101
|
Gracida X, Norris AD, Calarco JA. Regulation of Tissue-Specific Alternative Splicing: C. elegans as a Model System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:229-61. [DOI: 10.1007/978-3-319-29073-7_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
102
|
Marina RJ, Sturgill D, Bailly MA, Thenoz M, Varma G, Prigge MF, Nanan KK, Shukla S, Haque N, Oberdoerffer S. TET-catalyzed oxidation of intragenic 5-methylcytosine regulates CTCF-dependent alternative splicing. EMBO J 2015; 35:335-55. [PMID: 26711177 DOI: 10.15252/embj.201593235] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/25/2015] [Indexed: 01/09/2023] Open
Abstract
Intragenic 5-methylcytosine and CTCF mediate opposing effects on pre-mRNA splicing: CTCF promotes inclusion of weak upstream exons through RNA polymerase II pausing, whereas 5-methylcytosine evicts CTCF, leading to exon exclusion. However, the mechanisms governing dynamic DNA methylation at CTCF-binding sites were unclear. Here, we reveal the methylcytosine dioxygenases TET1 and TET2 as active regulators of CTCF-mediated alternative splicing through conversion of 5-methylcytosine to its oxidation derivatives. 5-hydroxymethylcytosine and 5-carboxylcytosine are enriched at an intragenic CTCF-binding sites in the CD45 model gene and are associated with alternative exon inclusion. Reduced TET levels culminate in increased 5-methylcytosine, resulting in CTCF eviction and exon exclusion. In vitro analyses establish the oxidation derivatives are not sufficient to stimulate splicing, but efficiently promote CTCF association. We further show genomewide that reciprocal exchange of 5-hydroxymethylcytosine and 5-methylcytosine at downstream CTCF-binding sites is a general feature of alternative splicing in naïve and activated CD4(+) T cells. These findings significantly expand our current concept of the pre-mRNA "splicing code" to include dynamic intragenic DNA methylation catalyzed by the TET proteins.
Collapse
Affiliation(s)
- Ryan J Marina
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - David Sturgill
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Marc A Bailly
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Morgan Thenoz
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Garima Varma
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Maria F Prigge
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Kyster K Nanan
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Sanjeev Shukla
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Nazmul Haque
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Shalini Oberdoerffer
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
103
|
Yanling Zhao D, Gish G, Braunschweig U, Li Y, Ni Z, Schmitges FW, Zhong G, Liu K, Li W, Moffat J, Vedadi M, Min J, Pawson TJ, Blencowe BJ, Greenblatt JF. SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination. Nature 2015; 529:48-53. [DOI: 10.1038/nature16469] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 11/20/2015] [Indexed: 12/13/2022]
|
104
|
Dias JD, Rito T, Torlai Triglia E, Kukalev A, Ferrai C, Chotalia M, Brookes E, Kimura H, Pombo A. Methylation of RNA polymerase II non-consensus Lysine residues marks early transcription in mammalian cells. eLife 2015; 4. [PMID: 26687004 PMCID: PMC4758952 DOI: 10.7554/elife.11215] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/18/2015] [Indexed: 12/16/2022] Open
Abstract
Dynamic post-translational modification of RNA polymerase II (RNAPII) coordinates the co-transcriptional recruitment of enzymatic complexes that regulate chromatin states and processing of nascent RNA. Extensive phosphorylation of serine residues at the largest RNAPII subunit occurs at its structurally-disordered C-terminal domain (CTD), which is composed of multiple heptapeptide repeats with consensus sequence Y1-S2-P3-T4-S5-P6-S7. Serine-5 and Serine-7 phosphorylation mark transcription initiation, whereas Serine-2 phosphorylation coincides with productive elongation. In vertebrates, the CTD has eight non-canonical substitutions of Serine-7 into Lysine-7, which can be acetylated (K7ac). Here, we describe mono- and di-methylation of CTD Lysine-7 residues (K7me1 and K7me2). K7me1 and K7me2 are observed during the earliest transcription stages and precede or accompany Serine-5 and Serine-7 phosphorylation. In contrast, K7ac is associated with RNAPII elongation, Serine-2 phosphorylation and mRNA expression. We identify an unexpected balance between RNAPII K7 methylation and acetylation at gene promoters, which fine-tunes gene expression levels.
Collapse
Affiliation(s)
- João D Dias
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany.,Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.,Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Tiago Rito
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Elena Torlai Triglia
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Alexander Kukalev
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Carmelo Ferrai
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany.,Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Mita Chotalia
- Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Emily Brookes
- Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany.,Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
105
|
Naftelberg S, Schor IE, Ast G, Kornblihtt AR. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem 2015; 84:165-98. [PMID: 26034889 DOI: 10.1146/annurev-biochem-060614-034242] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative precursor messenger RNA (pre-mRNA) splicing plays a pivotal role in the flow of genetic information from DNA to proteins by expanding the coding capacity of genomes. Regulation of alternative splicing is as important as regulation of transcription to determine cell- and tissue-specific features, normal cell functioning, and responses of eukaryotic cells to external cues. Its importance is confirmed by the evolutionary conservation and diversification of alternative splicing and the fact that its deregulation causes hereditary disease and cancer. This review discusses the multiple layers of cotranscriptional regulation of alternative splicing in which chromatin structure, DNA methylation, histone marks, and nucleosome positioning play a fundamental role in providing a dynamic scaffold for interactions between the splicing and transcription machineries. We focus on evidence for how the kinetics of RNA polymerase II (RNAPII) elongation and the recruitment of splicing factors and adaptor proteins to chromatin components act in coordination to regulate alternative splicing.
Collapse
Affiliation(s)
- Shiran Naftelberg
- Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel;
| | | | | | | |
Collapse
|
106
|
Shkreta L, Chabot B. The RNA Splicing Response to DNA Damage. Biomolecules 2015; 5:2935-77. [PMID: 26529031 PMCID: PMC4693264 DOI: 10.3390/biom5042935] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/20/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022] Open
Abstract
The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.
Collapse
Affiliation(s)
- Lulzim Shkreta
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| | - Benoit Chabot
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
107
|
Chromatin, DNA structure and alternative splicing. FEBS Lett 2015; 589:3370-8. [PMID: 26296319 DOI: 10.1016/j.febslet.2015.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023]
Abstract
Coupling of transcription and alternative splicing via regulation of the transcriptional elongation rate is a well-studied phenomenon. Template features that act as roadblocks for the progression of RNA polymerase II comprise histone modifications and variants, DNA-interacting proteins and chromatin compaction. These may affect alternative splicing decisions by inducing pauses or decreasing elongation rate that change the time-window for splicing regulatory sequences to be recognized. Herein we discuss the evidence supporting the influence of template structural modifications on transcription and splicing, and provide insights about possible roles of non-B DNA conformations on the regulation of alternative splicing.
Collapse
|
108
|
Srivastava R, Ahn SH. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnol Adv 2015; 33:856-72. [PMID: 26241863 DOI: 10.1016/j.biotechadv.2015.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/08/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
At the onset of transcription, many protein machineries interpret the cellular signals that regulate gene expression. These complex signals are mostly transmitted to the indispensable primary proteins involved in transcription, RNA polymerase II (RNAPII) and histones. RNAPII and histones are so well coordinated in this cellular function that each cellular signal is precisely allocated to specific machinery depending on the stage of transcription. The carboxy-terminal domain (CTD) of RNAPII in eukaryotes undergoes extensive posttranslational modification, called the 'CTD code', that is indispensable for coupling transcription with many cellular processes, including mRNA processing. The posttranslational modification of histones, known as the 'histone code', is also critical for gene transcription through the reversible and dynamic remodeling of chromatin structure. Notably, the histone code is closely linked with the CTD code, and their combinatorial effects enable the delicate regulation of gene transcription. This review elucidates recent findings regarding the CTD modifications of RNAPII and their coordination with the histone code, providing integrative pathways for the fine-tuned regulation of gene expression and cellular function.
Collapse
Affiliation(s)
- Rakesh Srivastava
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
109
|
SAM68: Signal Transduction and RNA Metabolism in Human Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:528954. [PMID: 26273626 PMCID: PMC4529925 DOI: 10.1155/2015/528954] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
Alterations in expression and/or activity of splicing factors as well as mutations in cis-acting
splicing regulatory sequences contribute to cancer phenotypes. Genome-wide
studies have revealed more than 15,000 tumor-associated splice variants derived from
genes involved in almost every aspect of cancer cell biology, including proliferation,
differentiation, cell cycle control, metabolism, apoptosis, motility, invasion, and
angiogenesis. In the past decades, several RNA binding proteins (RBPs) have been
implicated in tumorigenesis. SAM68 (SRC associated in mitosis of 68 kDa) belongs to
the STAR (signal transduction and activation of RNA metabolism) family of RBPs.
SAM68 is involved in several steps of mRNA metabolism, from transcription to
alternative splicing and then to nuclear export. Moreover, SAM68 participates in signaling
pathways associated with cell response to stimuli, cell cycle transitions, and viral
infections. Recent evidence has linked this RBP to the onset and progression of
different tumors, highlighting misregulation of SAM68-regulated splicing events as a
key step in neoplastic transformation and tumor progression. Here we review recent
studies on the role of SAM68 in splicing regulation and we discuss its contribution to
aberrant pre-mRNA processing in cancer.
Collapse
|
110
|
Nojima T, Gomes T, Grosso ARF, Kimura H, Dye MJ, Dhir S, Carmo-Fonseca M, Proudfoot NJ. Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing. Cell 2015; 161:526-540. [PMID: 25910207 PMCID: PMC4410947 DOI: 10.1016/j.cell.2015.03.027] [Citation(s) in RCA: 400] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/24/2014] [Accepted: 02/25/2015] [Indexed: 11/18/2022]
Abstract
Transcription is a highly dynamic process. Consequently, we have developed native elongating transcript sequencing technology for mammalian chromatin (mNET-seq), which generates single-nucleotide resolution, nascent transcription profiles. Nascent RNA was detected in the active site of RNA polymerase II (Pol II) along with associated RNA processing intermediates. In particular, we detected 5'splice site cleavage by the spliceosome, showing that cleaved upstream exon transcripts are associated with Pol II CTD phosphorylated on the serine 5 position (S5P), which is accumulated over downstream exons. Also, depletion of termination factors substantially reduces Pol II pausing at gene ends, leading to termination defects. Notably, termination factors play an additional promoter role by restricting non-productive RNA synthesis in a Pol II CTD S2P-specific manner. Our results suggest that CTD phosphorylation patterns established for yeast transcription are significantly different in mammals. Taken together, mNET-seq provides dynamic and detailed snapshots of the complex events underlying transcription in mammals.
Collapse
Affiliation(s)
- Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Tomás Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Rita Fialho Grosso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 226-8501Yokohama, Japan
| | - Michael J Dye
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Somdutta Dhir
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Nicholas J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
111
|
Tresini M, Warmerdam DO, Kolovos P, Snijder L, Vrouwe MG, Demmers JA, van IJcken WF, Grosveld FG, Medema RH, Hoeijmakers JH, Mullenders LH, Vermeulen W, Marteijn JA. The core spliceosome as target and effector of non-canonical ATM signalling. Nature 2015; 523:53-8. [PMID: 26106861 PMCID: PMC4501432 DOI: 10.1038/nature14512] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/11/2015] [Indexed: 01/19/2023]
Abstract
In response to DNA damage, tissue homoeostasis is ensured by protein networks promoting DNA repair, cell cycle arrest or apoptosis. DNA damage response signalling pathways coordinate these processes, partly by propagating gene-expression-modulating signals. DNA damage influences not only the abundance of messenger RNAs, but also their coding information through alternative splicing. Here we show that transcription-blocking DNA lesions promote chromatin displacement of late-stage spliceosomes and initiate a positive feedback loop centred on the signalling kinase ATM. We propose that initial spliceosome displacement and subsequent R-loop formation is triggered by pausing of RNA polymerase at DNA lesions. In turn, R-loops activate ATM, which signals to impede spliceosome organization further and augment ultraviolet-irradiation-triggered alternative splicing at the genome-wide level. Our findings define R-loop-dependent ATM activation by transcription-blocking lesions as an important event in the DNA damage response of non-replicating cells, and highlight a key role for spliceosome displacement in this process.
Collapse
Affiliation(s)
- Maria Tresini
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daniël O. Warmerdam
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petros Kolovos
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Loes Snijder
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mischa G. Vrouwe
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen A.A. Demmers
- Center for Biomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Frank G. Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - René H. Medema
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan H.J. Hoeijmakers
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Leon H.F. Mullenders
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wim Vermeulen
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen A. Marteijn
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
112
|
Buggiano V, Petrillo E, Alló M, Lafaille C, Redal MA, Alghamdi MA, Khoder MI, Shamy M, Muñoz MJ, Kornblihtt AR. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells. ENVIRONMENTAL RESEARCH 2015; 140:185-190. [PMID: 25863591 DOI: 10.1016/j.envres.2015.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/28/2015] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5' untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing.
Collapse
Affiliation(s)
- Valeria Buggiano
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Ezequiel Petrillo
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Mariano Alló
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Celina Lafaille
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - María Ana Redal
- Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires, Argentina
| | - Mansour A Alghamdi
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdouh I Khoder
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdy Shamy
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manuel J Muñoz
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
| | - Alberto R Kornblihtt
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
113
|
Affiliation(s)
- Luciana E Giono
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
114
|
Comiskey DF, Jacob AG, Singh RK, Tapia-Santos AS, Chandler DS. Splicing factor SRSF1 negatively regulates alternative splicing of MDM2 under damage. Nucleic Acids Res 2015; 43:4202-18. [PMID: 25845590 PMCID: PMC4417157 DOI: 10.1093/nar/gkv223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Genotoxic stress induces alternative splicing of the oncogene MDM2 generating MDM2-ALT1, an isoform attributed with tumorigenic properties. However, the mechanisms underlying this event remain unclear. Here we explore MDM2 splicing regulation by utilizing a novel minigene that mimics endogenous MDM2 splicing in response to UV and cisplatinum-induced DNA damage. We report that exon 11 is necessary and sufficient for the damage-specific alternative splicing of the MDM2 minigene and that the splicing factor SRSF1 binds exon 11 at evolutionarily conserved sites. Interestingly, mutations disrupting this interaction proved sufficient to abolish the stress-induced alternative splicing of the MDM2 minigene. Furthermore, SRSF1 overexpression promoted exclusion of exon 11, while its siRNA-mediated knockdown prevented the stress-induced alternative splicing of endogenous MDM2. Additionally, we observed elevated SRSF1 levels under stress and in tumors correlating with the expression of MDM2-ALT1. Notably, we demonstrate that MDM2-ALT1 splicing can be blocked by targeting SRSF1 sites on exon 11 using antisense oligonucleotides. These results present conclusive evidence supporting a negative role for SRSF1 in MDM2 alternative splicing. Importantly, we define for the first time, a clear-cut mechanism for the regulation of damage-induced MDM2 splicing and present potential strategies for manipulating MDM2 expression via splicing modulation.
Collapse
Affiliation(s)
- Daniel F Comiskey
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, 700 Childrens Drive WA5023, Columbus, OH 43205, USA
| | - Aishwarya G Jacob
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, 700 Childrens Drive WA5023, Columbus, OH 43205, USA
| | - Ravi K Singh
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, 700 Childrens Drive WA5023, Columbus, OH 43205, USA
| | - Aixa S Tapia-Santos
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, 700 Childrens Drive WA5023, Columbus, OH 43205, USA
| | - Dawn S Chandler
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, 700 Childrens Drive WA5023, Columbus, OH 43205, USA
| |
Collapse
|
115
|
|
116
|
Quintens R, Verreet T, Janssen A, Neefs M, Leysen L, Michaux A, Verslegers M, Samari N, Pani G, Verheyde J, Baatout S, Benotmane MA. Identification of novel radiation-induced p53-dependent transcripts extensively regulated during mouse brain development. Biol Open 2015; 4:331-44. [PMID: 25681390 PMCID: PMC4359739 DOI: 10.1242/bio.20149969] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ionizing radiation is a potent activator of the tumor suppressor gene p53, which itself regulates the transcription of genes involved in canonical pathways such as the cell cycle, DNA repair and apoptosis as well as other biological processes like metabolism, autophagy, differentiation and development. In this study, we performed a meta-analysis on gene expression data from different in vivo and in vitro experiments to identify a signature of early radiation-responsive genes which were predicted to be predominantly regulated by p53. Moreover, we found that several genes expressed different transcript isoforms after irradiation in a p53-dependent manner. Among this gene signature, we identified novel p53 targets, some of which have not yet been functionally characterized. Surprisingly, in contrast to genes from the canonical p53-regulated pathways, our gene signature was found to be highly enriched during embryonic and post-natal brain development and during in vitro neuronal differentiation. Furthermore, we could show that for a number of genes, radiation-responsive transcript variants were upregulated during development and differentiation, while radiation non-responsive variants were not. This suggests that radiation exposure of the developing brain and immature cortical neurons results in the p53-mediated activation of a neuronal differentiation program. Overall, our results further increase the knowledge of the radiation-induced p53 network of the embryonic brain and provide more evidence concerning the importance of p53 and its transcriptional targets during mouse brain development.
Collapse
Affiliation(s)
- Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK•CEN, B-2400 Mol, Belgium
| | - Tine Verreet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK•CEN, B-2400 Mol, Belgium Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, B-3000 Leuven, Belgium
| | - Ann Janssen
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK•CEN, B-2400 Mol, Belgium
| | - Mieke Neefs
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK•CEN, B-2400 Mol, Belgium
| | - Liselotte Leysen
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK•CEN, B-2400 Mol, Belgium
| | - Arlette Michaux
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK•CEN, B-2400 Mol, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK•CEN, B-2400 Mol, Belgium
| | - Nada Samari
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK•CEN, B-2400 Mol, Belgium
| | - Giuseppe Pani
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK•CEN, B-2400 Mol, Belgium Present address: Nutritional Biochemistry and Space Biology Lab, Department of Pharmacology and Bio-molecular Sciences, Università degli Studi di Milano, 20122 Milano, Italy
| | - Joris Verheyde
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK•CEN, B-2400 Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK•CEN, B-2400 Mol, Belgium Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK•CEN, B-2400 Mol, Belgium
| |
Collapse
|
117
|
Davis R, Shi Y. The polyadenylation code: a unified model for the regulation of mRNA alternative polyadenylation. J Zhejiang Univ Sci B 2015; 15:429-37. [PMID: 24793760 DOI: 10.1631/jzus.b1400076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The majority of eukaryotic genes produce multiple mRNA isoforms with distinct 3' ends through a process called mRNA alternative polyadenylation (APA). Recent studies have demonstrated that APA is dynamically regulated during development and in response to environmental stimuli. A number of mechanisms have been described for APA regulation. In this review, we attempt to integrate all the known mechanisms into a unified model. This model not only explains most of previous results, but also provides testable predictions that will improve our understanding of the mechanistic details of APA regulation. Finally, we briefly discuss the known and putative functions of APA regulation.
Collapse
Affiliation(s)
- Ryan Davis
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
118
|
Shilo A, Siegfried Z, Karni R. The role of splicing factors in deregulation of alternative splicing during oncogenesis and tumor progression. Mol Cell Oncol 2015; 2:e970955. [PMID: 27308389 PMCID: PMC4905244 DOI: 10.4161/23723548.2014.970955] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 04/18/2023]
Abstract
In past decades, cancer research has focused on genetic alterations that are detected in malignant tissues and contribute to the initiation and progression of cancer. These changes include mutations, copy number variations, and translocations. However, it is becoming increasingly clear that epigenetic changes, including alternative splicing, play a major role in cancer development and progression. There are relatively few studies on the contribution of alternative splicing and the splicing factors that regulate this process to cancer development and progression. Recently, multiple studies have revealed altered splicing patterns in cancers and several splicing factors were found to contribute to tumor development. Studies using high-throughput genomic analysis have identified mutations in components of the core splicing machinery and in splicing factors in several cancers. In this review, we will highlight new findings on the role of alternative splicing and its regulators in cancer initiation and progression, in addition to novel approaches to correct oncogenic splicing.
Collapse
Affiliation(s)
- Asaf Shilo
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
- Correspondence to: Rotem Karni;
| |
Collapse
|
119
|
Huang Y, Yao X, Wang G. 'Mediator-ing' messenger RNA processing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:257-69. [PMID: 25515410 DOI: 10.1002/wrna.1273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/29/2014] [Accepted: 10/17/2014] [Indexed: 12/27/2022]
Abstract
Pre-messenger RNA (mRNA) processing, generally including capping, mRNA splicing, and cleavage-polyadenylation, is physically and functionally associated with transcription. The reciprocal coupling between transcription and mRNA processing ensures the efficient and regulated gene expression and editing. Multiple transcription factors/cofactors and mRNA processing factors are involved in the coupling process. This review focuses on several classic examples and recent advances that enlarge our understanding of how the transcriptional factors or cofactors, especially the Mediator complex, contribute to the RNA Pol II elongation, mRNA splicing, and polyadenylation.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | |
Collapse
|
120
|
Abstract
Members of the FET protein family, consisting of FUS, EWSR1, and TAF15, bind to RNA and contribute to the control of transcription, RNA processing, and the cytoplasmic fates of messenger RNAs in metazoa. FET proteins can also bind DNA, which may be important in transcription and DNA damage responses. FET proteins are of medical interest because chromosomal rearrangements of their genes promote various sarcomas and because point mutations in FUS or TAF15 can cause neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar dementia. Recent results suggest that both the normal and pathological effects of FET proteins are modulated by low-complexity or prion-like domains, which can form higher-order assemblies with novel interaction properties. Herein, we review FET proteins with an emphasis on how the biochemical properties of FET proteins may relate to their biological functions and to pathogenesis.
Collapse
Affiliation(s)
- Jacob C Schwartz
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309; , ,
| | | | | |
Collapse
|
121
|
Extending in silico mechanism-of-action analysis by annotating targets with pathways: application to cellular cytotoxicity readouts. Future Med Chem 2014; 6:2029-56. [DOI: 10.4155/fmc.14.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: An in silico mechanism-of-action analysis protocol was developed, comprising molecule bioactivity profiling, annotation of predicted targets with pathways and calculation of enrichment factors to highlight targets and pathways more likely to be implicated in the studied phenotype. Results: The method was applied to a cytotoxicity phenotypic endpoint, with enriched targets/pathways found to be statistically significant when compared with 100 random datasets. Application on a smaller apoptotic set (10 molecules) did not allowed to obtain statistically relevant results, suggesting that the protocol requires modification such as analysis of the most frequently predicted targets/annotated pathways. Conclusion: Pathway annotations improved the mechanism-of-action information gained by target prediction alone, allowing a better interpretation of the predictions and providing better mapping of targets onto pathways.
Collapse
|
122
|
Sharma A, Nguyen H, Geng C, Hinman MN, Luo G, Lou H. Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes. Proc Natl Acad Sci U S A 2014; 111:E4920-8. [PMID: 25368158 PMCID: PMC4246288 DOI: 10.1073/pnas.1408964111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In cardiomyocytes, calcium is known to control gene expression at the level of transcription, whereas its role in regulating alternative splicing has not been explored. Here we report that, in mouse primary or embryonic stem cell-derived cardiomyocytes, increased calcium levels induce robust and reversible skipping of several alternative exons from endogenously expressed genes. Interestingly, we demonstrate a calcium-mediated splicing regulatory mechanism that depends on changes of histone modifications. Specifically, the regulation occurs through changes in calcium-responsive kinase activities that lead to alterations in histone modifications and subsequent changes in the transcriptional elongation rate and exon skipping. We demonstrate that increased intracellular calcium levels lead to histone hyperacetylation along the body of the genes containing calcium-responsive alternative exons by disrupting the histone deacetylase-to-histone acetyltransferase balance in the nucleus. Consequently, the RNA polymerase II elongation rate increases significantly on those genes, resulting in skipping of the alternative exons. These studies reveal a mechanism by which calcium-level changes in cardiomyocytes impact on the output of gene expression through altering alternative pre-mRNA splicing patterns.
Collapse
Affiliation(s)
| | | | - Cuiyu Geng
- Department of Genetics and Genome Sciences
| | | | - Guangbin Luo
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, and
| | - Hua Lou
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, and Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
123
|
Tessier SN, Storey KB. To be or not to be: the regulation of mRNA fate as a survival strategy during mammalian hibernation. Cell Stress Chaperones 2014; 19:763-76. [PMID: 24789358 PMCID: PMC4389848 DOI: 10.1007/s12192-014-0512-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/13/2014] [Indexed: 12/20/2022] Open
Abstract
Mammalian hibernators undergo profound behavioral, physiological, and biochemical changes in order to cope with hypothermia, ischemia-reperfusion, and finite fuel reserves over days or weeks of continuous torpor. Against a backdrop of global reductions in energy-expensive processes such as transcription and translation, a subset of genes/proteins are strategically upregulated in order to meet challenges associated with hibernation. Consequently, hibernation involves substantial transcriptional and posttranscriptional regulatory mechanisms and provides a phenomenon with which to understand how a set of common genes/proteins can be differentially regulated in order to enhance stress tolerance beyond that which is possible for nonhibernators. The present review focuses on the involvement of messenger RNA (mRNA) interacting factors that play a role in the regulation of gene/protein expression programs that define the hibernating phenotype. These include proteins involved in mRNA processing (i.e., capping, splicing, and polyadenylation) and the possible role of alternative splicing as a means of enhancing protein diversity. Since the total pool of mRNA remains constant throughout torpor, mechanisms which enhance mRNA stability are discussed in the context of RNA binding proteins and mRNA decay pathways. Furthermore, mechanisms which control the global reduction of cap-dependent translation and the involvement of internal ribosome entry sites in mRNAs encoding stress response proteins are also discussed. Finally, the concept of regulating each of these factors in discrete subcellular compartments for enhanced efficiency is addressed. The analysis draws on recent research from several well-studied mammalian hibernators including ground squirrels, bats, and bears.
Collapse
Affiliation(s)
- Shannon N. Tessier
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Kenneth B. Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
124
|
Tong L, Wu S. ROS and p53 in regulation of UVB-induced HDM2 alternative splicing. Photochem Photobiol 2014; 91:221-4. [PMID: 24986024 DOI: 10.1111/php.12306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/29/2014] [Indexed: 11/30/2022]
Abstract
Alternative splicing plays an important role in proteasome diversity and gene expression regulation in eukaryotic cells. Hdm2, the human homolog of mdm2 (murine double minute oncogene 2), is known to be an oncogene as its role in suppression of p53. Hdm2 alternative splicing, occurs in both tumor and normal tissues, is believed to be a response of cells for cellular stress, and thus modulate p53 activity. Therefore, understanding the regulation of hdm2 splicing is critical in elucidating the mechanisms of tumor development and progression. In this study, we determined the effect of ultraviolet B light (UVB) on alternative splicing of hdm2. Our data indicated that UVB (50 mJ cm(-2)) alone is not a good inducer of alternative splicing of hdm2. The less effectiveness could be due to the induction of ROS and p53 by UVB because removing ROS by L-NAC (10 mm) in p53 null cells could lead to alternative splicing of hdm2 upon UVB irradiation.
Collapse
Affiliation(s)
- Lingying Tong
- Department of Chemistry and Biochemistry, and Molecular and Cellular Biology Program, Edison Biotechnology Institute, Ohio University, Athens, OH
| | | |
Collapse
|
125
|
Gyenis Á, Umlauf D, Újfaludi Z, Boros I, Ye T, Tora L. UVB induces a genome-wide acting negative regulatory mechanism that operates at the level of transcription initiation in human cells. PLoS Genet 2014; 10:e1004483. [PMID: 25058334 PMCID: PMC4109906 DOI: 10.1371/journal.pgen.1004483] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/19/2014] [Indexed: 11/19/2022] Open
Abstract
Faithful transcription of DNA is constantly threatened by different endogenous and environmental genotoxic effects. Transcription coupled repair (TCR) has been described to stop transcription and quickly remove DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. This repair mechanism has been well characterized in the past using individual target genes. Moreover, numerous efforts investigated the fate of blocked RNA polymerase II (Pol II) during DNA repair mechanisms and suggested that stopped Pol II complexes can either backtrack, be removed and degraded or bypass the lesions to allow TCR. We investigated the effect of a non-lethal dose of UVB on global DNA-bound Pol II distribution in human cells. We found that the used UVB dose did not induce Pol II degradation however surprisingly at about 93% of the promoters of all expressed genes Pol II occupancy was seriously reduced 2-4 hours following UVB irradiation. The presence of Pol II at these cleared promoters was restored 5-6 hours after irradiation, indicating that the negative regulation is very dynamic. We also identified a small set of genes (including several p53 regulated genes), where the UVB-induced Pol II clearing did not operate. Interestingly, at promoters, where Pol II promoter clearance occurs, TFIIH, but not TBP, follows the behavior of Pol II, suggesting that at these genes upon UVB treatment TFIIH is sequestered for DNA repair by the TCR machinery. In agreement, in cells where the TCR factor, the Cockayne Syndrome B protein, was depleted UVB did not induce Pol II and TFIIH clearance at promoters. Thus, our study reveals a UVB induced negative regulatory mechanism that targets Pol II transcription initiation on the large majority of transcribed gene promoters, and a small subset of genes, where Pol II escapes this negative regulation.
Collapse
Affiliation(s)
- Ákos Gyenis
- Cellular signaling and nuclear dynamics program, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - David Umlauf
- Cellular signaling and nuclear dynamics program, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Zsuzsanna Újfaludi
- University of Szeged, Faculty of Sciences and Informatics, Department of Biochemistry and Molecular Biology, Szeged, Hungary
| | - Imre Boros
- University of Szeged, Faculty of Sciences and Informatics, Department of Biochemistry and Molecular Biology, Szeged, Hungary
| | - Tao Ye
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Microarrays and deep sequencing platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Làszlò Tora
- Cellular signaling and nuclear dynamics program, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- * E-mail:
| |
Collapse
|
126
|
Schwartz JC, Podell ER, Han SSW, Berry JD, Eggan KC, Cech TR. FUS is sequestered in nuclear aggregates in ALS patient fibroblasts. Mol Biol Cell 2014; 25:2571-8. [PMID: 25009283 PMCID: PMC4148247 DOI: 10.1091/mbc.e14-05-1007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the nuclear RNA-binding protein FUS can cause the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Study of ALS patient fibroblasts reveals FUS protein aggregated in the nucleus and its regulation of RNA polymerase II disrupted. Thus mutant FUS need not be aggregated in the cytoplasm to have deleterious consequences. Mutations in the RNA-binding protein FUS have been shown to cause the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We investigate whether mutant FUS protein in ALS patient–derived fibroblasts affects normal FUS functions in the nucleus. We investigated fibroblasts from two ALS patients possessing different FUS mutations and a normal control. Fibroblasts from these patients have their nuclear FUS protein trapped in SDS-resistant aggregates. Genome-wide analysis reveals an inappropriate accumulation of Ser-2 phosphorylation on RNA polymerase II (RNA Pol II) near the transcription start sites of 625 genes for ALS patient cells and after small interfering RNA (siRNA) knockdown of FUS in normal fibroblasts. Furthermore, both the presence of mutant FUS protein and siRNA knockdown of wild-type FUS correlate with altered distribution of RNA Pol II within fibroblast nuclei. A loss of FUS function in orchestrating Ser-2 phosphorylation of the CTD of RNA Pol II is detectable in ALS patient–derived fibroblasts expressing mutant FUS protein, even when the FUS protein remains largely nuclear. A likely explanation for this loss of function is the aggregation of FUS protein in nuclei. Thus our results suggest a specific mechanism by which mutant FUS can have biological consequences other than by the formation of cytoplasmic aggregates.
Collapse
Affiliation(s)
- Jacob C Schwartz
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309
| | - Elaine R Podell
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309
| | - Steve S W Han
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114 Howard Hughes Medical Institute, Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - James D Berry
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
| | - Kevin C Eggan
- Howard Hughes Medical Institute, Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Thomas R Cech
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309
| |
Collapse
|
127
|
How slow RNA polymerase II elongation favors alternative exon skipping. Mol Cell 2014; 54:683-90. [PMID: 24793692 DOI: 10.1016/j.molcel.2014.03.044] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/23/2014] [Accepted: 03/01/2014] [Indexed: 11/20/2022]
Abstract
Splicing is functionally coupled to transcription, linking the rate of RNA polymerase II (Pol II) elongation and the ability of splicing factors to recognize splice sites (ss) of various strengths. In most cases, slow Pol II elongation allows weak splice sites to be recognized, leading to higher inclusion of alternative exons. Using CFTR alternative exon 9 (E9) as a model, we show here that slowing down elongation can also cause exon skipping by promoting the recruitment of the negative factor ETR-3 onto the UG-repeat at E9 3' splice site, which displaces the constitutive splicing factor U2AF65 from the overlapping polypyrimidine tract. Weakening of E9 5' ss increases ETR-3 binding at the 3' ss and subsequent E9 skipping, whereas strengthening of the 5' ss usage has the opposite effect. This indicates that a delay in the cotranscriptional emergence of the 5' ss promotes ETR-3 recruitment and subsequent inhibition of E9 inclusion.
Collapse
|
128
|
Identification of a BRCA1-mRNA splicing complex required for efficient DNA repair and maintenance of genomic stability. Mol Cell 2014; 54:445-59. [PMID: 24746700 PMCID: PMC4017265 DOI: 10.1016/j.molcel.2014.03.021] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/21/2013] [Accepted: 02/14/2014] [Indexed: 12/30/2022]
Abstract
Mutations within BRCA1 predispose carriers to a high risk of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through the assembly of multiple protein complexes involved in DNA repair, cell-cycle arrest, and transcriptional regulation. Here, we report the identification of a DNA damage-induced BRCA1 protein complex containing BCLAF1 and other key components of the mRNA-splicing machinery. In response to DNA damage, this complex regulates pre-mRNA splicing of a number of genes involved in DNA damage signaling and repair, thereby promoting the stability of these transcripts/proteins. Further, we show that abrogation of this complex results in sensitivity to DNA damage, defective DNA repair, and genomic instability. Interestingly, mutations in a number of proteins found within this complex have been identified in numerous cancer types. These data suggest that regulation of splicing by the BRCA1-mRNA splicing complex plays an important role in the cellular response to DNA damage.
Collapse
|
129
|
Zuo Y, Zhang P, Liu L, Li T, Peng Y, Li G, Li Q. Sequence-specific flexibility organization of splicing flanking sequence and prediction of splice sites in the human genome. Chromosome Res 2014; 22:321-34. [PMID: 24728765 DOI: 10.1007/s10577-014-9414-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 12/15/2022]
Abstract
More and more reported results of nucleosome positioning and histone modifications showed that DNA structure play a well-established role in splicing. In this study, a set of DNA geometric flexibility parameters originated from molecular dynamics (MD) simulations were introduced to discuss the structure organization around splice sites at the DNA level. The obtained profiles of specific flexibility/stiffness around splice sites indicated that the DNA physical-geometry deformation could be used as an alternative way to describe the splicing junction region. In combination with structural flexibility as discriminatory parameter, we developed a hybrid computational model for predicting potential splicing sites. And the better prediction performance was achieved when the benchmark dataset evaluated. Our results showed that the mechanical deformability character of a splice junction is closely correlated with both the splice site strength and structural information in its flanking sequences.
Collapse
Affiliation(s)
- Yongchun Zuo
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, 010021, China,
| | | | | | | | | | | | | |
Collapse
|
130
|
Stress-induced isoforms of MDM2 and MDM4 correlate with high-grade disease and an altered splicing network in pediatric rhabdomyosarcoma. Neoplasia 2014; 15:1049-63. [PMID: 24027430 DOI: 10.1593/neo.13286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 07/05/2013] [Accepted: 07/15/2013] [Indexed: 01/13/2023] Open
Abstract
Pediatric rhabdomyosarcoma (RMS) is a morphologically and genetically heterogeneous malignancy commonly classified into three histologic subtypes, namely, alveolar, embryonal, and anaplastic. An issue that continues to challenge effective RMS patient prognosis is the dearth of molecular markers predictive of disease stage irrespective of tumor subtype. Our study involving a panel of 70 RMS tumors has identified specific alternative splice variants of the oncogenes Murine Double Minute 2 (MDM2) and MDM4 as potential biomarkers for RMS. Our results have demonstrated the strong association of genotoxic-stress inducible splice forms MDM2-ALT1 (91.6% Intergroup Rhabdomyosarcoma Study Group stage 4 tumors) and MDM4-ALT2 (90.9% MDM4-ALT2-positive T2 stage tumors) with high-risk metastatic RMS. Moreover, MDM2-ALT1-positive metastatic tumors belonged to both the alveolar (50%) and embryonal (41.6%) subtypes, making this the first known molecular marker for high-grade metastatic disease across the most common RMS subtypes. Furthermore, our results show that MDM2-ALT1 expression can function by directly contribute to metastatic behavior and promote the invasion of RMS cells through a matrigel-coated membrane. Additionally, expression of both MDM2-ALT1 and MDM4-ALT2 increased anchorage-independent cell-growth in soft agar assays. Intriguingly, we observed a unique coordination in the splicing of MDM2-ALT1 and MDM4-ALT2 in approximately 24% of tumor samples in a manner similar to genotoxic stress response in cell lines. To further explore splicing network alterations with possible relevance to RMS disease, we used an exon microarray approach to examine stress-inducible splicing in an RMS cell line (Rh30) and observed striking parallels between stress-responsive alternative splicing and constitutive splicing in RMS tumors.
Collapse
|
131
|
Napolitano G, Lania L, Majello B. RNA polymerase II CTD modifications: how many tales from a single tail. J Cell Physiol 2014; 229:538-44. [PMID: 24122273 DOI: 10.1002/jcp.24483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/30/2013] [Indexed: 12/31/2022]
Abstract
Eukaryote's RNA polymerases II (RNAPII) have the feature to contain, at the carbossi-terminal region of their largest subunit Rpb1, a unique CTD domain. Rpb1-CTD is composed of an increasing number of repetitions of the Y1 S2 P3 T4 S5 P6 S7 heptad that goes in parallel with the developmental level of organisms. Because of its composition, the CTD domain has a huge structural plasticity; virtually all the residues can be subjected to post-translational modifications and the two prolines can either be in cis or trans conformations. In light of these features, it is reasonable to think that different specific nuances of CTD modification and interacting factors take place not only on different gene promoters but also during different stages of the transcription cycle and reasonably might have a role even if the polymerase is on or off the DNA template. Rpb1-CTD domain is involved not only in regulating transcriptional rates, but also in all co-transcriptional processes, such as pre-mRNA processing, splicing, cleavage, and export. Moreover, recent studies highlight a role of CTD in DNA replication and in maintenance of genomic stability and specific CTD-modifications have been related to different CTD functions. In this paper, we examine results from the most recent CTD-related literature and give an overview of the general function of Rpb1-CTD in transcription, transcription-related and non transcription-related processes in which it has been recently shown to be involved in.
Collapse
|
132
|
de Almeida SF, Carmo-Fonseca M. Reciprocal regulatory links between cotranscriptional splicing and chromatin. Semin Cell Dev Biol 2014; 32:2-10. [PMID: 24657193 DOI: 10.1016/j.semcdb.2014.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
Here we review recent findings showing that chromatin organization adds another layer of complexity to the already intricate network of splicing regulatory mechanisms. Chromatin structure can impact splicing by either affecting the elongation rate of RNA polymerase II or by signaling the recruitment of splicing regulatory proteins. The C-terminal domain of the RNA polymerase II largest subunit serves as a coordination platform that binds factors required for adapting chromatin structure to both efficient transcription and processing of the newly synthesized RNA. Reciprocal interconnectivity of steps required for gene activation plays a critical role ensuring efficiency and fidelity of gene expression.
Collapse
Affiliation(s)
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
133
|
A recently evolved class of alternative 3'-terminal exons involved in cell cycle regulation by topoisomerase inhibitors. Nat Commun 2014; 5:3395. [PMID: 24577238 DOI: 10.1038/ncomms4395] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/06/2014] [Indexed: 12/13/2022] Open
Abstract
Alternative 3'-terminal exons, which use intronic polyadenylation sites, are generally less conserved and expressed at lower levels than the last exon of genes. Here we discover a class of human genes, in which the last exon appeared recently during evolution, and the major gene product uses an alternative 3'-terminal exon corresponding to the ancestral last exon of the gene. This novel class of alternative 3'-terminal exons are downregulated on a large scale by doxorubicin, a cytostatic drug targeting topoisomerase II, and play a role in cell cycle regulation, including centromere-kinetochore assembly. The RNA-binding protein HuR/ELAVL1 is a major regulator of this specific set of alternative 3'-terminal exons. HuR binding to the alternative 3'-terminal exon in the pre-messenger RNA promotes its splicing, and is reduced by topoisomerase inhibitors. These findings provide new insights into the evolution, function and molecular regulation of alternative 3'-terminal exons.
Collapse
|
134
|
Bentley DL. Coupling mRNA processing with transcription in time and space. Nat Rev Genet 2014; 15:163-75. [PMID: 24514444 DOI: 10.1038/nrg3662] [Citation(s) in RCA: 546] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maturation of mRNA precursors often occurs simultaneously with their synthesis by RNA polymerase II (Pol II). The co-transcriptional nature of mRNA processing has permitted the evolution of coupling mechanisms that coordinate transcription with mRNA capping, splicing, editing and 3' end formation. Recent experiments using sophisticated new methods for analysis of nascent RNA have provided important insights into the relative amount of co-transcriptional and post-transcriptional processing, the relationship between mRNA elongation and processing, and the role of the Pol II carboxy-terminal domain (CTD) in regulating these processes.
Collapse
Affiliation(s)
- David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, MS8101, PO BOX 6511, Aurora, Colorado 80045, USA
| |
Collapse
|
135
|
Qiu H, Lee S, Shang Y, Wang WY, Au KF, Kamiya S, Barmada SJ, Finkbeiner S, Lui H, Carlton CE, Tang AA, Oldham MC, Wang H, Shorter J, Filiano AJ, Roberson ED, Tourtellotte WG, Chen B, Tsai LH, Huang EJ. ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. J Clin Invest 2014; 124:981-99. [PMID: 24509083 DOI: 10.1172/jci72723] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/27/2013] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant mutations of the RNA/DNA binding protein FUS are linked to familial amyotrophic lateral sclerosis (FALS); however, it is not clear how FUS mutations cause neurodegeneration. Using transgenic mice expressing a common FALS-associated FUS mutation (FUS-R521C mice), we found that mutant FUS proteins formed a stable complex with WT FUS proteins and interfered with the normal interactions between FUS and histone deacetylase 1 (HDAC1). Consequently, FUS-R521C mice exhibited evidence of DNA damage as well as profound dendritic and synaptic phenotypes in brain and spinal cord. To provide insights into these defects, we screened neural genes for nucleotide oxidation and identified brain-derived neurotrophic factor (Bdnf) as a target of FUS-R521C-associated DNA damage and RNA splicing defects in mice. Compared with WT FUS, mutant FUS-R521C proteins formed a more stable complex with Bdnf RNA in electrophoretic mobility shift assays. Stabilization of the FUS/Bdnf RNA complex contributed to Bdnf splicing defects and impaired BDNF signaling through receptor TrkB. Exogenous BDNF only partially restored dendrite phenotype in FUS-R521C neurons, suggesting that BDNF-independent mechanisms may contribute to the defects in these neurons. Indeed, RNA-seq analyses of FUS-R521C spinal cords revealed additional transcription and splicing defects in genes that regulate dendritic growth and synaptic functions. Together, our results provide insight into how gain-of-function FUS mutations affect critical neuronal functions.
Collapse
|
136
|
Molecular events accompanying rous sarcoma virus rescue from rodent cells and the role of viral gene complementation. J Virol 2014; 88:3505-15. [PMID: 24403579 DOI: 10.1128/jvi.02761-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Transformation of rodent cells with avian Rous sarcoma virus (RSV) opened new ways to studying virus integration and expression in nonpermissive cells. We were interested in (i) the molecular changes accompanying fusion of RSV-transformed mammalian cells with avian cells leading to virus rescue and (ii) enhancement of this process by retroviral gene products. The RSV-transformed hamster RSCh cell line was characterized as producing only a marginal amount of env mRNA, no envelope glycoprotein, and a small amount of unprocessed Gag protein. Egress of viral unspliced genomic RNA from the nucleus was hampered, and its stability decreased. Cell fusion of the chicken DF-1 cell line with RSCh cells led to production of env mRNA, envelope glycoprotein, and processed Gag and virus-like particle formation. Proteosynthesis inhibition in DF-1 cells suppressed steps leading to virus rescue. Furthermore, new aberrantly spliced env mRNA species were found in the RSCh cells. Finally, we demonstrated that virus rescue efficiency can be significantly increased by complementation with the env gene and the highly expressed gag gene and can be increased the most by a helper virus infection. In summary, Env and Gag synthesis is increased after RSV-transformed hamster cell fusion with chicken fibroblasts, and both proteins provided in trans enhance RSV rescue. We conclude that the chicken fibroblast yields some factor(s) needed for RSV replication, particularly Env and Gag synthesis, in nonpermissive rodent cells. IMPORTANCE One of the important issues in retrovirus heterotransmission is related to cellular factors that prevent virus replication. Rous sarcoma virus (RSV), a member of the avian sarcoma and leukosis family of retroviruses, is able to infect and transform mammalian cells; however, such transformed cells do not produce infectious virus particles. Using the well-defined model of RSV-transformed rodent cells, we established that the lack of virus replication is due to the absence of chicken factor(s), which can be supplemented by cell fusion. Cell fusion with permissive chicken cells led to an increase in RNA splicing and nuclear export of specific viral mRNAs, as well as synthesis of respective viral proteins and production of virus-like particles. RSV rescue by cell fusion can be potentiated by in trans expression of viral genes in chicken cells. We conclude that rodent cells lack some chicken factor(s) required for proper viral RNA processing and viral protein synthesis.
Collapse
|
137
|
Abstract
The discovery that many intron-containing genes can be cotranscriptionally spliced has led to an increased understanding of how splicing and transcription are intricately intertwined. Cotranscriptional splicing has been demonstrated in a number of different organisms and has been shown to play roles in coordinating both constitutive and alternative splicing. The nature of cotranscriptional splicing suggests that changes in transcription can dramatically affect splicing, and new evidence suggests that splicing can, in turn, influence transcription. In this chapter, we discuss the mechanisms and consequences of cotranscriptional splicing and introduce some of the tools used to measure this process.
Collapse
Affiliation(s)
- Evan C Merkhofer
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
138
|
Abstract
In the past several years, the relationship between chromatin structure and mRNA processing has been the source of significant investigation across diverse disciplines. Central to these efforts was an unanticipated nonrandom distribution of chromatin marks across transcribed regions of protein-coding genes. In addition to the presence of specific histone modifications at the 5' and 3' ends of genes, exonic DNA was demonstrated to present a distinct chromatin landscape relative to intronic DNA. As splicing in higher eukaryotes predominantly occurs co-transcriptionally, these studies raised the possibility that chromatin modifications may aid the spliceosome in the detection of exons amidst vast stretches of noncoding intronic sequences. Recent investigations have supported a direct role for chromatin in splicing regulation and have suggested an intriguing role for splicing in the establishment of chromatin modifications. Here we will summarize an accumulating body of data that begins to reveal extensive coupling between chromatin structure and pre-mRNA splicing.
Collapse
Affiliation(s)
- Nazmul Haque
- Laboratory of Ribonucleoprotein Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
139
|
Abstract
A longstanding endeavor to define the genetic lesions that drive myeloid malignances has stimulated a period of remarkable discovery. Enabled by technological advances that have sharply decreased the cost of DNA sequencing, the full compendium of common, recurrent somatic mutations in the coding genome of myeloid malignancies is nearly complete. As the focus of genetic discovery shifts to the noncoding genome, renewed attention is being applied to the clinical and biological implications of recent genomic advances. Although the potential for this newfound knowledge to influence the care of patients has not yet been realized, broad genetic surveys of patient samples are now being used to improve the accuracy of disease diagnosis, define a molecular taxonomy of myeloid malignancies, refine prognostic and predictive models, and identify novel therapeutic strategies. Here, we will review recent advances in the genetics of myeloid malignancies and discuss their potential impact on clinical practice.
Collapse
Affiliation(s)
- R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; and
| | | |
Collapse
|
140
|
Barclay SS, Tamura T, Ito H, Fujita K, Tagawa K, Shimamura T, Katsuta A, Shiwaku H, Sone M, Imoto S, Miyano S, Okazawa H. Systems biology analysis of Drosophila in vivo screen data elucidates core networks for DNA damage repair in SCA1. Hum Mol Genet 2013; 23:1345-64. [DOI: 10.1093/hmg/ddt524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
141
|
Ma H, Rao L, Wang HL, Mao ZW, Lei RH, Yang ZY, Qing H, Deng YL. Transcriptome analysis of glioma cells for the dynamic response to γ-irradiation and dual regulation of apoptosis genes: a new insight into radiotherapy for glioblastomas. Cell Death Dis 2013; 4:e895. [PMID: 24176853 PMCID: PMC3920930 DOI: 10.1038/cddis.2013.412] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/09/2013] [Accepted: 09/06/2013] [Indexed: 11/11/2022]
Abstract
Ionizing radiation (IR) is of clinical importance for glioblastoma therapy; however, the recurrence of glioma characterized by radiation resistance remains a therapeutic challenge. Research on irradiation-induced transcription in glioblastomas can contribute to the understanding of radioresistance mechanisms. In this study, by using the total mRNA sequencing (RNA-seq) analysis, we assayed the global gene expression in a human glioma cell line U251 MG at various time points after exposure to a growth arrest dose of γ-rays. We identified 1656 genes with obvious changes at the transcriptional level in response to irradiation, and these genes were dynamically enriched in various biological processes or pathways, including cell cycle arrest, DNA replication, DNA repair and apoptosis. Interestingly, the results showed that cell death was not induced even many proapoptotic molecules, including death receptor 5 (DR5) and caspases were activated after radiation. The RNA-seq data analysis further revealed that both proapoptosis and antiapoptosis genes were affected by irradiation. Namely, most proapoptosis genes were early continually responsive, whereas antiapoptosis genes were responsive at later stages. Moreover, HMGB1, HMGB2 and TOP2A involved in the positive regulation of DNA fragmentation during apoptosis showed early continual downregulation due to irradiation. Furthermore, targeting of the TRAIL/DR5 pathway after irradiation led to significant apoptotic cell death, accompanied by the recovered gene expression of HMGB1, HMGB2 and TOP2A. Taken together, these results revealed that inactivation of proapoptotic signaling molecules in the nucleus and late activation of antiapoptotic genes may contribute to the radioresistance of gliomas. Overall, this study provided novel insights into not only the underlying mechanisms of radioresistance in glioblastomas but also the screening of multiple targets for radiotherapy.
Collapse
Affiliation(s)
- H Ma
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Simon JM, Hacker KE, Singh D, Brannon AR, Parker JS, Weiser M, Ho TH, Kuan PF, Jonasch E, Furey TS, Prins JF, Lieb JD, Rathmell WK, Davis IJ. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res 2013; 24:241-50. [PMID: 24158655 PMCID: PMC3912414 DOI: 10.1101/gr.158253.113] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Comprehensive sequencing of human cancers has identified recurrent mutations in genes encoding chromatin regulatory proteins. For clear cell renal cell carcinoma (ccRCC), three of the five commonly mutated genes encode the chromatin regulators PBRM1, SETD2, and BAP1. How these mutations alter the chromatin landscape and transcriptional program in ccRCC or other cancers is not understood. Here, we identified alterations in chromatin organization and transcript profiles associated with mutations in chromatin regulators in a large cohort of primary human kidney tumors. By associating variation in chromatin organization with mutations in SETD2, which encodes the enzyme responsible for H3K36 trimethylation, we found that changes in chromatin accessibility occurred primarily within actively transcribed genes. This increase in chromatin accessibility was linked with widespread alterations in RNA processing, including intron retention and aberrant splicing, affecting ∼25% of all expressed genes. Furthermore, decreased nucleosome occupancy proximal to misspliced exons was observed in tumors lacking H3K36me3. These results directly link mutations in SETD2 to chromatin accessibility changes and RNA processing defects in cancer. Detecting the functional consequences of specific mutations in chromatin regulatory proteins in primary human samples could ultimately inform the therapeutic application of an emerging class of chromatin-targeted compounds.
Collapse
Affiliation(s)
- Jeremy M Simon
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Thomas MP, Lieberman J. Live or let die: posttranscriptional gene regulation in cell stress and cell death. Immunol Rev 2013; 253:237-52. [PMID: 23550650 DOI: 10.1111/imr.12052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Studies of the regulation of gene expression historically focused on transcription. However, during stress and apoptosis, profound gene expression changes occur more rapidly and globally than is possible by regulating transcription. Posttranscriptional changes in mRNA processing and translation in response to diverse stresses shut down most protein translation to conserve energy and lead to rapid remodeling of the proteome to promote repair. Pre-mRNA splicing and mRNA stability are fundamentally altered under some stress conditions. Stress pathways coordinate a cytoprotective repair response, while simultaneously initiating signaling that can ultimately trigger cell death. How the cell mediates the decision between repair and apoptosis is largely not understood. In some stresses, microRNAs may tip the balance. Here, we review what is known about posttranscriptional gene regulation during stress, focusing on what is still unknown and how new technologies might be used to understand what changes are most physiologically important in different forms of stress and death.
Collapse
Affiliation(s)
- Marshall P Thomas
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
144
|
RNA splicing: a new player in the DNA damage response. Int J Cell Biol 2013; 2013:153634. [PMID: 24159334 PMCID: PMC3789447 DOI: 10.1155/2013/153634] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 12/16/2022] Open
Abstract
It is widely accepted that tumorigenesis is a multistep process characterized by the sequential accumulation of genetic alterations. However, the molecular basis of genomic instability in cancer is still partially understood. The observation that hereditary cancers are often characterized by mutations in DNA repair and checkpoint genes suggests that accumulation of DNA damage is a major contributor to the oncogenic transformation. It is therefore of great interest to identify all the cellular pathways that contribute to the response to DNA damage. Recently, RNA processing has emerged as a novel pathway that may contribute to the maintenance of genome stability. In this review, we illustrate several different mechanisms through which pre-mRNA splicing and genomic stability can influence each other. We specifically focus on the role of splicing factors in the DNA damage response and describe how, in turn, activation of the DDR can influence the activity of splicing factors.
Collapse
|
145
|
Stamova BS, Tian Y, Nordahl CW, Shen MD, Rogers S, Amaral DG, Sharp FR. Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders. Mol Autism 2013; 4:30. [PMID: 24007566 PMCID: PMC3846739 DOI: 10.1186/2040-2392-4-30] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022] Open
Abstract
Background Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. The only pathways significant after multiple comparison corrections (FDR <0.05) were the Nrf2-mediated reactive oxygen species (ROS) oxidative response (superoxide dismutase 2, catalase, peroxiredoxin 1, PIK3C3, DNAJC17, microsomal glutathione S-transferase 3) and superoxide radical degradation (SOD2, CAT). Conclusions These data support differences in alternative splicing of mRNA in blood of ASD subjects compared to TD controls that differ related to head size. The findings are preliminary, need to be replicated in independent cohorts, and predicted alternative splicing differences need to be confirmed using direct analytical methods.
Collapse
Affiliation(s)
- Boryana S Stamova
- MIND Institute, University of California at Davis, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | |
Collapse
|
146
|
Ewing sarcoma protein: a key player in human cancer. Int J Cell Biol 2013; 2013:642853. [PMID: 24082883 PMCID: PMC3776376 DOI: 10.1155/2013/642853] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/26/2013] [Indexed: 01/04/2023] Open
Abstract
The Ewing sarcoma protein (EWS) is a well-known player in cancer biology for the specific translocations occurring in sarcomas. The EWS-FLI1 gene fusion is the prototypical translocation that encodes the aberrant, chimeric transcription factor, which is a landmark of Ewing tumors. In all described Ewing sarcoma oncogenes, the EWS RNA binding domains are completely missing; thus RNA binding properties are not retained in the hybrid proteins. However, it is currently unknown whether the absence of EWS function in RNA metabolism plays a role in oncogenic transformation or if EWS plays a role by itself in cancer development besides its contribution to the translocation. In this regard, recent reports have highlighted an essential role for EWS in the regulation of DNA damage response (DDR), a process that counteracts genome stability and is often deregulated in cancer cells. The first part of this review will describe the structural features of EWS and its multiple roles in the regulation of gene expression, which are exerted by coordinating different steps in the synthesis and processing of pre-mRNAs. The second part will examine the role of EWS in the regulation of DDR- and cancer-related genes, with potential implications in cancer therapies. Finally, recent advances on the involvement of EWS in neuromuscular disorders will be discussed. Collectively, the information reviewed herein highlights the broad role of EWS in bridging different cellular processes and underlines the contribution of EWS to genome stability and proper cell-cycle progression in higher eukaryotic cells.
Collapse
|
147
|
Affiliation(s)
- Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich,
Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research, Group Physical Biochemistry,
Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
148
|
Iannone C, Valcárcel J. Chromatin's thread to alternative splicing regulation. Chromosoma 2013; 122:465-74. [PMID: 23912688 DOI: 10.1007/s00412-013-0425-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
Intron removal (pre-mRNA splicing) is a necessary step for expression of most genes in higher eukaryotes. Alternative splice site selection is a prevalent mechanism that diversifies genome outputs and offers ample opportunities for gene regulation in these organisms. Pre-mRNA splicing occurs co-transcriptionally and is influenced by features in chromatin structure, including nucleosome density and epigenetic modifications. We review here the molecular mechanisms by which the reciprocal interplay between chromatin and RNA processing can contribute to alternative splicing regulation.
Collapse
|
149
|
Sette C. Alternative splicing programs in prostate cancer. Int J Cell Biol 2013; 2013:458727. [PMID: 23983695 PMCID: PMC3747374 DOI: 10.1155/2013/458727] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/11/2013] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) remains one of the most frequent causes of death for cancer in the male population. Although the initial antiandrogenic therapies are efficacious, PCa often evolves into a hormone-resistant, incurable disease. The genetic and phenotypic heterogeneity of this type of cancer renders its diagnosis and cure particularly challenging. Mounting evidence indicates that alternative splicing, the process that allows production of multiple mRNA variants from each gene, contributes to the heterogeneity of the disease. Key genes for the biology of normal and neoplastic prostate cells, such as those encoding for the androgen receptor and cyclin D1, are alternatively spliced to yield protein isoforms with different or even opposing functions. This review illustrates some examples of genes whose alternative splicing regulation is relevant to PCa biology and discusses the possibility to exploit alternative splicing regulation as a novel tool for prognosis, diagnosis, and therapeutic approaches to PCa.
Collapse
Affiliation(s)
- Claudio Sette
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata,” 00133 Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| |
Collapse
|
150
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|