDC2, CDK2, and Bcl-xL expression and increasing p21 and Bax expression. Underlying mechanisms of action exerted by luteolin included the down-regulation. EGFR mRNA expression followed by the inhibition of EGF-induced MAPK activation, including the phosphorylation of ERK, p38 and AKT. Luteolin-supplementation at 0.01% or 0.05% significantly reduced tumor burden in nude mice inoculated with MDA-MB-231 cells. In conclusion, luteolin effectively suppresses MDA-MB-231 ER-negative breast cancer cell growth, and its anticancer activity may be partly derived from inhibitory effects on EGFR-mediated cell survival.
Collapse
|
118
|
Ding Y, Zhang ZF, Dai XQ, Li Y. Myricetin protects against cytokine-induced cell death in RIN-m5f β cells. J Med Food 2012; 15:733-40. [PMID: 22846080 DOI: 10.1089/jmf.2011.2033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytokine-induced cell death is recognized as a major cause of progressive β-cell loss. Tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interferon γ (IFN-γ) in combination trigger a series of events that lead to β-cell death. In the past few decades, the use of myricetin as an anti-inflammatory and cytoprotective agent has gained much attention. The present study focused on the protective roles of myricetin against cytokine-induced cell death in insulin-secreting RIN-m5f β cells. The results showed that myricetin (especially at concentrations of 10 μM and 20 μM) increased cell viability and decreased cell apoptosis induced by the cytokine mixture of TNF-α (10 ng/mL), IL-1β (5 ng/mL), and IFN-γ (1000 IU/mL) for 3 days. Moreover, the cytokines increased the total and p65 subunit levels of nuclear factor κB, decreased inhibitor κB α levels, stimulated the accumulation of nitric oxide, increased cytochrome c release from mitochondria, and induced reactive oxygen species generation; myricetin (especially at the concentration of 20 μM) abolished all of these parameters. These results suggest that myricetin might have therapeutic value for preventing β-cell death.
Collapse
Affiliation(s)
- Ye Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | | | | | | |
Collapse
|