101
|
Abstract
Autophagy is an intracellular catabolic pathway essential for the recycling of proteins and larger substrates such as aggregates, apoptotic corpses, or long-lived and superfluous organelles whose accumulation could be toxic for cells. Because of its unique feature to engulf part of cytoplasm in double-membrane cup-shaped structures, which further fuses with lysosomes, autophagy is also involved in the elimination of host cell invaders and takes an active part of the innate and adaptive immune response. Its pivotal role in maintenance of the inflammatory balance makes dysfunctions of the autophagy process having important pathological consequences. Indeed, defects in autophagy are associated with a wide range of human diseases including metabolic disorders (diabetes and obesity), inflammatory bowel disease (IBD), and cancer. In this review, we will focus on interrelations that exist between inflammation and autophagy. We will discuss in particular how mediators of inflammation can regulate autophagy activity and, conversely, how autophagy shapes the inflammatory response. Impact of genetic polymorphisms in autophagy-related gene on inflammatory bowel disease will be also discussed.
Collapse
|
102
|
Hong YP, Li ZD, Prasoon P, Zhang Q. Immunotherapy for hepatocellular carcinoma: From basic research to clinical use. World J Hepatol 2015; 7:980-992. [PMID: 25954480 PMCID: PMC4419101 DOI: 10.4254/wjh.v7.i7.980] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/10/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer worldwide with a poor prognosis. Few strategies have been proven efficient in HCC treatment, particularly for those patients not indicated for curative resection or transplantation. Immunotherapy has been developed for decades for cancer control and is attaining more attention as a result of encouraging outcomes of new strategies such as chimeric antigen receptor T cells and immune checkpoint blockade. Right at the front of the new era of immunotherapy, we review the immunotherapy in HCC treatment, from basic research to clinical trials, covering anything from immunomodulators, tumor vaccines and adoptive immunotherapy. The mechanisms, efficacy and safety as well as the approach particulars are unveiled to assist readers to gain a concise but extensive understanding of immunotherapy of HCC.
Collapse
|
103
|
Silva A, Mount A, Krstevska K, Pejoski D, Hardy MP, Owczarek C, Scotney P, Maraskovsky E, Baz Morelli A. The combination of ISCOMATRIX adjuvant and TLR agonists induces regression of established solid tumors in vivo. THE JOURNAL OF IMMUNOLOGY 2015; 194:2199-207. [PMID: 25646304 DOI: 10.4049/jimmunol.1402228] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of therapeutic vaccines for treatment of established cancer has proven challenging. Cancer vaccines not only need to induce a robust tumor Ag-specific immune response but also need to overcome the tolerogenic and immunosuppressive microenvironments that exist within many solid cancers. ISCOMATRIX adjuvant (ISCOMATRIX) is able to induce both tumor Ag-specific cellular and Ab responses to protect mice against tumor challenge, but this is insufficient to result in regression of established solid tumors. In the current study, we have used B16-OVA melanoma, Panc-OVA pancreatic, and TRAMP-C1 prostate cancer mouse tumor models to test therapeutic efficacy of ISCOMATRIX vaccines combined with other immune modulators. The coadministration of an ISCOMATRIX vaccine with the TLR3 agonist, polyinosinic-polycytidylic acid, and TLR9 agonist, CpG, reduced tumor growth in all tumor models and the presence of ISCOMATRIX in the formulation was critical for the therapeutic efficacy of the vaccine. This vaccine combination induced a robust and multifunctional CD8(+) T cell response. Therapeutic protection required IFN-γ and CD8(+) T cells, whereas NK and CD4(+) T cells were found to be redundant. ISCOMATRIX vaccines combined with TLR3 and TLR9 agonists represent a promising cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Anabel Silva
- CSL Ltd., Bio21 Institute, Melbourne, Victoria 3010, Australia
| | - Adele Mount
- CSL Ltd., Bio21 Institute, Melbourne, Victoria 3010, Australia
| | | | - David Pejoski
- CSL Ltd., Bio21 Institute, Melbourne, Victoria 3010, Australia
| | - Matthew P Hardy
- CSL Ltd., Bio21 Institute, Melbourne, Victoria 3010, Australia
| | | | - Pierre Scotney
- CSL Ltd., Bio21 Institute, Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
104
|
Su CH, Lin Y, Cai L. Genetic factors, viral infection, other factors and liver cancer: an update on current progress. Asian Pac J Cancer Prev 2014; 14:4953-60. [PMID: 24175758 DOI: 10.7314/apjcp.2013.14.9.4953] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Primary liver cancer is one of the most common cancers at the global level, accounting for half of all cancers in some undeveloped countries. This disease tends to occur in livers damaged through alcohol abuse, or chronic infection with hepatitis B and C, on a background of cirrhosis. Various cancer-causing substances are associated with primary liver cancer, including certain pesticides and such chemicals as vinyl chloride and arsenic. The strong association between HBV infection and liver cancer is well documented in epidemiological studies. It is generally acknowledged that the virus is involved through long term chronic infection, frequently associated with cirrhosis, suggesting a nonspecific mechanism triggered by the immune response. Chronic inflammation of liver, continuous cell death, abnormal cell growth, would increase the occurrence rate of genetic alterations and risk of disease. However, the statistics indicated that only about one fifth of HBV carries would develop HCC in lifetime, suggesting that individual variation in genome would also influence the susceptibility of HCC. The goal of this review is to highlight present level of knowledge on the role of viral infection and genetic variation in the development of liver cancer.
Collapse
Affiliation(s)
- Cheng-Hao Su
- Department of Emergency Countermeasure and Information Management, Xiamen Center for Disease Control and Prevention, Xiamen, China E-mail :
| | | | | |
Collapse
|
105
|
The regulation role of interferon regulatory factor-1 gene and clinical relevance. Hum Immunol 2014; 75:1110-4. [DOI: 10.1016/j.humimm.2014.09.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 09/27/2014] [Accepted: 09/27/2014] [Indexed: 11/20/2022]
|
106
|
Ghanem I, Riveiro ME, Paradis V, Faivre S, de Parga PMV, Raymond E. Insights on the CXCL12-CXCR4 axis in hepatocellular carcinoma carcinogenesis. Am J Transl Res 2014; 6:340-352. [PMID: 25075251 PMCID: PMC4113496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
Chemokines, a group of small chemotactic cytokines, and their G-protein-coupled receptors were originally identified for their ability to mediate various pro- and anti-inflammatory responses. Beyond the influence of chemokines and their cognate receptors in several inflammatory diseases, several malignancies have been shown to be dependent of chemokines for progression, tumor growth, cellular migration and invasion, and angiogenesis; those later facilitating the development of distant metastases. In hepatocellular carcinoma (HCC), chemokines were shown to affect leukocyte recruitment, neovascularization and tumor progression. CXCL12 (stromal-derived factor 1 alpha- SDF-1) is the primary ligand for the seven transmembrane G-protein coupled receptor CXCR4. The CXCR4/CXCL12 axis exerts a variety of functions at different steps of HCC tumor progression, using autocrine and/or paracrine mechanisms to sustain tumor cell growth, to induce angiogenesis and to facilitate tumor escape through evasion of immune surveillance. In this review, we have comprehensively described the role of CXCR4/CXCL12 in HCC and also investigated the role of CXCR7, an alternative receptors that also binds CXCL12 with potentially distinct downstream effects. Preclinical data converge to demonstrate that inhibition of the CXCR4/CXCL12 axis may lead to direct inhibition of tumor migration, invasion, and metastases. This pathway is under investigation to identify potential novel treatments in HCC and other cancers. However, one of the major challenges faced in this emerging field targeting the CXCR4/CXCL12 signaling pathway, is the translation of current knowledge into the design and development of effective inhibitors of CXCR4 and/or CXCL12 for cancer therapy.
Collapse
Affiliation(s)
- Ismael Ghanem
- Department of Medical Oncology, La Paz University HospitalMadrid, Spain
| | - Maria E Riveiro
- INSERM U728 and Medical Oncology Departments, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot)100 bd du Général Leclerc, 92110 Clichy, France
- Oncology Therapeutic DevelopmentClichy, France
| | - Valerie Paradis
- INSERM U773 and Anatomopathology Departments, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot)100 bd du Général Leclerc, 92110 Clichy, France
| | - Sandrine Faivre
- INSERM U728 and Medical Oncology Departments, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot)100 bd du Général Leclerc, 92110 Clichy, France
| | | | - Eric Raymond
- INSERM U728 and Medical Oncology Departments, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot)100 bd du Général Leclerc, 92110 Clichy, France
| |
Collapse
|
107
|
Autophagy and microRNA dysregulation in liver diseases. Arch Pharm Res 2014; 37:1097-116. [PMID: 25015129 DOI: 10.1007/s12272-014-0439-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/29/2014] [Indexed: 02/07/2023]
Abstract
Autophagy is a catabolic process through which organelles and cellular components are sequestered into autophagosomes and degraded via fusion with lysosomes. Autophagy plays a role in many physiological processes, including stress responses, energy homeostasis, elimination of cellular organelles, and tissue remodeling. In addition, autophagy capacity changes in various disease states. A series of studies have shown that autophagy is strictly controlled to maintain homeostatic balance of energy metabolism and cellular organelle and protein turnover. These studies have also shown that this process is post-transcriptionally controlled by small noncoding microRNAs that regulate gene expression through complementary base pairing with mRNAs. Conversely, autophagy regulates the expression of microRNAs. Therefore, dysregulation of the link between autophagy and microRNA expression exacerbates the pathogenesis of various diseases. In this review, we summarize the roles of autophagy and microRNA dysregulation in the course of liver diseases, with the aim of understanding how microRNAs modify key autophagic effector molecules, and we discuss how this dysregulation affects both physiological and pathological conditions. This article may advance our understanding of the cellular and molecular bases of liver disease progression and promote the development of strategies for pharmacological intervention.
Collapse
|
108
|
Gabeen AA, Abdel-Hamid FF, El-Houseini ME, Fathy SAH. Potential immunotherapeutic role of interleukin-2 and interleukin-12 combination in patients with hepatocellular carcinoma. J Hepatocell Carcinoma 2014; 1:55-63. [PMID: 27508176 PMCID: PMC4918270 DOI: 10.2147/jhc.s56012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Many recent therapeutic interventions are necessary to improve the treatment of hepatocellular carcinoma (HCC), including immunotherapy, which seems to offer one of the new realistic therapeutic modalities. This study aims to investigate the optimization of immunotherapy for HCC patients by appraisal of both interferon (IFN)-γ levels and phenotyping of lymphocytes obtained from peripheral blood and fine-needle aspirates. Methods The isolated lymphocytes were cultured in the presence of interleukins (IL)-2, IL-4, and IL-12. Enzyme-linked immunosorbent assay and flow cytometric techniques were used for the assessment of human IFN-γ production and the studied T-cell subpopulations, respectively. Results Mixed cell populations of peripheral blood lymphocytes and tumor infiltrating lymphocytes treated with IL-2 plus IL-12 showed a marked and significant elevation in IFN-γ levels in their culture media, a significant decrease in the percentage of cluster of differentiation (CD)4+CD25+ regulatory T-cells, and a nonsignificant increase in the percentage of CD8+ cytotoxic T-cells. Meanwhile, IL-2 plus IL-4 treatment demonstrated nonsignificant effects. Conclusion Our data suggested that IL-12 together with IL-2 caused a suppression of CD4+CD25+ regulatory T-cells and an elevation of IFN-γ levels, which play a crucial immunotherapeutic role in the management of HCC patients.
Collapse
|
109
|
Perot BP, Ingersoll MA, Albert ML. The impact of macroautophagy on CD8(+) T-cell-mediated antiviral immunity. Immunol Rev 2014; 255:40-56. [PMID: 23947346 DOI: 10.1111/imr.12096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Macroautophagy is a catabolic recycling pathway, which can be induced by various stress stimuli. Viruses are able to manipulate autophagy in the cells that they infect. The impact of autophagy on the innate immune response to viruses and its stimulatory role in antigen presentation to CD4(+) T cells are well documented. Herein, we present the impact of autophagy on the activation of cytotoxic T lymphocyte (CTL)-mediated antiviral immune responses, which are required for the eradication or control of multiple viruses. We first discuss the general mechanisms by which viruses can either induce or block autophagy in cells. We then explore the cross-talk between autophagy and innate immune processes, which are both first line defenses against viruses; and constitute crucial steps for the initiation of potent adaptive immune responses. We describe the impact of autophagy on the presentation of viral peptide antigens on class I major histocompatibility complex (MHC I), a prerequisite for the priming of CTL responses. In sum, our review highlights the interplay between viruses and three integrated host response pathways - autophagy, innate and adaptive immunity - providing a framework for future mechanistic and pathogenesis-based research.
Collapse
Affiliation(s)
- Brieuc P Perot
- Unité d'immunobiologie des cellules dendritiques, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
110
|
Chen K, Man K, Metselaar HJ, Janssen HLA, Peppelenbosch MP, Pan Q. Rationale of personalized immunosuppressive medication for hepatocellular carcinoma patients after liver transplantation. Liver Transpl 2014; 20:261-9. [PMID: 24376158 DOI: 10.1002/lt.23806] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/24/2013] [Indexed: 12/12/2022]
Abstract
Liver transplantation is the only potentially curative treatment for hepatocellular carcinoma (HCC) that is not eligible for surgical resection. However, disease recurrence is the main challenge to the success of this treatment. Immunosuppressants that are universally used after transplantation to prevent graft rejection could potentially have a significant impact on HCC recurrence. Nevertheless, current research is exclusively focused on mammalian target of rapamycin inhibitors, which are thought to be the only class of immunosuppressive agents that can reduce HCC recurrence. In fact, substantial evidence from the bench to the bedside indicates that other classes of immunosuppressants may also exert diverse effects; for example, inosine monophosphate dehydrogenase inhibitors potentially have antitumor effects. In this article, we aim to provide a comprehensive overview of the potential effects of different types of immunosuppressants on HCC recurrence and their mechanisms of action from both experimental and clinical perspectives. To ultimately improve the outcomes of HCC patients after transplantation, we propose a concept and approaches for developing personalized immunosuppressive medication to be used either as immunosuppression maintenance or during the prevention/treatment of HCC recurrence.
Collapse
Affiliation(s)
- Kan Chen
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
111
|
Wang Z, Han W, Sui X, Fang Y, Pan H. Autophagy: A novel therapeutic target for hepatocarcinoma (Review). Oncol Lett 2014; 7:1345-1351. [PMID: 24765136 PMCID: PMC3997714 DOI: 10.3892/ol.2014.1916] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/27/2014] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a highly conserved intracellular degradation process and plays an important role in hepatocarcinogenesis. Available data show that autophagy is involved in anti-hepatocarcinoma (HCC) therapies. Autophagy regulation involves a novel target for overcoming therapeutic resistance and sensitizing HCC to currently therapeutic methods. This is a systematic review on the interface of autophagy and the development of HCC and outlining the role of autophagy in current anti-HCC approaches. Understanding the significance of autophagy in anti-HCC therapy may offer a novel therapeutic target for improving anti-cancer efficacy and prolong survival for HCC patients.
Collapse
Affiliation(s)
- Zhanggui Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xinbing Sui
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
112
|
Yang L, Su T, Lv D, Xie F, Liu W, Cao J, Sheikh IA, Qin X, Li L, Chen L. ERK1/2 mediates lung adenocarcinoma cell proliferation and autophagy induced by apelin-13. Acta Biochim Biophys Sin (Shanghai) 2014; 46:100-11. [PMID: 24374773 DOI: 10.1093/abbs/gmt140] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aim of this study was to investigate the role of apelin in the cell proliferation and autophagy of lung adenocarcinoma. The over-expression of APJ in lung adenocarcinoma was detected by immunohistochemistry, while plasma apelin level in lung cancer patients was measured by enzyme-linked immunosorbent assay. Our findings revealed that apelin-13 significantly increased the phosphorylation of ERK1/2, the expression of cyclin D1, microtubule-associated protein 1 light chain 3A/B (LC3A/B), and beclin1, and confirmed that apelin-13 promoted A549 cell proliferation and induced A549 cell autophagy via ERK1/2 signaling. Moreover, there are pores on the surface of human lung adenocarcinoma cell line A549 and apelin-13 causes cell surface smooth and glossy as observed under atomic force microscopy. These results suggested that ERK1/2 signaling pathway mediates apelin-13-induced lung adenocarcinoma cell proliferation and autophagy. Under our experimental condition, autophagy associated with 3-methyladenine was not involved in cell proliferation.
Collapse
Affiliation(s)
- Li Yang
- Learning Key Laboratory for Pharmaco-proteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Schmeisser H, Bekisz J, Zoon KC. New function of type I IFN: induction of autophagy. J Interferon Cytokine Res 2014; 34:71-8. [PMID: 24428799 DOI: 10.1089/jir.2013.0128] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a highly conserved cellular process responsible for recycling of intracellular material. It is induced by different stress signals, including starvation, cytokines, and pathogens. Type I interferons (IFN) are proteins with pleiotropic functions, such as antiviral, antiproliferative, and immunomodulatory activities. Several recent studies showed type I IFN-induced autophagy in multiple cancer cell lines as evidenced by autophagic markers, for example, the conversion of microtubule-associated protein 1 light chain 3 beta (MAP1LC3B, also known as LC3-I) to LC3-II and the formation of autophagosomes by electron microscopy. In addition, studies suggest the involvement of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog (AKT) and mechanistic target of rapamycin, serine/threonine kinase (mTOR) pathways in the induction of autophagy. This review highlights a new function of type I IFN as an inducer of autophagy. This new function of type I IFN may play an important role in viral clearance, antigen presentation, inhibition of proliferation, as well as a positive feedback loop for the production of type I IFN.
Collapse
Affiliation(s)
- Hana Schmeisser
- Cytokine Biology Section, National Institutes of Health , National Institute of Allergy and Infectious Disease, Bethesda, Maryland
| | | | | |
Collapse
|
114
|
Gupta M, Rath PC. Interferon regulatory factor-1 (IRF-1) interacts with regulated in development and DNA damage response 2 (REDD2) in the cytoplasm of mouse bone marrow cells. Int J Biol Macromol 2014; 65:41-50. [PMID: 24412152 DOI: 10.1016/j.ijbiomac.2014.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/12/2013] [Accepted: 01/02/2014] [Indexed: 01/07/2023]
Abstract
IRF-1 is a critical hematopoietic transcription factor, which regulates cell growth, development of immune cells, immune response, tumor suppression, apoptosis and autophagy in mammalian cells. Protein-protein interactions of IRF-1 in mouse bone marrow cells (BMCs) by GST-IRF-1 pull-down followed by mass spectrometry, coimmunoprecipitation, immunoblotting and colocalization show that regulated in development and DNA damage response 2 (REDD2) is an IRF-1-interacting protein. REDD2 is a highly conserved mammalian regulatory protein of the TSC2/mTOR pathway. It is structurally similar to REDD1 but has a distinct loop region. Cellular IRF-1 and REDD2 complex is present in the cytoplasm of BMCs as distinct speckles in punctate pattern. In vitro interaction of recombinant IRF-1 and REDD2 shows their physical interaction. Taken together, our results suggest that IRF-1 physically interacts with REDD2 in the large cytoplasmic protein complex, which may function as cellular signaling proteins for 'cross-talk' of mTOR and cytokine pathways during regulation of cell growth/proliferation, apoptosis and autophagy of mammalian bone marrow cells during health and disease.
Collapse
Affiliation(s)
- Manish Gupta
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
115
|
Jayaram A, Orfanelli T, Doulaveris G, Linhares IM, Ledger WJ, Witkin SS. Autophagy and female genital tract infections: new insights and research directions. BJOG 2014; 121:801-8. [PMID: 24506514 DOI: 10.1111/1471-0528.12523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2013] [Indexed: 12/17/2022]
Abstract
Autophagy is a highly conserved process by which defective organelles, non-functional proteins, and intracellular microorganisms become sequestered within structures called autophagosomes, which fuse with lysosomes and the engulfed components are degraded by lysosomal enzymes. In microbial autophagy degraded peptides are used to induce antigen-specific acquired immunity. Viruses, bacteria, fungi, and protozoa have developed strategies to subvert autophagy and/or to use this process to promote their replication and persistence. This review details the mechanisms by which microorganisms that infect the female genital tract and/or are detrimental to pregnancy interact with this host defence mechanism. Based on an understanding of autophagy-related pathological mechanisms, we propose new avenues for research to more effectively prevent and/or treat these infectious diseases.
Collapse
Affiliation(s)
- A Jayaram
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
116
|
Leng S, Hao Y, Du D, Xie S, Hong L, Gu H, Zhu X, Zhang J, Fan D, Kung HF. Ursolic acid promotes cancer cell death by inducing Atg5-dependent autophagy. Int J Cancer 2013; 133:2781-90. [PMID: 23737395 DOI: 10.1002/ijc.28301] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 05/02/2013] [Indexed: 11/09/2022]
Abstract
Ursolic acid (UA) has been reported to possess anticancer activities. Although some of the anticancer activities of UA have been explained by its apoptosis-inducing properties, the mechanisms underlying its anticancer actions are largely unknown. We have found that UA-activated autophagy induced cytotoxicity and reduced tumor growth of cervical cancer cells TC-1 in a concentration-dependent manner. UA did not induce apoptosis of TC-1 cells in vitro as determined by annexin V/propidium iodide staining, DNA fragmentation, and Western blot analysis of the apoptosis-related proteins. We found that UA increased punctate staining of light chain 3 (LC3), which is an autophagy marker. LC3II, the processed form of LC3I which is formed during the formation of double membranes, was induced by UA treatment. These results were further confirmed by transmission electron microscopy. Wortmannin, an inhibitor of autophagy, and a small interfering RNA (siRNA) for autophagy-related genes (Atg5) reduced LC3II and simultaneously increased the survival of TC-1 cells treated with UA. We also found that LC3II was significantly reduced and that survival was increased in Atg5-/- mouse embryonic fibroblast (MEF) cells compared to Atg5+/+ MEF cells under UA treatment. However, silencing BECN1 by siRNA affected neither the expression of LC3II nor the survival of TC-1 cells under UA treatment. These results suggest that autophagy is a major mechanism by which UA kills TC-1 cells. It is Atg5 rather than BECN1 that plays a crucial role in UA-induced autophagic cell death in TC-1 cells. The activation of autophagy by UA may become a potential cancer therapeutic strategy complementing the apoptosis-based therapies. Furthermore, regulation of Atg5 may improve the efficacy of UA in cancer treatment.
Collapse
Affiliation(s)
- Shuilong Leng
- Department of Human Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Ambjørn M, Ejlerskov P, Liu Y, Lees M, Jäättelä M, Issazadeh-Navikas S. IFNB1/interferon-β-induced autophagy in MCF-7 breast cancer cells counteracts its proapoptotic function. Autophagy 2013; 9:287-302. [PMID: 23221969 PMCID: PMC3590251 DOI: 10.4161/auto.22831] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IFNB1/interferon (IFN)-β belongs to the type I IFNs and exerts potent antiproliferative, proapoptotic, antiangiogenic and immunemodulatory functions. Despite the beneficial effects of IFNB1 in experimental breast cancers, clinical translation has been disappointing, possibly due to induction of survival pathways leading to treatment resistance. Defects in autophagy, a conserved cellular degradation pathway, are implicated in numerous cancer diseases. Autophagy is induced in response to cancer therapies and can contribute to treatment resistance. While the type II IFN, IFNG, which in many aspects differs significantly from type I IFNs, can induce autophagy, no such function for any type I IFN has been reported. We show here that IFNB1 induces autophagy in MCF-7, MDAMB231 and SKBR3 breast cancer cells by measuring the turnover of two autophagic markers, MAP1LC3B/LC3 and SQSTM1/p62. The induction of autophagy in MCF-7 cells occurred upstream of the negative regulator of autophagy MTORC1, and autophagosome formation was dependent on the known core autophagy molecule ATG7 and the IFNB1 signaling molecule STAT1. Using siRNA-mediated silencing of several core autophagy molecules and STAT1, we provide evidence that IFNB1 mediates its antiproliferative effects independent of autophagy, while the proapoptotic function of IFNB1 was strongly enhanced in the absence of autophagy. This suggests that autophagy induced by IFNB1 promoted survival, which might contribute to tumor resistance against IFNB1 treatment. It may therefore be clinically relevant to reconcile a role for IFNB1 in the treatment of breast cancer with concomitant inhibition of autophagy.
Collapse
Affiliation(s)
- Malene Ambjørn
- Biotech Research and Innovation Centre (BRIC ), University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
118
|
Lee IC, Huang YH, Chau GY, Huo TI, Su CW, Wu JC, Lin HC. Serum interferon gamma level predicts recurrence in hepatocellular carcinoma patients after curative treatments. Int J Cancer 2013; 133:2895-902. [DOI: 10.1002/ijc.28311] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/17/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Gar-Yang Chau
- Department of Surgery; Taipei Veterans General Hospital; Taipei; Taiwan
| | | | | | | | - Han-Chieh Lin
- Division of Gastroenterology; Department of Medicine, Taipei Veterans General Hospital; Taipei; Taiwan
| |
Collapse
|
119
|
Liu X, Ru J, Zhang J, Zhu LH, Liu M, Li X, Tang H. miR-23a targets interferon regulatory factor 1 and modulates cellular proliferation and paclitaxel-induced apoptosis in gastric adenocarcinoma cells. PLoS One 2013; 8:e64707. [PMID: 23785404 PMCID: PMC3677940 DOI: 10.1371/journal.pone.0064707] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/17/2013] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are a class of non-coding RNAs that function as key regulators of gene expression at the post-transcriptional level. In our previous research, we found that miR-23a was significantly up-regulated in human gastric adenocarcinoma cells. In the current study, we demonstrate that miR-23a suppresses paclitaxel-induced apoptosis and promotes the cell proliferation and colony formation ability of gastric adenocarcinoma cells. We have identified tumor suppressor interferon regulator factor 1 (IRF1) as a direct target gene of miR-23a. We performed a fluorescent reporter assay to confirm that miR-23a bound to the IRF1 mRNA 3′UTR directly and specifically. The ectopic expression of IRF1 markedly promoted paclitaxel-induced apoptosis and inhibited cell viability and colony formation ability, whereas the knockdown of IRF1 had the opposite effects. The restoration of IRF1 expression counteracted the effects of miR-23a on the paclitaxel-induced apoptosis and cell proliferation of gastric adenocarcinoma cells. Quantitative real-time PCR showed that miR-23a is frequently up-regulated in gastric adenocarcinoma tissues, whereas IRF1 is down-regulated in cancer tissues. Altogether, these results indicate that miR-23a suppresses paclitaxel-induced apoptosis and promotes cell viability and the colony formation ability of gastric adenocarcinoma cells by targeting IRF1 at the post-transcriptional level.
Collapse
Affiliation(s)
- Xue Liu
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jing Ru
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jian Zhang
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Li-hua Zhu
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Pathogen Biology and Immunology, College of Basic Medicine, Hebei United University, Tangshan, Hebei Province, China
| | - Min Liu
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- * E-mail:
| |
Collapse
|
120
|
Kim SE, Overholtzer M. Autophagy proteins regulate cell engulfment mechanisms that participate in cancer. Semin Cancer Biol 2013; 23:329-36. [PMID: 23726896 DOI: 10.1016/j.semcancer.2013.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/09/2013] [Accepted: 05/21/2013] [Indexed: 12/21/2022]
Abstract
Recent evidence has uncovered cross-regulation of mechanisms of cell engulfment by proteins of the autophagy pathway, in what is called LC3-Associated Phagocytosis, or LAP. By LAP, lysosome fusion to phagosomes and the degradation of engulfed extracellular cargo are facilitated by autophagy proteins that lipidate LC3 onto phagosome membranes. Here we discuss the contexts where LAP is known to occur by focusing on potential roles in tumorigenesis, including predicted consequences of LAP inhibition.
Collapse
Affiliation(s)
- Sung Eun Kim
- BCMB Allied Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
121
|
Xu Y, An Y, Wang Y, Zhang C, Zhang H, Huang C, Jiang H, Wang X, Li X. miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep 2013; 29:2019-2024. [PMID: 23483142 DOI: 10.3892/or.2013.2338] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/12/2013] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks third in cancer-related mortality due to late diagnosis and poor treatment options. Autophagy is a lysosome-mediated protein and organelle degradation process which is characterized by the formation of double-membrane vesicles, known as autophagosomes. Increasing evidence reveals that autophagy functions as a survival mechanism in liver cancer cells against drug-induced apoptosis. In this study, we found that autophagy was suppressed by miR-101 in the HCC cell line HepG2. miR-101 inhibited autophagy via targets including RAB5A, STMN1 and ATG4D. Moreover, miR-101 enhanced apoptosis induced by cisplatin in the HepG2 cell line. The possible mechanism of this effect may be through inhibition of autophagy. Our results indicate a novel and critical role for miR-101 and autophagy in the chemoresistance of cisplatin in HCC. We propose that gene therapy targeting miR-101/autophagy should be investigated further as a potential alternative therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Yonghua Xu
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu 210029, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Cao M, Prima V, Nelson D, Svetlov S. Composite fatty acid ether amides suppress growth of liver cancer cells in vitro and in an in vivo allograft mouse model. Cell Oncol (Dordr) 2013; 36:247-57. [PMID: 23619943 DOI: 10.1007/s13402-013-0132-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The heterogeneity of liver cancer, in particular hepatocellular carcinoma (HCC), portrays the requirement of multiple targets for both its treatment and prevention. Multifaceted agents, minimally or non-toxic for normal hepatocytes, are required to address the molecular diversity of HCC, including the resistance of putative liver cancer stem cells to chemotherapy. METHODS We designed and synthesized two fatty acid ethers of isopropylamino propanol, C16:0-AIP-1 and C18:1-AIP-2 (jointly named AIPs), and evaluated their anti-proliferative effects on the human HCC cell line Huh7 and the murine hepatoma cell line BNL 1MEA.7R.1, both in vitro and in an in vivo allograft mouse model. RESULTS We found that AIP-1 and AIP-2 inhibited proliferation and caused cell death in both Huh7 and BNL 1MEA.7R.1 cells. Importantly, AIP-1 and AIP-2 were found to block the activation of putative liver cancer stem cells as manifested by suppression of clonal 'carcinosphere' development in growth factor-free and anchorage-free medium. The AIPs exhibited a relatively low toxicity against normal human or rat hepatocytes in primary cultures. In addition, we found that the AIPs utilized multifaceted pathways that mediate both autophagy and apoptosis in HCC, including the inhibition of AKTs and CAMK-1. In immune-competent mice, the AIPs significantly reduced BNL 1MEA.7R.1 cell-driven tumor allograft development, with a higher efficiency than sorafenib. A combination of AIP-1 + AIP-2 was most effective in reducing the tumor allograft incidence. CONCLUSIONS AIPs represent a novel class of simple fatty acid derivatives that are effective against liver tumors via diverse pathways. They show a low toxicity towards normal hepatocytes. The addition of AIPs may represent a new avenue towards the management of chronic liver injury and, ultimately, the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Mengde Cao
- Banyan Laboratories, Inc., Alachua, FL, 32615, USA.
| | | | | | | |
Collapse
|
123
|
Kang KF, Wang XW, Chen XW, Kang ZJ, Zhang X, Wilbur RR, Cheng F, Zhou SF. Beclin 1 and nuclear factor-κBp65 are upregulated in hepatocellular carcinoma. Oncol Lett 2013; 5:1813-1818. [PMID: 23833647 PMCID: PMC3700917 DOI: 10.3892/ol.2013.1307] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/26/2013] [Indexed: 12/16/2022] Open
Abstract
There are no sensitive and specific biomarkers that aid in the clinical diagnosis and prognosis of hepatocellular carcinoma (HCC). The aim of the present study was to determine the mRNA and protein expression levels of beclin 1 (BECN1) and nuclear factor-κB (NF-κB)p65 in patients with HCC, to evaluate their value as potential diagnostic and prognostic biomarkers. Immunohistochemistry and in situ hybridization were used to detect the expression of hepatic BECN1 and NF-kBp65 in patients with HCC, hepatitis B virus (HBV) or cirrhosis, as compared with the expression levels in healthy subjects. The expression level of the BECN1 protein in the HCC tissue was significantly high compared with that in the cirrhotic, hepatitis and normal tissues. The expression of the BECN1 protein in the hepatitis tissue was significantly high compared with that of the cirrhotic and normal tissues. The expression of the BECN1 mRNA in the cancer tissue was significantly high compared with that of the cirrhotic and normal tissues, and the expression of the BECN1 mRNA in the hepatitis tissue was significantly higher than that of the cirrhotic and normal tissues. The expression of the NF-κBp65 protein in the cancer tissue was significantly high compared with that of the cirrhotic, hepatitis and normal tissues. The expression of the NF-κBp65 mRNA in-the cancer tissue was significantly high compared with that of the cirrhotic, hepatitis and normal tissues. BECN1 expression was positively correlated with NF-κBp65 expression in HCC. The abnormal expression of BECN1 and NF-κBp65 was closely associated with the development of HCC. Finally, a search in GeneGo pathway database observed a link between BECN1 and NF-κBp65 through multiple proteins. These results indicate that BECN1 and NF-κBp65 are upregulated in HCC, and that they may serve as useful biomarkers for HCC.
Collapse
Affiliation(s)
- Kai-Fu Kang
- Departments of Pathology, The First People's Hospital of Shunde, Southern Medical University, Shunde, Foshan, Guangdong 528300, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
124
|
CYP2E1-catalyzed alcohol metabolism: role of oxidant generation in interferon signaling, antigen presentation and autophagy. Subcell Biochem 2013; 67:177-97. [PMID: 23400922 DOI: 10.1007/978-94-007-5881-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 2E1 (CYP2E1) is one of two major enzymes that catalyze ethanol oxidation in the liver. CYP2E1 is also unique because it is inducible, as its hepatic content rises after continuous (chronic) ethanol administration, thereby accelerating the rate of ethanol metabolism and affording greater tolerance to heavy alcohol consumption. However, the broad substrate specificity of CYP2E1 and its capacity to generate free radicals from alcohol and other hepatotoxins, places CYP2E1 as a central focus of not only liver toxicity, but also as an enzyme that regulates cytokine signaling, antigen presentation, and macromolecular degradation, all of which are crucial to liver cell function and viability. Here, we describe our own and other published work relevant to the importance of CYP2E1-catalyzed ethanol oxidation and how this catalysis affects the aforementioned cellular processes to produce liver injury.
Collapse
|
125
|
Rettino A, Clarke NM. Genome-wide Identification of IRF1 Binding Sites Reveals Extensive Occupancy at Cell Death Associated Genes. ACTA ACUST UNITED AC 2013. [PMID: 25893139 PMCID: PMC4398980 DOI: 10.4172/2157-2518.s6-009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
IRF1 is a transcription factor involved in interferon signaling and has been shown to harbor tumor suppressor activity. In order to comprehensively identify pathways regulated by IRF1, we used chromatin immunoprecipitation followed by massive-parallel sequencing (ChIP-seq) to evaluate the gene targets of IRF1 genome-wide. We identified 17,416 total binding events in breast cancer cells. Functional categorization of the binding sites after IFN-gamma (interferon-gamma) treatment determined that ‘apoptosis’ or ‘cell death’ is the most enriched target process. Motif discovery analysis of the chromosomal regions bound by IRF1 identified a number of unique motifs correlated with apoptosis, DNA damage and immune processes. Analysis of GEO transcriptome data from IRF1-transduced cells or IFN-gamma treated fibroblasts indicates that IRF1-bound targets in IFN-treated cells are associated with a positive transcriptional response. Many of the enriched target genes from the expression analysis are associated with apoptosis. Importantly, this data indicates that a significant function of IRF1 is the regulation of anti-cancer apoptotic pathways and this reinforces IRF1’s role as a tumor suppressor.
Collapse
Affiliation(s)
- Alessandro Rettino
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Nicole M Clarke
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
126
|
|
127
|
Li W, Huang X, Tong H, Wang Y, Zhang T, Wang W, Dai L, Li T, Lin S, Wu H. Comparison of the regulation of β-catenin signaling by type I, type II and type III interferons in hepatocellular carcinoma cells. PLoS One 2012; 7:e47040. [PMID: 23056571 PMCID: PMC3464253 DOI: 10.1371/journal.pone.0047040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/07/2012] [Indexed: 12/13/2022] Open
Abstract
Background/Objective IFNs are a group of cytokines that possess potent antiviral and antitumor activities, while β-catenin pathway is a proliferative pathway involved in carcinogenesis. Interaction between these two pathways has not been well elaborated in hepatocellular carcinoma (HCC). Methods HCC cell lines, HepG2 and Huh7, were used in this study. β-catenin protein levels and corresponding signaling activities were observed by flow cytometry and luciferase assay, respectively. Cell proliferation was quantified by counting viable cells under microscope, and apoptosis by TUNEL assay. DKK1 and GSK3β levels were determined by flow cytometry. Secreted DKK1 was tested by ELISA. FLUD, S3I and aDKK1 were used to inhibit STAT1, STAT3 and DKK1 activities, respectively. Results Our findings show that all three types of IFNs, IFNα, IFNγ and IFNλ, are capable of inhibiting β-catenin signaling activity in HepG2 and Huh7 cells, where IFNγ was the strongest (p<0.05). They expressed suppression of cellular proliferation and induced apoptosis. IFNγ expressed greater induction ability when compared to IFNα and IFNλ (p<0.05). All tested IFNs could induce DKK1 activation but not GSK3β in HepG2 and Huh7 cells. IFNs induced STAT1 and STAT3 activation but by using specific inhibitors, we found that only STAT3 is vital for IFN-induced DKK1 activation and apoptosis. In addition, DKK1 inhibitor blocked IFN-induced apoptosis. The pattern of STAT3 activation by different IFNs is found consistent with the levels of apoptosis with the corresponding IFNs (p<0.05). Conclusions In hepatocellular carcinoma, all three types of IFNs are found to induce apoptosis by inhibiting β-catenin signaling pathway via a STAT3- and DKK1-dependent pathway. This finding points to a cross-talk between different IFN types and β-catenin signaling pathways which might be carrying a biological effect not only on HCC, but also on processes where the two pathways bridge.
Collapse
Affiliation(s)
- Wei Li
- Department of Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Huang
- Department of Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Hongfei Tong
- Department of General Surgery, Second Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Yuxuan Wang
- Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York, United States of America
| | - Tong Zhang
- Department of Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Lili Dai
- Department of Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Tongzeng Li
- Department of Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Shengzhang Lin
- Department of Hepato-biliary-pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail: (HW); (SL)
| | - Hao Wu
- Department of Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, China
- * E-mail: (HW); (SL)
| |
Collapse
|
128
|
IRF1 suppresses Ki-67 promoter activity through interfering with Sp1 activation. Tumour Biol 2012; 33:2217-25. [DOI: 10.1007/s13277-012-0483-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 08/01/2012] [Indexed: 01/29/2023] Open
|
129
|
Decuypere JP, Parys JB, Bultynck G. Regulation of the autophagic bcl-2/beclin 1 interaction. Cells 2012; 1:284-312. [PMID: 24710477 PMCID: PMC3901098 DOI: 10.3390/cells1030284] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/06/2012] [Accepted: 06/15/2012] [Indexed: 12/18/2022] Open
Abstract
Autophagy is an intracellular degradation process responsible for the delivery of cellular material to the lysosomes. One of the key mechanisms for control of autophagy is the modulation of the interaction between the autophagic protein Beclin 1 and the members of the anti-apoptotic Bcl-2 family (e.g., Bcl-2, Bcl-XL and Mcl-1). This binding is regulated by a variety of proteins and compounds that are able to enhance or inhibit the Bcl-2/Beclin 1 interaction in order to repress or activate autophagy, respectively. In this review we will focus on this interaction and discuss its characteristics, relevance and regulation.
Collapse
Affiliation(s)
- Jean-Paul Decuypere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, O/N-1, bus 802, Herestraat 49, Leuven, BE-3000, Belgium.
| | - Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, O/N-1, bus 802, Herestraat 49, Leuven, BE-3000, Belgium.
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, O/N-1, bus 802, Herestraat 49, Leuven, BE-3000, Belgium.
| |
Collapse
|