101
|
Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 2019; 20:89-108. [PMID: 30446728 DOI: 10.1038/s41576-018-0073-3] [Citation(s) in RCA: 666] [Impact Index Per Article: 133.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) of 21-35 nucleotides in length silence transposable elements, regulate gene expression and fight viral infection. piRNAs guide PIWI proteins to cleave target RNA, promote heterochromatin assembly and methylate DNA. The architecture of the piRNA pathway allows it both to provide adaptive, sequence-based immunity to rapidly evolving viruses and transposons and to regulate conserved host genes. piRNAs silence transposons in the germ line of most animals, whereas somatic piRNA functions have been lost, gained and lost again across evolution. Moreover, most piRNA pathway proteins are deeply conserved, but different animals employ remarkably divergent strategies to produce piRNA precursor transcripts. Here, we discuss how a common piRNA pathway allows animals to recognize diverse targets, ranging from selfish genetic elements to genes essential for gametogenesis.
Collapse
Affiliation(s)
- Deniz M Ozata
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ansgar Zoch
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Dónal O'Carroll
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
102
|
A New Portrait of Constitutive Heterochromatin: Lessons from Drosophila melanogaster. Trends Genet 2019; 35:615-631. [PMID: 31320181 DOI: 10.1016/j.tig.2019.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Constitutive heterochromatin represents a significant portion of eukaryotic genomes, but its functions still need to be elucidated. Even in the most updated genetics and molecular biology textbooks, constitutive heterochromatin is portrayed mainly as the 'silent' component of eukaryotic genomes. However, there may be more complexity to the relationship between heterochromatin and gene expression. In the fruit fly Drosophila melanogaster, a model for heterochromatin studies, about one-third of the genome is heterochromatic and is concentrated in the centric, pericentric, and telomeric regions of the chromosomes. Recent findings indicate that hundreds of D. melanogaster genes can 'live and work' properly within constitutive heterochromatin. The genomic size of these genes is generally larger than that of euchromatic genes and together they account for a significant fraction of the entire constitutive heterochromatin. Thus, this peculiar genome component in spite its ability to induce silencing, has in fact the means for being quite dynamic. A major scope of this review is to revisit the 'dogma of silent heterochromatin'.
Collapse
|
103
|
Barckmann B, El-Barouk M, Pélisson A, Mugat B, Li B, Franckhauser C, Fiston Lavier AS, Mirouze M, Fablet M, Chambeyron S. The somatic piRNA pathway controls germline transposition over generations. Nucleic Acids Res 2019; 46:9524-9536. [PMID: 30312469 PMCID: PMC6182186 DOI: 10.1093/nar/gky761] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/22/2018] [Indexed: 11/14/2022] Open
Abstract
Transposable elements (TEs) are parasitic DNA sequences that threaten genome integrity by replicative transposition in host gonads. The Piwi-interacting RNAs (piRNAs) pathway is assumed to maintain Drosophila genome homeostasis by downregulating transcriptional and post-transcriptional TE expression in the ovary. However, the bursts of transposition that are expected to follow transposome derepression after piRNA pathway impairment have not yet been reported. Here, we show, at a genome-wide level, that piRNA loss in the ovarian somatic cells boosts several families of the endogenous retroviral subclass of TEs, at various steps of their replication cycle, from somatic transcription to germinal genome invasion. For some of these TEs, the derepression caused by the loss of piRNAs is backed up by another small RNA pathway (siRNAs) operating in somatic tissues at the post transcriptional level. Derepressed transposition during 70 successive generations of piRNA loss exponentially increases the genomic copy number by up to 10-fold.
Collapse
Affiliation(s)
| | - Marianne El-Barouk
- IGH, CNRS, Univ. Montpellier, Montpellier, France.,Institut Cochin, Paris, France
| | | | - Bruno Mugat
- IGH, CNRS, Univ. Montpellier, Montpellier, France
| | - Blaise Li
- IGH, CNRS, Univ. Montpellier, Montpellier, France.,Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756, IP CNRS, Paris France
| | | | | | - Marie Mirouze
- LGPD, CNRS, Univ Perpignan Via Domitia, Perpignan, France
| | - Marie Fablet
- Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Laboratoire de Biométrie et Biologie Evolutive. 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | | |
Collapse
|
104
|
Diversification of small RNA amplification mechanisms for targeting transposon-related sequences in ciliates. Proc Natl Acad Sci U S A 2019; 116:14639-14644. [PMID: 31262823 DOI: 10.1073/pnas.1903491116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The silencing of repetitive transposable elements (TEs) is ensured by signal amplification of the initial small RNA trigger, which occurs at distinct steps of TE silencing in different eukaryotes. How such a variety of secondary small RNA biogenesis mechanisms has evolved has not been thoroughly elucidated. Ciliated protozoa perform small RNA-directed programmed DNA elimination of thousands of TE-related internal eliminated sequences (IESs) in the newly developed somatic nucleus. In the ciliate Paramecium, secondary small RNAs are produced after the excision of IESs. In this study, we show that in another ciliate, Tetrahymena, secondary small RNAs accumulate at least a few hours before their derived IESs are excised. We also demonstrate that DNA excision is dispensable for their biogenesis in this ciliate. Therefore, unlike in Paramecium, small RNA amplification occurs before IES excision in Tetrahymena This study reveals the remarkable diversity of secondary small RNA biogenesis mechanisms, even among ciliates with similar DNA elimination processes, and thus raises the possibility that the evolution of TE-targeting small RNA amplification can be traced by investigating the DNA elimination mechanisms of ciliates.
Collapse
|
105
|
Helleu Q, Levine MT. Recurrent Amplification of the Heterochromatin Protein 1 (HP1) Gene Family across Diptera. Mol Biol Evol 2019; 35:2375-2389. [PMID: 29924345 PMCID: PMC6188558 DOI: 10.1093/molbev/msy128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The heterochromatic genome compartment mediates strictly conserved cellular processes such as chromosome segregation, telomere integrity, and genome stability. Paradoxically, heterochromatic DNA sequence is wildly unconserved. Recent reports that many hybrid incompatibility genes encode heterochromatin proteins, together with the observation that interspecies hybrids suffer aberrant heterochromatin-dependent processes, suggest that heterochromatic DNA packaging requires species-specific innovations. Testing this model of coevolution between fast-evolving heterochromatic DNA and its packaging proteins begins with defining the latter. Here we describe many such candidates encoded by the Heterochromatin Protein 1 (HP1) gene family across Diptera, an insect Order that encompasses dramatic episodes of heterochromatic sequence turnover. Using BLAST, synteny analysis, and phylogenetic tree building across 64 Diptera genomes, we discovered a staggering 121 HP1 duplication events. In contrast, we observed virtually no gene duplication in gene families that share a common “chromodomain” with HP1s, including Polycomb and Su(var)3-9. The remarkably high number of Dipteran HP1 paralogs arises from distant clades undergoing convergent HP1 family amplifications. These independently derived, young HP1s span diverse ages, domain structures, and rates of molecular evolution, including episodes of positive selection. Moreover, independently derived HP1s exhibit convergent expression evolution. While ancient HP1 parent genes are transcribed ubiquitously, young HP1 paralogs are transcribed primarily in male germline tissue, a pattern typical of young genes. Pervasive gene youth, rapid evolution, and germline specialization implicate heterochromatin-encoded selfish elements driving recurrent HP1 gene family expansions. The 121 young genes offer valuable experimental traction for elucidating the germline processes shaped by Diptera’s many dramatic episodes of heterochromatin turnover.
Collapse
Affiliation(s)
- Quentin Helleu
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Mia T Levine
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
106
|
Sokolova OA, Ilyin AA, Poltavets AS, Nenasheva VV, Mikhaleva EA, Shevelyov YY, Klenov MS. Yb body assembly on the flamenco piRNA precursor transcripts reduces genic piRNA production. Mol Biol Cell 2019; 30:1544-1554. [PMID: 30943101 PMCID: PMC6724695 DOI: 10.1091/mbc.e17-10-0591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In Drosophila ovarian somatic cells, PIWI-interacting small RNAs (piRNAs) against transposable elements are mainly produced from the ∼180-kb flamenco (flam) locus. flam transcripts are gathered into foci, located close to the nuclear envelope, and processed into piRNAs in the cytoplasmic Yb bodies. The mechanism of Yb body formation remains unknown. Using RNA fluorescence in situ hybridization, we found that in the follicle cells of ovaries the 5′-ends of flam transcripts are usually located in close proximity to the nuclear envelope and outside of Yb bodies, whereas their extended downstream regions mostly overlap with Yb bodies. In flamKG mutant ovaries, flam transcripts containing the first and, partially, second exons but lacking downstream regions are gathered into foci at the nuclear envelope, but Yb bodies are not assembled. Strikingly, piRNAs from the protein-coding gene transcripts accumulate at higher levels in flamKG ovaries indicating that piRNA biogenesis may occur without Yb bodies. We propose that normally in follicle cells, flam downstream transcript regions function not only as a substrate for generation of piRNAs but also as a scaffold for Yb body assembly, which competitively decreases piRNA production from the protein-coding gene transcripts. By contrast, in ovarian somatic cap and escort cells Yb body assembly does not require flam transcription.
Collapse
Affiliation(s)
- Olesya A Sokolova
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia
| | - Artem A Ilyin
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia
| | - Anastasiya S Poltavets
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia
| | - Valentina V Nenasheva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia
| | - Elena A Mikhaleva
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia
| | - Yuri Y Shevelyov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia
| | - Mikhail S Klenov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia
| |
Collapse
|
107
|
Casier K, Delmarre V, Gueguen N, Hermant C, Viodé E, Vaury C, Ronsseray S, Brasset E, Teysset L, Boivin A. Environmentally-induced epigenetic conversion of a piRNA cluster. eLife 2019; 8:e39842. [PMID: 30875295 PMCID: PMC6420265 DOI: 10.7554/elife.39842] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 03/06/2019] [Indexed: 01/02/2023] Open
Abstract
Transposable element (TE) activity is repressed in animal gonads by PIWI-interacting RNAs (piRNAs) produced by piRNA clusters. Current models in flies propose that germinal piRNA clusters are functionally defined by the maternal inheritance of piRNAs produced during the previous generation. Taking advantage of an inactive, but ready to go, cluster of P-element derived transgene insertions in Drosophila melanogaster, we show here that raising flies at high temperature (29°C) instead of 25°C triggers the stable conversion of this locus from inactive into actively producing functional piRNAs. The increase of antisense transcripts from the cluster at 29°C combined with the requirement of transcription of euchromatic homologous sequences, suggests a role of double stranded RNA in the production of de novo piRNAs. This report describes the first case of the establishment of an active piRNA cluster by environmental changes in the absence of maternal inheritance of homologous piRNAs. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Karine Casier
- Laboratoire Biologie du Développement, UMR7622Sorbonne Université, CNRS, Institut de Biologie Paris-SeineParisFrance
| | - Valérie Delmarre
- Laboratoire Biologie du Développement, UMR7622Sorbonne Université, CNRS, Institut de Biologie Paris-SeineParisFrance
| | - Nathalie Gueguen
- GReDUniversité Clermont Auvergne, CNRS, INSERM, BP 10448Clermont-FerrandFrance
| | - Catherine Hermant
- Laboratoire Biologie du Développement, UMR7622Sorbonne Université, CNRS, Institut de Biologie Paris-SeineParisFrance
| | - Elise Viodé
- Laboratoire Biologie du Développement, UMR7622Sorbonne Université, CNRS, Institut de Biologie Paris-SeineParisFrance
| | - Chantal Vaury
- GReDUniversité Clermont Auvergne, CNRS, INSERM, BP 10448Clermont-FerrandFrance
| | - Stéphane Ronsseray
- Laboratoire Biologie du Développement, UMR7622Sorbonne Université, CNRS, Institut de Biologie Paris-SeineParisFrance
| | - Emilie Brasset
- GReDUniversité Clermont Auvergne, CNRS, INSERM, BP 10448Clermont-FerrandFrance
| | - Laure Teysset
- Laboratoire Biologie du Développement, UMR7622Sorbonne Université, CNRS, Institut de Biologie Paris-SeineParisFrance
| | - Antoine Boivin
- Laboratoire Biologie du Développement, UMR7622Sorbonne Université, CNRS, Institut de Biologie Paris-SeineParisFrance
| |
Collapse
|
108
|
The Integrity of piRNA Clusters is Abolished by Insulators in the Drosophila Germline. Genes (Basel) 2019; 10:genes10030209. [PMID: 30862119 PMCID: PMC6471301 DOI: 10.3390/genes10030209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) control transposable element (TE) activity in the germline. piRNAs are produced from single-stranded precursors transcribed from distinct genomic loci, enriched by TE fragments and termed piRNA clusters. The specific chromatin organization and transcriptional regulation of Drosophila germline-specific piRNA clusters ensure transcription and processing of piRNA precursors. TEs harbour various regulatory elements that could affect piRNA cluster integrity. One of such elements is the suppressor-of-hairy-wing (Su(Hw))-mediated insulator, which is harboured in the retrotransposon gypsy. To understand how insulators contribute to piRNA cluster activity, we studied the effects of transgenes containing gypsy insulators on local organization of endogenous piRNA clusters. We show that transgene insertions interfere with piRNA precursor transcription, small RNA production and the formation of piRNA cluster-specific chromatin, a hallmark of which is Rhino, the germline homolog of the heterochromatin protein 1 (HP1). The mutations of Su(Hw) restored the integrity of piRNA clusters in transgenic strains. Surprisingly, Su(Hw) depletion enhanced the production of piRNAs by the domesticated telomeric retrotransposon TART, indicating that Su(Hw)-dependent elements protect TART transcripts from piRNA processing machinery in telomeres. A genome-wide analysis revealed that Su(Hw)-binding sites are depleted in endogenous germline piRNA clusters, suggesting that their functional integrity is under strict evolutionary constraints.
Collapse
|
109
|
Chang TH, Mattei E, Gainetdinov I, Colpan C, Weng Z, Zamore PD. Maelstrom Represses Canonical Polymerase II Transcription within Bi-directional piRNA Clusters in Drosophila melanogaster. Mol Cell 2019; 73:291-303.e6. [PMID: 30527661 PMCID: PMC6551610 DOI: 10.1016/j.molcel.2018.10.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/05/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022]
Abstract
In Drosophila, 23-30 nt long PIWI-interacting RNAs (piRNAs) direct the protein Piwi to silence germline transposon transcription. Most germline piRNAs derive from dual-strand piRNA clusters, heterochromatic transposon graveyards that are transcribed from both genomic strands. These piRNA sources are marked by the heterochromatin protein 1 homolog Rhino (Rhi), which facilitates their promoter-independent transcription, suppresses splicing, and inhibits transcriptional termination. Here, we report that the protein Maelstrom (Mael) represses canonical, promoter-dependent transcription in dual-strand clusters, allowing Rhi to initiate piRNA precursor transcription. Mael also represses promoter-dependent transcription at sites outside clusters. At some loci, Mael repression requires the piRNA pathway, while at others, piRNAs play no role. We propose that by repressing canonical transcription of individual transposon mRNAs, Mael helps Rhi drive non-canonical transcription of piRNA precursors without generating mRNAs encoding transposon proteins.
Collapse
MESH Headings
- Animals
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- Binding Sites
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA Transposable Elements
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/enzymology
- Drosophila melanogaster/genetics
- Gene Expression Regulation
- Promoter Regions, Genetic
- Protein Binding
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/biosynthesis
- RNA, Small Interfering/genetics
- Transcription, Genetic
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Timothy H Chang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA
| | - Eugenio Mattei
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA
| | - Cansu Colpan
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA.
| |
Collapse
|
110
|
Fontdevila A. Hybrid Genome Evolution by Transposition: An Update. J Hered 2019; 110:124-136. [PMID: 30107415 DOI: 10.1093/jhered/esy040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/06/2018] [Indexed: 02/02/2023] Open
Abstract
Contrary to the view that hybrids are lineages devoid of evolutionary value, a number of case studies that have been lately reported show how hybrids are at the origin of many species. Some well-documented cases demonstrate that bursts of transposition often follow hybridization, generating new genetic variability. Studies in hybrid transposition strongly suggest that epigenetic changes and divergence in piRNA pathways drive deregulation in TE landscapes. Here, I have focused on mechanisms acting in Drosophila hybrids between two cactophilic species. The results reported here show that while hybrid instability by transposition is a genome-wide event, deregulation by TE overexpression in hybrid ovaries is not a general rule. When piRNA pools of ovaries are studied, results show that TEs with parental differences higher than 2-fold in their piRNA amounts are not more commonly deregulated in hybrids than TEs with similar levels, partially discrediting the generality of the maternal cytotype hypothesis. Some promising results on the piRNA pathway global failure hypothesis, which states that accumulated divergence of piRNA effector proteins is responsible for hybrid TE deregulation, have also been obtained. Altogether, these results suggest that TE deregulation might be driven by several interacting mechanisms. A natural scenario is proposed in which genome instability by transposition leads to hybrid genome reorganization. Small hybrid populations, subjected to natural selection helped by genetic drift, evolve new adaptations adapted to novel environments. The final step is either introgression or even a new hybrid species.
Collapse
Affiliation(s)
- Antonio Fontdevila
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, Spain
| |
Collapse
|
111
|
Weng C, Kosalka J, Berkyurek AC, Stempor P, Feng X, Mao H, Zeng C, Li WJ, Yan YH, Dong MQ, Morero NR, Zuliani C, Barabas O, Ahringer J, Guang S, Miska EA. The USTC co-opts an ancient machinery to drive piRNA transcription in C. elegans. Genes Dev 2019; 33:90-102. [PMID: 30567997 PMCID: PMC6317315 DOI: 10.1101/gad.319293.118] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023]
Abstract
Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and nonself nucleic acids and maintain genome integrity and are essential for fertility in a variety of organisms. In Caenorhabditis elegans, most piRNA precursors are transcribed from two genomic clusters that contain thousands of individual piRNA transcription units. While a few genes have been shown to be required for piRNA biogenesis, the mechanism of piRNA transcription remains elusive. Here we used functional proteomics approaches to identify an upstream sequence transcription complex (USTC) that is essential for piRNA biogenesis. The USTC contains piRNA silencing-defective 1 (PRDE-1), SNPC-4, twenty-one-U fouled-up 4 (TOFU-4), and TOFU-5. The USTC forms unique piRNA foci in germline nuclei and coats the piRNA cluster genomic loci. USTC factors associate with the Ruby motif just upstream of type I piRNA genes. USTC factors are also mutually dependent for binding to the piRNA clusters and forming the piRNA foci. Interestingly, USTC components bind differentially to piRNAs in the clusters and other noncoding RNA genes. These results reveal the USTC as a striking example of the repurposing of a general transcription factor complex to aid in genome defense against transposons.
Collapse
Affiliation(s)
- Chenchun Weng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Joanna Kosalka
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Ahmet C Berkyurek
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Przemyslaw Stempor
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Xuezhu Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hui Mao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chenming Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wen-Jun Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Natalia Rosalía Morero
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Cecilia Zuliani
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Julie Ahringer
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Shouhong Guang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Eric A Miska
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
112
|
Sato K, Siomi MC. Two distinct transcriptional controls triggered by nuclear Piwi-piRISCs in the Drosophila piRNA pathway. Curr Opin Struct Biol 2018; 53:69-76. [DOI: 10.1016/j.sbi.2018.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 06/19/2018] [Indexed: 01/21/2023]
|
113
|
Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, Hannon GJ. piRNA-Guided Genome Defense: From Biogenesis to Silencing. Annu Rev Genet 2018; 52:131-157. [PMID: 30476449 PMCID: PMC10784713 DOI: 10.1146/annurev-genet-120417-031441] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PIWI-interacting RNAs (piRNAs) and their associated PIWI clade Argonaute proteins constitute the core of the piRNA pathway. In gonadal cells, this conserved pathway is crucial for genome defense, and its main function is to silence transposable elements. This is achieved through posttranscriptional and transcriptional gene silencing. Precursors that give rise to piRNAs require specialized transcription and transport machineries because piRNA biogenesis is a cytoplasmic process. The ping-pong cycle, a posttranscriptional silencing mechanism, combines the cleavage-dependent silencing of transposon RNAs with piRNA production. PIWI proteins also function in the nucleus, where they scan for nascent target transcripts with sequence complementarity, instructing transcriptional silencing and deposition of repressive chromatin marks at transposon loci. Although studies have revealed numerous factors that participate in each branch of the piRNA pathway, the precise molecular roles of these factors often remain unclear. In this review, we summarize our current understanding of the mechanisms involved in piRNA biogenesis and function.
Collapse
Affiliation(s)
- Benjamin Czech
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Marzia Munafò
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Filippo Ciabrelli
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Martin H Fabry
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Emma Kneuss
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| |
Collapse
|
114
|
Abstract
Inheritance of genomic DNA underlies the vast majority of biological inheritance, yet it has been clear for decades that additional epigenetic information can be passed on to future generations. Here, we review major model systems for transgenerational epigenetic inheritance via the germline in multicellular organisms. In addition to surveying examples of epivariation that may arise stochastically or in response to unknown stimuli, we also discuss the induction of heritable epigenetic changes by genetic or environmental perturbations. Mechanistically, we discuss the increasingly well-understood molecular pathways responsible for epigenetic inheritance, with a focus on the unusual features of the germline epigenome.
Collapse
Affiliation(s)
- Ana Bošković
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
115
|
Brito T, Julio A, Berni M, de Castro Poncio L, Bernardes ES, Araujo H, Sammeth M, Pane A. Transcriptomic and functional analyses of the piRNA pathway in the Chagas disease vector Rhodnius prolixus. PLoS Negl Trop Dis 2018; 12:e0006760. [PMID: 30303955 PMCID: PMC6179187 DOI: 10.1371/journal.pntd.0006760] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 08/17/2018] [Indexed: 12/18/2022] Open
Abstract
The piRNA pathway is a surveillance system that guarantees oogenesis and adult fertility in a range of animal species. The pathway is centered on PIWI clade Argonaute proteins and the associated small non-coding RNAs termed piRNAs. In this study, we set to investigate the evolutionary conservation of the piRNA pathway in the hemimetabolous insect Rhodnius prolixus. Our transcriptome profiling reveals that core components of the pathway are expressed during previtellogenic stages of oogenesis. Rhodnius’ genome harbors four putative piwi orthologs. We show that Rp-piwi2, Rp-piwi3 and Rp-ago3, but not Rp-piwi1 transcripts are produced in the germline tissues and maternally deposited in the mature eggs. Consistent with a role in Rhodnius oogenesis, parental RNAi against the Rp-piwi2, Rp-piwi3 and Rp-ago3 results in severe egg laying and female adult fertility defects. Furthermore, we show that the reduction of the Rp-piwi2 levels by parental RNAi disrupts oogenesis by causing a dramatic loss of trophocytes, egg chamber degeneration and oogenesis arrest. Intriguingly, the putative Rp-Piwi2 protein features a polyglutamine tract at its N-terminal region, which is conserved in PIWI proteins encoded in the genome of other Triatomine species. Together with R. prolixus, these hematophagous insects are primary vectors of the Chagas disease. Thus, our data shed more light on the evolution of the piRNA pathway and provide a framework for the development of new control strategies for Chagas disease insect vectors. Rhodnius prolixus together with other blood-feeding bugs of the Triatominae family are primary vectors of the protozoan Trypanosoma cruzi, the causative agent of the Chagas disease. It has been estimated that 7–8 million people are affected by this life-threatening illness worldwide, which makes the Chagas disease one of the most neglected tropical diseases. In this study, we describe the transcriptome of previtellogenic stages of Rhodnius oogenesis. Furthermore, by using a combination of molecular biology techniques and functional analyses we show that central components of the piRNA pathway are conserved in this species. The piRNA pathway guarantees genomic stability in the germ cells of organisms as distant as flies and mice. In accordance, we find that the knock-down of the piwi genes, which form the backbone of the pathway, results in partial or complete female adult sterility in Rhodnius. Our data will help improve the annotation of the Rhodnius genome and provide a framework for the development of novel techniques aiming at the eradication of Rhodnius prolixus and other Triatomine species from the infested areas. The achievement of this goal will ultimately prevent the transmission of trypanosomes to humans and reduce or eliminate the diffusion of the Chagas disease.
Collapse
Affiliation(s)
- Tarcisio Brito
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Molecular Entomology (INCT), Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alison Julio
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Molecular Entomology (INCT), Rio de Janeiro, Brazil
| | - Mateus Berni
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Molecular Entomology (INCT), Rio de Janeiro, Brazil
| | | | - Emerson Soares Bernardes
- Forrest Brasil Tecnologia Ltda, Araucária, Paraná, Brazil
- Nuclear Energy Research Institute, Radiopharmacy Center, São Paulo, Brazil
| | - Helena Araujo
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Molecular Entomology (INCT), Rio de Janeiro, Brazil
| | - Michael Sammeth
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Attilio Pane
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Molecular Entomology (INCT), Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
116
|
The H3K9 methyltransferase SETDB1 maintains female identity in Drosophila germ cells. Nat Commun 2018; 9:4155. [PMID: 30297796 PMCID: PMC6175928 DOI: 10.1038/s41467-018-06697-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022] Open
Abstract
The preservation of germ cell sexual identity is essential for gametogenesis. Here we show that H3K9me3-mediated gene silencing is integral to female fate maintenance in Drosophila germ cells. Germ cell specific loss of the H3K9me3 pathway members, the H3K9 methyltransferase SETDB1, WDE, and HP1a, leads to ectopic expression of genes, many of which are normally expressed in testis. SETDB1 controls the accumulation of H3K9me3 over a subset of these genes without spreading into neighboring loci. At phf7, a regulator of male germ cell sexual fate, the H3K9me3 peak falls over the silenced testis-specific transcription start site. Furthermore, H3K9me3 recruitment to phf7 and repression of testis-specific transcription is dependent on the female sex determination gene Sxl. Thus, female identity is secured by an H3K9me3 epigenetic pathway in which Sxl is the upstream female-specific regulator, SETDB1 is the required chromatin writer, and phf7 is one of the critical SETDB1 target genes. Epigenetic regulation is critical for the maintenance of germ cell identity. Here the authors show that H3K9me3-mediated gene silencing is critical for repression of testis-specific transcription in Drosophila female germ cells, indicating H3K9me3 maintains female germ cell sexual identity.
Collapse
|
117
|
Subcellular Specialization and Organelle Behavior in Germ Cells. Genetics 2018; 208:19-51. [PMID: 29301947 DOI: 10.1534/genetics.117.300184] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
Gametes, eggs and sperm, are the highly specialized cell types on which the development of new life solely depends. Although all cells share essential organelles, such as the ER (endoplasmic reticulum), Golgi, mitochondria, and centrosomes, germ cells display unique regulation and behavior of organelles during gametogenesis. These germ cell-specific functions of organelles serve critical roles in successful gamete production. In this chapter, I will review the behaviors and roles of organelles during germ cell differentiation.
Collapse
|
118
|
Abstract
Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development-a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development.
Collapse
|
119
|
Barton LJ, Duan T, Ke W, Luttinger A, Lovander KE, Soshnev AA, Geyer PK. Nuclear lamina dysfunction triggers a germline stem cell checkpoint. Nat Commun 2018; 9:3960. [PMID: 30262885 PMCID: PMC6160405 DOI: 10.1038/s41467-018-06277-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
LEM domain (LEM-D) proteins are conserved components of the nuclear lamina (NL) that contribute to stem cell maintenance through poorly understood mechanisms. The Drosophila emerin homolog Otefin (Ote) is required for maintenance of germline stem cells (GSCs) and gametogenesis. Here, we show that ote mutants carry germ cell-specific changes in nuclear architecture that are linked to GSC loss. Strikingly, we found that both GSC death and gametogenesis are rescued by inactivation of the DNA damage response (DDR) kinases, ATR and Chk2. Whereas the germline checkpoint draws from components of the DDR pathway, genetic and cytological features of the GSC checkpoint differ from the canonical pathway. Instead, structural deformation of the NL correlates with checkpoint activation. Despite remarkably normal oogenesis, rescued oocytes do not support embryogenesis. Taken together, these data suggest that NL dysfunction caused by Otefin loss triggers a GSC-specific checkpoint that contributes to maintenance of gamete quality. Otefin is a nuclear lamina protein required for survival of Drosophila germ stem cells. Here the authors show that nuclear lamina dysfunction resulting from loss of Otefin activates a DNA damage-independent germ stem cell-specific checkpoint, mediated by the ATR and Chk2 kinases, which ensures that healthy gametes are passed on to the next generation.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Department of Cell Biology, Skirball Institute, NYU School of Medicine, 540 First Avenue, New York, NY, 10016, USA
| | - Tingting Duan
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Wenfan Ke
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Department of Biology, University of Virginia, 485 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Amy Luttinger
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Kaylee E Lovander
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Alexey A Soshnev
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Pamela K Geyer
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
120
|
Gainetdinov I, Colpan C, Arif A, Cecchini K, Zamore PD. A Single Mechanism of Biogenesis, Initiated and Directed by PIWI Proteins, Explains piRNA Production in Most Animals. Mol Cell 2018; 71:775-790.e5. [PMID: 30193099 PMCID: PMC6130920 DOI: 10.1016/j.molcel.2018.08.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/21/2018] [Accepted: 08/03/2018] [Indexed: 01/20/2023]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) guide PIWI proteins to silence transposons and regulate gene expression. The mechanisms for making piRNAs have been proposed to differ among cell types, tissues, and animals. Our data instead suggest a single model that explains piRNA production in most animals. piRNAs initiate piRNA production by guiding PIWI proteins to slice precursor transcripts. Next, PIWI proteins direct the stepwise fragmentation of the sliced precursor transcripts, yielding tail-to-head strings of phased precursor piRNAs (pre-piRNAs). Our analyses detect evidence for this piRNA biogenesis strategy across an evolutionarily broad range of animals, including humans. Thus, PIWI proteins initiate and sustain piRNA biogenesis by the same mechanism in species whose last common ancestor predates the branching of most animal lineages. The unified model places PIWI-clade Argonautes at the center of piRNA biology and suggests that the ancestral animal-the Urmetazoan-used PIWI proteins both to generate piRNA guides and to execute piRNA function.
Collapse
Affiliation(s)
- Ildar Gainetdinov
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Cansu Colpan
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Amena Arif
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Katharine Cecchini
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
121
|
Wang L, Dou K, Moon S, Tan FJ, Zhang ZZ. Hijacking Oogenesis Enables Massive Propagation of LINE and Retroviral Transposons. Cell 2018; 174:1082-1094.e12. [PMID: 30057117 DOI: 10.1016/j.cell.2018.06.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/08/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
Although animals have evolved multiple mechanisms to suppress transposons, "leaky" mobilizations that cause mutations and diseases still occur. This suggests that transposons employ specific tactics to accomplish robust propagation. By directly tracking mobilization, we show that, during a short and specific time window of oogenesis, retrotransposons achieve massive amplification via a cell-type-specific targeting strategy. Retrotransposons rarely mobilize in undifferentiated germline stem cells. However, as oogenesis proceeds, they utilize supporting nurse cells-which are highly polyploid and eventually undergo apoptosis-as factories to massively manufacture invading products. Moreover, retrotransposons rarely integrate into nurse cells themselves but, instead, via microtubule-mediated transport, they preferentially target the DNA of the interconnected oocytes. Blocking microtubule-dependent intercellular transport from nurse cells significantly alleviates damage to the oocyte genome. Our data reveal that parasitic genomic elements can efficiently hijack a host developmental process to propagate robustly, thereby driving evolutionary change and causing disease.
Collapse
Affiliation(s)
- Lu Wang
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Kun Dou
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Sungjin Moon
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Frederick J Tan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Zz Zhao Zhang
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| |
Collapse
|
122
|
Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat Neurosci 2018; 21:1038-1048. [PMID: 30038280 PMCID: PMC6095477 DOI: 10.1038/s41593-018-0194-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/12/2018] [Indexed: 12/27/2022]
Abstract
Transposable elements, known colloquially as “jumping genes,” constitute approximately 45% of the human genome. Cells utilize epigenetic defenses to limit transposable element jumping, including formation of silencing heterochromatin and generation of piwi-interacting RNAs (piRNAs), small RNAs that facilitate clearance of transposable element transcripts. Here we identify transposable element dysregulation as a key mediator of neuronal death in tauopathies, a group of neurodegenerative disorders that are pathologically characterized by deposits of tau protein in the brain. Mechanistically, we find that heterochromatin decondensation and reduction of piwi/piRNAs drive transposable element dysregulation in tauopathy. We further report a significant increase in transcripts of the endogenous retrovirus class of transposable elements in human Alzheimer’s disease and progressive supranuclear palsy, suggesting that transposable element dysregulation is conserved in human tauopathy. Taken together, our data identify heterochromatin decondensation, piwi/piRNA depletion and consequent transposable element dysregulation as a novel, pharmacologically targetable, mechanistic driver of neurodegeneration in tauopathy.
Collapse
|
123
|
Radion E, Morgunova V, Ryazansky S, Akulenko N, Lavrov S, Abramov Y, Komarov PA, Glukhov SI, Olovnikov I, Kalmykova A. Key role of piRNAs in telomeric chromatin maintenance and telomere nuclear positioning in Drosophila germline. Epigenetics Chromatin 2018; 11:40. [PMID: 30001204 PMCID: PMC6043984 DOI: 10.1186/s13072-018-0210-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Telomeric small RNAs related to PIWI-interacting RNAs (piRNAs) have been described in various eukaryotes; however, their role in germline-specific telomere function remains poorly understood. Using a Drosophila model, we performed an in-depth study of the biogenesis of telomeric piRNAs and their function in telomere homeostasis in the germline. RESULTS To fully characterize telomeric piRNA clusters, we integrated the data obtained from analysis of endogenous telomeric repeats, as well as transgenes inserted into different telomeric and subtelomeric regions. The small RNA-seq data from strains carrying telomeric transgenes demonstrated that all transgenes belong to a class of dual-strand piRNA clusters; however, their capacity to produce piRNAs varies significantly. Rhino, a paralog of heterochromatic protein 1 (HP1) expressed exclusively in the germline, is associated with all telomeric transgenes, but its enrichment correlates with the abundance of transgenic piRNAs. It is likely that this heterogeneity is determined by the sequence peculiarities of telomeric retrotransposons. In contrast to the heterochromatic non-telomeric germline piRNA clusters, piRNA loss leads to a dramatic decrease in HP1, Rhino, and trimethylated histone H3 lysine 9 in telomeric regions. Therefore, the presence of piRNAs is required for the maintenance of telomere chromatin in the germline. Moreover, piRNA loss causes telomere translocation from the nuclear periphery toward the nuclear interior but does not affect telomere end capping. Analysis of the telomere-associated sequences (TASs) chromatin revealed strong tissue specificity. In the germline, TASs are enriched with HP1 and Rhino, in contrast to somatic tissues, where they are repressed by Polycomb group proteins. CONCLUSIONS piRNAs play an essential role in the assembly of telomeric chromatin, as well as in nuclear telomere positioning in the germline. Telomeric arrays and TASs belong to a unique type of Rhino-dependent piRNA clusters with transcripts that serve simultaneously as piRNA precursors and as their only targets. Telomeric chromatin is highly sensitive to piRNA loss, implying the existence of a novel developmental checkpoint that depends on telomere integrity in the germline.
Collapse
Affiliation(s)
- Elizaveta Radion
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Valeriya Morgunova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Sergei Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Sergey Lavrov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Yuri Abramov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Pavel A Komarov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182.,Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Sergey I Glukhov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Ivan Olovnikov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Alla Kalmykova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182.
| |
Collapse
|
124
|
Yu B, Lin YA, Parhad SS, Jin Z, Ma J, Theurkauf WE, Zhang ZZ, Huang Y. Structural insights into Rhino-Deadlock complex for germline piRNA cluster specification. EMBO Rep 2018; 19:embr.201745418. [PMID: 29858487 DOI: 10.15252/embr.201745418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/28/2018] [Accepted: 05/14/2018] [Indexed: 11/09/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) silence transposons in germ cells to maintain genome stability and animal fertility. Rhino, a rapidly evolving heterochromatin protein 1 (HP1) family protein, binds Deadlock in a species-specific manner and so defines the piRNA-producing loci in the Drosophila genome. Here, we determine the crystal structures of Rhino-Deadlock complex in Drosophila melanogaster and simulans In both species, one Rhino binds the N-terminal helix-hairpin-helix motif of one Deadlock protein through a novel interface formed by the beta-sheet in the Rhino chromoshadow domain. Disrupting the interface leads to infertility and transposon hyperactivation in flies. Our structural and functional experiments indicate that electrostatic repulsion at the interaction interface causes cross-species incompatibility between the sibling species. By determining the molecular architecture of this piRNA-producing machinery, we discover a novel HP1-partner interacting mode that is crucial to piRNA biogenesis and transposon silencing. We thus explain the cross-species incompatibility of two sibling species at the molecular level.
Collapse
Affiliation(s)
- Bowen Yu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu An Lin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Swapnil S Parhad
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhaohui Jin
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zz Zhao Zhang
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Ying Huang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
125
|
Funikov SY, Kulikova DA, Krasnov GS, Rezvykh AP, Chuvakova LN, Shostak NG, Zelentsova ES, Blumenstiel JP, Evgen’ev MB. Spontaneous gain of susceptibility suggests a novel mechanism of resistance to hybrid dysgenesis in Drosophila virilis. PLoS Genet 2018; 14:e1007400. [PMID: 29813067 PMCID: PMC5993320 DOI: 10.1371/journal.pgen.1007400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/08/2018] [Accepted: 05/08/2018] [Indexed: 11/18/2022] Open
Abstract
Syndromes of hybrid dysgenesis (HD) have been critical for our understanding of the transgenerational maintenance of genome stability by piRNA. HD in D. virilis represents a special case of HD since it includes simultaneous mobilization of a set of TEs that belong to different classes. The standard explanation for HD is that eggs of the responder strains lack an abundant pool of piRNAs corresponding to the asymmetric TE families transmitted solely by sperm. However, there are several strains of D. virilis that lack asymmetric TEs, but exhibit a "neutral" cytotype that confers resistance to HD. To characterize the mechanism of resistance to HD, we performed a comparative analysis of the landscape of ovarian small RNAs in strains that vary in their resistance to HD mediated sterility. We demonstrate that resistance to HD cannot be solely explained by a maternal piRNA pool that matches the assemblage of TEs that likely cause HD. In support of this, we have witnessed a cytotype shift from neutral (N) to susceptible (M) in a strain devoid of all major TEs implicated in HD. This shift occurred in the absence of significant change in TE copy number and expression of piRNAs homologous to asymmetric TEs. Instead, this shift is associated with a change in the chromatin profile of repeat sequences unlikely to be causative of paternal induction. Overall, our data suggest that resistance to TE-mediated sterility during HD may be achieved by mechanisms that are distinct from the canonical syndromes of HD.
Collapse
Affiliation(s)
- Sergei Y. Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dina A. Kulikova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander P. Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lubov N. Chuvakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia G. Shostak
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena S. Zelentsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
| | - Michael B. Evgen’ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
126
|
Parikh RY, Lin H, Gangaraju VK. A critical role for nucleoporin 358 (Nup358) in transposon silencing and piRNA biogenesis in Drosophila. J Biol Chem 2018; 293:9140-9147. [PMID: 29735528 DOI: 10.1074/jbc.ac118.003264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/27/2018] [Indexed: 01/10/2023] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a class of small noncoding RNAs that bind Piwi proteins to silence transposons and to regulate gene expression. In Drosophila germ cells, the Aubergine (Aub)-Argonaute 3 (Ago3)-dependent ping-pong cycle generates most germline piRNAs. Loading of antisense piRNAs amplified by this cycle enables Piwi to enter the nucleus and silence transposons. Nuclear localization is crucial for Piwi function in transposon silencing, but how this process is regulated remains unknown. It is also not known whether any of the components of the nuclear pore complex (NPC) directly function in the piRNA pathway. Here, we show that nucleoporin 358 (Nup358) and Piwi interact with each other and that a germline knockdown (GLKD) of Nup358 with short hairpin RNA prevents Piwi entry into the nucleus. The Nup358 GLKD also activated transposons, increased genomic instability, and derailed piRNA biogenesis because of a combination of decreased piRNA precursor transcription and a collapse of the ping-pong cycle. Our results point to a critical role for Nup358 in the piRNA pathway, laying the foundation for future studies to fully elucidate the mechanisms by which Nup358 contributes to piRNA biogenesis and transposon silencing.
Collapse
Affiliation(s)
- Rasesh Y Parikh
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University, New Haven, Connecticut 06510
| | - Vamsi K Gangaraju
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425 and
| |
Collapse
|
127
|
Teo RYW, Anand A, Sridhar V, Okamura K, Kai T. Heterochromatin protein 1a functions for piRNA biogenesis predominantly from pericentric and telomeric regions in Drosophila. Nat Commun 2018; 9:1735. [PMID: 29728561 PMCID: PMC5935673 DOI: 10.1038/s41467-018-03908-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
In metazoan germline, Piwi-interacting RNAs (piRNAs) provide defence against transposons. Piwi-piRNA complex mediates transcriptional silencing of transposons in nucleus. Heterochromatin protein 1a (HP1a) has been proposed to function downstream of Piwi-piRNA complex in Drosophila. Here we show that HP1a germline knockdown (HP1a-GLKD) leads to a reduction in the total and Piwi-bound piRNAs mapping to clusters and transposons insertions, predominantly in the regions close to telomeres and centromeres, resulting in derepression of a limited number of transposons from these regions. In addition, HP1a-GLKD increases the splicing of transcripts arising from clusters in above regions, suggesting HP1a also functions upstream to piRNA processing. Evolutionarily old transposons enriched in the pericentric regions exhibit significant loss in piRNAs targeting these transposons upon HP1a-GLKD. Our study suggests that HP1a functions to repress transposons in a chromosomal compartmentalised manner.
Collapse
Affiliation(s)
- Ryan Yee Wei Teo
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
- Department of Pathology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Amit Anand
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore.
| | - Vishweshwaren Sridhar
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
| | - Toshie Kai
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
128
|
piRNA-like small RNAs are responsible for the maternal-specific knockdown in the ascidian Ciona intestinalis Type A. Sci Rep 2018; 8:5869. [PMID: 29651003 PMCID: PMC5897368 DOI: 10.1038/s41598-018-24319-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/12/2018] [Indexed: 01/11/2023] Open
Abstract
The mRNAs stored in eggs are crucial for embryogenesis. To address functions of maternal mRNAs, we recently reported the novel method MASK (maternal mRNA-specific knockdown), which we used to specifically knockdown maternal transcripts in the ascidian Ciona intestinalis Type A. In MASK, the cis element of a maternal gene is fused with eGFP or Kaede reporter gene, and the cassette is introduced into Ciona genome by transposon-mediated transgenesis. In eggs of the transgenic lines, the maternal expression of the gene whose cis element is used for driving the reporter gene is suppressed. The zygotic expression of the gene is not suppressed, suggesting that the MASK method can distinguish between maternal and zygotic functions of a gene. Here we investigated the cis and trans factors responsible for MASK results. In the ovaries in which knockdown of a maternal gene occurs, a number of antisense small RNAs are expressed that are complementary to the sequence of the knocked-down genes. We suspect that these antisense small RNAs are the factor responsible for MASK results. The antisense small RNAs have several features that are seen in PIWI-interacting RNAs (piRNAs), suggesting that MASK is likely to use a piRNA-mediated mechanism to knock down maternal mRNAs.
Collapse
|
129
|
Abstract
Heterochromatin is a key architectural feature of eukaryotic chromosomes, which endows particular genomic domains with specific functional properties. The capacity of heterochromatin to restrain the activity of mobile elements, isolate DNA repair in repetitive regions and ensure accurate chromosome segregation is crucial for maintaining genomic stability. Nucleosomes at heterochromatin regions display histone post-translational modifications that contribute to developmental regulation by restricting lineage-specific gene expression. The mechanisms of heterochromatin establishment and of heterochromatin maintenance are separable and involve the ability of sequence-specific factors bound to nascent transcripts to recruit chromatin-modifying enzymes. Heterochromatin can spread along the chromatin from nucleation sites. The propensity of heterochromatin to promote its own spreading and inheritance is counteracted by inhibitory factors. Because of its importance for chromosome function, heterochromatin has key roles in the pathogenesis of various human diseases. In this Review, we discuss conserved principles of heterochromatin formation and function using selected examples from studies of a range of eukaryotes, from yeast to human, with an emphasis on insights obtained from unicellular model organisms.
Collapse
|
130
|
Pleiotropic Functions of the Chromodomain-Containing Protein Hat-trick During Oogenesis in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:1067-1077. [PMID: 29367451 PMCID: PMC5844294 DOI: 10.1534/g3.117.300526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chromatin-remodeling proteins have a profound role in the transcriptional regulation of gene expression during development. Here, we have shown that the chromodomain-containing protein Hat-trick is predominantly expressed within the oocyte nucleus, specifically within the heterochromatinized karyosome, and that a mild expression is observed in follicle cells. Colocalization of Hat-trick with Heterochromatin Protein 1 and synaptonemal complex component C(3)G along with the diffused karyosome after hat-trick downregulation shows the role of this protein in heterochromatin clustering and karyosome maintenance. Germline mosaic analysis reveals that hat-trick is required for maintaining the dorso-ventral patterning of eggs by regulating the expression of Gurken. The increased incidence of double-strand breaks (DSBs), delayed DSB repair, defects in karyosome formation, altered Vasa mobility, and, consequently, misexpression and altered localization of Gurken in hat-trick mutant egg chambers clearly suggest a putative involvement of Hat-trick in the early stages of oogenesis. In addition, based on phenotypic observations in hat-trick mutant egg chambers, we speculate a substantial role of hat-trick in cystoblast proliferation, oocyte determination, nurse cell endoreplication, germ cell positioning, cyst encapsulation, and nurse cell migration. Our results demonstrate that hat-trick has profound pleiotropic functions during oogenesis in Drosophila melanogaster.
Collapse
|
131
|
Zhao C, Zhu W, Yin S, Cao Q, Zhang H, Wen X, Zhang G, Xie W, Chen S. Molecular characterization and expression of Piwil1 and Piwil2 during gonadal development and treatment with HCG and LHRH-A 2 in Odontobutis potamophila. Gene 2018; 647:181-191. [DOI: 10.1016/j.gene.2018.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/04/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
|
132
|
Cosacak MI, Yiğit H, Kizil C, Akgül B. Re-Arrangements in the Cytoplasmic Distribution of Small RNAs Following the Maternal-to-Zygotic Transition in Drosophila Embryos. Genes (Basel) 2018; 9:genes9020082. [PMID: 29439397 PMCID: PMC5852578 DOI: 10.3390/genes9020082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 01/13/2023] Open
Abstract
Small ribonucleic acids (RNAs) are known to regulate gene expression during early development. However, the dynamics of interaction between small RNAs and polysomes during this process is largely unknown. To investigate this phenomenon, 0–1 h and 7–8 h Drosophila melanogaster embryos were fractionated on sucrose density gradients into four fractions based on A254 reading (1) translationally inactive messenger ribonucleoprotein (mRNP), (2) 60S, (3) monosome, and (4) polysome. Comparative analysis of deep-sequencing reads from fractionated and un-fractionated 0–1 h and 7–8 h embryos revealed development-specific co-sedimentation pattern of small RNAs with the cellular translation machinery. Although most micro RNAs (miRNAs) did not have a specific preference for any state of the translational machinery, we detected fraction-specific enrichment of a few miRNAs such as dme-miR-1-3p, -184-3p, 5-5p and 263-5p. More interestingly, we observed changes in the subcellular location of a subset of miRNAs in fractionated embryos despite no measurable difference in their amount in unfractionated embryos. Transposon-derived endo small interfering RNAs (siRNAs) were over-expressed in 7–8 h embryos and associated mainly with the mRNP fraction. In contrast, transposon-derived PIWI-interacting RNAs (piRNA), which were more abundant in 0–1 h embryos, co-sedimented primarily with the polysome fractions. These results suggest that there appears to be a complex interplay among the small RNAs with respect to their polysome-cosedimentation pattern during early development in Drosophila melanogaster.
Collapse
Affiliation(s)
- Mehmet Ilyas Cosacak
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Gülbahçeköyü, 35430 İzmir, Turkey.
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Arnoldstr. 18, 01307 Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany.
| | - Hatice Yiğit
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Gülbahçeköyü, 35430 İzmir, Turkey.
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Arnoldstr. 18, 01307 Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany.
| | - Bünyamin Akgül
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Gülbahçeköyü, 35430 İzmir, Turkey.
| |
Collapse
|
133
|
Fu Y, Yang Y, Zhang H, Farley G, Wang J, Quarles KA, Weng Z, Zamore PD. The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology. eLife 2018; 7:31628. [PMID: 29376823 PMCID: PMC5844692 DOI: 10.7554/elife.31628] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/26/2018] [Indexed: 12/30/2022] Open
Abstract
We report a draft assembly of the genome of Hi5 cells from the lepidopteran insect pest, Trichoplusia ni, assigning 90.6% of bases to one of 28 chromosomes and predicting 14,037 protein-coding genes. Chemoreception and detoxification gene families reveal T. ni-specific gene expansions that may explain its widespread distribution and rapid adaptation to insecticides. Transcriptome and small RNA data from thorax, ovary, testis, and the germline-derived Hi5 cell line show distinct expression profiles for 295 microRNA- and >393 piRNA-producing loci, as well as 39 genes encoding small RNA pathway proteins. Nearly all of the W chromosome is devoted to piRNA production, and T. ni siRNAs are not 2´-O-methylated. To enable use of Hi5 cells as a model system, we have established genome editing and single-cell cloning protocols. The T. ni genome provides insights into pest control and allows Hi5 cells to become a new tool for studying small RNAs ex vivo. A common moth called the cabbage looper is becoming increasingly relevant to the scientific community. Its caterpillars are a serious threat to cabbage, broccoli and cauliflower crops, and they have started to resist the pesticides normally used to control them. Moreover, the insect’s germline cells – the ones that will produce sperm and eggs – are used in laboratories as ‘factories’ to artificially produce proteins of interest. The germline cells also host a group of genetic mechanisms called RNA silencing. One of these processes is known as piRNA, and it protects the genome against ‘jumping genes’. These genetic elements can cause mutations by moving from place to place in the DNA: in germline cells, piRNA suppresses them before the genetic information is transmitted to the next generation. Not all germline cells grow equally well under experimental conditions, or are easy to use to examine piRNA mechanisms in a laboratory. The germline cells from the cabbage looper, on the other hand, have certain characteristics that would make them ideal to study piRNA in insects. However, the genome of the moth had not yet been fully resolved. This hinders research on new ways of controlling the pest, on how to use the germline cells to produce more useful proteins, or on piRNA. Decoding a genome requires several steps. First, the entire genetic information is broken in short sections that can then be deciphered. Next, these segments need to be ‘assembled’ – put together, and in the right order, to reconstitute the entire genome. Certain portions of the genome, which are formed of repeats of the same sections, can be difficult to assemble. Finally, the genome must be annotated: the different regions – such as the genes – need to be identified and labeled. Here, Fu et al. assembled and annotated the genome of the cabbage looper, and in the process developed strategies that could be used for other species with a lot of repeated sequences in their genomes. Having access to the looper’s full genetic information makes it possible to use their germline cells to produce new types of proteins, for example for pharmaceutical purposes. Fu et al. went on to make working with these cells even easier by refining protocols so that modern research techniques, such as the gene-editing technology CRISPR-Cas9, can be used on the looper germline cells. The mapping of the genome also revealed that the genes involved in removing toxins from the insects’ bodies are rapidly evolving, which may explain why the moths readily become resistant to insecticides. This knowledge could help finding new ways of controlling the pest. Finally, the genes involved in RNA silencing were labeled: results show that an entire chromosome is the source of piRNAs. Combined with the new protocols developed by Fu et al., this could make cabbage looper germline cells the default option for any research into the piRNA mechanism. How piRNA works in the moth could inform work on human piRNA, as these processes are highly similar across the animal kingdom.
Collapse
Affiliation(s)
- Yu Fu
- Bioinformatics Program, Boston University, Boston, United States.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - Yujing Yang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Han Zhang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Gwen Farley
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Junling Wang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Kaycee A Quarles
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
134
|
Jankovics F, Bence M, Sinka R, Faragó A, Bodai L, Pettkó-Szandtner A, Ibrahim K, Takács Z, Szarka-Kovács AB, Erdélyi M. Drosophila small ovary gene is required for transposon silencing and heterochromatin organisation and ensures germline stem cell maintenance and differentiation. Development 2018; 145:dev.170639. [DOI: 10.1242/dev.170639] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
Abstract
Self-renewal and differentiation of stem cells is one of the fundamental biological phenomena relying on proper chromatin organisation. In our study, we describe a novel chromatin regulator encoded by the Drosophila small ovary (sov) gene. We demonstrate that sov is required in both the germline stem cells (GSCs) and the surrounding somatic niche cells to ensure GSC survival and differentiation. Sov maintains niche integrity and function by repressing transposon mobility, not only in the germline, but also in the soma. Protein interactome analysis of Sov revealed an interaction between Sov and HP1a. In the germ cell nuclei, Sov co-localises with HP1a, suggesting that Sov affects transposon repression as a component of the heterochromatin. In a position effect variegation assay, we found a dominant genetic interaction between sov and HP1a, indicating their functional cooperation in promoting the spread of heterochromatin. An in vivo tethering assay and FRAP analysis revealed that Sov enhances heterochromatin formation by supporting the recruitment of HP1a to the chromatin. We propose a model in which sov maintains GSC niche integrity by regulating transposon silencing and heterochromatin formation.
Collapse
Affiliation(s)
- Ferenc Jankovics
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Melinda Bence
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Anikó Faragó
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Aladár Pettkó-Szandtner
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Karam Ibrahim
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsanett Takács
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Miklós Erdélyi
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
135
|
Yamashiro H, Siomi MC. PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond. Chem Rev 2017; 118:4404-4421. [PMID: 29281264 DOI: 10.1021/acs.chemrev.7b00393] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are germline-enriched small RNAs that control transposons to maintain genome integrity. To achieve this, upon being processed from piRNA precursors, most of which are transcripts of intergenic piRNA clusters, piRNAs bind PIWI proteins, germline-specific Argonaute proteins, to form effector complexes. The mechanism of this piRNA-mediated transposon silencing pathway is fundamentally similar to that of siRNA/miRNA-dependent gene silencing in that a small RNA guides its partner Argonaute protein to target gene transcripts for repression via RNA-RNA base pairing. However, the uniqueness of this piRNA pathway has emerged through intensive genetic, biochemical, bioinformatic, and structural investigations. Here, we review the studies that elucidated the piRNA pathway, mainly in Drosophila, by describing both historical and recent progress. Studies in other species that have made important contributions to the field are also described.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| |
Collapse
|
136
|
piRNA-mediated regulation of transposon alternative splicing in the soma and germ line. Nature 2017; 552:268-272. [PMID: 29211718 PMCID: PMC5933846 DOI: 10.1038/nature25018] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Transposable elements can drive genome evolution, but their enhanced activity is detrimental to the host and therefore must be tightly regulated1. The piwi-interacting small RNAs (piRNAs) pathway is critically important for transposable element regulation, by inducing transcriptional silencing or post-transcriptional decay of mRNAs2. Here, we show that piRNAs and piRNA biogenesis components regulate pre-mRNA splicing of P transposable element transcripts in vivo, leading to the production of the non-transposase-encoding mature mRNA isoform in germ cells. Unexpectedly, we show that the piRNA pathway components do not act to reduce P-element transposon transcript levels during P-M hybrid dysgenesis, a syndrome that affects germline development in Drosophila3,4. Instead, splicing regulation is mechanistically achieved in concert with piRNA-mediated changes to repressive chromatin states, and relies on the function of the Piwi-piRNA complex proteins Asterix/Gtsf15–7 and Panoramix/Silencio8,9, as well as Heterochromatin Protein 1a (Su(var)205/HP1a). Furthermore, we show that this machinery, together with the piRNA Flamenco cluster10, not only controls the accumulation of Gypsy retrotransposon transcripts11 but also regulates splicing of Gypsy mRNAs in cultured ovarian somatic cells, a process required for the production of infectious particles that can lead to heritable transposition events12,13. Our findings identify splicing regulation as a new role and essential function for the Piwi pathway in protecting the genome against transposon mobility, and provide a model system for studying the role of chromatin structure in modulating alternative splicing during development.
Collapse
|
137
|
Sakakibara K, Siomi MC. The PIWI-Interacting RNA Molecular Pathway: Insights From Cultured Silkworm Germline Cells. Bioessays 2017; 40. [DOI: 10.1002/bies.201700068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/26/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Kazuhiro Sakakibara
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo 113-0032 Japan
| | - Mikiko C. Siomi
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo 113-0032 Japan
| |
Collapse
|
138
|
Germline Genome Protection on an Evolutionary Treadmill. Dev Cell 2017; 43:1-3. [PMID: 29017026 DOI: 10.1016/j.devcel.2017.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Preservation of genome integrity is a conserved, essential function, yet genome defense machinery evolves rapidly. In this issue of Developmental Cell, Parhad et al. (2017) harness an evolution-guided approach to define the genetic determinants of genome defense and to reveal the molecular and cellular mechanisms shaped by adaptive evolution.
Collapse
|
139
|
Rogers AK, Situ K, Perkins EM, Toth KF. Zucchini-dependent piRNA processing is triggered by recruitment to the cytoplasmic processing machinery. Genes Dev 2017; 31:1858-1869. [PMID: 29021243 PMCID: PMC5695087 DOI: 10.1101/gad.303214.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/13/2017] [Indexed: 11/24/2022]
Abstract
Here, Rogers et al. investigated how piRNA precursors are selected and channeled into the endonuclease Zucchini (Zuc)-dependent processing pathway in Drosophila germ cells. They engineered a modular system that can induce primary piRNA biogenesis at an arbitrary locus even in the absence of native piRNA precursors. They also established a subcellular compartmentalization as a key factor in RNA processing. The piRNA pathway represses transposable elements in the gonads and thereby plays a vital role in protecting the integrity of germline genomes of animals. Mature piRNAs are processed from longer transcripts, piRNA precursors (pre-piRNAs). In Drosophila, processing of pre-piRNAs is initiated by piRNA-guided Slicer cleavage or the endonuclease Zucchini (Zuc). As Zuc does not have any sequence or structure preferences in vitro, it is not known how piRNA precursors are selected and channeled into the Zuc-dependent processing pathway. We show that a heterologous RNA that lacks complementary piRNAs is processed into piRNAs upon recruitment of several piRNA pathway factors. This processing requires Zuc and the helicase Armitage (Armi). Aubergine (Aub), Argonaute 3 (Ago3), and components of the nuclear RDC complex, which are required for normal piRNA biogenesis in germ cells, are dispensable. Our approach allows discrimination of proteins involved in the transcription and export of piRNA precursors from components required for the cytoplasmic processing steps. piRNA processing correlates with localization of the substrate RNA to nuage, a distinct membraneless cytoplasmic compartment, which surrounds the nucleus of germ cells, suggesting that sequestration of RNA to this subcellular compartment is both necessary and sufficient for selecting piRNA biogenesis substrates.
Collapse
Affiliation(s)
- Alicia K Rogers
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Kathy Situ
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Edward M Perkins
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Katalin Fejes Toth
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
140
|
Maksimov DA, Laktionov PP, Posukh OV, Belyakin SN, Koryakov DE. Genome-wide analysis of SU(VAR)3-9 distribution in chromosomes of Drosophila melanogaster. Chromosoma 2017; 127:85-102. [DOI: 10.1007/s00412-017-0647-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
|
141
|
Huang X, Fejes Tóth K, Aravin AA. piRNA Biogenesis in Drosophila melanogaster. Trends Genet 2017; 33:882-894. [PMID: 28964526 DOI: 10.1016/j.tig.2017.09.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
The PIWI-interacting RNA (piRNA) pathway is a conserved defense system that protects the genome integrity of the animal germline from deleterious transposable elements. Targets of silencing are recognized by small noncoding piRNAs that are processed from long precursor molecules. Although piRNAs and other classes of small noncoding RNAs, such as miRNAs and small interfering (si)RNAs, interact with members of the same family of Argonaute (Ago) proteins and their function in target repression is similar, the biogenesis of piRNAs differs from those of the other two small RNAs. Recently, many aspects of piRNA biogenesis have been revealed in Drosophila melanogaster. In this review, we elaborate on piRNA biogenesis in Drosophila somatic and germline cells. We focus on the mechanisms by which piRNA precursor transcription is regulated and highlight recent work that has advanced our understanding of piRNA precursor processing to mature piRNAs. We finish by discussing current models to the still unresolved question of how piRNA precursors are selected and channeled into the processing machinery.
Collapse
Affiliation(s)
- Xiawei Huang
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Katalin Fejes Tóth
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 E. California Boulevard, Pasadena, CA 91125, USA.
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 E. California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
142
|
Parhad SS, Tu S, Weng Z, Theurkauf WE. Adaptive Evolution Leads to Cross-Species Incompatibility in the piRNA Transposon Silencing Machinery. Dev Cell 2017; 43:60-70.e5. [PMID: 28919205 DOI: 10.1016/j.devcel.2017.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
Abstract
Reproductive isolation defines species divergence and is linked to adaptive evolution of hybrid incompatibility genes. Hybrids between Drosophila melanogaster and Drosophila simulans are sterile, and phenocopy mutations in the PIWI interacting RNA (piRNA) pathway, which silences transposons and shows pervasive adaptive evolution, and Drosophila rhino and deadlock encode rapidly evolving components of a complex that binds to piRNA clusters. We show that Rhino and Deadlock interact and co-localize in simulans and melanogaster, but simulans Rhino does not bind melanogaster Deadlock, due to substitutions in the rapidly evolving Shadow domain. Significantly, a chimera expressing the simulans Shadow domain in a melanogaster Rhino backbone fails to support piRNA production, disrupts binding to piRNA clusters, and leads to ectopic localization to bulk heterochromatin. Fusing melanogaster Deadlock to simulans Rhino, by contrast, restores localization to clusters. Deadlock binding thus directs Rhino to piRNA clusters, and Rhino-Deadlock co-evolution has produced cross-species incompatibilities, which may contribute to reproductive isolation.
Collapse
Affiliation(s)
- Swapnil S Parhad
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Shikui Tu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
143
|
Molecular biology: Rhino gives voice to silent chromatin. Nature 2017; 549:38-39. [PMID: 28880287 DOI: 10.1038/549038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
144
|
A heterochromatin-dependent transcription machinery drives piRNA expression. Nature 2017; 549:54-59. [PMID: 28847004 PMCID: PMC5590728 DOI: 10.1038/nature23482] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/14/2017] [Indexed: 12/30/2022]
Abstract
Nuclear small RNA pathways safeguard genome integrity by establishing transcription-repressing heterochromatin at transposable elements. This inevitably also targets the transposon-rich source loci of the small RNAs themselves. How small RNA source loci are efficiently transcribed while transposon promoters are potently silenced is not understood. Here we show that, in Drosophila, transcription of PIWI-interacting RNA (piRNA) clusters-small RNA source loci in animal gonads-is enforced through RNA polymerase II pre-initiation complex formation within repressive heterochromatin. This is accomplished through Moonshiner, a paralogue of a basal transcription factor IIA (TFIIA) subunit, which is recruited to piRNA clusters via the heterochromatin protein-1 variant Rhino. Moonshiner triggers transcription initiation within piRNA clusters by recruiting the TATA-box binding protein (TBP)-related factor TRF2, an animal TFIID core variant. Thus, transcription of heterochromatic small RNA source loci relies on direct recruitment of the core transcriptional machinery to DNA via histone marks rather than sequence motifs, a concept that we argue is a recurring theme in evolution.
Collapse
|
145
|
Wiley EA, Horrell S, Yoshino A, Schornak CC, Bagnani C, Chalker DL. Diversification of HP1-like Chromo Domain Proteins in Tetrahymena thermophila. J Eukaryot Microbiol 2017; 65:104-116. [PMID: 28692189 PMCID: PMC5762428 DOI: 10.1111/jeu.12443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/18/2022]
Abstract
Proteins that possess a chromo domain are well-known for their roles in heterochromatin assembly and maintenance. The Heterochromatin Protein 1 (HP1) family, with a chromo domain and carboxy-terminal chromo shadow domain, targets heterochromatin through interaction with histone H3 methylated on lysine 9 (H3K9me2/3). The structural and functional diversity of these proteins observed in both fission yeast and metazoans correlate with chromatin specialization. To expand these studies, we examined chromo domain proteins in the ciliate Tetrahymena thermophila, which has functionally diverse and developmentally regulated heterochromatin domains. We identified thirteen proteins similar to HP1. Together they possess only a fraction of the possible chromo domain subtypes and most lack a recognizable chromo shadow domain. Using fluorescence microscopy to track chromatin localization of tagged proteins through the life cycle, we show evidence that in T. thermophila this family has diversified with biological roles in RNAi-directed DNA elimination, germline genome structure, and somatic heterochromatin. Those proteins with H3K27me3 binding sequence characteristics localize to chromatin in mature nuclei, whereas those with H3K9me2/3 binding characteristics localize to developing nuclei undergoing DNA elimination. Findings point to an expanded and diversified family of chromo domain proteins that parallels heterochromatin diversity in ciliates.
Collapse
Affiliation(s)
- Emily A Wiley
- W.M. Keck Science Center of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California, 91711
| | - Scott Horrell
- Department of Biology, Washington University, St. Louis, Missouri, 63130
| | - Alyssa Yoshino
- W.M. Keck Science Center of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California, 91711
| | - Cara C Schornak
- Department of Biology, Washington University, St. Louis, Missouri, 63130
| | - Claire Bagnani
- W.M. Keck Science Center of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California, 91711
| | - Douglas L Chalker
- Department of Biology, Washington University, St. Louis, Missouri, 63130
| |
Collapse
|
146
|
Rashpa R, Vazquez-Pianzola P, Colombo M, Hernandez G, Beuchle D, Berger F, Peischl S, Bruggmann R, Suter B. Cbp80 is needed for the expression of piRNA components and piRNAs. PLoS One 2017; 12:e0181743. [PMID: 28746365 PMCID: PMC5528831 DOI: 10.1371/journal.pone.0181743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 07/06/2017] [Indexed: 11/19/2022] Open
Abstract
Cap binding protein 80 (Cbp80) is the larger subunit of the nuclear cap-binding complex (nCBC), which is known to play important roles in nuclear mRNA processing, export, stability and quality control events. Reducing Cbp80 mRNA levels in the female germline revealed that Cbp80 is also involved in defending the germline against transposable elements. Combining such knockdown experiments with large scale sequencing of small RNAs further showed that Cbp80 is involved in the initial biogenesis of piRNAs as well as in the secondary biogenesis pathway, the ping-pong amplification cycle. We further found that Cbp80 knockdown not only led to the upregulation of transposons, but also to delocalization of Piwi, Aub and Ago3, key factors in the piRNA biosynthesis pathway. Furthermore, compared to controls, levels of Piwi and Aub were also reduced upon knock down of Cbp80. On the other hand, with the same treatment we could not detect significant changes in levels or subcellular distribution (nuage localization) of piRNA precursor transcripts. This shows that Cbp80 plays an important role in the production and localization of the protein components of the piRNA pathway and it seems to be less important for the production and export of the piRNA precursor transcripts.
Collapse
Affiliation(s)
- Ravish Rashpa
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | - Martino Colombo
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Greco Hernandez
- Division of Basic Research, National Institute of Cancer, Tlalpan, Mexico
| | - Dirk Beuchle
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Fabienne Berger
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Stephan Peischl
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail: (PV-P); (BS)
| |
Collapse
|
147
|
Cheng MH, Andrejka L, Vorster PJ, Hinman A, Lipsick JS. The Drosophila LIN54 homolog Mip120 controls two aspects of oogenesis. Biol Open 2017; 6:967-978. [PMID: 28522430 PMCID: PMC5550918 DOI: 10.1242/bio.025825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The conserved multi-protein MuvB core associates with the Myb oncoproteins and with the RB-E2F-DP tumor suppressor proteins in complexes that regulate cell proliferation, differentiation, and apoptosis. Drosophila Mip120, a homolog of LIN54, is a sequence-specific DNA-binding protein within the MuvB core. A mutant of Drosophilamip120 was previously shown to cause female and male sterility. We now show that Mip120 regulates two different aspects of oogenesis. First, in the absence of the Mip120 protein, egg chambers arrest during the transition from stage 7 to 8 with a failure of the normal program of chromosomal dynamics in the ovarian nurse cells. Specifically, the decondensation, disassembly and dispersion of the endoreplicated polytene chromosomes fail to occur without Mip120. The conserved carboxy-terminal DNA-binding and protein-protein interaction domains of Mip120 are necessary but not sufficient for this process. Second, we show that a lack of Mip120 causes a dramatic increase in the expression of benign gonial cell neoplasm (bgcn), a gene that is normally expressed in only a small number of cells within the ovary including the germline stem cells. Summary:Drosophila Mip120/LIN54, regulates ovarian nurse cell chromosome disassembly and germline-specific gene expression. These functions of Mip120 require its less conserved N-terminus in addition to its CXC DNA-binding and HCH protein-interaction domains.
Collapse
Affiliation(s)
- Mei-Hsin Cheng
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Laura Andrejka
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Paul J Vorster
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Albert Hinman
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Joseph S Lipsick
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| |
Collapse
|
148
|
Pritykin Y, Brito T, Schupbach T, Singh M, Pane A. Integrative analysis unveils new functions for the Drosophila Cutoff protein in noncoding RNA biogenesis and gene regulation. RNA (NEW YORK, N.Y.) 2017; 23:1097-1109. [PMID: 28420675 PMCID: PMC5473144 DOI: 10.1261/rna.058594.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 04/03/2017] [Indexed: 06/01/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are central components of the piRNA pathway, which directs transposon silencing and guarantees genome integrity in the germ cells of several metazoans. In Drosophila, piRNAs are produced from discrete regions of the genome termed piRNA clusters, whose expression relies on the RDC complex comprised of the core proteins Rhino, Deadlock, and Cutoff. To date, the RDC complex has been exclusively implicated in the regulation of the piRNA loci. Here we further elucidate the function of Cutoff and the RDC complex by performing genome-wide ChIP-seq and RNA-seq assays in the Drosophila ovaries and analyzing these data together with other publicly available data sets. In agreement with previous studies, we confirm that Cutoff is involved in the transcriptional regulation of piRNA clusters and in the repression of transposable elements in germ cells. Surprisingly, however, we find that Cutoff is enriched at and affects the expression of other noncoding RNAs, including spliceosomal RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). At least in some instances, Cutoff appears to act at a transcriptional level in concert with Rhino and perhaps Deadlock. Finally, we show that mutations in Cutoff result in the deregulation of hundreds of protein-coding genes in germ cells. Our study uncovers a broader function for the RDC complex in the Drosophila germline development.
Collapse
Affiliation(s)
- Yuri Pritykin
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Computer Science, Princeton University, Princeton, New Jersey 08544, USA
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Tarcisio Brito
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21949-902, Brazil
| | - Trudi Schupbach
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Mona Singh
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Computer Science, Princeton University, Princeton, New Jersey 08544, USA
| | - Attilio Pane
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21949-902, Brazil
| |
Collapse
|
149
|
Reexamining the P-Element Invasion of Drosophila melanogaster Through the Lens of piRNA Silencing. Genetics 2017; 203:1513-31. [PMID: 27516614 DOI: 10.1534/genetics.115.184119] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/25/2016] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) are both important drivers of genome evolution and genetic parasites with potentially dramatic consequences for host fitness. The recent explosion of research on regulatory RNAs reveals that small RNA-mediated silencing is a conserved genetic mechanism through which hosts repress TE activity. The invasion of the Drosophila melanogaster genome by P elements, which happened on a historical timescale, represents an incomparable opportunity to understand how small RNA-mediated silencing of TEs evolves. Repression of P-element transposition emerged almost concurrently with its invasion. Recent studies suggest that this repression is implemented in part, and perhaps predominantly, by the Piwi-interacting RNA (piRNA) pathway, a small RNA-mediated silencing pathway that regulates TE activity in many metazoan germlines. In this review, I consider the P-element invasion from both a molecular and evolutionary genetic perspective, reconciling classic studies of P-element regulation with the new mechanistic framework provided by the piRNA pathway. I further explore the utility of the P-element invasion as an exemplar of the evolution of piRNA-mediated silencing. In light of the highly-conserved role for piRNAs in regulating TEs, discoveries from this system have taxonomically broad implications for the evolution of repression.
Collapse
|
150
|
Specchia V, D'Attis S, Puricella A, Bozzetti MP. dFmr1 Plays Roles in Small RNA Pathways of Drosophila melanogaster. Int J Mol Sci 2017; 18:ijms18051066. [PMID: 28509881 PMCID: PMC5454977 DOI: 10.3390/ijms18051066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022] Open
Abstract
Fragile-X syndrome is the most common form of inherited mental retardation accompanied by other phenotypes, including macroorchidism. The disorder originates with mutations in the Fmr1 gene coding for the FMRP protein, which, with its paralogs FXR1 and FXR2, constitute a well-conserved family of RNA-binding proteins. Drosophila melanogaster is a good model for the syndrome because it has a unique fragile X-related gene: dFmr1. Recently, in addition to its confirmed role in the miRNA pathway, a function for dFmr1 in the piRNA pathway, operating in Drosophila gonads, has been established. In this review we report a summary of the piRNA pathways occurring in gonads with a special emphasis on the relationship between the piRNA genes and the crystal-Stellate system; we also analyze the roles of dFmr1 in the Drosophila gonads, exploring their genetic and biochemical interactions to reveal some unexpected connections.
Collapse
Affiliation(s)
- Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| | - Simona D'Attis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| | - Antonietta Puricella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| |
Collapse
|