101
|
Jara-Oseguera A, Huffer KE, Swartz KJ. The ion selectivity filter is not an activation gate in TRPV1-3 channels. eLife 2019; 8:51212. [PMID: 31724952 PMCID: PMC6887487 DOI: 10.7554/elife.51212] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Activation of TRPV1 channels in sensory neurons results in opening of a cation permeation pathway that triggers the sensation of pain. Opening of TRPV1 has been proposed to involve two gates that appear to prevent ion permeation in the absence of activators: the ion selectivity filter on the external side of the pore and the S6 helices that line the cytosolic half of the pore. Here we measured the access of thiol-reactive ions across the selectivity filters in rodent TRPV1-3 channels. Although our results are consistent with structural evidence that the selectivity filters in these channels are dynamic, they demonstrate that cations can permeate the ion selectivity filters even when channels are closed. Our results suggest that the selectivity filters in TRPV1-3 channels do not function as activation gates but might contribute to coupling structural rearrangements in the external pore to those in the cytosolic S6 gate.
Collapse
Affiliation(s)
- Andrés Jara-Oseguera
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Katherine E Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
102
|
Wang Z, Ng C, Liu X, Wang Y, Li B, Kashyap P, Chaudhry HA, Castro A, Kalontar EM, Ilyayev L, Walker R, Alexander RT, Qian F, Chen X, Yu Y. The ion channel function of polycystin-1 in the polycystin-1/polycystin-2 complex. EMBO Rep 2019; 20:e48336. [PMID: 31441214 PMCID: PMC6832002 DOI: 10.15252/embr.201948336] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2 gene, encoding the polycystic kidney disease protein polycystin-1 and the transient receptor potential channel polycystin-2 (also known as TRPP2), respectively. Polycystin-1 and polycystin-2 form a receptor-ion channel complex located in primary cilia. The function of this complex, especially the role of polycystin-1, is largely unknown due to the lack of a reliable functional assay. In this study, we dissect the role of polycystin-1 by directly recording currents mediated by a gain-of-function (GOF) polycystin-1/polycystin-2 channel. Our data show that this channel has distinct properties from that of the homomeric polycystin-2 channel. The polycystin-1 subunit directly contributes to the channel pore, and its eleven transmembrane domains are sufficient for its channel function. We also show that the cleavage of polycystin-1 at the N-terminal G protein-coupled receptor proteolysis site is not required for the activity of the GOF polycystin-1/polycystin-2 channel. These results demonstrate the ion channel function of polycystin-1 in the polycystin-1/polycystin-2 complex, enriching our understanding of this channel and its role in ADPKD.
Collapse
Affiliation(s)
- Zhifei Wang
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Courtney Ng
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Xiong Liu
- Department of Physiology, Membrane Protein Disease Research GroupFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Yan Wang
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Bin Li
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Parul Kashyap
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | | | - Alexis Castro
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | | | - Leah Ilyayev
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Rebecca Walker
- Division of NephrologyDepartment of MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - R Todd Alexander
- Departments of Pediatrics and PhysiologyUniversity of AlbertaEdmontonABCanada
| | - Feng Qian
- Division of NephrologyDepartment of MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Xing‐Zhen Chen
- Department of Physiology, Membrane Protein Disease Research GroupFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Yong Yu
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| |
Collapse
|
103
|
Abstract
The functions of polycystin 1 and polycystin 2 (PC1 and PC2) have been surprisingly difficult to establish. PC1 and PC2 are encoded by the Pkd1 and Pkd2 genes that are implicated in autosomal dominant polycystic kidney disease (ADPKD). ADPKD is the most common potentially lethal genetic disorder, affecting ~1 in 1,000 people. Over the course of decades, ADPKD patients' kidneys acquire numerous fluid-filled cysts whose expansion compresses the surrounding parenchyma, leading to end-stage renal disease in ~50% of afflicted individuals [1]. Identification of the genes encoding the PC proteins 20 years ago led to the hypothesis that they form an ion channel, since the sequence of PC2 marks it as a member of the TRP family of cation channels. In the ensuing 2 decades, tremendous effort has been devoted to determining whether this is indeed true and, if so, what characteristics that channel might manifest. A recent paper by Wang et al in this issue of EMBO Reports [2] demonstrates that assembly with PC1 changes the properties of the polycystin channel in ways that may help explain the complex behaviors that have been attributed to it.
Collapse
Affiliation(s)
- Michael J Caplan
- Department of Cellular and Molecular PhysiologyYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
104
|
Zhang M, Li X, Zheng H, Wen X, Chen S, Ye J, Tang S, Yao F, Li Y, Yan Z. Brv1 Is Required for Drosophila Larvae to Sense Gentle Touch. Cell Rep 2019; 23:23-31. [PMID: 29617663 DOI: 10.1016/j.celrep.2018.03.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 01/16/2023] Open
Abstract
How we sense touch is fundamental for many physiological processes. However, the underlying mechanism and molecular identity for touch sensation are largely unknown. Here, we report on defective gentle-touch behavioral responses in brv1 loss-of-function Drosophila larvae. RNAi and Ca2+ imaging confirmed the involvement of Brv1 in sensing touch and demonstrated that Brv1 mediates the mechanotransduction of class III dendritic arborization neurons. Electrophysiological recordings further revealed that the expression of Brv1 protein in HEK293T cells gives rise to stretch-activated cation channels. Purified Brv1 protein reconstituted into liposomes were found to sense stretch stimuli. In addition, co-expression studies suggested that Brv1 amplifies the response of mechanosensitive ion channel NOMPC (no mechanoreceptor potential C) to touch stimuli. Altogether, these findings demonstrate a molecular entity that mediates the gentle-touch response in Drosophila larvae, providing insights into the molecular mechanisms of touch sensation.
Collapse
Affiliation(s)
- Mingfeng Zhang
- Children's Hospital and Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China; State Key Laboratory of Medical Neurobiology, Human Phenome Institute, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Institute of Brain Science, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xia Li
- Children's Hospital and Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Honglan Zheng
- State Key Laboratory of Medical Neurobiology, Human Phenome Institute, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Institute of Brain Science, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoxu Wen
- Children's Hospital and Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sihan Chen
- Children's Hospital and Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jia Ye
- Children's Hospital and Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Siyang Tang
- Children's Hospital and Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fuqiang Yao
- State Key Laboratory of Medical Neurobiology, Human Phenome Institute, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Institute of Brain Science, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuezhou Li
- Children's Hospital and Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Zhiqiang Yan
- State Key Laboratory of Medical Neurobiology, Human Phenome Institute, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Institute of Brain Science, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
105
|
Bialleleic PKD1 mutations underlie early-onset autosomal dominant polycystic kidney disease in Saudi Arabian families. Pediatr Nephrol 2019; 34:1615-1623. [PMID: 31079206 DOI: 10.1007/s00467-019-04267-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/04/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Polycystic kidney disease (PKD) is one of the most common genetic renal diseases and may be inherited in an autosomal dominant or autosomal recessive pattern. Pathogenic variants in two major genes, PKD1 and PKD2, and two rarer genes, GANAB and DNAJB11, cause autosomal dominant PKD (ADPKD). Early onset and severe PKD can occur with PKD1 and PKD2 pathogenic variants and such phenotypes may be modified by second alleles inherited in trans. Homozygous or compound heterozygous hypomorphic PKD1 variants may also cause a moderate to severe disease PKD phenotype. METHODS Targeted renal gene panel followed by Sanger sequencing of PKD1 gene were employed to investigate molecular causes in early onset PKD patients. RESULTS In this study, we report four consanguineous Saudi Arabian families with early onset PKD which were associated with biallelic variants in PKD1 gene. CONCLUSIONS Our findings confirm that PKD1 alleles may combine to produce severe paediatric onset PKD mimicking the more severe autosomal recessive ciliopathy syndromes associated with PKD. Screening of parents of such children may also reveal subclinical PKD phenotypes.
Collapse
|
106
|
Foo JN, Xia Y. Polycystic kidney disease: new knowledge and future promises. Curr Opin Genet Dev 2019; 56:69-75. [PMID: 31476629 DOI: 10.1016/j.gde.2019.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Polycystic kidney disease (PKD) is one of the most common genetic kidney diseases, characterized by the formation of fluid-filled renal cysts, which eventually lead to end-stage renal disease. Despite several decades of investigation, explicit molecular and cellular mechanisms underpinning renal cyst formation have been unresolved until recently, severely hampering the development of effective therapeutic approaches. Currently, most PKD therapies have been developed for limiting disease complications, such as hypertension. Although Tolvaptan has been approved for treating PKD in few countries, the associated hepatic toxicity remains a major concern. In this Review, we will discuss recent advances in PKD research, covering aspects ranging from newly identified genetic/epigenetic causes, increment in mechanistic interpretation, novel therapeutic targets, to the promises offered by emerging stem cell technologies.
Collapse
Affiliation(s)
- Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore; Human Genetics, Genome Institute of Singapore, A(⁎)STAR, 138672, Singapore.
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore.
| |
Collapse
|
107
|
Abstract
Transient receptor potential (TRP) ion channels are molecular sensors of a large variety of stimuli including temperature, mechanical stress, voltage, small molecules including capsaicin and menthol, and lipids such as phosphatidylinositol 4,5-bisphosphate (PIP2). Since the same TRP channels may respond to different physical and chemical stimuli, they can serve as signal integrators. Many TRP channels are calcium permeable and contribute to Ca2+ homeostasis and signaling. Although the TRP channel family was discovered decades ago, only recently have the structures of many of these channels been solved, largely by cryo-electron microscopy (cryo-EM). Complimentary to cryo-EM, X-ray crystallography provides unique tools to unambiguously identify specific atoms and can be used to study ion binding in channel pores. In this review we describe crystallographic studies of the TRP channel TRPV6. The methodology used in these studies may serve as a template for future structural analyses of different types of TRP and other ion channels.
Collapse
Affiliation(s)
- Appu K Singh
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY
| | - Luke L McGoldrick
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY.,b Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University , New York , NY
| | - Kei Saotome
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY
| | - Alexander I Sobolevsky
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY
| |
Collapse
|
108
|
Zubcevic L, Lee SY. The role of π-helices in TRP channel gating. Curr Opin Struct Biol 2019; 58:314-323. [PMID: 31378426 DOI: 10.1016/j.sbi.2019.06.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
Abstract
Transient Receptor Potential (TRP) channels are a large superfamily of polymodal ion channels, which perform important roles in numerous physiological processes. The architecture of their transmembrane (TM) domains closely resembles that of voltage-gated potassium channels (KV). However, recent cryoEM and crystallographic studies of TRP channels have identified π-helices in functionally important regions, and it is increasingly recognized that they utilize a distinct mechanism of gating that relies on α-to-π secondary structure transitions. Here we review our current understanding of the role of π-helices in TRP channel function and their broader impact on different classes of ion channels.
Collapse
Affiliation(s)
- Lejla Zubcevic
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
109
|
Dalghi MG, Clayton DR, Ruiz WG, Al-Bataineh MM, Satlin LM, Kleyman TR, Ricke WA, Carattino MD, Apodaca G. Expression and distribution of PIEZO1 in the mouse urinary tract. Am J Physiol Renal Physiol 2019; 317:F303-F321. [PMID: 31166705 PMCID: PMC6732449 DOI: 10.1152/ajprenal.00214.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/29/2019] [Indexed: 01/09/2023] Open
Abstract
The proper function of the organs that make up the urinary tract (kidneys, ureters, bladder, and urethra) depends on their ability to sense and respond to mechanical forces, including shear stress and wall tension. However, we have limited understanding of the mechanosensors that function in these organs and the tissue sites in which these molecules are expressed. Possible candidates include stretch-activated PIEZO channels (PIEZO1 and PIEZO2), which have been implicated in mechanically regulated body functions including touch sensation, proprioception, lung inflation, and blood pressure regulation. Using reporter mice expressing a COOH-terminal fusion of Piezo1 with the sequence for the tandem-dimer Tomato gene, we found that PIEZO1 is expressed in the kidneys, ureters, bladder, and urethra as well as organs in close proximity, including the prostate, seminal vesicles and ducts, ejaculatory ducts, and the vagina. We further found that PIEZO1 expression is not limited to one cell type; it is observed in the endothelial and parietal cells of the renal corpuscle, the basolateral surfaces of many of the epithelial cells that line the urinary tract, the interstitial cells of the bladder and ureters, and populations of smooth and striated muscle cells. We propose that in the urinary tract, PIEZO1 likely functions as a mechanosensor that triggers responses to wall tension.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Dennis R Clayton
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Wily G Ruiz
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Mohammad M Al-Bataineh
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Thomas R Kleyman
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Department of Chemical Biology and Pharmacology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - William A Ricke
- Department of Urology and George M. O'Brien Center for Research Excellence, University of Wisconsin-Madison, Madison, Wisconsin
| | - Marcelo D Carattino
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
110
|
R Ferreira R, Fukui H, Chow R, Vilfan A, Vermot J. The cilium as a force sensor-myth versus reality. J Cell Sci 2019; 132:132/14/jcs213496. [PMID: 31363000 DOI: 10.1242/jcs.213496] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells need to sense their mechanical environment during the growth of developing tissues and maintenance of adult tissues. The concept of force-sensing mechanisms that act through cell-cell and cell-matrix adhesions is now well established and accepted. Additionally, it is widely believed that force sensing can be mediated through cilia. Yet, this hypothesis is still debated. By using primary cilia sensing as a paradigm, we describe the physical requirements for cilium-mediated mechanical sensing and discuss the different hypotheses of how this could work. We review the different mechanosensitive channels within the cilium, their potential mode of action and their biological implications. In addition, we describe the biological contexts in which cilia are acting - in particular, the left-right organizer - and discuss the challenges to discriminate between cilium-mediated chemosensitivity and mechanosensitivity. Throughout, we provide perspectives on how quantitative analysis and physics-based arguments might help to better understand the biological mechanisms by which cells use cilia to probe their mechanical environment.
Collapse
Affiliation(s)
- Rita R Ferreira
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Hajime Fukui
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Renee Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Department of Living Matter Physics, 37077 Göttingen, Germany .,J. Stefan Institute, 1000 Ljubljana, Slovenia
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
111
|
Abstract
The opening of voltage-gated ion channels is initiated by transfer of gating charges that sense the electric field across the membrane. Although transient receptor potential ion channels (TRP) are members of this family, their opening is not intrinsically linked to membrane potential, and they are generally not considered voltage gated. Here we demonstrate that TRPP2, a member of the polycystin subfamily of TRP channels encoded by the PKD2L1 gene, is an exception to this rule. TRPP2 borrows a biophysical riff from canonical voltage-gated ion channels, using 2 gating charges found in its fourth transmembrane segment (S4) to control its conductive state. Rosetta structural prediction demonstrates that the S4 undergoes ∼3- to 5-Å transitional and lateral movements during depolarization, which are coupled to opening of the channel pore. Here both gating charges form state-dependent cation-π interactions within the voltage sensor domain (VSD) during membrane depolarization. Our data demonstrate that the transfer of a single gating charge per channel subunit is requisite for voltage, temperature, and osmotic swell polymodal gating of TRPP2. Taken together, we find that irrespective of stimuli, TRPP2 channel opening is dependent on activation of its VSDs.
Collapse
|
112
|
Altamirano F, Schiattarella GG, French KM, Kim SY, Engelberger F, Kyrychenko S, Villalobos E, Tong D, Schneider JW, Ramirez-Sarmiento CA, Lavandero S, Gillette TG, Hill JA. Polycystin-1 Assembles With Kv Channels to Govern Cardiomyocyte Repolarization and Contractility. Circulation 2019; 140:921-936. [PMID: 31220931 DOI: 10.1161/circulationaha.118.034731] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Polycystin-1 (PC1) is a transmembrane protein originally identified in autosomal dominant polycystic kidney disease where it regulates the calcium-permeant cation channel polycystin-2. Autosomal dominant polycystic kidney disease patients develop renal failure, hypertension, left ventricular hypertrophy, and diastolic dysfunction, among other cardiovascular disorders. These individuals harbor PC1 loss-of-function mutations in their cardiomyocytes, but the functional consequences are unknown. PC1 is ubiquitously expressed, and its experimental ablation in cardiomyocyte-specific knockout mice reduces contractile function. Here, we set out to determine the pathophysiological role of PC1 in cardiomyocytes. METHODS Wild-type and cardiomyocyte-specific PC1 knockout mice were analyzed by echocardiography. Excitation-contraction coupling was assessed in isolated cardiomyocytes and human embryonic stem cell-derived cardiomyocytes, and functional consequences were explored in heterologous expression systems. Protein-protein interactions were analyzed biochemically and by means of ab initio calculations. RESULTS PC1 ablation reduced action potential duration in cardiomyocytes, decreased Ca2+ transients, and myocyte contractility. PC1-deficient cardiomyocytes manifested a reduction in sarcoendoplasmic reticulum Ca2+ stores attributable to a reduced action potential duration and sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) activity. An increase in outward K+ currents decreased action potential duration in cardiomyocytes lacking PC1. Overexpression of full-length PC1 in HEK293 cells significantly reduced the current density of heterologously expressed Kv4.3, Kv1.5 and Kv2.1 potassium channels. PC1 C terminus inhibited Kv4.3 currents to the same degree as full-length PC1. Additionally, PC1 coimmunoprecipitated with Kv4.3, and a modeled PC1 C-terminal structure suggested the existence of 2 docking sites for PC1 within the N terminus of Kv4.3, supporting a physical interaction. Finally, a naturally occurring human mutant PC1R4228X manifested no suppressive effects on Kv4.3 channel activity. CONCLUSIONS Our findings uncover a role for PC1 in regulating multiple Kv channels, governing membrane repolarization and alterations in SERCA activity that reduce cardiomyocyte contractility.
Collapse
Affiliation(s)
- Francisco Altamirano
- Department of Internal Medicine, Cardiology Division (F.A., G.G.S., K.M.F., S.Y.K., S.K., E.V., D.T., J.W.S., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Gabriele G Schiattarella
- Department of Internal Medicine, Cardiology Division (F.A., G.G.S., K.M.F., S.Y.K., S.K., E.V., D.T., J.W.S., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas.,Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (G.G.S.)
| | - Kristin M French
- Department of Internal Medicine, Cardiology Division (F.A., G.G.S., K.M.F., S.Y.K., S.K., E.V., D.T., J.W.S., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Soo Young Kim
- Department of Internal Medicine, Cardiology Division (F.A., G.G.S., K.M.F., S.Y.K., S.K., E.V., D.T., J.W.S., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Felipe Engelberger
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine, and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile (F.E., C.A.R.S.)
| | - Sergii Kyrychenko
- Department of Internal Medicine, Cardiology Division (F.A., G.G.S., K.M.F., S.Y.K., S.K., E.V., D.T., J.W.S., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Elisa Villalobos
- Department of Internal Medicine, Cardiology Division (F.A., G.G.S., K.M.F., S.Y.K., S.K., E.V., D.T., J.W.S., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Dan Tong
- Department of Internal Medicine, Cardiology Division (F.A., G.G.S., K.M.F., S.Y.K., S.K., E.V., D.T., J.W.S., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Jay W Schneider
- Department of Internal Medicine, Cardiology Division (F.A., G.G.S., K.M.F., S.Y.K., S.K., E.V., D.T., J.W.S., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Cesar A Ramirez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine, and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile (F.E., C.A.R.S.)
| | - Sergio Lavandero
- Department of Internal Medicine, Cardiology Division (F.A., G.G.S., K.M.F., S.Y.K., S.K., E.V., D.T., J.W.S., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas.,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile (S.L.).,Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile (S.L.)
| | - Thomas G Gillette
- Department of Internal Medicine, Cardiology Division (F.A., G.G.S., K.M.F., S.Y.K., S.K., E.V., D.T., J.W.S., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Joseph A Hill
- Department of Internal Medicine, Cardiology Division (F.A., G.G.S., K.M.F., S.Y.K., S.K., E.V., D.T., J.W.S., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas.,Department of Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
113
|
Tajhya R, Delling M. New insights into ion channel-dependent signalling during left-right patterning. J Physiol 2019; 598:1741-1752. [PMID: 31106399 DOI: 10.1113/jp277835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/23/2019] [Indexed: 01/20/2023] Open
Abstract
The left-right organizer (LRO) in the mouse consists of pit cells within the depression, located at the end of the developing notochord, also known as the embryonic node and crown cells lining the outer periphery of the node. Cilia on pit cells are posteriorly tilted, rotate clockwise and generate leftward fluid flow. Primary cilia on crown cells are required to interpret the directionality of fluid movement and initiate flow-dependent gene transcription. Crown cells express PC1-L1 and PC2, which may form a heteromeric polycystin channel complex on primary cilia. It is still only poorly understood how fluid flow activates the ciliary polycystin complex. Besides polycystin channels voltage gated channels like HCN4 and KCNQ1 have been implicated in establishing asymmetry. How this electrical network of ion channels initiates left-sided signalling cascades and differential gene expression is currently only poorly defined.
Collapse
Affiliation(s)
- Rajeev Tajhya
- Department of Physiology, University of California, 1550 4th Street, San Francisco, CA, 94518, USA
| | - Markus Delling
- Department of Physiology, University of California, 1550 4th Street, San Francisco, CA, 94518, USA
| |
Collapse
|
114
|
Thakore P, Earley S. Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling. Compr Physiol 2019; 9:1249-1277. [PMID: 31187891 DOI: 10.1002/cphy.c180034] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vascular endothelium is a broadly distributed and highly specialized organ. The endothelium has a number of functions including the control of blood vessels diameter through the production and release of potent vasoactive substances or direct electrical communication with underlying smooth muscle cells, regulates the permeability of the vascular barrier, stimulates the formation of new blood vessels, and influences inflammatory and thrombotic processes. Endothelial cells that make up the endothelium express a variety of cell-surface receptors and ion channels on the plasma membrane that are capable of detecting circulating hormones, neurotransmitters, oxygen tension, and shear stress across the vascular wall. Changes in these stimuli activate signaling cascades that initiate an appropriate physiological response. Increases in the global intracellular Ca2+ concentration and localized Ca2+ signals that occur within specialized subcellular microdomains are fundamentally important components of many signaling pathways in the endothelium. The transient receptor potential (TRP) channels are a superfamily of cation-permeable ion channels that act as a primary means of increasing cytosolic Ca2+ in endothelial cells. Consequently, TRP channels are vitally important for the major functions of the endothelium. In this review, we provide an in-depth discussion of Ca2+ -permeable TRP channels in the endothelium and their role in vascular regulation. © 2019 American Physiological Society. Compr Physiol 9:1249-1277, 2019.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
115
|
Vangeel L, Voets T. Transient Receptor Potential Channels and Calcium Signaling. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035048. [PMID: 30910771 DOI: 10.1101/cshperspect.a035048] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transient receptor potential (TRP) cation channels play diverse roles in cellular Ca2+ signaling. First, as Ca2+-permeable channels that respond to a variety of stimuli, TRP channels can directly initiate cellular Ca2+ signals. Second, as nonselective cation channels, TRP channel activation leads to membrane depolarization, influencing Ca2+ influx via voltage-gated and store-operated Ca2+ channels. Finally, Ca2+ modulates the activity of most TRP channels, allowing them to function as molecular effectors downstream of intracellular Ca2+ signals. Whereas the TRP channel field has long been devoid of detailed channel structures, recent advances, particularly in cryo-electron microscopy-based structural approaches, have yielded a flurry of TRP channel structures, including members from all seven subfamilies. These structures, in conjunction with mutagenesis-based functional approaches, provided important new insights into the mechanisms whereby TRP channels permeate and sense Ca2+ These insights will be highly instrumental in the rational design of novel treatments for the multitude of TRP channel-related diseases.
Collapse
Affiliation(s)
- Laura Vangeel
- Laboratory of Ion Channel Research, VIB Center for Brain and Disease Research & Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain and Disease Research & Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
116
|
Song F, Guo J. [Progress on structural biology of voltage-gated ion channels]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:25-33. [PMID: 31102354 PMCID: PMC10412417 DOI: 10.3785/j.issn.1008-9292.2019.02.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Ion channels mediate ion transport across membranes, and play vital roles in processes of matter exchange, energy transfer and signal transduction in living organisms. Recently, structural studies of ion channels have greatly advanced our understanding of their ion selectivity and gating mechanisms. Structural studies of voltage-gated potassium channels elucidate the structural basis for potassium selectivity and voltage-gating mechanism; structural studies of voltage-gated sodium channels reveal their slow and fast inactivation mechanisms; and structural studies of transient receptor potential (TRP) channels provide complex and diverse structures of TRP channels, and their ligand gating mechanisms. In the article we summarize recent progress on ion channel structural biology, and outlook the prospect of ion channel structural biology in the future.
Collapse
Affiliation(s)
- Fangjun Song
- 1. Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiangtao Guo
- 1. Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
117
|
Zheng W, Cai R, Hofmann L, Nesin V, Hu Q, Long W, Fatehi M, Liu X, Hussein S, Kong T, Li J, Light PE, Tang J, Flockerzi V, Tsiokas L, Chen XZ. Direct Binding between Pre-S1 and TRP-like Domains in TRPP Channels Mediates Gating and Functional Regulation by PIP2. Cell Rep 2019; 22:1560-1573. [PMID: 29425510 PMCID: PMC6483072 DOI: 10.1016/j.celrep.2018.01.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/08/2017] [Accepted: 01/11/2018] [Indexed: 11/28/2022] Open
Abstract
Transient receptor potential (TRP) channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C) that is functionally essential. The interaction was mediated by aromatic Trp81 in pre-S1 domain and cationic Lys568 in TRP-like domain. Structure-function analyses revealed similar N-C interaction in TRPP2 as well as TRPM8/-V1/-C4 via highly conserved tryptophan and lysine/arginine residues. PIP2 bound to cationic residues in TRPP3, including K568, thereby disrupting the N-C interaction and negatively regulating TRPP3. PIP2 had similar negative effects on TRPP2. Interestingly, we found that PIP2 facilitates the N-C interaction in TRPM8/-V1, resulting in channel potentiation. The intramolecular N-C interaction might represent a shared mechanism underlying the gating and PIP2 regulation of TRP channels. Zheng et al. show that an aromatic Trp residue in pre-S1 and a cationic Lys residue in the TRP-like domain of TRP polycystin channels mediate N-C binding, which underlies TRPPs gating and PIP2 regulation. The conservation of these residues suggests that this may be a shared mechanism of TRP channel gating.
Collapse
Affiliation(s)
- Wang Zheng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China; Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ruiqi Cai
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Laura Hofmann
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg 66421, Germany
| | - Vasyl Nesin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Qiaolin Hu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Wentong Long
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Mohammad Fatehi
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Xiong Liu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shaimaa Hussein
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Tim Kong
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jingru Li
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Peter E Light
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg 66421, Germany
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xing-Zhen Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China; Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
118
|
Yokogawa M, Fukuda M, Osawa M. Nanodiscs for Structural Biology in a Membranous Environment. Chem Pharm Bull (Tokyo) 2019; 67:321-326. [PMID: 30930435 DOI: 10.1248/cpb.c18-00941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structures of many membrane proteins have been analyzed in detergent micelles. However, the environment of detergent micelles differs somewhat from that of the lipid bilayer, where membrane proteins exhibit physiological functions. Therefore, a more membrane-like environment has been awaited for structural analysis of membrane proteins. Nanodiscs are "hockey-puck"-shaped lipid bilayer particles that distribute in a monodispersed manner in aqueous solution. We review how nanodiscs or protein-reconstituted nanodiscs are prepared and how they are utilized to analyze protein structure, dynamics, and interactions with lipid molecules using solution NMR and cryo-electron microscopy.
Collapse
Affiliation(s)
- Mariko Yokogawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy
| | - Masahiro Fukuda
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy
| | - Masanori Osawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy
| |
Collapse
|
119
|
TMEM33 regulates intracellular calcium homeostasis in renal tubular epithelial cells. Nat Commun 2019; 10:2024. [PMID: 31048699 PMCID: PMC6497644 DOI: 10.1038/s41467-019-10045-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Mutations in the polycystins cause autosomal dominant polycystic kidney disease (ADPKD). Here we show that transmembrane protein 33 (TMEM33) interacts with the ion channel polycystin-2 (PC2) at the endoplasmic reticulum (ER) membrane, enhancing its opening over the whole physiological calcium range in ER liposomes fused to planar bilayers. Consequently, TMEM33 reduces intracellular calcium content in a PC2-dependent manner, impairs lysosomal calcium refilling, causes cathepsins translocation, inhibition of autophagic flux upon ER stress, as well as sensitization to apoptosis. Invalidation of TMEM33 in the mouse exerts a potent protection against renal ER stress. By contrast, TMEM33 does not influence pkd2-dependent renal cystogenesis in the zebrafish. Together, our results identify a key role for TMEM33 in the regulation of intracellular calcium homeostasis of renal proximal convoluted tubule cells and establish a causal link between TMEM33 and acute kidney injury.
Collapse
|
120
|
Emerging structural biology of TRPM subfamily channels. Cell Calcium 2019; 79:75-79. [DOI: 10.1016/j.ceca.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
|
121
|
Park EYJ, Baik JY, Kwak M, So I. The role of calmodulin in regulating calcium-permeable PKD2L1 channel activity. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:219-227. [PMID: 31080352 PMCID: PMC6488707 DOI: 10.4196/kjpp.2019.23.3.219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 11/15/2022]
Abstract
Polycystic kidney disease 2-like-1 (PKD2L1), polycystin-L or transient receptor potential polycystin 3 (TRPP3) is a TRP superfamily member. It is a calcium-permeable non-selective cation channel that regulates intracellular calcium concentration and thereby calcium signaling. Although the calmodulin (CaM) inhibitor, calmidazolium, is an activator of the PKD2L1 channel, the activating mechanism remains unclear. The purpose of this study is to clarify whether CaM takes part in the regulation of the PKD2L1 channel, and if so, how. With patch clamp techniques, we observed the current amplitudes of PKD2L1 significantly reduced when coexpressed with CaM and CaMΔN. This result suggests that the N-lobe of CaM carries a more crucial role in regulating PKD2L1 and guides us into our next question on the different functions of two lobes of CaM. We also identified the predicted CaM binding site, and generated deletion and truncation mutants. The mutants showed significant reduction in currents losing PKD2L1 current-voltage curve, suggesting that the C-terminal region from 590 to 600 is crucial for maintaining the functionality of the PKD2L1 channel. With PKD2L1608Stop mutant showing increased current amplitudes, we further examined the functional importance of EF-hand domain. Along with co-expression of CaM, ΔEF-hand mutant also showed significant changes in current amplitudes and potentiation time. Our findings suggest that there is a constitutive inhibition of EF-hand and binding of CaM C-lobe on the channel in low calcium concentration. At higher calcium concentration, calcium ions occupy the N-lobe as well as the EF-hand domain, allowing the two to compete to bind to the channel.
Collapse
Affiliation(s)
- Eunice Yon June Park
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Julia Young Baik
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Misun Kwak
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
122
|
Parnell SC, Magenheimer BS, Maser RL, Pavlov TS, Havens MA, Hastings ML, Jackson SF, Ward CJ, Peterson KR, Staruschenko A, Calvet JP. A mutation affecting polycystin-1 mediated heterotrimeric G-protein signaling causes PKD. Hum Mol Genet 2019; 27:3313-3324. [PMID: 29931260 PMCID: PMC6140781 DOI: 10.1093/hmg/ddy223] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/05/2018] [Indexed: 12/16/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the growth of renal cysts that ultimately destroy kidney function. Mutations in the PKD1 and PKD2 genes cause ADPKD. Their protein products, polycystin-1 (PC1) and polycystin-2 (PC2) have been proposed to form a calcium-permeable receptor-channel complex; however the mechanisms by which they function are almost completely unknown. Most mutations in PKD1 are truncating loss-of-function mutations or affect protein biogenesis, trafficking or stability and reveal very little about the intrinsic biochemical properties or cellular functions of PC1. An ADPKD patient mutation (L4132Δ or ΔL), resulting in a single amino acid deletion in a putative G-protein binding region of the PC1 C-terminal cytosolic tail, was found to significantly decrease PC1-stimulated, G-protein-dependent signaling in transient transfection assays. Pkd1ΔL/ΔL mice were embryo-lethal suggesting that ΔL is a functionally null mutation. Kidney-specific Pkd1ΔL/cond mice were born but developed severe, postnatal cystic disease. PC1ΔL protein expression levels and maturation were comparable to those of wild type PC1, and PC1ΔL protein showed cell surface localization. Expression of PC1ΔL and PC2 complexes in transfected CHO cells failed to support PC2 channel activity, suggesting that the role of PC1 is to activate G-protein signaling to regulate the PC1/PC2 calcium channel.
Collapse
Affiliation(s)
- Stephen C Parnell
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Brenda S Magenheimer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robin L Maser
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tengis S Pavlov
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI, USA
| | | | - Michelle L Hastings
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Stephen F Jackson
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Christopher J Ward
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
123
|
Johansen NT, Tidemand FG, Nguyen TTTN, Rand KD, Pedersen MC, Arleth L. Circularized and solubility‐enhanced
MSP
s facilitate simple and high‐yield production of stable nanodiscs for studies of membrane proteins in solution. FEBS J 2019; 286:1734-1751. [DOI: 10.1111/febs.14766] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/10/2018] [Accepted: 01/22/2019] [Indexed: 01/13/2023]
Affiliation(s)
| | | | - Tam T. T. N. Nguyen
- Protein Analysis Group Department of Pharmacy University of Copenhagen Denmark
| | - Kasper Dyrberg Rand
- Protein Analysis Group Department of Pharmacy University of Copenhagen Denmark
| | | | - Lise Arleth
- Structural Biophysics Niels Bohr Institute University of Copenhagen Denmark
| |
Collapse
|
124
|
Woodward OM, Watnick T. Molecular Structure of the PKD Protein Complex Finally Solved. Am J Kidney Dis 2019; 73:620-623. [PMID: 30704879 DOI: 10.1053/j.ajkd.2018.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/20/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD.
| | - Terry Watnick
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
125
|
Abstract
A large series of different ion channels have been identified and investigated as potential targets for new medicines for the treatment of a variety of human diseases, including pain. Among these channels, the voltage gated calcium channels (VGCC) are inhibited by drugs for the treatment of migraine, neuropathic pain or intractable pain. Transient receptor potential (TRP) channels are emerging as important pain transducers as they sense low pH media or oxidative stress and other mediators and are abundantly found at sites of inflammation or tissue injury. Low pH may also activate acid sensing ion channels (ASIC) and mechanical forces stimulate the PIEZO channels. While potent agonists of TRP channels due to their desensitizing action on pain transmission are used as topical applications, the potential of TRP antagonists as pain therapeutics remains an exciting field of investigation. The study of ASIC or PIEZO channels in pain signaling is in an early stage, whereas antagonism of the purinergic P2X3 channels has been reported to provide beneficial effects in chronic intractable cough. The present chapter covers these intriguing channels in great detail, highlighting their diverse mechanisms and broad potential for therapeutic utility.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| |
Collapse
|
126
|
Singh AK, McGoldrick LL, Sobolevsky AI. Expression, Purification, and Crystallization of the Transient Receptor Potential Channel TRPV6. Methods Mol Biol 2019; 1987:23-37. [PMID: 31028671 DOI: 10.1007/978-1-4939-9446-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transient receptor potential (TRP) channels are polymodal sensory transducers that respond to chemicals, temperature, mechanical stress, and membrane voltage and are involved in vision, taste, olfaction, hearing, touch, thermal perception, and nociception. TRP channels are implicated in numerous devastating diseases, including various forms of cancer, and represent important drug targets. The large sizes, low expression levels, and conformational dynamics of TRP channels make them challenging targets for structural biology. Here, we present the methodology used in structural studies of TRPV6, a TRP channel that is highly selective for calcium and mediates Ca2+ uptake in epithelial tissues. We provide a protocol for the expression, purification, and crystallization of TRPV6. Similar approaches can be used to determine crystal structures of other membrane proteins, including different members of the TRP channel family.
Collapse
Affiliation(s)
- Appu K Singh
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Luke L McGoldrick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
127
|
Overduin M, Esmaili M. Memtein: The fundamental unit of membrane-protein structure and function. Chem Phys Lipids 2019; 218:73-84. [DOI: 10.1016/j.chemphyslip.2018.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022]
|
128
|
Affiliation(s)
- Valeria Padovano
- Department of Cellular and Molecular Physiology , Yale University School of Medicine , P.O. Box 208026, New Haven , Connecticut 06520-8026 , United States
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology , Yale University School of Medicine , P.O. Box 208026, New Haven , Connecticut 06520-8026 , United States
| |
Collapse
|
129
|
Abstract
Cystic kidneys are common causes of end-stage renal disease, both in children and in adults. Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are cilia-related disorders and the two main forms of monogenic cystic kidney diseases. ADPKD is a common disease that mostly presents in adults, whereas ARPKD is a rarer and often more severe form of polycystic kidney disease (PKD) that usually presents perinatally or in early childhood. Cell biological and clinical research approaches have expanded our knowledge of the pathogenesis of ADPKD and ARPKD and revealed some mechanistic overlap between them. A reduced 'dosage' of PKD proteins is thought to disturb cell homeostasis and converging signalling pathways, such as Ca2+, cAMP, mechanistic target of rapamycin, WNT, vascular endothelial growth factor and Hippo signalling, and could explain the more severe clinical course in some patients with PKD. Genetic diagnosis might benefit families and improve the clinical management of patients, which might be enhanced even further with emerging therapeutic options. However, many important questions about the pathogenesis of PKD remain. In this Primer, we provide an overview of the current knowledge of PKD and its treatment.
Collapse
Affiliation(s)
- Carsten Bergmann
- Department of Medicine, University Hospital Freiburg, Freiburg, Germany.
| | - Lisa M. Guay-Woodford
- Center for Translational Science, Children’s National Health System, Washington, DC, USA
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Dorien J. M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
130
|
Bulley S, Fernández-Peña C, Hasan R, Leo MD, Muralidharan P, Mackay CE, Evanson KW, Moreira-Junior L, Mata-Daboin A, Burris SK, Wang Q, Kuruvilla KP, Jaggar JH. Arterial smooth muscle cell PKD2 (TRPP1) channels regulate systemic blood pressure. eLife 2018; 7:42628. [PMID: 30511640 PMCID: PMC6281320 DOI: 10.7554/elife.42628] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/22/2018] [Indexed: 01/12/2023] Open
Abstract
Systemic blood pressure is determined, in part, by arterial smooth muscle cells (myocytes). Several Transient Receptor Potential (TRP) channels are proposed to be expressed in arterial myocytes, but it is unclear if these proteins control physiological blood pressure and contribute to hypertension in vivo. We generated the first inducible, smooth muscle-specific knockout mice for a TRP channel, namely for PKD2 (TRPP1), to investigate arterial myocyte and blood pressure regulation by this protein. Using this model, we show that intravascular pressure and α1-adrenoceptors activate PKD2 channels in arterial myocytes of different systemic organs. PKD2 channel activation in arterial myocytes leads to an inward Na+ current, membrane depolarization and vasoconstriction. Inducible, smooth muscle cell-specific PKD2 knockout lowers both physiological blood pressure and hypertension and prevents pathological arterial remodeling during hypertension. Thus, arterial myocyte PKD2 controls systemic blood pressure and targeting this TRP channel reduces high blood pressure.
Collapse
Affiliation(s)
- Simon Bulley
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Carlos Fernández-Peña
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Raquibul Hasan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - M Dennis Leo
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Padmapriya Muralidharan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Charles E Mackay
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Kirk W Evanson
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Luiz Moreira-Junior
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Alejandro Mata-Daboin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Sarah K Burris
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Qian Wang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Korah P Kuruvilla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| |
Collapse
|
131
|
Abstract
Cryo-electron microscopy, or simply cryo-EM, refers mainly to three very different yet closely related techniques: electron crystallography, single-particle cryo-EM, and electron cryotomography. In the past few years, single-particle cryo-EM in particular has triggered a revolution in structural biology and has become a newly dominant discipline. This Review examines the fascinating story of its start and evolution over the past 40-plus years, delves into how and why the recent technological advances have been so groundbreaking, and briefly considers where the technique may be headed in the future.
Collapse
Affiliation(s)
- Yifan Cheng
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
132
|
Kasimova MA, Yazici AT, Yudin Y, Granata D, Klein ML, Rohacs T, Carnevale V. A hypothetical molecular mechanism for TRPV1 activation that invokes rotation of an S6 asparagine. J Gen Physiol 2018; 150:1554-1566. [PMID: 30333107 PMCID: PMC6219692 DOI: 10.1085/jgp.201812124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/13/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
TRPV1 channels comprise four subunits containing six transmembrane segments (S1–S6) that surround a central pore. Kasimova et al. hypothesize that channel opening involves rotation of an S6 asparagine residue toward the pore, as well as associated pore hydration and external cavity dehydration. The transient receptor potential channel vanilloid type 1 (TRPV1) is activated by a variety of endogenous and exogenous stimuli and is involved in nociception and body temperature regulation. Although the structure of TRPV1 has been experimentally determined in both the closed and open states, very little is known about its activation mechanism. In particular, the conformational changes that occur in the pore domain and result in ionic conduction have not yet been identified. Here we suggest a hypothetical molecular mechanism for TRPV1 activation, which involves rotation of a conserved asparagine in S6 from a position facing the S4–S5 linker toward the pore. This rotation is associated with hydration of the pore and dehydration of the four peripheral cavities located between each S6 and S4–S5 linker. In light of our hypothesis, we perform bioinformatics analyses of TRP and other evolutionary related ion channels, evaluate newly available structures, and reexamine previously reported water accessibility and mutagenesis experiments. These analyses provide several independent lines of evidence to support our hypothesis. Finally, we show that our proposed molecular mechanism is compatible with the prevailing theory that the selectivity filter acts as a secondary gate in TRPV1.
Collapse
Affiliation(s)
- Marina A Kasimova
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| | - Aysenur Torun Yazici
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ
| | - Yevgen Yudin
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ
| | - Daniele Granata
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA
| |
Collapse
|
133
|
Membrane protein structural biology in the era of single particle cryo-EM. Curr Opin Struct Biol 2018; 52:58-63. [PMID: 30219656 DOI: 10.1016/j.sbi.2018.08.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/15/2018] [Accepted: 08/29/2018] [Indexed: 11/22/2022]
Abstract
In the past few years, significant technological breakthroughs in single particle cryo-electron microscopy enabled a 'resolution revolution' of this technique. It also changed structural biology in an unprecedented way. For many biological macromolecules, obtaining well-ordered crystals of suitable size is no longer a prerequisite for determining their atomic structures. One of the most impacted areas is the structural biology of integral membrane proteins. New structures are now determined at a rapid pace. Despite these advances, further technological developments are still required to overcome new technical challenges that face membrane protein structural biology. In this review, I attempt to discuss some of these challenges.
Collapse
|
134
|
Duan J, Li Z, Li J, Hulse RE, Santa-Cruz A, Valinsky WC, Abiria SA, Krapivinsky G, Zhang J, Clapham DE. Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proc Natl Acad Sci U S A 2018; 115:E8201-E8210. [PMID: 30108148 PMCID: PMC6126765 DOI: 10.1073/pnas.1810719115] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential ion channel subfamily M, member 7 (TRPM7), is a ubiquitously expressed protein that is required for mouse embryonic development. TRPM7 contains both an ion channel and an α-kinase. The channel domain comprises a nonselective cation channel with notable permeability to Mg2+ and Zn2+ Here, we report the closed state structures of the mouse TRPM7 channel domain in three different ionic conditions to overall resolutions of 3.3, 3.7, and 4.1 Å. The structures reveal key residues for an ion binding site in the selectivity filter, with proposed partially hydrated Mg2+ ions occupying the center of the conduction pore. In high [Mg2+], a prominent external disulfide bond is found in the pore helix, which is essential for ion channel function. Our results provide a structural framework for understanding the TRPM1/3/6/7 subfamily and extend the knowledge base upon which to study the diversity and evolution of TRP channels.
Collapse
Affiliation(s)
- Jingjing Duan
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Zongli Li
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jian Li
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031 Jiangxi, China
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536
| | - Raymond E Hulse
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Ana Santa-Cruz
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - William C Valinsky
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Sunday A Abiria
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
| | | | - Jin Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115;
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031 Jiangxi, China
| | - David E Clapham
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115;
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
135
|
Abstract
Transient Receptor Potential (TRP) channels are evolutionarily conserved integral membrane proteins. The mammalian TRP superfamily of ion channels consists of 28 cation permeable channels that are grouped into six subfamilies based on sequence homology (Fig. 6.1). The canonical TRP (TRPC) subfamily is known for containing the founding member of mammalian TRP channels. The vanilloid TRP (TRPV) subfamily has been extensively studied due to the heat sensitivity of its founding member. The melastatin-related TRP (TRPM) subfamily includes some of the few known bi-functional ion channels, which contain functional enzymatic domains. The ankyrin TRP (TRPA) subfamily consists of a single chemo-nociceptor that has been proposed to be a target for analgesics. The mucolipin TRP (TRPML) subfamily channels are found primarily in intracellular compartments and were discovered based on their critical role in type IV mucolipidosis (ML-IV). The polycystic TRP (TRPP) subfamily is a diverse group of proteins implicated in autosomal dominant polycystic kidney disease (ADPKD). Overall, this superfamily of channels is involved in a vast array of physiological and pathophysiological processes making the study of these channels imperative to our understanding of subcellular biochemistry.
Collapse
Affiliation(s)
- Amrita Samanta
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Physiology and Biophysics School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Taylor E T Hughes
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Vera Y Moiseenkova-Bell
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Physiology and Biophysics School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
136
|
Su Q, Hu F, Ge X, Lei J, Yu S, Wang T, Zhou Q, Mei C, Shi Y. Structure of the human PKD1-PKD2 complex. Science 2018; 361:science.aat9819. [DOI: 10.1126/science.aat9819] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Mutations in two genes, PKD1 and PKD2, account for most cases of autosomal dominant polycystic kidney disease, one of the most common monogenetic disorders. Here we report the 3.6-angstrom cryo–electron microscopy structure of truncated human PKD1-PKD2 complex assembled in a 1:3 ratio. PKD1 contains a voltage-gated ion channel (VGIC) fold that interacts with PKD2 to form the domain-swapped, yet noncanonical, transient receptor potential (TRP) channel architecture. The S6 helix in PKD1 is broken in the middle, with the extracellular half, S6a, resembling pore helix 1 in a typical TRP channel. Three positively charged, cavity-facing residues on S6b may block cation permeation. In addition to the VGIC, a five–transmembrane helix domain and a cytosolic PLAT domain were resolved in PKD1. The PKD1-PKD2 complex structure establishes a framework for dissecting the function and disease mechanisms of the PKD proteins.
Collapse
|
137
|
Scapin G, Potter CS, Carragher B. Cryo-EM for Small Molecules Discovery, Design, Understanding, and Application. Cell Chem Biol 2018; 25:1318-1325. [PMID: 30100349 DOI: 10.1016/j.chembiol.2018.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/11/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
We present a perspective of our view of the application of cryoelectron microscopy (cryo-EM) to structure-based drug design (SBDD). We discuss the basic needs and requirements for SBDD, the current state of cryo-EM, and the challenges that need to be overcome for this technique to reach its full potential in facilitating the process of drug discovery.
Collapse
Affiliation(s)
- Giovanna Scapin
- Department of Biochemical Engineering & Structure, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Clinton S Potter
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, 89 Convent Avenue, New York NY 10027, USA; NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, 89 Convent Avenue, New York NY 10027, USA; NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA.
| |
Collapse
|
138
|
Abstract
Members of the transient receptor potential (TRP) ion channels conduct cations into cells. They mediate functions ranging from neuronally mediated hot and cold sensation to intracellular organellar and primary ciliary signaling. Here we report a cryo-electron microscopy (cryo-EM) structure of TRPC4 in its unliganded (apo) state to an overall resolution of 3.3 Å. The structure reveals a unique architecture with a long pore loop stabilized by a disulfide bond. Beyond the shared tetrameric six-transmembrane fold, the TRPC4 structure deviates from other TRP channels with a unique cytosolic domain. This unique cytosolic N-terminal domain forms extensive aromatic contacts with the TRP and the C-terminal domains. The comparison of our structure with other known TRP structures provides molecular insights into TRPC4 ion selectivity and extends our knowledge of the diversity and evolution of the TRP channels.
Collapse
|
139
|
Dillard RS, Hampton CM, Strauss JD, Ke Z, Altomara D, Guerrero-Ferreira RC, Kiss G, Wright ER. Biological Applications at the Cutting Edge of Cryo-Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:406-419. [PMID: 30175702 PMCID: PMC6265046 DOI: 10.1017/s1431927618012382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cryo-electron microscopy (cryo-EM) is a powerful tool for macromolecular to near-atomic resolution structure determination in the biological sciences. The specimen is maintained in a near-native environment within a thin film of vitreous ice and imaged in a transmission electron microscope. The images can then be processed by a number of computational methods to produce three-dimensional information. Recent advances in sample preparation, imaging, and data processing have led to tremendous growth in the field of cryo-EM by providing higher resolution structures and the ability to investigate macromolecules within the context of the cell. Here, we review developments in sample preparation methods and substrates, detectors, phase plates, and cryo-correlative light and electron microscopy that have contributed to this expansion. We also have included specific biological applications.
Collapse
Affiliation(s)
- Rebecca S Dillard
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Cheri M Hampton
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Joshua D Strauss
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Zunlong Ke
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Deanna Altomara
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Ricardo C Guerrero-Ferreira
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Gabriella Kiss
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Elizabeth R Wright
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| |
Collapse
|
140
|
Sgro GG, Costa TRD. Cryo-EM Grid Preparation of Membrane Protein Samples for Single Particle Analysis. Front Mol Biosci 2018; 5:74. [PMID: 30131964 PMCID: PMC6090150 DOI: 10.3389/fmolb.2018.00074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/10/2018] [Indexed: 11/26/2022] Open
Abstract
Recent advances in cryo-electron microscopy (cryo-EM) have made it possible to solve structures of biological macromolecules at near atomic resolution. Development of more stable microscopes, improved direct electron detectors and faster software for image processing has enabled structural solution of not only large macromolecular (megadalton range) complexes but also small (~60 kDa) proteins. As a result of the widespread use of the technique, we have also witnessed new developments of techniques for cryo-EM grid preparation of membrane protein samples. This includes new types of solubilization strategies that better stabilize these protein complexes and the development of new grid supports with proven efficacy in reducing the motion of the molecules during electron beam exposure. Here, we discuss the practicalities and recent challenges of membrane protein sample preparation and vitrification, as well as grid support and foil treatment in the context of the structure determination of protein complexes by single particle cryo-EM.
Collapse
Affiliation(s)
- Germán G. Sgro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago R. D. Costa
- Department of Life Sciences, Imperial College London, MRC Centre for Molecular Microbiology and Infection, London, United Kingdom
| |
Collapse
|
141
|
Wu G, Yang X, Shen Y. Identification of a single aspartate residue critical for both fast and slow calcium-dependent inactivation of the human TRPML1 channel. J Biol Chem 2018; 293:11736-11745. [PMID: 29884771 DOI: 10.1074/jbc.ra118.003250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/05/2018] [Indexed: 01/16/2023] Open
Abstract
Transient receptor potential mucolipin subfamily 1 (TRPML1) is a nonselective cation channel mainly located in late endosomes and lysosomes. Mutations of the gene encoding human TRPML1 can cause severe lysosomal diseases. The activity of TRPML1 is regulated by both Ca2+ and H+, which are important for its critical physiological functions in membrane trafficking, exocytosis, autophagy, and intracellular signal transduction. However, the molecular mechanism of its dual regulation by Ca2+ and H+ remains elusive. Here, using a mutant screening method in combination with a whole-cell patch clamp technique, we identified a key TRPML1 residue, Asp-472, responsible for both fast calcium-dependent inactivation (FCDI) and slow calcium-dependent inactivation (SCDI) as well as H+ regulation. We also found that, in acidic pH, H+ can significantly delay FCDI and abolish SCDI and thereby presumably facilitate the ion conductance of the human TRPML1 channel. In summary, we have identified a key residue critical for Ca2+-induced inhibition of TRPML1 channel currents and uncovered pH-dependent regulation of this channel, providing vital information regarding the detailed mechanism of action of human TRPML1.
Collapse
Affiliation(s)
- Guangyan Wu
- From the State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China and
| | - Xue Yang
- From the State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China and
| | - Yuequan Shen
- From the State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China and .,the Synergetic Innovation Center of Chemical Science and Engineering, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
142
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
143
|
Zheng W, Yang X, Hu R, Cai R, Hofmann L, Wang Z, Hu Q, Liu X, Bulkley D, Yu Y, Tang J, Flockerzi V, Cao Y, Cao E, Chen XZ. Hydrophobic pore gates regulate ion permeation in polycystic kidney disease 2 and 2L1 channels. Nat Commun 2018; 9:2302. [PMID: 29899465 PMCID: PMC5998024 DOI: 10.1038/s41467-018-04586-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/01/2018] [Indexed: 01/20/2023] Open
Abstract
PKD2 and PKD1 genes are mutated in human autosomal dominant polycystic kidney disease. PKD2 can form either a homomeric cation channel or a heteromeric complex with the PKD1 receptor, presumed to respond to ligand(s) and/or mechanical stimuli. Here, we identify a two-residue hydrophobic gate in PKD2L1, and a single-residue hydrophobic gate in PKD2. We find that a PKD2 gain-of-function gate mutant effectively rescues PKD2 knockdown-induced phenotypes in embryonic zebrafish. The structure of a PKD2 activating mutant F604P by cryo-electron microscopy reveals a π- to α-helix transition within the pore-lining helix S6 that leads to repositioning of the gate residue and channel activation. Overall the results identify hydrophobic gates and a gating mechanism of PKD2 and PKD2L1. Mutations in the cation channel PKD2 cause human autosomal dominant polycystic kidney disease but its channel function and gating mechanism are poorly understood. Here authors study PKD2 using electrophysiology and cryo-EM, which identifies hydrophobic gates and proposes a gating mechanism for PKD2.
Collapse
Affiliation(s)
- Wang Zheng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.,Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Xiaoyong Yang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Ruikun Hu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ruiqi Cai
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Laura Hofmann
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, 66421, Germany
| | - Zhifei Wang
- Department of Biological Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiaolin Hu
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Xiong Liu
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - David Bulkley
- Keck Advanced Microscopy Laboratory and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yong Yu
- Department of Biological Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, 66421, Germany
| | - Ying Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| | - Xing-Zhen Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China. .,Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
144
|
|
145
|
Shenkarev ZO, Karlova MG, Kulbatskii DS, Kirpichnikov MP, Lyukmanova EN, Sokolova OS. Recombinant Production, Reconstruction in Lipid-Protein Nanodiscs, and Electron Microscopy of Full-Length α-Subunit of Human Potassium Channel Kv7.1. BIOCHEMISTRY (MOSCOW) 2018; 83:562-573. [PMID: 29738690 DOI: 10.1134/s0006297918050097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Voltage-gated potassium channel Kv7.1 plays an important role in the excitability of cardiac muscle. The α-subunit of Kv7.1 (KCNQ1) is the main structural element of this channel. Tetramerization of KCNQ1 in the membrane results in formation of an ion channel, which comprises a pore and four voltage-sensing domains. Mutations in the human KCNQ1 gene are one of the major causes of inherited arrhythmias, long QT syndrome in particular. The construct encoding full-length human KCNQ1 protein was synthesized in this work, and an expression system in the Pichia pastoris yeast cells was developed. The membrane fraction of the yeast cells containing the recombinant protein (rKCNQ1) was solubilized with CHAPS detergent. To better mimic the lipid environment of the channel, lipid-protein nanodiscs were formed using solubilized membrane fraction and MSP2N2 protein. The rKCNQ1/nanodisc and rKCNQ1/CHAPS samples were purified using the Rho1D4 tag introduced at the C-terminus of the protein. Protein samples were examined using transmission electron microscopy with negative staining. In both cases, homogeneous rKCNQ1 samples were observed based on image analysis. Statistical analysis of the images of individual protein particles solubilized in the detergent revealed the presence of a tetrameric structure confirming intact subunit assembly. A three-dimensional channel structure reconstructed at 2.5-nm resolution represents a compact density with diameter of the membrane part of ~9 nm and height ~11 nm. Analysis of the images of rKCNQ1 in nanodiscs revealed additional electron density corresponding to the lipid bilayer fragment and the MSP2N2 protein. These results indicate that the nanodiscs facilitate protein isolation, purification, and stabilization in solution and can be used for further structural studies of human Kv7.1.
Collapse
Affiliation(s)
- Z O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - M G Karlova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - D S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - M P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - E N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - O S Sokolova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| |
Collapse
|
146
|
Fan C, Choi W, Sun W, Du J, Lü W. Structure of the human lipid-gated cation channel TRPC3. eLife 2018; 7:36852. [PMID: 29726814 PMCID: PMC5967863 DOI: 10.7554/elife.36852] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022] Open
Abstract
The TRPC channels are crucially involved in store-operated calcium entry and calcium homeostasis, and they are implicated in human diseases such as neurodegenerative disease, cardiac hypertrophy, and spinocerebellar ataxia. We present a structure of the full-length human TRPC3, a lipid-gated TRPC member, in a lipid-occupied, closed state at 3.3 Angstrom. TRPC3 has four elbow-like membrane reentrant helices prior to the first transmembrane helix. The TRP helix is perpendicular to, and thus disengaged from, the pore-lining S6, suggesting a different gating mechanism from other TRP subfamily channels. The third transmembrane helix S3 is remarkably long, shaping a unique transmembrane domain, and constituting an extracellular domain that may serve as a sensor of external stimuli. We identified two lipid-binding sites, one being sandwiched between the pre-S1 elbow and the S4-S5 linker, and the other being close to the ion-conducting pore, where the conserved LWF motif of the TRPC family is located.
Collapse
Affiliation(s)
- Chen Fan
- Van Andel Institute, Grand Rapids, United States
| | | | - Weinan Sun
- Vollum Institute, Portland, United States
| | - Juan Du
- Van Andel Institute, Grand Rapids, United States
| | - Wei Lü
- Van Andel Institute, Grand Rapids, United States
| |
Collapse
|
147
|
Vinayagam D, Mager T, Apelbaum A, Bothe A, Merino F, Hofnagel O, Gatsogiannis C, Raunser S. Electron cryo-microscopy structure of the canonical TRPC4 ion channel. eLife 2018; 7:e36615. [PMID: 29717981 PMCID: PMC5951680 DOI: 10.7554/elife.36615] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Canonical transient receptor channels (TRPC) are non-selective cation channels. They are involved in receptor-operated Ca2+ signaling and have been proposed to act as store-operated channels (SOC). Their malfunction is related to cardiomyopathies and their modulation by small molecules has been shown to be effective against renal cancer cells. The molecular mechanism underlying the complex activation and regulation is poorly understood. Here, we report the electron cryo-microscopy structure of zebrafish TRPC4 in its unliganded (apo), closed state at an overall resolution of 3.6 Å. The structure reveals the molecular architecture of the cation conducting pore, including the selectivity filter and lower gate. The cytoplasmic domain contains two key hubs that have been shown to interact with modulating proteins. Structural comparisons with other TRP channels give novel insights into the general architecture and domain organization of this superfamily of channels and help to understand their function and pharmacology.
Collapse
Affiliation(s)
| | - Thomas Mager
- Department of Biophysical ChemistryMax Planck Institute of BiophysicsFrankfurt am MainGermany
| | - Amir Apelbaum
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Arne Bothe
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Felipe Merino
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Oliver Hofnagel
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Christos Gatsogiannis
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Stefan Raunser
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
148
|
Structure of the receptor-activated human TRPC6 and TRPC3 ion channels. Cell Res 2018; 28:746-755. [PMID: 29700422 DOI: 10.1038/s41422-018-0038-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 12/22/2022] Open
Abstract
TRPC6 and TRPC3 are receptor-activated nonselective cation channels that belong to the family of canonical transient receptor potential (TRPC) channels. They are activated by diacylglycerol, a lipid second messenger. TRPC6 and TRPC3 are involved in many physiological processes and implicated in human genetic diseases. Here we present the structure of human TRPC6 homotetramer in complex with a newly identified high-affinity inhibitor BTDM solved by single-particle cryo-electron microscopy to 3.8 Å resolution. We also present the structure of human TRPC3 at 4.4 Å resolution. These structures show two-layer architectures in which the bell-shaped cytosolic layer holds the transmembrane layer. Extensive inter-subunit interactions of cytosolic domains, including the N-terminal ankyrin repeats and the C-terminal coiled-coil, contribute to the tetramer assembly. The high-affinity inhibitor BTDM wedges between the S5-S6 pore domain and voltage sensor-like domain to inhibit channel opening. Our structures uncover the molecular architecture of TRPC channels and provide a structural basis for understanding the mechanism of these channels.
Collapse
|
149
|
Schmiege P, Fine M, Li X. The regulatory mechanism of mammalian TRPMLs revealed by cryo-EM. FEBS J 2018; 285:2579-2585. [PMID: 29577631 DOI: 10.1111/febs.14443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 01/18/2023]
Abstract
Transient receptor potential mucolipin (TRPML) channels are the most recently identified subfamily of TRP channels and have seen a surge of new reports revealing both structural and functional insight. In 2017, several groups published multiple conformations of TRPML channels using cryo-EM. Similar to other TRP channels, the ML subfamily consists of six transmembrane helices (S1-S6), and a pore region including S5, S6, and two pore helices (PH1 and PH2). However, these reports also reveal distinct structural characteristics of the ML subfamily. Asp residues within the luminal pore may function to control calcium/pH regulation. A synthetic agonist, ML-SA1, can bind to the pore region of TRPMLs to force a direct dilation of the lower gate. Finally, biophysical and electrophysiological characterizations reveal another natural agonist binding site in the unique domain of TRPMLs, presumably regulating the conformation of the S4-S5 linker to open the channel. This work elucidates the molecular architecture and provides insights into how multiple ligands regulate TRPMLs.
Collapse
Affiliation(s)
- Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Fine
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
150
|
Lau C, Hunter MJ, Stewart A, Perozo E, Vandenberg JI. Never at rest: insights into the conformational dynamics of ion channels from cryo-electron microscopy. J Physiol 2018; 596:1107-1119. [PMID: 29377132 PMCID: PMC5878226 DOI: 10.1113/jp274888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/27/2017] [Indexed: 01/04/2023] Open
Abstract
The tightly regulated opening and closure of ion channels underlies the electrical signals that are vital for a wide range of physiological processes. Two decades ago the first atomic level view of ion channel structures led to a detailed understanding of ion selectivity and conduction. In recent years, spectacular developments in the field of cryo-electron microscopy have resulted in cryo-EM superseding crystallography as the technique of choice for determining near-atomic resolution structures of ion channels. Here, we will review the recent developments in cryo-EM and its specific application to the study of ion channel gating. We will highlight the advantages and disadvantages of the current technology and where the field is likely to head in the next few years.
Collapse
Affiliation(s)
- Carus Lau
- Victor Chang Cardiac Research InstituteDarlinghurstNSW2010Australia
- St Vincent's Clinical SchoolUniversity of NSWDarlinghurstNSW2010Australia
| | - Mark J. Hunter
- Victor Chang Cardiac Research InstituteDarlinghurstNSW2010Australia
| | - Alastair Stewart
- Victor Chang Cardiac Research InstituteDarlinghurstNSW2010Australia
- St Vincent's Clinical SchoolUniversity of NSWDarlinghurstNSW2010Australia
| | - Eduardo Perozo
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoIL60637USA
| | - Jamie I. Vandenberg
- Victor Chang Cardiac Research InstituteDarlinghurstNSW2010Australia
- St Vincent's Clinical SchoolUniversity of NSWDarlinghurstNSW2010Australia
| |
Collapse
|