101
|
Cristea S, Coles GL, Hornburg D, Gershkovitz M, Arand J, Cao S, Sen T, Williamson SC, Kim JW, Drainas AP, He A, Cam LL, Byers LA, Snyder MP, Contrepois K, Sage J. The MEK5-ERK5 Kinase Axis Controls Lipid Metabolism in Small-Cell Lung Cancer. Cancer Res 2020; 80:1293-1303. [PMID: 31969375 PMCID: PMC7073279 DOI: 10.1158/0008-5472.can-19-1027] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022]
Abstract
Small-cell lung cancer (SCLC) is an aggressive form of lung cancer with dismal survival rates. While kinases often play key roles driving tumorigenesis, there are strikingly few kinases known to promote the development of SCLC. Here, we investigated the contribution of the MAPK module MEK5-ERK5 to SCLC growth. MEK5 and ERK5 were required for optimal survival and expansion of SCLC cell lines in vitro and in vivo. Transcriptomics analyses identified a role for the MEK5-ERK5 axis in the metabolism of SCLC cells, including lipid metabolism. In-depth lipidomics analyses showed that loss of MEK5/ERK5 perturbs several lipid metabolism pathways, including the mevalonate pathway that controls cholesterol synthesis. Notably, depletion of MEK5/ERK5 sensitized SCLC cells to pharmacologic inhibition of the mevalonate pathway by statins. These data identify a new MEK5-ERK5-lipid metabolism axis that promotes the growth of SCLC. SIGNIFICANCE: This study is the first to investigate MEK5 and ERK5 in SCLC, linking the activity of these two kinases to the control of cell survival and lipid metabolism.
Collapse
Affiliation(s)
- Sandra Cristea
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Garry L Coles
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Daniel Hornburg
- Department of Genetics, Stanford University, Stanford, California
| | - Maya Gershkovitz
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Julia Arand
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Siqi Cao
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Triparna Sen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stuart C Williamson
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Jun W Kim
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Andrew He
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Laurent Le Cam
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, California
| | - Kévin Contrepois
- Department of Genetics, Stanford University, Stanford, California
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, California.
- Department of Genetics, Stanford University, Stanford, California
| |
Collapse
|
102
|
Abstract
Targeting the function of MYC oncoproteins holds the promise of achieving conceptually new and effective anticancer therapies that can be applied to a broad range of tumors. The nature of the target however—a broadly, possibly universally acting transcription factor that has no enzymatic activity and is largely unstructured unless complexed with partner proteins—has so far defied the development of clinically applicable MYC-directed therapies. At the same time, lingering questions about exactly which functions of MYC proteins account for their pervasive oncogenic role in human tumors and need to be targeted have prevented the development of effective therapies using surrogate targets that act in critical MYC-dependent pathways. In this review, we therefore argue that rigorous testing of critical oncogenic functions and protein/protein interactions and new chemical approaches to target them are necessary to successfully eradicate MYC-driven tumors.
Collapse
Affiliation(s)
- Elmar Wolf
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, 97074 Würzburg, Germany;,
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, 97074 Würzburg, Germany;,
| |
Collapse
|
103
|
Santana-Codina N, Chandhoke AS, Yu Q, Małachowska B, Kuljanin M, Gikandi A, Stańczak M, Gableske S, Jedrychowski MP, Scott DA, Aguirre AJ, Fendler W, Gray NS, Mancias JD. Defining and Targeting Adaptations to Oncogenic KRASG12C Inhibition Using Quantitative Temporal Proteomics. Cell Rep 2020; 30:4584-4599.e4. [DOI: 10.1016/j.celrep.2020.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/04/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023] Open
|
104
|
Targeted Avenues for Cancer Treatment: The MEK5-ERK5 Signaling Pathway. Trends Mol Med 2020; 26:394-407. [PMID: 32277933 DOI: 10.1016/j.molmed.2020.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Twenty years have passed since extracellular signal-regulated kinase 5 (ERK5) and its upstream activator, mitogen-activated protein kinase 5 (MEK5), first emerged onto the cancer research scene. Although we have come a long way in defining the liaison between dysregulated MEK5-ERK5 signaling and the pathogenesis of epithelial and nonepithelial malignancies, selective targeting of this unique pathway remains elusive. Here, we provide an updated review of the existing evidence for a correlation between aberrant MEK5-ERK5 (phospho)proteomic/transcriptomic profiles, aggressive cancer states, and poor patient outcomes. We then focus on emerging insights from preclinical models regarding the relevance of upregulated ERK5 activity in promoting tumor growth, metastasis, therapy resistance, undifferentiated traits, and immunosuppression, highlighting the opportunities, prospects, and challenges of selectively blocking this cascade for antineoplastic treatment and chemosensitization.
Collapse
|
105
|
Richter AM, Woods ML, Küster MM, Walesch SK, Braun T, Boettger T, Dammann RH. RASSF10 is frequently epigenetically inactivated in kidney cancer and its knockout promotes neoplasia in cancer prone mice. Oncogene 2020; 39:3114-3127. [PMID: 32047266 PMCID: PMC7142015 DOI: 10.1038/s41388-020-1195-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022]
Abstract
Kidney cancer incidences are rising globally, thereby fueling the demand for targeted therapies and precision medicine. In our previous work, we have identified and characterized the Ras-Association Domain Family encoding ten members that are often aberrantly expressed in human cancers. In this study, we created and analyzed the Rassf10 knockout mice. Here we show that Rassf10 haploinsufficiency promotes neoplasia formation in two established mouse cancer models (Rassf1A-/- and p53-/-). Haploinsufficient Rassf10 knockout mice were significantly prone to various diseases including lymphoma (Rassf1A-/- background) and thymoma (p53-/- background). Especially Rassf10-/- and p53-deficient mice exhibited threefold increased rates of kidney cysts compared with p53-/- controls. Moreover, we observed that in human kidney cancer, RASSF10 is frequently epigenetically inactivated by its CpG island promoter hypermethylation. Primary tumors of renal clear cell and papillary cell carcinoma confirmed that RASSF10 methylation is associated with decreased expression in comparison to normal kidney tissue. In independent data sets, we could validate that RASSF10 inactivation clinically correlated with decreased survival and with progressed disease state of kidney cancer patients and polycystic kidney size. Functionally, we revealed that the loss of Rassf10 was significantly associated with upregulation of KRAS signaling and MYC expression. In summary, we could show that Rassf10 functions as a haploinsufficient tumor suppressor. In combination with other markers, RASSF10 silencing can serve as diagnostic and prognostic cancer biomarker in kidney diseases.
Collapse
Affiliation(s)
- Antje M Richter
- Institute for Genetics, University of Giessen, 35392, Giessen, Germany. .,Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Michelle L Woods
- Institute for Genetics, University of Giessen, 35392, Giessen, Germany
| | - Miriam M Küster
- Institute for Genetics, University of Giessen, 35392, Giessen, Germany
| | - Sara K Walesch
- Institute for Genetics, University of Giessen, 35392, Giessen, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
| | - Thomas Boettger
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Reinhard H Dammann
- Institute for Genetics, University of Giessen, 35392, Giessen, Germany. .,German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany.
| |
Collapse
|
106
|
Beyond Kinase Activity: ERK5 Nucleo-Cytoplasmic Shuttling as a Novel Target for Anticancer Therapy. Int J Mol Sci 2020; 21:ijms21030938. [PMID: 32023850 PMCID: PMC7038028 DOI: 10.3390/ijms21030938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/18/2023] Open
Abstract
The importance of mitogen-activated protein kinases (MAPK) in human pathology is underlined by the relevance of abnormalities of MAPK-related signaling pathways to a number of different diseases, including inflammatory disorders and cancer. One of the key events in MAPK signaling, especially with respect to pro-proliferative effects that are crucial for the onset and progression of cancer, is MAPK nuclear translocation and its role in the regulation of gene expression. The extracellular signal-regulated kinase 5 (ERK5) is the most recently discovered classical MAPK and it is emerging as a possible target for cancer treatment. The bigger size of ERK5 when compared to other MAPK enables multiple levels of regulation of its expression and activity. In particular, the phosphorylation of kinase domain and C-terminus, as well as post-translational modifications and chaperone binding, are involved in ERK5 regulation. Likewise, different mechanisms control ERK5 nucleo-cytoplasmic shuttling, underscoring the key role of ERK5 in the nuclear compartment. In this review, we will focus on the mechanisms involved in ERK5 trafficking between cytoplasm and nucleus, and discuss how these processes might be exploited to design new strategies for cancer treatment.
Collapse
|
107
|
Hobbs GA, Baker NM, Miermont AM, Thurman RD, Pierobon M, Tran TH, Anderson AO, Waters AM, Diehl JN, Papke B, Hodge RG, Klomp JE, Goodwin CM, DeLiberty JM, Wang J, Ng RWS, Gautam P, Bryant KL, Esposito D, Campbell SL, Petricoin EF, Simanshu DK, Aguirre AJ, Wolpin BM, Wennerberg K, Rudloff U, Cox AD, Der CJ. Atypical KRAS G12R Mutant Is Impaired in PI3K Signaling and Macropinocytosis in Pancreatic Cancer. Cancer Discov 2020; 10:104-123. [PMID: 31649109 PMCID: PMC6954322 DOI: 10.1158/2159-8290.cd-19-1006] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/16/2022]
Abstract
Allele-specific signaling by different KRAS alleles remains poorly understood. The KRAS G12R mutation displays uneven prevalence among cancers that harbor the highest occurrence of KRAS mutations: It is rare (∼1%) in lung and colorectal cancers, yet relatively common (∼20%) in pancreatic ductal adenocarcinoma (PDAC), suggesting context-specific properties. We evaluated whether KRASG12R is functionally distinct from the more common KRASG12D- or KRASG12V-mutant proteins (KRASG12D/V). We found that KRASG12D/V but not KRASG12R drives macropinocytosis and that MYC is essential for macropinocytosis in KRASG12D/V- but not KRASG12R-mutant PDAC. Surprisingly, we found that KRASG12R is defective for interaction with a key effector, p110α PI3K (PI3Kα), due to structural perturbations in switch II. Instead, upregulated KRAS-independent PI3Kγ activity was able to support macropinocytosis in KRASG12R-mutant PDAC. Finally, we determined that KRASG12R-mutant PDAC displayed a distinct drug sensitivity profile compared with KRASG12D-mutant PDAC but is still responsive to the combined inhibition of ERK and autophagy. SIGNIFICANCE: We determined that KRASG12R is impaired in activating a key effector, p110α PI3K. As such, KRASG12R is impaired in driving macropinocytosis. However, overexpression of PI3Kγ in PDAC compensates for this deficiency, providing one basis for the prevalence of this otherwise rare KRAS mutant in pancreatic cancer but not other cancers.See related commentary by Falcomatà et al., p. 23.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- G Aaron Hobbs
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nicole M Baker
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Ryan D Thurman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | | | - Andrew M Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bjoern Papke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard G Hodge
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer E Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jonathan M DeLiberty
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Junning Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Raymond W S Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Kirsten L Bryant
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Udo Rudloff
- Thoracic and GI Oncology Branch, NCI, Bethesda, Maryland.
- Rare Tumor Initiative, Pediatric Oncology Branch, NCI, Bethesda, Maryland
| | - Adrienne D Cox
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
108
|
Bell CC, Gilan O. Principles and mechanisms of non-genetic resistance in cancer. Br J Cancer 2019; 122:465-472. [PMID: 31831859 PMCID: PMC7028722 DOI: 10.1038/s41416-019-0648-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
As well as undergoing genetic evolution, cancer cells can alter their epigenetic state to adapt and resist treatment. This non-genetic evolution is emerging as a major component of cancer resistance. Only now are we beginning to acquire the necessary data and tools to establish some of the underlying principles and mechanisms that define when, why and how non-genetic resistance occurs. Preliminary studies suggest that it can exist in a number of forms, including drug persistence, unstable non-genetic resistance and, most intriguingly, stable non-genetic resistance. Exactly how they each arise remains unclear; however, epigenetic heterogeneity and plasticity appear to be important variables. In this review, we provide an overview of these different forms of non-genetic resistance, before exploring how epigenetic heterogeneity and plasticity influence their emergence. We highlight the distinction between non-genetic Darwinian selection and Lamarckian induction and discuss how each is capable of generating resistance. Finally, we discuss the potential interaction between genetic and non-genetic adaptation and propose the idea of ‘the path of most resistance’, which outlines the variables that dictate whether cancers adapt through genetic and/or epigenetic means. Through these discussions, we hope to provide a conceptual framework that focuses future studies, whose insights might help prevent or overcome non-genetic resistance.
Collapse
Affiliation(s)
- Charles C Bell
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| | - Omer Gilan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
109
|
Raimondi V, Ciccarese F, Ciminale V. Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 2019; 122:168-181. [PMID: 31819197 PMCID: PMC7052168 DOI: 10.1038/s41416-019-0651-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Driver mutations in oncogenic pathways, rewiring of cellular metabolism and altered ROS homoeostasis are intimately connected hallmarks of cancer. Electrons derived from different metabolic processes are channelled into the mitochondrial electron transport chain (ETC) to fuel the oxidative phosphorylation process. Electrons leaking from the ETC can prematurely react with oxygen, resulting in the generation of reactive oxygen species (ROS). Several signalling pathways are affected by ROS, which act as second messengers controlling cell proliferation and survival. On the other hand, oncogenic pathways hijack the ETC, enhancing its ROS-producing capacity by increasing electron flow or by impinging on the structure and organisation of the ETC. In this review, we focus on the ETC as a source of ROS and its modulation by oncogenic pathways, which generates a vicious cycle that resets ROS levels to a higher homoeostatic set point, sustaining the cancer cell phenotype.
Collapse
Affiliation(s)
| | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy. .,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
| |
Collapse
|
110
|
Qian J, Yang J, Liu X, Chen Z, Yan X, Gu H, Xue Q, Zhou X, Gai L, Lu P, Shi Y, Yao N. Analysis of lncRNA-mRNA networks after MEK1/2 inhibition based on WGCNA in pancreatic ductal adenocarcinoma. J Cell Physiol 2019; 235:3657-3668. [PMID: 31583713 PMCID: PMC6972678 DOI: 10.1002/jcp.29255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) responds poorly to treatment. Efforts have been exerted to prolong the survival time of PDA, but the 5-year survival rates remain disappointing. Understanding the molecular mechanisms of PDA development is significant. MEK/ERK pathway signaling has been proven to be important in PDA. lncRNA-mRNA networks have become a vital part of molecular mechanisms in the MEK/ERK pathway. Herein, weighted gene coexpression network analysis was used to investigate the coexpressed lncRNA-mRNA networks in the MEK/ERK pathway based on GSE45765. Differently expressed long noncoding RNA (lncRNA) and messenger RNA (mRNA) were found and 10 modules were identified based on coexpression profiles. Gene ontology and Kyoto Encyclopedia of Genes and Genomes were then performed to analyze the coexpressed lncRNA and mRNA in different modules. PDA cells and tissues were used to validate the analysis results. Finally, we found that NONHSAT185150.1 and B4GALT6 were negatively correlated with MEK1/2. By analyzing GSE45765, the genome-wide profiles of lncRNA-mRNA network after MEK1/2 was established, which might aid the development of drug-targeting MEK1/2 and the investigation of diagnostic markers.
Collapse
Affiliation(s)
- Jing Qian
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianxin Yang
- Department of General Surgery, Qidong People's Hospital, Qidong, Jiangsu, China
| | - Xianchen Liu
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhiming Chen
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaodi Yan
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hongmei Gu
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qiang Xue
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xingqin Zhou
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ling Gai
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Pengpeng Lu
- Department of Oncology, Nantong University, Nantong, Jiangsu, China
| | - Yu Shi
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ninghua Yao
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
111
|
Parasido E, Avetian GS, Naeem A, Graham G, Pishvaian M, Glasgow E, Mudambi S, Lee Y, Ihemelandu C, Choudhry M, Peran I, Banerjee PP, Avantaggiati ML, Bryant K, Baldelli E, Pierobon M, Liotta L, Petricoin E, Fricke ST, Sebastian A, Cozzitorto J, Loots GG, Kumar D, Byers S, Londin E, DiFeo A, Narla G, Winter J, Brody JR, Rodriguez O, Albanese C. The Sustained Induction of c-MYC Drives Nab-Paclitaxel Resistance in Primary Pancreatic Ductal Carcinoma Cells. Mol Cancer Res 2019; 17:1815-1827. [PMID: 31164413 PMCID: PMC6726538 DOI: 10.1158/1541-7786.mcr-19-0191] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/18/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with limited and, very often, ineffective medical and surgical therapeutic options. The treatment of patients with advanced unresectable PDAC is restricted to systemic chemotherapy, a therapeutic intervention to which most eventually develop resistance. Recently, nab-paclitaxel (n-PTX) has been added to the arsenal of first-line therapies, and the combination of gemcitabine and n-PTX has modestly prolonged median overall survival. However, patients almost invariably succumb to the disease, and little is known about the mechanisms underlying n-PTX resistance. Using the conditionally reprogrammed (CR) cell approach, we established and verified continuously growing cell cultures from treatment-naïve patients with PDAC. To study the mechanisms of primary drug resistance, nab-paclitaxel-resistant (n-PTX-R) cells were generated from primary cultures and drug resistance was verified in vivo, both in zebrafish and in athymic nude mouse xenograft models. Molecular analyses identified the sustained induction of c-MYC in the n-PTX-R cells. Depletion of c-MYC restored n-PTX sensitivity, as did treatment with either the MEK inhibitor, trametinib, or a small-molecule activator of protein phosphatase 2a. IMPLICATIONS: The strategies we have devised, including the patient-derived primary cells and the unique, drug-resistant isogenic cells, are rapid and easily applied in vitro and in vivo platforms to better understand the mechanisms of drug resistance and for defining effective therapeutic options on a patient by patient basis.
Collapse
Affiliation(s)
- Erika Parasido
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - George S Avetian
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Aisha Naeem
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Garrett Graham
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Michael Pishvaian
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Eric Glasgow
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Shaila Mudambi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Yichien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Chukwuemeka Ihemelandu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Muhammad Choudhry
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Ivana Peran
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Partha P Banerjee
- Department of Biochemistry, Molecular and Cell Biology, Georgetown University Medical Center, Washington, D.C
| | - Maria Laura Avantaggiati
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Kirsten Bryant
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Stanley T Fricke
- Center for Translational Imaging, Georgetown University Medical Center, Washington, D.C
| | - Aimy Sebastian
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California
| | - Joseph Cozzitorto
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, Julius L. Chambers Biomedical/Biotechnology Research Institute (JLC-BBRI), North Carolina Central University, Durham, North Carolina
| | - Stephen Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Analisa DiFeo
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jordan Winter
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Case Western Reserve School of Medicine, Case Comprehensive Cancer Center and University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Jonathan R Brody
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
- Center for Translational Imaging, Georgetown University Medical Center, Washington, D.C
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C.
- Center for Translational Imaging, Georgetown University Medical Center, Washington, D.C
| |
Collapse
|
112
|
MUC1-C represses the RASSF1A tumor suppressor in human carcinoma cells. Oncogene 2019; 38:7266-7277. [PMID: 31435022 PMCID: PMC6872931 DOI: 10.1038/s41388-019-0940-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023]
Abstract
RASSF1A encodes a tumor suppressor that inhibits the RAS→RAF→MEK→ERK pathway and is one of the most frequently inactivated genes in human cancers. MUC1-C is an oncogenic effector of the cancer cell epigenome that is overexpressed in diverse carcinomas. We show here that MUC1-C represses RASSF1A expression in KRAS wild-type and mutant cancer cells. Mechanistically, MUC1-C occupies the RASSF1A promoter in a complex with the ZEB1 transcriptional repressor. In turn, MUC1-C/ZEB1 complexes recruit DNA methyltransferase 3b (DNMT3b) to the CpG island in the RASSF1A promoter. Targeting MUC1-C, ZEB1 and DNMT3b thereby decreases methylation of the CpG island and derepresses RASSF1A transcription. We also show that targeting MUC1-C regulates KRAS signaling, as evidenced by RNA-seq analysis, and decreases MEK/ERK activation, which is of importance for RAS-mediated tumorigenicity. These findings define a previously unrecognized role for MUC1-C in suppression of RASSF1A and support targeting MUC1-C as an approach for inhibiting MEK→ERK signaling.
Collapse
|
113
|
Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol 2019; 14:141. [PMID: 31395068 PMCID: PMC6688256 DOI: 10.1186/s13014-019-1345-6] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/24/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with poor prognosis and rising incidence. Late detection and a particularly aggressive biology are the major challenges which determine therapeutic failure. In this review, we present the current status and the recent advances in PDAC treatment together with the biological and immunological hallmarks of this cancer entity. On this basis, we discuss new concepts combining distinct treatment modalities in order to improve therapeutic efficacy and clinical outcome - with a specific focus on protocols involving radio(chemo)therapeutic approaches.
Collapse
|
114
|
Abstract
OBJECTIVE The KRAS gene is the most frequently mutated gene in pancreatic cancer, and no successful anti-Ras therapy has been developed. Gastrin has been shown to stimulate pancreatic cancer in an autocrine fashion. We hypothesized that reactivation of the peptide gastrin collaborates with KRAS during pancreatic carcinogenesis. METHODS LSL-Kras; P48-Cre (KC) mutant KRAS transgenic mice were crossed with gastrin-KO (GKO) mice to develop GKO/KC mice. Pancreata were examined for 8 months for stage of pancreatic intraepithelial neoplasia lesions, inflammation, fibrosis, gastrin peptide, and microRNA expression. Pancreatic intraepithelial neoplasias from mice were collected by laser capture microdissection and subjected to reverse-phase protein microarray, for gastrin and protein kinases associated with signal transduction. Gastrin mRNA was measured by RNAseq in human pancreatic cancer tissues and compared to that in normal pancreas. RESULTS In the absence of gastrin, PanIN progression, inflammation, and fibrosis were significantly decreased and signal transduction was reversed to the canonical pathway with decreased KRAS. Gastrin re-expression in the PanINs was mediated by miR-27a. Gastrin mRNA expression was significantly increased in human pancreatic cancer samples compared to normal human pancreas controls. CONCLUSIONS This study supports the mitogenic role of gastrin in activation of KRAS during pancreatic carcinogenesis.
Collapse
|
115
|
Blake DR, Vaseva AV, Hodge RG, Kline MP, Gilbert TSK, Tyagi V, Huang D, Whiten GC, Larson JE, Wang X, Pearce KH, Herring LE, Graves LM, Frye SV, Emanuele MJ, Cox AD, Der CJ. Application of a MYC degradation screen identifies sensitivity to CDK9 inhibitors in KRAS-mutant pancreatic cancer. Sci Signal 2019; 12:12/590/eaav7259. [PMID: 31311847 DOI: 10.1126/scisignal.aav7259] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stabilization of the MYC oncoprotein by KRAS signaling critically promotes the growth of pancreatic ductal adenocarcinoma (PDAC). Thus, understanding how MYC protein stability is regulated may lead to effective therapies. Here, we used a previously developed, flow cytometry-based assay that screened a library of >800 protein kinase inhibitors and identified compounds that promoted either the stability or degradation of MYC in a KRAS-mutant PDAC cell line. We validated compounds that stabilized or destabilized MYC and then focused on one compound, UNC10112785, that induced the substantial loss of MYC protein in both two-dimensional (2D) and 3D cell cultures. We determined that this compound is a potent CDK9 inhibitor with a previously uncharacterized scaffold, caused MYC loss through both transcriptional and posttranslational mechanisms, and suppresses PDAC anchorage-dependent and anchorage-independent growth. We discovered that CDK9 enhanced MYC protein stability through a previously unknown, KRAS-independent mechanism involving direct phosphorylation of MYC at Ser62 Our study thus not only identifies a potential therapeutic target for patients with KRAS-mutant PDAC but also presents the application of a screening strategy that can be more broadly adapted to identify regulators of protein stability.
Collapse
Affiliation(s)
- Devon R Blake
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Angelina V Vaseva
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard G Hodge
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - McKenzie P Kline
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas S K Gilbert
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vikas Tyagi
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daowei Huang
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gabrielle C Whiten
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacob E Larson
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaodong Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen V Frye
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J Emanuele
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrienne D Cox
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
116
|
Anderson CM, Macleod KF. Autophagy and cancer cell metabolism. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:145-190. [PMID: 31451213 PMCID: PMC8211395 DOI: 10.1016/bs.ircmb.2019.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy is an ancient catabolic process used by cells to clear excess or dysfunctional organelles and large subcellular structures and thus performs an important housekeeping role for the cell. Autophagy is acutely sensitive to nutrient availability and is upregulated at a transcriptional and posttranslational level in response to nutrient deprivation. This serves to promote turnover of cellular content and recycling of nutrients for continued growth and survival. While important for most normal tissues, tumor cells appear to be particularly dependent on autophagy for survival under ischemic or therapeutic stress, and in response to loss of matrix attachment; autophagy is upregulated markedly in cancers as they progress to malignancy. Ras-driven tumors appear to be particularly dependent on autophagy and thus inhibition of autophagy is being pursued as a productive clinical approach for such cancers. However, this enthusiasm needs to be offset against possible negative effects of autophagy inhibition on normal tissue function and on limiting antitumor immune responses. In addressing all of these topics, we focus in on understanding how autophagy is induced by nutrient stress, its role in recycling metabolites for growing tumors, how selective forms of autophagy, such as mitophagy and ribophagy contribute specifically to tumorigenesis, how autophagy in the tumor microenvironment and throughout the animal affects access of the tumor to nutrients, and finally how different oncogenic pathways may determine which tumors respond to autophagy inhibition and which ones will not.
Collapse
Affiliation(s)
- Cara M Anderson
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, The University of Chicago, Chicago, IL, United States; The Committee on Molecular Metabolism & Nutrition, The University of Chicago, Chicago, IL, United States
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, The University of Chicago, Chicago, IL, United States; The Committee on Molecular Metabolism & Nutrition, The University of Chicago, Chicago, IL, United States; The Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
117
|
Koncar RF, Dey BR, Stanton ACJ, Agrawal N, Wassell ML, McCarl LH, Locke AL, Sanders L, Morozova-Vaske O, Myers MI, Hamilton RL, Carcaboso AM, Kohanbash G, Hu B, Amankulor NM, Felker J, Kambhampati M, Nazarian J, Becher OJ, James CD, Hashizume R, Broniscer A, Pollack IF, Agnihotri S. Identification of Novel RAS Signaling Therapeutic Vulnerabilities in Diffuse Intrinsic Pontine Gliomas. Cancer Res 2019; 79:4026-4041. [DOI: 10.1158/0008-5472.can-18-3521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/05/2019] [Accepted: 06/11/2019] [Indexed: 11/16/2022]
|
118
|
Yan Z, Ohuchida K, Zheng B, Okumura T, Takesue S, Nakayama H, Iwamoto C, Shindo K, Moriyama T, Nakata K, Miyasaka Y, Ohtsuka T, Mizumoto K, Oda Y, Hashizume M, Nakamura M. CD110 promotes pancreatic cancer progression and its expression is correlated with poor prognosis. J Cancer Res Clin Oncol 2019; 145:1147-1164. [PMID: 30770989 DOI: 10.1007/s00432-019-02860-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/08/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE This study aimed at investigating the function and significance of CD110 expression in pancreatic cancer. METHODS We performed immunohistochemical staining for CD110 expression in tumor samples from 86 patients with pancreatic cancer. We evaluated clinical outcomes and other clinicopathological factors to determine the significance of CD110 on survival and liver metastasis. We examine thrombopoietin-CD110 signaling in cancer cell extravasation in vitro and in vivo. We investigated the effects of CD110 knockdown on liver metastasis in a splenic xenograft mouse model. RESULTS CD110 expression in cancer cells was associated with low-histological-grade invasive ductal carcinoma, and patients with high CD110 expression had poorer prognosis (P = 0.0003). High CD110 expression was an independent predictor of liver metastasis (P = 0.0422). Knockdown of CD110 expression significantly attenuated cell migration and invasion. Treatment with thrombopoietin promoted pancreatic cancer cell extravasation. In the presence of thrombopoietin, CD110 increased cell viability through the activation of the ERK-MYC signaling pathway. Knockdown of CD110 expression inhibited liver metastases in the mouse model. CONCLUSIONS CD110 promotes pancreatic cancer progression and it may serve as a predictive factor for liver metastasis.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Biomarkers, Tumor
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Survival
- Disease Models, Animal
- Disease Progression
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Liver Neoplasms/secondary
- Male
- Mice
- Middle Aged
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Prognosis
- Proto-Oncogene Proteins c-myc/metabolism
- RNA Interference
- RNA, Small Interfering/genetics
- Receptors, Thrombopoietin/genetics
- Receptors, Thrombopoietin/metabolism
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zilong Yan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan.
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Biao Zheng
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
- Department of General Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Takashi Okumura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Shin Takesue
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Hiromichi Nakayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Chika Iwamoto
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Yoshihiro Miyasaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | | | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Hashizume
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| |
Collapse
|
119
|
Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, Gunda V, Pierobon M, Waters AM, George SD, Tomar G, Papke B, Hobbs GA, Yan L, Hayes TK, Diehl JN, Goode GD, Chaika NV, Wang Y, Zhang GF, Witkiewicz AK, Knudsen ES, Petricoin EF, Singh PK, Macdonald JM, Tran NL, Lyssiotis CA, Ying H, Kimmelman AC, Cox AD, Der CJ. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med 2019; 25:628-640. [PMID: 30833752 PMCID: PMC6484853 DOI: 10.1038/s41591-019-0368-8] [Citation(s) in RCA: 499] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by KRAS- and autophagy-dependent tumorigenic growth, but the role of KRAS in supporting autophagy has not been established. We show that, to our surprise, suppression of KRAS increased autophagic flux, as did pharmacological inhibition of its effector ERK MAPK. Furthermore, we demonstrate that either KRAS suppression or ERK inhibition decreased both glycolytic and mitochondrial functions. We speculated that ERK inhibition might thus enhance PDAC dependence on autophagy, in part by impairing other KRAS- or ERK-driven metabolic processes. Accordingly, we found that the autophagy inhibitor chloroquine and genetic or pharmacologic inhibition of specific autophagy regulators synergistically enhanced the ability of ERK inhibitors to mediate antitumor activity in KRAS-driven PDAC. We conclude that combinations of pharmacologic inhibitors that concurrently block both ERK MAPK and autophagic processes that are upregulated in response to ERK inhibition may be effective treatments for PDAC.
Collapse
Affiliation(s)
- Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clint A Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Zeitouni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer E Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Andrey P Tikunov
- Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Venugopal Gunda
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA
| | - Andrew M Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel D George
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Garima Tomar
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Björn Papke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - G Aaron Hobbs
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liang Yan
- Department of Molecular and Cellular Oncology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tikvah K Hayes
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gennifer D Goode
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nina V Chaika
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yingxue Wang
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Department of Medicine, Duke University, Durham, NC, USA
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Department of Medicine, Duke University, Durham, NC, USA
| | | | - Erik S Knudsen
- Department of Molecular and Cell Biology, Roswell Park Cancer Center, Buffalo, NY, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA
| | - Pankaj K Singh
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeffrey M Macdonald
- Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic, Phoenix, AZ, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology; Department of Internal Medicine, Division of Gastroenterology and University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, NYU Langone Medical Center, New York City, NY, USA
| | - Adrienne D Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|