101
|
Kim MS, Chuenchor W, Chen X, Cui Y, Zhang X, Zhou ZH, Gellert M, Yang W. Cracking the DNA Code for V(D)J Recombination. Mol Cell 2018; 70:358-370.e4. [PMID: 29628308 DOI: 10.1016/j.molcel.2018.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/25/2018] [Accepted: 03/02/2018] [Indexed: 01/18/2023]
Abstract
To initiate V(D)J recombination for generating the adaptive immune response of vertebrates, RAG1/2 recombinase cleaves DNA at a pair of recombination signal sequences, the 12- and 23-RSS. We have determined crystal and cryo-EM structures of RAG1/2 with DNA in the pre-reaction and hairpin-forming complexes up to 2.75 Å resolution. Both protein and DNA exhibit structural plasticity and undergo dramatic conformational changes. Coding-flank DNAs extensively rotate, shift, and deform for nicking and hairpin formation. Two intertwined RAG1 subunits crisscross four times between the asymmetric pair of severely bent 12/23-RSS DNAs. Location-sensitive bending of 60° and 150° in 12- and 23-RSS spacers, respectively, must occur for RAG1/2 to capture the nonamers and pair the heptamers for symmetric double-strand breakage. DNA pairing is thus sequence-context dependent and structure specific, which partly explains the "beyond 12/23" restriction. Finally, catalysis in crystallo reveals the process of DNA hairpin formation and its stabilization by interleaved base stacking.
Collapse
Affiliation(s)
- Min-Sung Kim
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA; Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | | | - Xuemin Chen
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Yanxiang Cui
- The California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Xing Zhang
- The California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA; Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Z Hong Zhou
- The California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Martin Gellert
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA.
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
102
|
Vigolo M, Chambers MG, Willen L, Chevalley D, Maskos K, Lammens A, Tardivel A, Das D, Kowalczyk-Quintas C, Schuepbach-Mallepell S, Smulski CR, Eslami M, Rolink A, Hummler E, Samy E, Fomekong Nanfack Y, Mackay F, Liao M, Hess H, Jiang X, Schneider P. A loop region of BAFF controls B cell survival and regulates recognition by different inhibitors. Nat Commun 2018; 9:1199. [PMID: 29572442 PMCID: PMC5865128 DOI: 10.1038/s41467-018-03323-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/05/2018] [Indexed: 01/11/2023] Open
Abstract
The B cell survival factor (TNFSF13B/BAFF) is often elevated in autoimmune diseases and is targeted in the clinic for the treatment of systemic lupus erythematosus. BAFF contains a loop region designated the flap, which is dispensable for receptor binding. Here we show that the flap of BAFF has two functions. In addition to facilitating the formation of a highly active BAFF 60-mer as shown previously, it also converts binding of BAFF to TNFRSF13C (BAFFR) into a signaling event via oligomerization of individual BAFF-BAFFR complexes. Binding and activation of BAFFR can therefore be targeted independently to inhibit or activate the function of BAFF. Moreover, structural analyses suggest that the flap of BAFF 60-mer temporarily prevents binding of an anti-BAFF antibody (belimumab) but not of a decoy receptor (atacicept). The observed differences in profiles of BAFF inhibition may confer distinct biological and clinical efficacies to these therapeutically relevant inhibitors. BAFF is an important cytokine for B cell survival, and is a therapeutic target for autoimmune disorders. Here the authors show that a 'flap' region of BAFF converts BAFFR binding events into survival signals and, with structural data, that this ‘flap’ differentially modulates binding of drugs such as belimumab or atacicept.
Collapse
Affiliation(s)
- Michele Vigolo
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Melissa G Chambers
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Laure Willen
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Dehlia Chevalley
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Klaus Maskos
- Proteros Biostructures GmbH, 82152, Planegg, Germany
| | | | - Aubry Tardivel
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Dolon Das
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | | | | | - Cristian R Smulski
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Mahya Eslami
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Antonius Rolink
- Department of Biomedicine, University of Basel, 4058, Basel, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, 1011, Lausanne, Switzerland
| | - Eileen Samy
- EMD Serono Research & Development Institute, Billerica, MA, 01821, USA
| | | | - Fabienne Mackay
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Xuliang Jiang
- EMD Serono Research & Development Institute, Billerica, MA, 01821, USA
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland.
| |
Collapse
|
103
|
Popp D, Koh F, Scipion CPM, Ghoshdastider U, Narita A, Holmes KC, Robinson RC. Advances in Structural Biology and the Application to Biological Filament Systems. Bioessays 2018; 40:e1700213. [PMID: 29484695 DOI: 10.1002/bies.201700213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/10/2018] [Indexed: 11/10/2022]
Abstract
Structural biology has experienced several transformative technological advances in recent years. These include: development of extremely bright X-ray sources (microfocus synchrotron beamlines and free electron lasers) and the use of electrons to extend protein crystallography to ever decreasing crystal sizes; and an increase in the resolution attainable by cryo-electron microscopy. Here we discuss the use of these techniques in general terms and highlight their application for biological filament systems, an area that is severely underrepresented in atomic resolution structures. We assemble a model of a capped tropomyosin-actin minifilament to demonstrate the utility of combining structures determined by different techniques. Finally, we survey the methods that attempt to transform high resolution structural biology into more physiological environments, such as the cell. Together these techniques promise a compelling decade for structural biology and, more importantly, they will provide exciting discoveries in understanding the designs and purposes of biological machines.
Collapse
Affiliation(s)
- David Popp
- Institute of Molecular and Cell Biology A*STAR (Agency for Science, Technology and Research) Biopolis, Singapore 138673, Singapore
| | - Fujiet Koh
- Institute of Molecular and Cell Biology A*STAR (Agency for Science, Technology and Research) Biopolis, Singapore 138673, Singapore
| | - Clement P M Scipion
- Institute of Molecular and Cell Biology A*STAR (Agency for Science, Technology and Research) Biopolis, Singapore 138673, Singapore.,Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore, Singapore 117597, Singapore
| | - Umesh Ghoshdastider
- Institute of Molecular and Cell Biology A*STAR (Agency for Science, Technology and Research) Biopolis, Singapore 138673, Singapore
| | - Akihiro Narita
- Nagoya University Graduate School of Science Structural Biology Research Center and Division of Biological Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kenneth C Holmes
- Max Planck Institute for Medical Research, D69120 Heidelberg, Germany
| | - Robert C Robinson
- Institute of Molecular and Cell Biology A*STAR (Agency for Science, Technology and Research) Biopolis, Singapore 138673, Singapore.,Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore, Singapore 117597, Singapore.,Research Institute for Interdisciplinary Science Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
104
|
Abstract
Ion channels are proteins that mediate the flow of ions across cell membranes. Human genetic mutations of one type of ion channel, called hTRPM4, underlie a form of progressive familial heart block. Its distribution among many tissues, however, suggests that its functions are broad. We have solved the atomic structure of hTRPM4 to an overall resolution of 3.7 Å. The channel is composed of four identical subunits surrounding a central pore. We show the path of Na+ ions through the channel and point out aspects of the channel’s internal machinery that may affect its function. The structure will enable more directed experiments to understand the physiological function of this channel. Transient receptor potential melastatin subfamily member 4 (TRPM4) is a widely distributed, calcium-activated, monovalent-selective cation channel. Mutations in human TRPM4 (hTRPM4) result in progressive familial heart block. Here, we report the electron cryomicroscopy structure of hTRPM4 in a closed, Na+-bound, apo state at pH 7.5 to an overall resolution of 3.7 Å. Five partially hydrated sodium ions are proposed to occupy the center of the conduction pore and the entrance to the coiled-coil domain. We identify an upper gate in the selectivity filter and a lower gate at the entrance to the cytoplasmic coiled-coil domain. Intramolecular interactions exist between the TRP domain and the S4–S5 linker, N-terminal domain, and N and C termini. Finally, we identify aromatic interactions via π–π bonds and cation–π bonds, glycosylation at an N-linked extracellular site, a pore-loop disulfide bond, and 24 lipid binding sites. We compare and contrast this structure with other TRP channels and discuss potential mechanisms of regulation and gating of human full-length TRPM4.
Collapse
|
105
|
Chen Y, Bensing BA, Seepersaud R, Mi W, Liao M, Jeffrey PD, Shajahan A, Sonon RN, Azadi P, Sullam PM, Rapoport TA. Unraveling the sequence of cytosolic reactions in the export of GspB adhesin from Streptococcus gordonii. J Biol Chem 2018; 293:5360-5373. [PMID: 29462788 DOI: 10.1074/jbc.ra117.000963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
Many pathogenic bacteria, including Streptococcus gordonii, possess a pathway for the cellular export of a single serine-rich-repeat protein that mediates the adhesion of bacteria to host cells and the extracellular matrix. This adhesin protein is O-glycosylated by several cytosolic glycosyltransferases and requires three accessory Sec proteins (Asp1-3) for export, but how the adhesin protein is processed for export is not well understood. Here, we report that the S. gordonii adhesin GspB is sequentially O-glycosylated by three enzymes (GtfA/B, Nss, and Gly) that attach N-acetylglucosamine and glucose to Ser/Thr residues. We also found that modified GspB is transferred from the last glycosyltransferase to the Asp1/2/3 complex. Crystal structures revealed that both Asp1 and Asp3 are related to carbohydrate-binding proteins, suggesting that they interact with carbohydrates and bind glycosylated adhesin, a notion that was supported by further analyses. We further observed that Asp1 also has an affinity for phospholipids, which is attenuated by Asp2. In summary, our findings support a model in which the GspB adhesin is sequentially glycosylated by GtfA/B, Nss, and Gly and then transferred to the Asp1/2/3 complex in which Asp1 mediates the interaction of the Asp1/2/3 complex with the lipid bilayer for targeting of matured GspB to the export machinery.
Collapse
Affiliation(s)
- Yu Chen
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Barbara A Bensing
- the Department of Medicine, San Francisco Veteran Affairs Medical Center, University of California at San Francisco, San Francisco, California 94121
| | - Ravin Seepersaud
- the Department of Medicine, San Francisco Veteran Affairs Medical Center, University of California at San Francisco, San Francisco, California 94121
| | - Wei Mi
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Maofu Liao
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Philip D Jeffrey
- the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Asif Shajahan
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Roberto N Sonon
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Parastoo Azadi
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Paul M Sullam
- the Department of Medicine, San Francisco Veteran Affairs Medical Center, University of California at San Francisco, San Francisco, California 94121
| | - Tom A Rapoport
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, .,the Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
106
|
Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 2017; 549:233-237. [PMID: 28869968 DOI: 10.1038/nature23649] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
Abstract
Lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria is critical for the assembly of their cell envelopes. LPS synthesized in the cytoplasmic leaflet of the inner membrane is flipped to the periplasmic leaflet by MsbA, an ATP-binding cassette transporter. Despite substantial efforts, the structural mechanisms underlying MsbA-driven LPS flipping remain elusive. Here we use single-particle cryo-electron microscopy to elucidate the structures of lipid-nanodisc-embedded MsbA in three functional states. The 4.2 Å-resolution structure of the transmembrane domains of nucleotide-free MsbA reveals that LPS binds deep inside MsbA at the height of the periplasmic leaflet, establishing extensive hydrophilic and hydrophobic interactions with MsbA. Two sub-nanometre-resolution structures of MsbA with ADP-vanadate and ADP reveal an unprecedented closed and an inward-facing conformation, respectively. Our study uncovers the structural basis for LPS recognition, delineates the conformational transitions of MsbA to flip LPS, and paves the way for structural characterization of other lipid flippases.
Collapse
|
107
|
Xiao Y, Luo M, Hayes RP, Kim J, Ng S, Ding F, Liao M, Ke A. Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System. Cell 2017; 170:48-60.e11. [PMID: 28666122 DOI: 10.1016/j.cell.2017.06.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/27/2017] [Accepted: 06/08/2017] [Indexed: 01/06/2023]
Abstract
Type I CRISPR systems feature a sequential dsDNA target searching and degradation process, by crRNA-displaying Cascade and nuclease-helicase fusion enzyme Cas3, respectively. Here we present two cryo-EM snapshots of the Thermobifida fusca type I-E Cascade: (1) unwinding 11 bp of dsDNA at the seed-sequence region to scout for sequence complementarity, and (2) further unwinding of the entire protospacer to form a full R-loop. These structures provide the much-needed temporal and spatial resolution to resolve key mechanistic steps leading to Cas3 recruitment. In the early steps, PAM recognition causes severe DNA bending, leading to spontaneous DNA unwinding to form a seed-bubble. The full R-loop formation triggers conformational changes in Cascade, licensing Cas3 to bind. The same process also generates a bulge in the non-target DNA strand, enabling its handover to Cas3 for cleavage. The combination of both negative and positive checkpoints ensures stringent yet efficient target degradation in type I CRISPR-Cas systems.
Collapse
Affiliation(s)
- Yibei Xiao
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA
| | - Min Luo
- Department of Cell Biology, Harvard Medical School, 250 Longwood Avenue, SGM 509, Boston, MA 02115, USA
| | - Robert P Hayes
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA
| | - Jonathan Kim
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA
| | - Sherwin Ng
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA
| | - Fang Ding
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, 250 Longwood Avenue, SGM 509, Boston, MA 02115, USA.
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA.
| |
Collapse
|
108
|
Schoebel S, Mi W, Stein A, Ovchinnikov S, Pavlovicz R, DiMaio F, Baker D, Chambers MG, Su H, Li D, Rapoport TA, Liao M. Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 2017; 548:352-355. [PMID: 28682307 PMCID: PMC5736104 DOI: 10.1038/nature23314] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
Abstract
Misfolded endoplasmic reticulum (ER) proteins are retro-translocated through the membrane into the cytosol, where they are poly-ubiquitinated, extracted from the ER membrane, and degraded by the proteasome 1–4, a pathway termed ER-associated protein degradation (ERAD). Proteins with misfolded domains in the ER lumen or membrane are discarded through the ERAD-L and –M pathways, respectively. In S. cerevisiae, both pathways require the ubiquitin ligase Hrd1, a multi-spanning membrane protein with a cytosolic RING finger domain 5,6. Hrd1 is the crucial membrane component for retro-translocation 7,8, but whether it forms a protein-conducting channel is unclear. Here, we report a cryo-electron microscopy (cryo-EM) structure of S. cerevisiae Hrd1 in complex with its ER luminal binding partner Hrd3. Hrd1 forms a dimer within the membrane with one or two Hrd3 molecules associated at its luminal side. Each Hrd1 molecule has eight trans-membrane segments, five of which form an aqueous cavity extending from the cytosol almost to the ER lumen, while a segment of the neighboring Hrd1 molecule forms a lateral seal. The aqueous cavity and lateral gate are reminiscent of features in protein-conducting conduits that facilitate polypeptide movement in the opposite direction, i.e. from the cytosol into or across membranes 9–11. Our results suggest that Hrd1 forms a retro-translocation channel for the movement of misfolded polypeptides through the ER membrane.
Collapse
Affiliation(s)
- Stefan Schoebel
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Wei Mi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Alexander Stein
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sergey Ovchinnikov
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Ryan Pavlovicz
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Frank DiMaio
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Melissa G Chambers
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Huayou Su
- National Lab for Parallel and Distributed Processing (PDL), School of Computer Science, National University of Defense Technology, Changsha, China
| | - Dongsheng Li
- National Lab for Parallel and Distributed Processing (PDL), School of Computer Science, National University of Defense Technology, Changsha, China
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
109
|
Abstract
The involvement of host factors is critical to our understanding of underlying mechanisms of transposition and the applications of transposon-based technologies. Modified piggyBac (PB) is one of the most potent transposon systems in mammals. However, varying transposition efficiencies of PB among different cell lines have restricted its application. We discovered that the DNA-PK complex facilitates PB transposition by binding to PB transposase (PBase) and promoting paired-end complex formation. Mass spectrometry analysis and coimmunoprecipitation revealed physical interaction between PBase and the DNA-PK components Ku70, Ku80, and DNA-PKcs Overexpression or knockdown of DNA-PK components enhances or suppresses PB transposition in tissue culture cells, respectively. Furthermore, germ-line transposition efficiency of PB is significantly reduced in Ku80 heterozygous mutant mice, confirming the role of DNA-PK in facilitating PB transposition in vivo. Fused dimer PBase can efficiently promote transposition. FRET experiments with tagged dimer PBase molecules indicated that DNA-PK promotes the paired-end complex formation of the PB transposon. These data provide a mechanistic explanation for the role of DNA-PK in facilitating PB transposition and suggest a transposition-promoting manipulation by enhancing the interaction of the PB ends. Consistent with this, deletions shortening the distance between the two PB ends, such as PB vectors with closer ends (PB-CE vectors), have a profound effect on transposition efficiency. Taken together, our study indicates that in addition to regulating DNA repair fidelity during transposition, DNA-PK also affects transposition efficiency by promoting paired-end complex formation. The approach of CE vectors provides a simple practical solution for designing efficient transposon vectors.
Collapse
|
110
|
The RAG transposon is active through the deuterostome evolution and domesticated in jawed vertebrates. Immunogenetics 2017; 69:391-400. [PMID: 28451741 DOI: 10.1007/s00251-017-0979-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
RAG1 and RAG2 are essential subunits of the V(D)J recombinase required for the generation of the variability of antibodies and T cell receptors in jawed vertebrates. It was demonstrated that the amphioxus homologue of RAG1-RAG2 is encoded in an active transposon, belonging to the transposase DDE superfamily. The data provided support the possibility that the RAG transposon has been active through the deuterostome evolution and is still active in several lineages. The RAG transposon corresponds to several families present in deuterostomes. RAG1-RAG2 V(D)J recombinase evolved from one of them, partially due to the new ability of the transposon to interact with the cellular reparation machinery. Considering the fact that the RAG transposon survived millions of years in many different lineages, in multiple copies, and that DDE transposases evolved their association with proteins involved in repair mechanisms, we propose that the apparition of V(D)J recombination machinery could be a predictable genetic event.
Collapse
|
111
|
Ekiert DC, Bhabha G, Isom GL, Greenan G, Ovchinnikov S, Henderson IR, Cox JS, Vale RD. Architectures of Lipid Transport Systems for the Bacterial Outer Membrane. Cell 2017; 169:273-285.e17. [PMID: 28388411 PMCID: PMC5467742 DOI: 10.1016/j.cell.2017.03.019] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/07/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
How phospholipids are trafficked between the bacterial inner and outer membranes through the hydrophilic space of the periplasm is not known. We report that members of the mammalian cell entry (MCE) protein family form hexameric assemblies with a central channel capable of mediating lipid transport. The E. coli MCE protein, MlaD, forms a ring associated with an ABC transporter complex in the inner membrane. A soluble lipid-binding protein, MlaC, ferries lipids between MlaD and an outer membrane protein complex. In contrast, EM structures of two other E. coli MCE proteins show that YebT forms an elongated tube consisting of seven stacked MCE rings, and PqiB adopts a syringe-like architecture. Both YebT and PqiB create channels of sufficient length to span the periplasmic space. This work reveals diverse architectures of highly conserved protein-based channels implicated in the transport of lipids between the membranes of bacteria and some eukaryotic organelles.
Collapse
Affiliation(s)
- Damian C Ekiert
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, The University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, The University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA.
| | - Gira Bhabha
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, The University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA
| | - Georgia L Isom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Garrett Greenan
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, The University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA
| | - Sergey Ovchinnikov
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Jeffery S Cox
- Department of Microbiology and Immunology, The University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, The University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA
| |
Collapse
|
112
|
Rommel PC, Oliveira TY, Nussenzweig MC, Robbiani DF. RAG1/2 induces genomic insertions by mobilizing DNA into RAG1/2-independent breaks. J Exp Med 2017; 214:815-831. [PMID: 28179379 PMCID: PMC5339680 DOI: 10.1084/jem.20161638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 11/23/2022] Open
Abstract
Rommel et al. reveal a novel RAG1/2-mediated insertion pathway, which has the potential to destabilize the lymphocyte genome and shares features with DNA insertions observed in human cancer. The RAG recombinase (RAG1/2) plays an essential role in adaptive immunity by mediating V(D)J recombination in developing lymphocytes. In contrast, aberrant RAG1/2 activity promotes lymphocyte malignancies by causing chromosomal translocations and DNA deletions at cancer genes. RAG1/2 can also induce genomic DNA insertions by transposition and trans-V(D)J recombination, but only few such putative events have been documented in vivo. We used next-generation sequencing techniques to examine chromosomal rearrangements in primary murine B cells and discovered that RAG1/2 causes aberrant insertions by releasing cleaved antibody gene fragments that subsequently reintegrate into DNA breaks induced on a heterologous chromosome. We confirmed that RAG1/2 also mobilizes genomic DNA into independent physiological breaks by identifying similar insertions in human lymphoma and leukemia. Our findings reveal a novel RAG1/2-mediated insertion pathway distinct from DNA transposition and trans-V(D)J recombination that destabilizes the genome and shares features with reported oncogenic DNA insertions.
Collapse
Affiliation(s)
- Philipp C Rommel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
113
|
H3K4me3 induces allosteric conformational changes in the DNA-binding and catalytic regions of the V(D)J recombinase. Proc Natl Acad Sci U S A 2017; 114:1904-1909. [PMID: 28174273 DOI: 10.1073/pnas.1615727114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
V(D)J recombination is initiated by the recombination-activating gene (RAG) recombinase, consisting of RAG-1 and RAG-2 subunits. The susceptibility of gene segments to cleavage by RAG is associated with histone modifications characteristic of active chromatin, including trimethylation of histone H3 at lysine 4 (H3K4me3). Binding of H3K4me3 by a plant homeodomain (PHD) in RAG-2 stimulates substrate binding and catalysis, which are functions of RAG-1. This has suggested an allosteric mechanism in which information regarding occupancy of the RAG-2 PHD is transmitted to RAG-1. To determine whether the conformational distribution of RAG is altered by H3K4me3, we mapped changes in solvent accessibility of cysteine thiols by differential isotopic chemical footprinting. Binding of H3K4me3 to the RAG-2 PHD induces conformational changes in RAG-1 within a DNA-binding domain and in the ZnH2 domain, which acts as a scaffold for the catalytic center. Thus, engagement of H3K4me3 by the RAG-2 PHD is associated with dynamic conformational changes in RAG-1, consistent with allosteric control by active chromatin.
Collapse
|
114
|
Carmona LM, Schatz DG. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination. FEBS J 2017; 284:1590-1605. [PMID: 27973733 PMCID: PMC5459667 DOI: 10.1111/febs.13990] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/10/2016] [Accepted: 12/08/2016] [Indexed: 12/26/2022]
Abstract
The adaptive immune system of jawed vertebrates relies on V(D)J recombination as one of the main processes to generate the diverse array of receptors necessary for the recognition of a wide range of pathogens. The DNA cleavage reaction necessary for the assembly of the antigen receptor genes from an array of potential gene segments is mediated by the recombination-activating gene proteins RAG1 and RAG2. The RAG proteins have been proposed to originate from a transposable element (TE) as they share mechanistic and structural similarities with several families of transposases and are themselves capable of mediating transposition. A number of RAG-like proteins and TEs with sequence similarity to RAG1 and RAG2 have been identified, but only recently has their function begun to be characterized, revealing mechanistic links to the vertebrate RAGs. Of particular significance is the discovery of ProtoRAG, a transposon superfamily found in the genome of the basal chordate amphioxus. ProtoRAG has many of the sequence and mechanistic features predicted for the ancestral RAG transposon and is likely to be an evolutionary relative of RAG1 and RAG2. In addition, early observations suggesting that RAG1 is able to mediate V(D)J recombination in the absence of RAG2 have been confirmed, implying independent evolutionary origins for the two RAG genes. Here, recent progress in identifying and characterizing RAG-like proteins and the TEs that encode them is summarized and a refined model for the evolution of V(D)J recombination and the RAG proteins is presented.
Collapse
Affiliation(s)
- Lina Marcela Carmona
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, New Haven, CT, USA
| |
Collapse
|
115
|
Lee YN, Frugoni F, Dobbs K, Tirosh I, Du L, Ververs FA, Ru H, Ott de Bruin L, Adeli M, Bleesing JH, Buchbinder D, Butte MJ, Cancrini C, Chen K, Choo S, Elfeky RA, Finocchi A, Fuleihan RL, Gennery AR, El-Ghoneimy DH, Henderson LA, Al-Herz W, Hossny E, Nelson RP, Pai SY, Patel NC, Reda SM, Soler-Palacin P, Somech R, Palma P, Wu H, Giliani S, Walter JE, Notarangelo LD. Characterization of T and B cell repertoire diversity in patients with RAG deficiency. Sci Immunol 2016; 1:eaah6109. [PMID: 28783691 PMCID: PMC5586490 DOI: 10.1126/sciimmunol.aah6109] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022]
Abstract
Recombination-activating genes 1 and 2 (RAG1 and RAG2) play a critical role in T and B cell development by initiating the recombination process that controls the expression of T cell receptor (TCR) and immunoglobulin genes. Mutations in the RAG1 and RAG2 genes in humans cause a broad spectrum of phenotypes, including severe combined immunodeficiency (SCID) with lack of T and B cells, Omenn syndrome, leaky SCID, and combined immunodeficiency with granulomas or autoimmunity (CID-G/AI). Using next-generation sequencing, we analyzed the TCR and B cell receptor (BCR) repertoire in 12 patients with RAG mutations presenting with Omenn syndrome (n = 5), leaky SCID (n = 3), or CID-G/AI (n = 4). Restriction of repertoire diversity skewed usage of variable (V), diversity (D), and joining (J) segment genes, and abnormalities of CDR3 length distribution were progressively more prominent in patients with a more severe phenotype. Skewed usage of V, D, and J segment genes was present also within unique sequences, indicating a primary restriction of repertoire. Patients with Omenn syndrome had a high proportion of class-switched immunoglobulin heavy chain transcripts and increased somatic hypermutation rate, suggesting in vivo activation of these B cells. These data provide a framework to better understand the phenotypic heterogeneity of RAG deficiency.
Collapse
Affiliation(s)
- Yu Nee Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Pediatric Department A and the Immunology Service, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesco Frugoni
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kerry Dobbs
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Irit Tirosh
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Likun Du
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francesca A Ververs
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Heng Ru
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lisa Ott de Bruin
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mehdi Adeli
- Pediatrics Department, Weill Cornell Medical College, Hamad Medical Corporation, Doha, Qatar
| | - Jacob H Bleesing
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David Buchbinder
- Division of Hematology, Children's Hospital Orange County, Orange County, CA 92868, USA
| | - Manish J Butte
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Caterina Cancrini
- DPUO, University Department of Pediatrics, Bambino Gesù Children's Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Karin Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Sharon Choo
- Department of Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Reem A Elfeky
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Andrea Finocchi
- DPUO, University Department of Pediatrics, Bambino Gesù Children's Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Ramsay L Fuleihan
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew R Gennery
- Department of Paediatric Immunology, Great North Children's Hospital, Newcastle Upon Tyne, U.K
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, U.K
| | - Dalia H El-Ghoneimy
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Elham Hossny
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Robert P Nelson
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sung-Yun Pai
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Niraj C Patel
- Division of Infectious Disease and Immunology, Department of Pediatrics, Levine Children's Hospital, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Shereen M Reda
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Pere Soler-Palacin
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Raz Somech
- Pediatric Department A and the Immunology Service, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paolo Palma
- DPUO, University Department of Pediatrics, Bambino Gesù Children's Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Silvia Giliani
- A. Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Section of Medical Genetics, Department of Pathology, Spedali Civili di Bresia, Brescia, Italy
| | - Jolan E Walter
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Pediatric Allergy/Immunology, University of South Florida, and Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA
| | - Luigi D Notarangelo
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
116
|
Rodgers KK. Riches in RAGs: Revealing the V(D)J Recombinase through High-Resolution Structures. Trends Biochem Sci 2016; 42:72-84. [PMID: 27825771 DOI: 10.1016/j.tibs.2016.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022]
Abstract
Development of the adaptive immune system is dependent on V(D)J recombination, which forms functional antigen receptor genes through rearrangement of component gene segments. The V(D)J recombinase, comprising recombination-activating proteins RAG1 and RAG2, guides the initial DNA cleavage events to the recombination signal sequence (RSS), which flanks each gene segment. Although the enzymatic steps for RAG-mediated endonucleolytic activity were established over two decades ago, only recently have high-resolution structural studies of the catalytically active core regions of the RAG proteins shed light on conformational requirements for the reaction. While outstanding questions remain, we have a clearer picture of how RAG proteins function in generating the diverse repertoires of antigen receptors, the underlying foundation of the adaptive immune system.
Collapse
Affiliation(s)
- Karla K Rodgers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| |
Collapse
|
117
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
118
|
Unravelling biological macromolecules with cryo-electron microscopy. Nature 2016; 537:339-46. [PMID: 27629640 DOI: 10.1038/nature19948] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/15/2016] [Indexed: 12/11/2022]
Abstract
Knowledge of the three-dimensional structures of proteins and other biological macromolecules often aids understanding of how they perform complicated tasks in the cell. Because many such tasks involve the cleavage or formation of chemical bonds, structural characterization at the atomic level is most useful. Developments in the electron microscopy of frozen hydrated samples (cryo-electron microscopy) are providing unprecedented opportunities for the structural characterization of biological macromolecules. This is resulting in a wave of information about processes in the cell that were impossible to characterize with existing techniques in structural biology.
Collapse
|
119
|
Abstract
Single-molecule FRET (smFRET) and single-molecule colocalization (smCL) assays have allowed us to observe the recombination-activating gene (RAG) complex reaction mechanism in real time. Our smFRET data have revealed distinct bending modes at recombination signal sequence (RSS)-conserved regions before nicking and synapsis. We show that high mobility group box 1 (HMGB1) acts as a cofactor in stabilizing conformational changes at the 12RSS heptamer and increasing RAG1/2 binding affinity for 23RSS. Using smCL analysis, we have quantitatively measured RAG1/2 dwell time on 12RSS, 23RSS, and non-RSS DNA, confirming a strict RSS molecular specificity that was enhanced in the presence of a partner RSS in solution. Our studies also provide single-molecule determination of rate constants that were previously only possible by indirect methods, allowing us to conclude that RAG binding, bending, and synapsis precede catalysis. Our real-time analysis offers insight into the requirements for RSS-RSS pairing, architecture of the synaptic complex, and dynamics of the paired RSS substrates. We show that the synaptic complex is extremely stable and that heptamer regions of the 12RSS and 23RSS substrates in the synaptic complex are closely associated in a stable conformational state, whereas nonamer regions are perpendicular. Our data provide an enhanced and comprehensive mechanistic description of the structural dynamics and associated enzyme kinetics of variable, diversity, and joining [V(D)J] recombination.
Collapse
|
120
|
Meek K, Xu Y, Bailie C, Yu K, Neal JA. The ATM Kinase Restrains Joining of Both VDJ Signal and Coding Ends. THE JOURNAL OF IMMUNOLOGY 2016; 197:3165-3174. [PMID: 27574300 DOI: 10.4049/jimmunol.1600597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/06/2016] [Indexed: 11/19/2022]
Abstract
The evidence that ATM affects resolution of RAG-induced DNA double-strand breaks is profuse and unequivocal; moreover, it is clear that the RAG complex itself cooperates (in an undetermined way) with ATM to facilitate repair of these double-strand breaks by the classical nonhomologous end-joining pathway. The mechanistic basis for the cooperation between ATM and the RAG complex has not been defined, although proposed models invoke ATM and RAG2's C terminus in maintaining the RAG postcleavage complex. In this study, we show that ATM reduces the rate of both coding and signal joining in a robust episomal assay; we suggest that this is the result of increased stability of the postcleavage complex. ATM's ability to inhibit VDJ joining requires its enzymatic activity. The noncore C termini of both RAG1 and RAG2 are also required for ATM's capacity to limit signal (but not coding) joining. Moreover, potential phosphorylation targets within the C terminus of RAG2 are also required for ATM's capacity to limit signal joining. These data suggest a model whereby the RAG signal end complex is stabilized by phosphorylation of RAG2 by ATM.
Collapse
Affiliation(s)
- Katheryn Meek
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; .,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Yao Xu
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Caleb Bailie
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, College of Human Medicine, Michigan State University, East Lansing, MI 48824
| | - Jessica A Neal
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| |
Collapse
|
121
|
Abstract
Lovely and Sen discuss new insight from Carmona et al. (this issue) on the origin and function of the recombination-activating gene 1 (RAG1) and RAG2 in V(D)J recombination. Generation of a diverse repertoire of antigen receptor specificities via DNA recombination underpins adaptive immunity. In this issue of Genes & Development, Carmona and colleagues (pp. 909–917) provide novel insights into the origin and function of recombination-activating gene 1 (RAG1) and RAG2, the lymphocyte-specific components of the recombinase involved in the process.
Collapse
Affiliation(s)
- Geoffrey A Lovely
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| |
Collapse
|
122
|
Zhao L, Frock RL, Du Z, Hu J, Chen L, Krangel MS, Alt FW. Orientation-specific RAG activity in chromosomal loop domains contributes to Tcrd V(D)J recombination during T cell development. J Exp Med 2016; 213:1921-36. [PMID: 27526713 PMCID: PMC4995090 DOI: 10.1084/jem.20160670] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 06/24/2016] [Indexed: 12/17/2022] Open
Abstract
T cell antigen receptor δ (Tcrd) variable region exons are assembled by RAG-initiated V(D)J recombination events in developing γδ thymocytes. Here, we use linear amplification-mediated high-throughput genome-wide translocation sequencing (LAM-HTGTS) to map hundreds of thousands of RAG-initiated Tcrd D segment (Trdd1 and Trdd2) rearrangements in CD4(-)CD8(-) double-negative thymocyte progenitors differentiated in vitro from bone marrow-derived hematopoietic stem cells. We find that Trdd2 joins directly to Trdv, Trdd1, and Trdj segments, whereas Trdd1 joining is ordered with joining to Trdd2, a prerequisite for further rearrangement. We also find frequent, previously unappreciated, Trdd1 and Trdd2 rearrangements that inactivate Tcrd, including sequential rearrangements from V(D)J recombination signal sequence fusions. Moreover, we find dozens of RAG off-target sequences that are generated via RAG tracking both upstream and downstream from the Trdd2 recombination center across the Tcrd loop domain that is bounded by the upstream INT1-2 and downstream TEA elements. Disruption of the upstream INT1-2 boundary of this loop domain allows spreading of RAG on- and off-target activity to the proximal Trdv domain and, correspondingly, shifts the Tcrd V(D)J recombination landscape by leading to predominant V(D)J joining to a proximal Trdv3 pseudogene that lies just upstream of the normal boundary.
Collapse
Affiliation(s)
- Lijuan Zhao
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Richard L Frock
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Zhou Du
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Jiazhi Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Liang Chen
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
123
|
Maman Y, Teng G, Seth R, Kleinstein SH, Schatz DG. RAG1 targeting in the genome is dominated by chromatin interactions mediated by the non-core regions of RAG1 and RAG2. Nucleic Acids Res 2016; 44:9624-9637. [PMID: 27436288 PMCID: PMC5175335 DOI: 10.1093/nar/gkw633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/16/2016] [Accepted: 07/02/2016] [Indexed: 02/01/2023] Open
Abstract
The RAG1/RAG2 endonuclease initiates V(D)J recombination at antigen receptor loci but also binds to thousands of places outside of these loci. RAG2 localizes directly to lysine 4 trimethylated histone 3 (H3K4me3) through a plant homeodomain (PHD) finger. The relative contribution of RAG2-dependent and RAG1-intrinsic mechanisms in determining RAG1 binding patterns is not known. Through analysis of deep RAG1 ChIP-seq data, we provide a quantitative description of the forces underlying genome-wide targeting of RAG1. Surprisingly, sequence-specific DNA binding contributes minimally to RAG1 targeting outside of antigen receptor loci. Instead, RAG1 binding is driven by two distinct modes of interaction with chromatin: the first is driven by H3K4me3, promoter-focused and dependent on the RAG2 PHD, and the second is defined by H3K27Ac, enhancer-focused and dependent on ‘non-core’ portions of RAG1. Based on this and additional chromatin and genomic features, we formulated a predictive model of RAG1 targeting to the genome. RAG1 binding sites predicted by our model correlate well with observed patterns of RAG1-mediated breaks in human pro-B acute lymphoblastic leukemia. Overall, this study provides an integrative model for RAG1 genome-wide binding and off-target activity and reveals a novel role for the RAG1 non-core region in RAG1 targeting.
Collapse
Affiliation(s)
- Yaakov Maman
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Grace Teng
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Rashu Seth
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA .,Howard Hughes Medical Institute, 295 Congress Avenue, New Haven, CT 06511, USA
| |
Collapse
|
124
|
Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Zhang Y, Yu W, Pontarotti P, Escriva H, Le Petillon Y, Liu X, Chen S, Schatz DG, Xu A. Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination. Cell 2016; 166:102-14. [PMID: 27293192 DOI: 10.1016/j.cell.2016.05.032] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/18/2016] [Accepted: 05/06/2016] [Indexed: 01/08/2023]
Abstract
Co-option of RAG1 and RAG2 for antigen receptor gene assembly by V(D)J recombination was a crucial event in the evolution of jawed vertebrate adaptive immunity. RAG1/2 are proposed to have arisen from a transposable element, but definitive evidence for this is lacking. Here, we report the discovery of ProtoRAG, a DNA transposon family from lancelets, the most basal extant chordates. A typical ProtoRAG is flanked by 5-bp target site duplications and a pair of terminal inverted repeats (TIRs) resembling V(D)J recombination signal sequences. Between the TIRs reside tail-to-tail-oriented, intron-containing RAG1-like and RAG2-like genes. We demonstrate that ProtoRAG was recently active in the lancelet germline and that the lancelet RAG1/2-like proteins can mediate TIR-dependent transposon excision, host DNA recombination, transposition, and low-efficiency TIR rejoining using reaction mechanisms similar to those used by vertebrate RAGs. We propose that ProtoRAG represents a molecular "living fossil" of the long-sought RAG transposon.
Collapse
Affiliation(s)
- Shengfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xin Tao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yuhang Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Peiyi Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Helen A Beilinson
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ya Zhang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Wenjuan Yu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Pierre Pontarotti
- CNRS, Centrale Marseille, I2M UMR 7373, Equipe Evolution Biologique et Modélisation, Aix-Marseille Université, 13284 Marseille, France
| | - Hector Escriva
- CNRS, UMR 7232, Biologie Integrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Banyuls-sur-Mer, Université Pierre et Marie Curie, Université Paris 6, 75005 Paris, France
| | - Yann Le Petillon
- CNRS, UMR 7232, Biologie Integrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Banyuls-sur-Mer, Université Pierre et Marie Curie, Université Paris 6, 75005 Paris, France
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, 295 Congress Avenue, New Haven, CT 06511, USA
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Beijing University of Chinese Medicine, Dong San Huan Road, Chao-yang District, Beijing 100029, People's Republic of China.
| |
Collapse
|
125
|
Carmona LM, Fugmann SD, Schatz DG. Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination. Genes Dev 2016; 30:909-17. [PMID: 27056670 PMCID: PMC4840297 DOI: 10.1101/gad.278432.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/09/2016] [Indexed: 12/03/2022]
Abstract
Here, Carmona et al. show that two ancestral RAG1 proteins, Transib transposase and purple sea urchin RAG1-like, have a latent ability to initiate V(D)J recombination when coexpressed with RAG2 and that in vitro transposition by Transib transposase is stimulated by RAG2. They propose that evolution of RAG1/RAG2 began with a Transib transposon whose intrinsic recombination activity was enhanced by capture of an ancestral RAG2, allowing for the development of adaptive immunity. The recombination-activating gene 1 (RAG1) and RAG2 proteins initiate V(D)J recombination, the process that assembles the B- and T-lymphocyte antigen receptor genes of jawed vertebrates. RAG1 and RAG2 are thought to have arisen from a transposable element, but the origins of this element are not understood. We show that two ancestral RAG1 proteins, Transib transposase and purple sea urchin RAG1-like, have a latent ability to initiate V(D)J recombination when coexpressed with RAG2 and that in vitro transposition by Transib transposase is stimulated by RAG2. Conversely, we report low levels of V(D)J recombination by RAG1 in the absence of RAG2. Recombination by RAG1 alone differs from canonical V(D)J recombination in having lost the requirement for asymmetric DNA substrates, implicating RAG2 in the origins of the “12/23 rule,” a fundamental regulatory feature of the reaction. We propose that evolution of RAG1/RAG2 began with a Transib transposon whose intrinsic recombination activity was enhanced by capture of an ancestral RAG2, allowing for the development of adaptive immunity.
Collapse
Affiliation(s)
- Lina Marcela Carmona
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Sebastian D Fugmann
- Department of Biomedical Sciences, Chang Gung University, Tao-Yuan City 33302, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan City 33302, Taiwan
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, 06520, USA; Howard Hughes Medical Institute, New Haven, Connecticut 06511, USA
| |
Collapse
|
126
|
Abstract
The recombination-activating gene 1 (RAG1) and RAG2 proteins initiate the V(D)J recombination process, which ultimately enables the generation of T cells and B cells with a diversified repertoire of antigen-specific receptors. Mutations of the RAG genes in humans are associated with a broad spectrum of clinical phenotypes, ranging from severe combined immunodeficiency to autoimmunity. Recently, novel insights into the phenotypic diversity of this disease have been provided by resolving the crystal structure of the RAG complex, by developing novel assays to test recombination activity of the mutant RAG proteins and by characterizing the molecular and cellular basis of immune dysregulation in patients with RAG deficiency.
Collapse
|
127
|
Neal JA, Xu Y, Abe M, Hendrickson E, Meek K. Restoration of ATM Expression in DNA-PKcs-Deficient Cells Inhibits Signal End Joining. THE JOURNAL OF IMMUNOLOGY 2016; 196:3032-42. [PMID: 26921311 DOI: 10.4049/jimmunol.1501654] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/26/2016] [Indexed: 11/19/2022]
Abstract
Unlike most DNA-dependent protein kinase, catalytic subunit (DNA-PKcs)-deficient mouse cell strains, we show in the present study that targeted deletion of DNA-PKcs in two different human cell lines abrogates VDJ signal end joining in episomal assays. Although the mechanism is not well defined, DNA-PKcs deficiency results in spontaneous reduction of ATM expression in many cultured cell lines (including those examined in this study) and in DNA-PKcs-deficient mice. We considered that varying loss of ATM expression might explain differences in signal end joining in different cell strains and animal models, and we investigated the impact of ATM and/or DNA-PKcs loss on VDJ recombination in cultured human and rodent cell strains. To our surprise, in DNA-PKcs-deficient mouse cell strains that are proficient in signal end joining, restoration of ATM expression markedly inhibits signal end joining. In contrast, in DNA-PKcs-deficient cells that are deficient in signal end joining, complete loss of ATM enhances signal (but not coding) joint formation. We propose that ATM facilitates restriction of signal ends to the classical nonhomologous end-joining pathway.
Collapse
Affiliation(s)
- Jessica A Neal
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Yao Xu
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Masumi Abe
- National Institute of Radiological Sciences, Chiba 263-8555, Japan; and
| | - Eric Hendrickson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Katheryn Meek
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824;
| |
Collapse
|