101
|
|
102
|
Abstract
Diversity-oriented synthesis (DOS) is an emerging field involving the synthesis of combinatorial libraries of diverse small molecules for biological screening. Rather than being directed toward a single biological target, DOS libraries can be used to identify new ligands for a variety of targets. Several different strategies for library design have been developed to target the biologically relevant regions of chemical structure space. DOS has provided powerful probes to investigate biological mechanisms and also served as a new driving force for advancing synthetic organic chemistry.
Collapse
Affiliation(s)
- Derek S Tan
- Tri-Institutional Research Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., Box 422, New York, New York 10021, USA.
| |
Collapse
|
103
|
Stern HM, Murphey RD, Shepard JL, Amatruda JF, Straub CT, Pfaff KL, Weber G, Tallarico JA, King RW, Zon LI. Small molecules that delay S phase suppress a zebrafish bmyb mutant. Nat Chem Biol 2006; 1:366-70. [PMID: 16372403 DOI: 10.1038/nchembio749] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bmyb is a ubiquitously expressed transcription factor involved in cellular proliferation and cancer. Loss of bmyb function in the zebrafish mutant crash&burn (crb) results in decreased cyclin B1 expression, mitotic arrest and genome instability. These phenotypic observations in crb mutants could be attributed to the decreased expression of cyclin B1, a cell-cycle regulatory protein that is responsible for driving cell progression from G2 through mitosis. To identify small molecules that interact with the bmyb pathway, we developed an embryo-based suppressor screening strategy. In 16 weeks we screened a diverse approximately 16,000 compound library, and discovered one previously unknown compound, persynthamide (psy, 1), that suppressed bmyb-dependent mitotic defects. Psy-treated embryos showed an S-phase delay, and knockdown of the cell-cycle checkpoint regulator ataxia telangiectasia--and Rad-related kinase (ATR) abrogated the suppression of crb. The DNA synthesis inhibitors aphidicolin (2) and hydroxyurea (3) also suppressed crb. S-phase inhibition upregulated cyclin B1 mRNA, promoting the progression of cells through mitosis. Our study demonstrates that chemical suppressor screening in zebrafish can identify compounds with cell-cycle activity and can be used to identify pathways that interact with specific cell-cycle phenotypes.
Collapse
Affiliation(s)
- Howard M Stern
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
Chemical genetics is the study of biological systems using small molecule ('chemical') intervention, instead of only genetic intervention. Cell-permeable and selective small molecules can be used to perturb protein function rapidly, reversibly and conditionally with temporal and quantitative control in any biological system. This tutorial review has been written to introduce this emerging field to a broad audience and focuses later on areas of biology where either it has made a significant impact, or it has the potential to do so: signalling, cytoskeleton, development, protein-protein interactions and gene transcription.
Collapse
|
105
|
Mochizuki E, Fukuta K, Tada T, Harada T, Watanabe N, Matsuo S, Hashimoto H, Ozato K, Wakamatsu Y. Fish mesonephric model of polycystic kidney disease in medaka (Oryzias latipes) pc mutant. Kidney Int 2005; 68:23-34. [PMID: 15954893 DOI: 10.1111/j.1523-1755.2005.00378.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Polycystic kidney disease (PKD) is a common hereditary disease. A number of murine and zebrafish mutants have been generated and used for the study of PKD as metanephric and pronephric models, respectively. Here, we report a medaka (Oryzias latipes) mutant that develops numerous cysts in the kidney in adulthood fish in an autosomal-recessive manner as a mesonephric model of PKD. METHODS The phenotypes of the medaka pc mutant were described in terms of morphologic, histologic, and ultrastructural features. The pc see-through stock was produced by crossing a pc mutant and a fish from the see-through stock and used for observing the kidney through the transparent body wall of a live fish. RESULTS The mutant developed bilateral massive enlargement of the kidney in adulthood. They sexually matured normally within 2 months of age and died within 6 months of age. The affected kidney was occupied by numerous, fluid-filled cysts, which were lined by attenuated squamous epithelial cells. Developmentally, cystic formation began in the pronephros in 10-day-old fry and in the mesonephros in 20-day-old fry at the microscopic level. The pc see-through stock was useful in observing disease progression in live fish. CONCLUSION The kidney disorder that develops in the medaka pc mutant is a mesonephric counterpart of PKD, particularly an autosomal-dominant PKD, based on its morphologic, histologic, and ultrastructural features, and slow progression.
Collapse
Affiliation(s)
- Emiko Mochizuki
- Laboratory of Freshwater Fish Stocks, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Burns CG, Milan DJ, Grande EJ, Rottbauer W, MacRae CA, Fishman MC. High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nat Chem Biol 2005; 1:263-4. [PMID: 16408054 DOI: 10.1038/nchembio732] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 08/23/2005] [Indexed: 12/22/2022]
Abstract
To increase the facility and throughput of scoring phenotypic traits in embryonic zebrafish, we developed an automated micro-well assay for heart rate using automated fluorescence microscopy of transgenic embryos expressing green fluorescent protein in myocardium. The assay measures heart rates efficiently and accurately over a large linear dynamic range, and it rapidly characterizes dose dependence and kinetics of small molecule-induced changes in heart rate. This is the first high-throughput micro-well assay for organ function in an intact vertebrate.
Collapse
Affiliation(s)
- C Geoffrey Burns
- Developmental Biology Laboratory, Cardiovascular Research Center, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | |
Collapse
|
107
|
Lee MR, Shin I. Fabrication of Chemical Microarrays by Efficient Immobilization of Hydrazide-Linked Substances on Epoxide-Coated Glass Surfaces. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200462720] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
108
|
Lee MR, Shin I. Fabrication of Chemical Microarrays by Efficient Immobilization of Hydrazide-Linked Substances on Epoxide-Coated Glass Surfaces. Angew Chem Int Ed Engl 2005; 44:2881-4. [PMID: 15828048 DOI: 10.1002/anie.200462720] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Myung-Ryul Lee
- Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | |
Collapse
|
109
|
Hill AJ, Teraoka H, Heideman W, Peterson RE. Zebrafish as a Model Vertebrate for Investigating Chemical Toxicity. Toxicol Sci 2005; 86:6-19. [PMID: 15703261 DOI: 10.1093/toxsci/kfi110] [Citation(s) in RCA: 862] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Zebrafish (Danio rerio) has been a prominent model vertebrate in a variety of biological disciplines. Substantial information gathered from developmental and genetic research, together with near-completion of the zebrafish genome project, has placed zebrafish in an attractive position for use as a toxicological model. Although still in its infancy, there is a clear potential for zebrafish to provide valuable new insights into chemical toxicity, drug discovery, and human disease using recent advances in forward and reverse genetic techniques coupled with large-scale, high-throughput screening. Here we present an overview of the rapidly increasing use of zebrafish in toxicology. Advantages of the zebrafish both in identifying endpoints of toxicity and in elucidating mechanisms of toxicity are highlighted.
Collapse
Affiliation(s)
- Adrian J Hill
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | |
Collapse
|
110
|
Jung DW, Williams D, Khersonsky SM, Kang TW, Heidary N, Chang YT, Orlow SJ. Identification of the F1F0 mitochondrial ATPase as a target for modulating skin pigmentation by screening a tagged triazine library in zebrafish. MOLECULAR BIOSYSTEMS 2005; 1:85-92. [PMID: 16880968 DOI: 10.1039/b417765g] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A triazine-based combinatorial library of small molecules was screened in zebrafish to identify compounds that produced interesting phenotypes. One compound (of 1536 screened) induced a dramatic increase in the pigmentation of early stage zebrafish embryos. This compound, PPA, was also found to increase pigmentation in cultured mammalian melanocytes. The cellular target was identified as the mitochondrial F1F0-ATP synthase (ATPase) by affinity chromatography. Oligomycin, a small molecule known to inhibit the mitochondrial ATPase, competed with PPA for its cellular target in melanocytes. In addition, PPA was shown to alter the membrane potential of mitochondria, consistent with inhibition of the mitochondrial ATPase. Thus, PPA has been successfully used as a chemical probe in a forward chemical genetic approach to establish a link between the phenotype and the protein. The results attest to the power of screening small molecule libraries in zebrafish as a means of identifying mammalian targets and suggest the mitochondrial ATPase as a target for modulating pigmentation in both melanocytes and melanoma cells.
Collapse
Affiliation(s)
- Da-Woon Jung
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
Flow-structure interactions are ubiquitous in nature, and are important factors in the proper development of form and function in living organisms. In order to uncover the mechanisms by which flow-structure interactions affect vertebrate development, we first need to establish the techniques necessary to quantitatively describe the fluid flow environment within the embryo. To do this, we must bring dynamic, in vivo imaging methods to bear on living systems. Traditional avian and mammalian model systems can be problematic in this regard. The zebrafish (Danio rerio) is widely accepted as an excellent model organism for the study of vertebrate biology, as it shows substantial anatomical and genetic conservation with higher vertebrates, including humans. Their small size, optical transparency, and external development make zebrafish the ideal model system for dynamic imaging. This article reviews the current state of research in imaging biofluid flow within and around developing zebrafish embryos, with an emphasis on dynamic imaging modalities.
Collapse
Affiliation(s)
- Jay R Hove
- Department of Genome Science, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| |
Collapse
|
112
|
|
113
|
Abstract
High-throughput screening (HTS), systematically testing thousands of small molecules to find candidates for lead optimization, primarily involves exposure of purified proteins to arrayed collections of small molecules. More complex phenotypic assays, such as cell-based or whole-organism assays, traditionally have flanked HTS, preceding it to validate new therapeutic targets, and following it to characterize new lead compounds in cellular contexts. Recently, however, cell- and organism-based phenotypic assays have increasingly been adopted as a primary screening platform for annotating small molecules.
Collapse
Affiliation(s)
- Paul A Clemons
- Initiative for Chemical Genetics, ICCB-Broad Institute, Harvard University, 320 Charles Street, Room 184, Cambridge, Massachusetts 02141, USA.
| |
Collapse
|
114
|
|
115
|
Goishi K, Klagsbrun M. Vascular Endothelial Growth Factor and Its Receptors in Embryonic Zebrafish Blood Vessel Development. Curr Top Dev Biol 2004; 62:127-52. [PMID: 15522741 DOI: 10.1016/s0070-2153(04)62005-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is intense interest in how blood vessel development is regulated. A number of vascular growth factors and their receptors have been described. The vascular endothelial growth factor (VEGF) and its receptors are major contributors to normal mammalian vascular development. These receptors include VEGFR-1, VEGFR-2, VEGFR-3, neuropilin-1 (NRP1), and NRP2. The function of these genes have been determined to some degree in mouse gene targeting studies. These knockouts are embryonically lethal, and early death can be attributed in part to lack of normal blood and lymphatic vessel development. More recently, it has been demonstrated that zebrafish are an excellent model for studying the genes and proteins that regulate embryonic vascular development. Zebrafish have a number of advantages compared to mice, including rapid embryonic development and the ability to examine and manipulate embryos outside of the animal. In this review, we describe some of the earlier mouse VEGF/receptor functional studies and emphasize the development of the zebrafish vasculature. We describe the zebrafish vasculature, zebrafish VEGF and VEGF receptors, advantages of the zebrafish model, resources, and methods of determining growth factor and receptor function.
Collapse
Affiliation(s)
- Katsutoshi Goishi
- Vascular Biology Program, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
116
|
Peterson RT, Fishman MC. Discovery and use of small molecules for probing biological processes in zebrafish. Methods Cell Biol 2004; 76:569-91. [PMID: 15602893 DOI: 10.1016/s0091-679x(04)76026-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Randall T Peterson
- Developmental Biology Laboratory, Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|