101
|
Zhang S, Hu Z, Tanji H, Jiang S, Das N, Li J, Sakaniwa K, Jin J, Bian Y, Ohto U, Shimizu T, Yin H. Small-molecule inhibition of TLR8 through stabilization of its resting state. Nat Chem Biol 2017; 14:58-64. [PMID: 29155428 PMCID: PMC5726935 DOI: 10.1038/nchembio.2518] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022]
Abstract
Endosomal Toll-like receptors (TLR3/7/8/9) are highly analogous sensors
for various viral or bacterial RNA/DNA molecular patterns. Nonetheless, few
small-molecules can selectively modulate these TLRs. In this manuscript, we
identified the first human TLR8-specific small-molecule antagonists via a novel
inhibition mechanism. Crystal structures of two distinct TLR8-ligand complexes
validated a unique binding site on the protein-protein interface of the TLR8
homodimer. Upon binding to this new site, the small-molecule ligands stabilize
the preformed TLR8 dimer in its resting state, preventing activation. As a proof
of concept of their therapeutic potential, we have demonstrated that these
drug-like inhibitors are able to suppress TLR8-mediated proinflammatory
signaling in various cell lines, human primary cells, and patient specimens.
These results not only suggest a novel strategy for TLR inhibitor design, but
also shed critical mechanistic insight into these clinically important immune
receptors.
Collapse
Affiliation(s)
- Shuting Zhang
- School of Pharmaceutical Sciences, Center of Basic Molecular Science, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.,Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Zhenyi Hu
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Hiromi Tanji
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuangshuang Jiang
- School of Pharmaceutical Sciences, Center of Basic Molecular Science, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Nabanita Das
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital and Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology (Ministry of Education), Beijing, China
| | - Kentaro Sakaniwa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jin Jin
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, China
| | - Yanyan Bian
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, China
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hang Yin
- School of Pharmaceutical Sciences, Center of Basic Molecular Science, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.,Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
102
|
Li XQ, Chen FS, Tan WF, Fang B, Zhang ZL, Ma H. Elevated microRNA-129-5p level ameliorates neuroinflammation and blood-spinal cord barrier damage after ischemia-reperfusion by inhibiting HMGB1 and the TLR3-cytokine pathway. J Neuroinflammation 2017; 14:205. [PMID: 29061187 PMCID: PMC5654055 DOI: 10.1186/s12974-017-0977-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023] Open
Abstract
Background Ischemia-reperfusion (IR) affects microRNA (miR) expression and causes substantial inflammation. Multiple roles of the tumor suppressor miR-129-5p in cerebral IR have recently been reported, but its functions in the spinal cord are unclear. Here, we investigated the role of miR-129-5p after spinal cord IR, particularly in regulating high-mobility group box-1 (HMGB1) and the Toll-like receptor (TLR)-3 pathway. Methods Ischemia was induced via 5-min occlusion of the aortic arch. The relationship between miR-129-5p and HMGB1 was elucidated via RT-PCR, western blotting, and luciferase assays. The cellular distribution of HMGB1 was determined via double immunofluorescence. The effect of miR-129-5p on the expression of HMGB1, TLR3, and downstream cytokines was evaluated using synthetic miRs, rHMGB1, and the TLR3 agonist Poly(I:C). Blood-spinal cord barrier (BSCB) permeability was examined by measuring Evans blue (EB) dye extravasation and the water content. Results The temporal miR-129-5p and HMGB1 expression profiles and luciferase assay results indicated that miR-129-5p targeted HMGB1. Compared with the Sham group, the IR group had higher HMGB1 immunoreactivity, which was primarily distributed in neurons and microglia. Intrathecal injection of the miR-129-5p mimic significantly decreased the HMGB1, TLR3, interleukin (IL)-1β and tumor necrosis factor (TNF)-α levels and the double-labeled cell count 48 h post-surgery, whereas rHMGB1 and Poly(I:C) reversed these effects. Injection of miR-129-5p mimic preserved motor function and prevented BSCB leakage based on increased Basso Mouse Scale scores and decreased EB extravasation and water content, whereas injection rHMGB1 and Poly(I:C) aggravated these injuries. Conclusions Increasing miR-129-5p levels protect against IR by ameliorating inflammation-induced neuronal and BCSB damage by inhibiting HMGB1 and TLR3-associated cytokines.
Collapse
Affiliation(s)
- Xiao-Qian Li
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Feng-Shou Chen
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Wen-Fei Tan
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Bo Fang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Zai-Li Zhang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Hong Ma
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
103
|
Achyut BR, Angara K, Jain M, Borin TF, Rashid MH, Iskander ASM, Ara R, Kolhe R, Howard S, Venugopal N, Rodriguez PC, Bradford JW, Arbab AS. Canonical NFκB signaling in myeloid cells is required for the glioblastoma growth. Sci Rep 2017; 7:13754. [PMID: 29062041 PMCID: PMC5653749 DOI: 10.1038/s41598-017-14079-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/06/2017] [Indexed: 02/08/2023] Open
Abstract
Tumor development and therapeutic resistance are linked with tumor-associated macrophage (TAM) and myeloid-derived suppressor cell (MDSC) infiltration in tumors via chemokine axis. Chemokine expression, which determines the pro or anti-inflammatory status of myeloid cells, are partly regulated by the nuclear factor-kappa B (NF-κB) pathway. Here, we identified that conditional deletion of canonical NF-κB signaling (p65) in myeloid cells inhibited syngeneic glioblastoma (GBM) through decreased CD45 infiltration in tumors, as characterized by decreased TAMs (CD206+) and MDSCs (Gr1+ CD11b+), increased dendritic cells (CD86+) and cytotoxic T cells (CD8+) in the p65 knockout (KO) mice. Proinflammatory cytokines (IFNγ, MCP1, MIP1α, and TNFα) and myeloid differentiation factor (Endoglin) were increased in myeloid cells from p65 KO tumor, which demonstrated an influence on CD8+T cell proliferation. In contrast, p65KO athymic chimeric mice with human GBM, failed to inhibit tumor growth, confirming the contribution of T cells in an immune competent model. The analysis of human datasets and GBM tumors revealed higher expression of p65 in GBM-associated CD68+ macrophages compared to neighboring stroma. Thus, canonical NF-κB signaling has an anti-inflammatory role and is required for macrophage polarization, immune suppression, and GBM growth. Combining an NF-κB inhibitor with standard therapy could improve antitumor immunity in GBM.
Collapse
Affiliation(s)
- B R Achyut
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Kartik Angara
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Meenu Jain
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Thaiz F Borin
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Mohammad H Rashid
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - A S M Iskander
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Roxan Ara
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Ravindra Kolhe
- Department of Pathology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Shelby Howard
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Natasha Venugopal
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Paulo C Rodriguez
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Jennifer W Bradford
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, USA. .,Department of Biological Sciences, Augusta University, Augusta, GA, USA.
| | - Ali S Arbab
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| |
Collapse
|
104
|
Abstract
One of the fundamental mechanisms whereby the innate immune system coordinates inflammatory signal transduction is through Toll-like receptors (TLRs), which function to protect and defend the host organism by initiating inflammatory signaling cascades in response to tissue damage or injury. TLRs are positioned at the neuroimmune interface, and accumulating evidence suggests that the inflammatory consequences of TLR activation on glia (including microglia and astrocytes), sensory neurons, and other cell types can influence nociceptive processing and lead to states of exaggerated and unresolved pain. In this review, we summarize our current understanding of how different TLRs and their accessory or adaptor molecules can contribute to the development and maintenance of persistent pain. The challenges and opportunities of targeting TLRs for new treatment strategies against chronic pain are discussed, including the therapeutic context of TLR-mediated signaling in opioid analgesia and chemotherapy-induced pain. Considering the prevalence of persistent pain and the insufficient efficacy and safety of current treatment options, a deeper understanding of Toll-like receptors holds the promise of novel therapies for managing pathological pain.
Collapse
|
105
|
Ji LJ, Shi J, Lu JM, Huang QM. MiR-150 alleviates neuropathic pain via inhibiting toll-like receptor 5. J Cell Biochem 2017; 119:1017-1026. [PMID: 28685867 DOI: 10.1002/jcb.26269] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/06/2017] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs) are reported as vital participators in the pathophysiological course of neuropathic pain. However, the underlying mechanisms of the functional roles of miRNAs in neuropathic pain are largely unknown. This study was designed to explore the potential role of miR-150 in regulating the process of neuropathic pain in a rat model established by chronic sciatic nerve injury (CCI). Overexpression of miR-150 greatly alleviated neuropathic pain development and reduced inflammatory cytokine expression, including COX-2, interleukin IL-6, and tumor necrosis factor (TNF)-α in CCI rats. By bioinformatic analysis, 3'-untranslated region (UTR) of Toll-like receptor (TLR5) was predicted to be a target of miR-150. TLR5 commonly serves as an important regulator of inflammation. Overexpression of miR-150 significantly suppressed the expression of TLR5 in vitro and in vivo. Furthermore, upregulation of TLR5 decreased the miR-150 expression and downregulation of TLR5 increased miR-150, respectively. Overexpression of TLR5 significantly reversed the miR-150-induced suppressive effects on neuropathic pain. In conclusion, our current study indicates that miR-150 may inhibit neuropathic pain development of CCI rats through inhibiting TLR5-mediated neuroinflammation. Our findings suggest that miR-150 may provide a novel therapeutic target for neuropathic pain treatment.
Collapse
Affiliation(s)
- Li-Juan Ji
- Department of Sport Medicine and Rehabilitation Center, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jing Shi
- Geriatric Department,The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Min Lu
- Department of Neurology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Qiang-Min Huang
- Department of Sport Medicine and Rehabilitation Center, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
106
|
Abstract
Clinicians have commonly differentiated chronic back pain into two broad subsets: namely, non-inflammatory (or mechanical) back pain and inflammatory back pain. As the terminology suggests, the latter category, in which ankylosing spondylitis (AS) is prominent, presupposes a close link between pain and inflammation. Advances in research into the genetics and immunology of AS have improved our understanding of the inflammatory processes involved in this disease, and have led to the development of potent anti-inflammatory biologic therapeutic agents. However, evidence from clinical trials and from biomarker and imaging studies in patients with AS indicate that pain and inflammation are not always correlated. Thus, the assumption that pain in AS is a reliable surrogate marker for inflammation might be an over-simplification. This Review provides an overview of current concepts relating to neuro-immune interactions in AS and summarizes research that reveals an increasingly complex interplay between the activation of the immune system and pain pathways in the nervous system. The different types of pain experienced by patients with AS, insights from brain imaging studies, neurological mechanisms of pain, sex bias in pain and how the immune system can modify pain in patients with AS are also discussed.
Collapse
|
107
|
Zhang L, Dewan V, Yin H. Discovery of Small Molecules as Multi-Toll-like Receptor Agonists with Proinflammatory and Anticancer Activities. J Med Chem 2017; 60:5029-5044. [DOI: 10.1021/acs.jmedchem.7b00419] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lei Zhang
- Department of Chemistry and
Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Varun Dewan
- Department of Chemistry and
Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hang Yin
- Department of Chemistry and
Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
108
|
Liu F, Wang Z, Qiu Y, Wei M, Li C, Xie Y, Shen L, Huang Y, Ma C. Suppression of MyD88-dependent signaling alleviates neuropathic pain induced by peripheral nerve injury in the rat. J Neuroinflammation 2017; 14:70. [PMID: 28359290 PMCID: PMC5374701 DOI: 10.1186/s12974-017-0822-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/24/2017] [Indexed: 02/06/2023] Open
Abstract
Background MyD88 is the adaptor protein of MyD88-dependent signaling pathway of TLRs and IL-1 receptor and regulates innate immune response. However, it was not clear whether and how MyD88 and related signaling pathways in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) are involved in neuropathic pain. Methods Chronic constriction injury (CCI) was used to induce neuropathic pain in the rat. The expression of MyD88, TRIF, IBA1, and GFAP was detected with immunofluorescent staining and Western blot. The expression of interleukin-1 beta (IL-1β), high mobility group box 1 (HMGB1), NF-κB-p65, phosphorylated NF-κB-p65, ERK, phosphorylated ERK, and tumor necrosis factor-alpha (TNF-α) was detected with Western blot. Pain-related behavioral effects of MyD88 homodimerization inhibitory peptide (MIP) were accessed up to 3 weeks after intrathecal administration. Results Peripheral nerve injury significantly increased the protein level of MyD88 in the DRG and SDH, but had no effect on TRIF. MyD88 was found partly distributed in the nociceptive neurons in the DRGs and the astrocytes and microglia in the SDH. HMGB1 and IL-1β were also found upregulated in nociceptive pathways of CCI rats. Intrathecal application of MIP significantly alleviated mechanical and thermal hyperalgesia in the CCI rats and also reversed CCI-induced upregulation of MyD88 in both DRG and SDH. Further investigation revealed that suppression of MyD88 protein reduced the release of TNF-α and glial activation in the SDH in the CCI rats. Conclusions MyD88-dependent TIR pathway in the DRG and SDH may play a role in CCI-induced neuropathic pain. MyD88 might serve as a potential therapeutic target for neuropathic pain. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0822-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan Liu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhiyao Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yue Qiu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Min Wei
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Chunyan Li
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yikuan Xie
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Le Shen
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|