101
|
Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology. Nat Struct Mol Biol 2018; 25:1000-1008. [PMID: 30374081 DOI: 10.1038/s41594-018-0147-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/19/2018] [Indexed: 01/11/2023]
Abstract
Over the past decade, cross-linking mass spectrometry (CLMS) has developed into a robust and flexible tool that provides medium-resolution structural information. CLMS data provide a measure of the proximity of amino acid residues and thus offer information on the folds of proteins and the topology of their complexes. Here, we highlight notable successes of this technique as well as common pipelines. Novel CLMS applications, such as in-cell cross-linking, probing conformational changes and tertiary-structure determination, are now beginning to make contributions to molecular biology and the emerging fields of structural systems biology and interactomics.
Collapse
|
102
|
Strakova K, Kowalski-Jahn M, Gybel T, Valnohova J, Dhople VM, Harnos J, Bernatik O, Ganji RS, Zdrahal Z, Mulder J, Lindskog C, Bryja V, Schulte G. Dishevelled enables casein kinase 1-mediated phosphorylation of Frizzled 6 required for cell membrane localization. J Biol Chem 2018; 293:18477-18493. [PMID: 30309985 DOI: 10.1074/jbc.ra118.004656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/05/2018] [Indexed: 11/06/2022] Open
Abstract
Frizzleds (FZDs) are receptors for secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, initiating an important signal transduction network in multicellular organisms. FZDs are G protein-coupled receptors (GPCRs), which are well known to be regulated by phosphorylation, leading to specific downstream signaling or receptor desensitization. The role and underlying mechanisms of FZD phosphorylation remain largely unexplored. Here, we investigated the phosphorylation of human FZD6 Using MS analysis and a phospho-state- and -site-specific antibody, we found that Ser-648, located in the FZD6 C terminus, is efficiently phosphorylated by casein kinase 1 ϵ (CK1ϵ) and that this phosphorylation requires the scaffolding protein Dishevelled (DVL). In an overexpression system, DVL1, -2, and -3 promoted CK1ϵ-mediated FZD6 phosphorylation on Ser-648. This DVL activity required an intact DEP domain and FZD-mediated recruitment of this domain to the cell membrane. Substitution of the CK1ϵ-targeted phosphomotif reduced FZD6 surface expression, suggesting that Ser-648 phosphorylation controls membrane trafficking of FZD6 Phospho-Ser-648 FZD6 immunoreactivity in human fallopian tube epithelium was predominantly apical, associated with cilia in a subset of epithelial cells, compared with the total FZD6 protein expression, suggesting that FZD6 phosphorylation contributes to asymmetric localization of receptor function within the cell and to epithelial polarity. Given the key role of FZD6 in planar cell polarity, our results raise the possibility that asymmetric phosphorylation of FZD6 rather than asymmetric protein distribution accounts for polarized receptor signaling.
Collapse
Affiliation(s)
- Katerina Strakova
- From the Laboratory of WNT Signaling, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.,Section for Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum (6D), Tomtebodavägen 16, SE-17165 Stockholm, Sweden
| | - Maria Kowalski-Jahn
- Section for Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum (6D), Tomtebodavägen 16, SE-17165 Stockholm, Sweden
| | - Tomas Gybel
- From the Laboratory of WNT Signaling, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Jana Valnohova
- Section for Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum (6D), Tomtebodavägen 16, SE-17165 Stockholm, Sweden
| | - Vishnu M Dhople
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, Friedrich-Ludwig-Jahn-Strasse 15, 17487 Greifswald, Germany
| | - Jakub Harnos
- From the Laboratory of WNT Signaling, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Ondrej Bernatik
- From the Laboratory of WNT Signaling, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Ranjani Sri Ganji
- From the Laboratory of WNT Signaling, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.,Central European Institute for Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zbynek Zdrahal
- Central European Institute for Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jan Mulder
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institute, Tomtebodavägen 16 17165 Stockholm, Sweden, and
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
| | - Vitezslav Bryja
- From the Laboratory of WNT Signaling, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic,
| | - Gunnar Schulte
- From the Laboratory of WNT Signaling, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic, .,Section for Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum (6D), Tomtebodavägen 16, SE-17165 Stockholm, Sweden
| |
Collapse
|
103
|
Calabrese AN, Radford SE. Mass spectrometry-enabled structural biology of membrane proteins. Methods 2018; 147:187-205. [DOI: 10.1016/j.ymeth.2018.02.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/30/2018] [Accepted: 02/21/2018] [Indexed: 01/01/2023] Open
|
104
|
Choi M, Staus DP, Wingler LM, Ahn S, Pani B, Capel WD, Lefkowitz RJ. G protein-coupled receptor kinases (GRKs) orchestrate biased agonism at the β 2-adrenergic receptor. Sci Signal 2018; 11:11/544/eaar7084. [PMID: 30131371 DOI: 10.1126/scisignal.aar7084] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biased agonists of G protein-coupled receptors (GPCRs), which selectively activate either G protein- or β-arrestin-mediated signaling pathways, are of major therapeutic interest because they have the potential to show improved efficacy and specificity as drugs. Efforts to understand the mechanistic basis of this phenomenon have focused on the hypothesis that G proteins and β-arrestins preferentially couple to distinct GPCR conformations. However, because GPCR kinase (GRK)-dependent receptor phosphorylation is a critical prerequisite for the recruitment of β-arrestins to most GPCRs, GRKs themselves may play an important role in establishing biased signaling. We showed that an alanine mutant of the highly conserved residue tyrosine 219 (Y219A) in transmembrane domain five of the β2-adrenergic receptor (β2AR) was incapable of β-arrestin recruitment, receptor internalization, and β-arrestin-mediated activation of extracellular signal-regulated kinase (ERK), whereas it retained the ability to signal through G protein. We found that the impaired β-arrestin recruitment in cells was due to reduced GRK-mediated phosphorylation of the β2AR Y219A C terminus, which was recapitulated in vitro with purified components. Furthermore, in vitro ligation of a synthetically phosphorylated peptide onto the C terminus of β2AR Y219A rescued both the initial recruitment of β-arrestin and its engagement with the intracellular core of the receptor. These data suggest that the Y219A mutation generates a G protein-biased state primarily by conformational selection against GRK coupling, rather than against β-arrestin. Together, these findings highlight the importance of GRKs in modulating the biased agonism of GPCRs.
Collapse
Affiliation(s)
- Minjung Choi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Dean P Staus
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. .,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Laura M Wingler
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Seungkirl Ahn
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Biswaranjan Pani
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - William D Capel
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert J Lefkowitz
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA. .,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
105
|
Yang F, Xiao P, Qu CX, Liu Q, Wang LY, Liu ZX, He QT, Liu C, Xu JY, Li RR, Li MJ, Li Q, Guo XZ, Yang ZY, He DF, Yi F, Ruan K, Shen YM, Yu X, Sun JP, Wang J. Allosteric mechanisms underlie GPCR signaling to SH3-domain proteins through arrestin. Nat Chem Biol 2018; 14:876-886. [PMID: 30120361 DOI: 10.1038/s41589-018-0115-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022]
Abstract
Signals from 800 G-protein-coupled receptors (GPCRs) to many SH3 domain-containing proteins (SH3-CPs) regulate important physiological functions. These GPCRs may share a common pathway by signaling to SH3-CPs via agonist-dependent arrestin recruitment rather than through direct interactions. In the present study, 19F-NMR and cellular studies revealed that downstream of GPCR activation engagement of the receptor-phospho-tail with arrestin allosterically regulates the specific conformational states and functional outcomes of remote β-arrestin 1 proline regions (PRs). The observed NMR chemical shifts of arrestin PRs were consistent with the intrinsic efficacy and specificity of SH3 domain recruitment, which was controlled by defined propagation pathways. Moreover, in vitro reconstitution experiments and biophysical results showed that the receptor-arrestin complex promoted SRC kinase activity through an allosteric mechanism. Thus, allosteric regulation of the conformational states of β-arrestin 1 PRs by GPCRs and the allosteric activation of downstream effectors by arrestin are two important mechanisms underlying GPCR-to-SH3-CP signaling.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang district, Beijing, China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Shandong, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Science, Shandong University, Jinan, Shandong, China
| | - Chang-Xiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qi Liu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang district, Beijing, China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Shandong, China
| | - Liu-Yang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Zhi-Xin Liu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qing-Tao He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chuan Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jian-Ye Xu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Rui-Rui Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Meng-Jing Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qing Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Shandong, China
| | - Xu-Zhen Guo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang district, Beijing, China
| | - Zhao-Ya Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Dong-Fang He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Ke Ruan
- Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, China
| | - Yue-Mao Shen
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Shandong, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China. .,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang district, Beijing, China.
| |
Collapse
|
106
|
Lawson MR, Ma W, Bellecourt MJ, Artsimovitch I, Martin A, Landick R, Schulten K, Berger JM. Mechanism for the Regulated Control of Bacterial Transcription Termination by a Universal Adaptor Protein. Mol Cell 2018; 71:911-922.e4. [PMID: 30122535 DOI: 10.1016/j.molcel.2018.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/21/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022]
Abstract
NusG/Spt5 proteins are the only transcription factors utilized by all cellular organisms. In enterobacteria, NusG antagonizes the transcription termination activity of Rho, a hexameric helicase, during the synthesis of ribosomal and actively translated mRNAs. Paradoxically, NusG helps Rho act on untranslated transcripts, including non-canonical antisense RNAs and those arising from translational stress; how NusG fulfills these disparate functions is unknown. Here, we demonstrate that NusG activates Rho by assisting helicase isomerization from an open-ring, RNA-loading state to a closed-ring, catalytically active translocase. A crystal structure of closed-ring Rho in complex with NusG reveals the physical basis for this activation and further explains how Rho is excluded from translationally competent RNAs. This study demonstrates how a universally conserved transcription factor acts to modulate the activity of a ring-shaped ATPase motor and establishes how the innate sequence bias of a termination factor can be modulated to silence pervasive, aberrant transcription.
Collapse
Affiliation(s)
- Michael R Lawson
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Wen Ma
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science Technology, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J Bellecourt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Klaus Schulten
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science Technology, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - James M Berger
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
107
|
Schulte G, Wright SC. Frizzleds as GPCRs - More Conventional Than We Thought! Trends Pharmacol Sci 2018; 39:828-842. [PMID: 30049420 DOI: 10.1016/j.tips.2018.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 01/14/2023]
Abstract
For more than 30 years, WNT/β-catenin and planar cell polarity signaling has formed the basis for what we understand to be the primary output of the interaction between WNTs and their cognate receptors known as Frizzleds (FZDs). In the shadow of these pathways, evidence for the involvement of heterotrimeric G proteins in WNT signaling has grown substantially over the years - redefining the complexity of the WNT signaling network. Moreover, the distinct characteristics of FZD paralogs are becoming better understood, and we can now apply concepts valid for classical GPCRs to grasp FZDs as molecular machines at the interface of ligand binding and intracellular effects. This review discusses recent developments in the field of WNT/FZD signaling in the context of GPCR pharmacology, and identifies remaining mysteries with an emphasis on structural and kinetic components that support this dogma shift.
Collapse
Affiliation(s)
- Gunnar Schulte
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Biomedicum 6D, Tomtebodavägen 16, Karolinska Institutet, S-171 65 Stockholm, Sweden.
| | - Shane C Wright
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Biomedicum 6D, Tomtebodavägen 16, Karolinska Institutet, S-171 65 Stockholm, Sweden
| |
Collapse
|
108
|
Structural insights into G-protein-coupled receptor allostery. Nature 2018; 559:45-53. [DOI: 10.1038/s41586-018-0259-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/17/2018] [Indexed: 01/14/2023]
|
109
|
Bonvin AMJJ, Karaca E, Kastritis PL, Rodrigues JPGLM. Defining distance restraints in HADDOCK. Nat Protoc 2018; 13:1503. [PMID: 29942005 DOI: 10.1038/s41596-018-0017-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ezgi Karaca
- Bioinformatics Unit, Izmir Biomedicine and Genome Center, Izmir, Turkey
| | | | - João P G L M Rodrigues
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
110
|
Sente A, Peer R, Srivastava A, Baidya M, Lesk AM, Balaji S, Shukla AK, Babu MM, Flock T. Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation. Nat Struct Mol Biol 2018; 25:538-545. [PMID: 29872229 DOI: 10.1038/s41594-018-0071-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/25/2018] [Indexed: 01/14/2023]
Abstract
Arrestins regulate the signaling of ligand-activated, phosphorylated G-protein-coupled receptors (GPCRs). Different patterns of receptor phosphorylation (phosphorylation barcode) can modulate arrestin conformations, resulting in distinct functional outcomes (for example, desensitization, internalization, and downstream signaling). However, the mechanism of arrestin activation and how distinct receptor phosphorylation patterns could induce different conformational changes on arrestin are not fully understood. We analyzed how each arrestin amino acid contributes to its different conformational states. We identified a conserved structural motif that restricts the mobility of the arrestin finger loop in the inactive state and appears to be regulated by receptor phosphorylation. Distal and proximal receptor phosphorylation sites appear to selectively engage with distinct arrestin structural motifs (that is, micro-locks) to induce different arrestin conformations. These observations suggest a model in which different phosphorylation patterns of the GPCR C terminus can combinatorially modulate the conformation of the finger loop and other phosphorylation-sensitive structural elements to drive distinct arrestin conformation and functional outcomes.
Collapse
Affiliation(s)
| | - Raphael Peer
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ashish Srivastava
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Mithu Baidya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Arthur M Lesk
- MRC Laboratory of Molecular Biology, Cambridge, UK.,Department of Biochemistry and Molecular Biology and Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, USA
| | | | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Tilman Flock
- MRC Laboratory of Molecular Biology, Cambridge, UK. .,Fitzwilliam College, University of Cambridge, Cambridge, UK. .,Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
111
|
Chen Q, Iverson TM, Gurevich VV. Structural Basis of Arrestin-Dependent Signal Transduction. Trends Biochem Sci 2018; 43:412-423. [PMID: 29636212 PMCID: PMC5959776 DOI: 10.1016/j.tibs.2018.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/03/2018] [Accepted: 03/12/2018] [Indexed: 12/29/2022]
Abstract
Arrestins are a small family of proteins with four isoforms in humans. Remarkably, two arrestins regulate signaling from >800 G protein-coupled receptors (GPCRs) or nonreceptor activators by simultaneously binding an activator and one out of hundreds of other signaling proteins. When arrestins are bound to GPCRs or other activators, the affinity for these signaling partners changes. Thus, it is proposed that an activator alters arrestin's ability to transduce a signal. The comparison of all available arrestin structures identifies several common conformational rearrangements associated with activation. In particular, it identifies elements that are directly involved in binding to GPCRs or other activators, elements that likely engage distinct downstream effectors, and elements that likely link the activator-binding sites with the effector-binding sites.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Tina M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-0146, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232-0146, USA.
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232-0146, USA.
| |
Collapse
|
112
|
Gurevich VV, Gurevich EV. GPCRs and Signal Transducers: Interaction Stoichiometry. Trends Pharmacol Sci 2018; 39:672-684. [PMID: 29739625 DOI: 10.1016/j.tips.2018.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
Until the late 1990s, class A G protein-coupled receptors (GPCRs) were believed to function as monomers. Indirect evidence that they might internalize or even signal as dimers has emerged, along with proof that class C GPCRs are obligatory dimers. Crystal structures of GPCRs and their much larger binding partners were consistent with the idea that two receptors might engage a single G protein, GRK, or arrestin. However, recent biophysical, biochemical, and structural evidence invariably suggests that a single GPCR binds G proteins, GRKs, and arrestins. Here we review existing evidence of the stoichiometry of GPCR interactions with signal transducers and discuss potential biological roles of class A GPCR oligomers, including proposed homo- and heterodimers.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
113
|
Chaturvedi M, Schilling J, Beautrait A, Bouvier M, Benovic JL, Shukla AK. Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors. Trends Biochem Sci 2018; 43:533-546. [PMID: 29735399 DOI: 10.1016/j.tibs.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/12/2023]
Abstract
G protein-coupled receptors (GPCRs) recognize a diverse array of extracellular stimuli, and they mediate a broad repertoire of signaling events involved in human physiology. Although the major effort on targeting GPCRs has typically been focused on their extracellular surface, a series of recent developments now unfold the possibility of targeting them from the intracellular side as well. Allosteric modulators binding to the cytoplasmic surface of GPCRs have now been described, and their structural mechanisms are elucidated by high-resolution crystal structures. Furthermore, pepducins, aptamers, and intrabodies targeting the intracellular face of GPCRs have also been successfully utilized to modulate receptor signaling. Moreover, small molecule compounds, aptamers, and synthetic intrabodies targeting β-arrestins have also been discovered to modulate GPCR endocytosis and signaling. Here, we discuss the emerging paradigm of intracellular targeting of GPCRs, and outline the current challenges, potential opportunities, and future outlook in this particular area of GPCR biology.
Collapse
Affiliation(s)
- Madhu Chaturvedi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Justin Schilling
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alexandre Beautrait
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
114
|
Wang W, Qiao Y, Li Z. New Insights into Modes of GPCR Activation. Trends Pharmacol Sci 2018; 39:367-386. [DOI: 10.1016/j.tips.2018.01.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
|
115
|
Miller CJ, Turk BE. Homing in: Mechanisms of Substrate Targeting by Protein Kinases. Trends Biochem Sci 2018; 43:380-394. [PMID: 29544874 DOI: 10.1016/j.tibs.2018.02.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 01/21/2023]
Abstract
Protein phosphorylation is the most common reversible post-translational modification in eukaryotes. Humans have over 500 protein kinases, of which more than a dozen are established targets for anticancer drugs. All kinases share a structurally similar catalytic domain, yet each one is uniquely positioned within signaling networks controlling essentially all aspects of cell behavior. Kinases are distinguished from one another based on their modes of regulation and their substrate repertoires. Coupling specific inputs to the proper signaling outputs requires that kinases phosphorylate a limited number of sites to the exclusion of hundreds of thousands of off-target phosphorylation sites. Here, we review recent progress in understanding mechanisms of kinase substrate specificity and how they function to shape cellular signaling networks.
Collapse
Affiliation(s)
- Chad J Miller
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
116
|
Abstract
G protein-coupled receptors (GPCRs), which mediate processes as diverse as olfaction and maintenance of metabolic homeostasis, have become the single most effective class of therapeutic drug targets. As a result, understanding the molecular basis for their activity is of paramount importance. Recent technological advances have made GPCR structural biology increasingly tractable, offering views of these receptors in unprecedented atomic detail. Structural and biophysical data have shown that GPCRs function as complex allosteric machines, communicating ligand-binding events through conformational change. Changes in receptor conformation lead to activation of effector proteins, such as G proteins and arrestins, which are themselves conformational switches. Here, we review how structural biology has illuminated the agonist-induced cascade of conformational changes that culminate in a cellular response to GPCR activation.
Collapse
Affiliation(s)
- Sarah C Erlandson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
117
|
Pack TF, Orlen MI, Ray C, Peterson SM, Caron MG. The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation. J Biol Chem 2018; 293:6161-6171. [PMID: 29487132 DOI: 10.1074/jbc.ra117.001300] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/13/2018] [Indexed: 01/11/2023] Open
Abstract
The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) that is critical for many central nervous system functions. The D2R carries out these functions by signaling through two transducers: G proteins and β-arrestins (βarrs). Selectively engaging either the G protein or βarr pathway may be a way to improve drugs targeting GPCRs. The current model of GPCR signal transduction posits a chain of events where G protein activation ultimately leads to βarr recruitment. GPCR kinases (GRKs), which are regulated by G proteins and whose kinase action facilitates βarr recruitment, bridge these pathways. Therefore, βarr recruitment appears to be intimately tied to G protein activation via GRKs. Here we sought to understand how GRK2 action at the D2R would be disrupted when G protein activation is eliminated and the effect of this on βarr recruitment. We used two recently developed biased D2R mutants that can preferentially interact either with G proteins or βarrs as well as a βarr-biased D2R ligand, UNC9994. With these functionally selective tools, we investigated the mechanism whereby the βarr-preferring D2R achieves βarr pathway activation in the complete absence of G protein activation. We describe how direct, G protein-independent recruitment of GRK2 drives interactions at the βarr-preferring D2R and also contributes to βarr recruitment at the WT D2R. Additionally, we found an additive interaction between the βarr-preferring D2R mutant and UNC9994. These results reveal that the D2R can directly recruit GRK2 without G protein activation and that this mechanism may have relevance to achieving βarr-biased signaling.
Collapse
Affiliation(s)
- Thomas F Pack
- From the Departments of Pharmacology and Cancer Biology.,Cell Biology
| | | | | | | | - Marc G Caron
- Cell Biology, .,Neurobiology, and.,Medicine, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
118
|
Wang Y, Bugge K, Kragelund BB, Lindorff-Larsen K. Role of protein dynamics in transmembrane receptor signalling. Curr Opin Struct Biol 2018; 48:74-82. [DOI: 10.1016/j.sbi.2017.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
|
119
|
Yu C, Huang L. Cross-Linking Mass Spectrometry: An Emerging Technology for Interactomics and Structural Biology. Anal Chem 2018; 90:144-165. [PMID: 29160693 PMCID: PMC6022837 DOI: 10.1021/acs.analchem.7b04431] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
120
|
Molecular Mechanisms of GPCR Signaling: A Structural Perspective. Int J Mol Sci 2017; 18:ijms18122519. [PMID: 29186792 PMCID: PMC5751122 DOI: 10.3390/ijms18122519] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that respond to a wide variety of stimuli, from light, odorants, hormones, and neurotransmitters to proteins and extracellular calcium. GPCRs represent the largest family of signaling proteins targeted by many clinically used drugs. Recent studies shed light on the conformational changes that accompany GPCR activation and the structural state of the receptor necessary for the interactions with the three classes of proteins that preferentially bind active GPCRs, G proteins, G protein-coupled receptor kinases (GRKs), and arrestins. Importantly, structural and biophysical studies also revealed activation-related conformational changes in these three types of signal transducers. Here, we summarize what is already known and point out questions that still need to be answered. Clear understanding of the structural basis of signaling by GPCRs and their interaction partners would pave the way to designing signaling-biased proteins with scientific and therapeutic potential.
Collapse
|
121
|
Yao XQ, Cato MC, Labudde E, Beyett TS, Tesmer JJG, Grant BJ. Navigating the conformational landscape of G protein-coupled receptor kinases during allosteric activation. J Biol Chem 2017; 292:16032-16043. [PMID: 28808053 DOI: 10.1074/jbc.m117.807461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/10/2017] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are essential for transferring extracellular signals into carefully choreographed intracellular responses controlling diverse aspects of cell physiology. The duration of GPCR-mediated signaling is primarily regulated via GPCR kinase (GRK)-mediated phosphorylation of activated receptors. Although many GRK structures have been reported, the mechanisms underlying GRK activation are not well-understood, in part because it is unknown how these structures map to the conformational landscape available to this enzyme family. Unlike most other AGC kinases, GRKs rely on their interaction with GPCRs for activation and not phosphorylation. Here, we used principal component analysis of available GRK and protein kinase A crystal structures to identify their dominant domain motions and to provide a framework that helps evaluate how close each GRK structure is to being a catalytically competent state. Our results indicated that disruption of an interface formed between the large lobe of the kinase domain and the regulator of G protein signaling homology domain (RHD) is highly correlated with establishment of the active conformation. By introducing point mutations in the GRK5 RHD-kinase domain interface, we show with both in silico and in vitro experiments that perturbation of this interface leads to higher phosphorylation activity. Navigation of the conformational landscape defined by this bioinformatics-based study is likely common to all GPCR-activated GRKs.
Collapse
Affiliation(s)
- Xin-Qiu Yao
- From the Departments of Computational Medicine and Bioinformatics
| | - M Claire Cato
- Biological Chemistry, and.,Life Sciences Institute and
| | | | - Tyler S Beyett
- Life Sciences Institute and.,Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109 and
| | - John J G Tesmer
- Biological Chemistry, and .,Life Sciences Institute and.,Pharmacology, University of Michigan Medical School and
| | - Barry J Grant
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
122
|
Komolov KE, Benovic JL. G protein-coupled receptor kinases: Past, present and future. Cell Signal 2017; 41:17-24. [PMID: 28711719 DOI: 10.1016/j.cellsig.2017.07.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 02/08/2023]
Abstract
This review is provided in recognition of the extensive contributions of Dr. Robert J. Lefkowitz to the G protein-coupled receptor (GPCR) field and to celebrate his 75th birthday. Since one of the authors trained with Bob in the 80s, we provide a history of work done in the Lefkowitz lab during the 80s that focused on dissecting the mechanisms that regulate GPCR signaling, with a particular emphasis on the GPCR kinases (GRKs). In addition, we highlight structure/function characteristics of GRK interaction with GPCRs as well as a review of two recent reports that provide a molecular model for GRK-GPCR interaction. Finally, we offer our perspective on some future studies that we believe will drive this field.
Collapse
Affiliation(s)
- Konstantin E Komolov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
123
|
Understanding the GPCR biased signaling through G protein and arrestin complex structures. Curr Opin Struct Biol 2017; 45:150-159. [PMID: 28558341 DOI: 10.1016/j.sbi.2017.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/30/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and are important drug targets for many human diseases. The determination of the 3-D structure of GPCRs and their signaling complexes has promoted our understanding of GPCR biology and provided templates for structure-based drug discovery. In this review, we focus on the recent structure work on GPCR signaling complexes, the β2-adrenoreceptor-Gs and the rhodopsin-arrestin complexes in particular, and highlight the structural features of GPCR complexes involved in G protein- and arrestin-mediated signal transduction. The crystal structures reveal distinct structural mechanisms by which GPCRs recruit a G protein and an arrestin. A comparison of the two complex structures provides insight into the molecular mechanism of functionally selective GPCR signaling, and a structural basis for the discovery of G protein- and arrestin-biased treatments of human diseases related to GPCR signal transduction.
Collapse
|