101
|
Yao P, Zhou XL, He R, Xue MQ, Zheng YG, Wang YF, Wang ED. Unique residues crucial for optimal editing in yeast cytoplasmic Leucyl-tRNA synthetase are revealed by using a novel knockout yeast strain. J Biol Chem 2008; 283:22591-600. [PMID: 18550527 DOI: 10.1074/jbc.m801181200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leucyl-tRNA synthetase (LeuRS) contains an editing domain that discriminates leucine from noncognate amino acids to ensure translational fidelity. In this study, a knock-out strain for Saccharomyces cerevisiae LeuRS was constructed to analyze in vivo the tRNA aminoacylation properties of S. cerevisiae and human cytoplasmic LeuRSs. The activities of several editing-defective mutants of ycLeuRS were determined in vitro and compared with those obtained in vivo in a complementation assay performed in the knock-out strain. The editing activities of these mutants were analyzed in the presence of either norvaline, a leucine analogue, or AN2690, a specific inhibitor that targets the editing active site. In general, the in vivo data are consistent with those obtained in vitro. Our results show that ycLeuRS post-transfer editing plays a crucial role in the establishment of the aminoacylation fidelity. When impaired, the viability of cells bearing editing-defective mutants is drastically decreased in the presence of noncognate amino acid. This study also emphasizes the crucial function of some semi-conserved residues around the editing site in modulating the editing efficiency. The assay system can be used to test the effect of compounds that potentially target the aminoacylation or editing active site of fungal LeuRS.
Collapse
Affiliation(s)
- Peng Yao
- State Key Laboratory of Molecular Biology, Graduate School of the Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
102
|
Gomes AC, Miranda I, Silva RM, Moura GR, Thomas B, Akoulitchev A, Santos MAS. A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans. Genome Biol 2008; 8:R206. [PMID: 17916231 PMCID: PMC2246281 DOI: 10.1186/gb-2007-8-10-r206] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/31/2007] [Accepted: 10/04/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic code alterations have been reported in mitochondrial, prokaryotic, and eukaryotic cytoplasmic translation systems, but their evolution and how organisms cope and survive such dramatic genetic events are not understood. RESULTS Here we used an unusual decoding of leucine CUG codons as serine in the main human fungal pathogen Candida albicans to elucidate the global impact of genetic code alterations on the proteome. We show that C. albicans decodes CUG codons ambiguously and tolerates partial reversion of their identity from serine back to leucine on a genome-wide scale. CONCLUSION Such codon ambiguity expands the proteome of this human pathogen exponentially and is used to generate important phenotypic diversity. This study highlights novel features of C. albicans biology and unanticipated roles for codon ambiguity in the evolution of the genetic code.
Collapse
Affiliation(s)
- Ana C Gomes
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | | | |
Collapse
|
103
|
Distinct domains of tRNA synthetase recognize the same base pair. Nature 2008; 451:90-3. [PMID: 18172502 DOI: 10.1038/nature06454] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 11/07/2007] [Indexed: 11/08/2022]
Abstract
Synthesis of proteins containing errors (mistranslation) is prevented by aminoacyl transfer RNA synthetases through their accurate aminoacylation of cognate tRNAs and their ability to correct occasional errors of aminoacylation by editing reactions. A principal source of mistranslation comes from mistaking glycine or serine for alanine, which can lead to serious cell and animal pathologies, including neurodegeneration. A single specific G.U base pair (G3.U70) marks a tRNA for aminoacylation by alanyl-tRNA synthetase. Mistranslation occurs when glycine or serine is joined to the G3.U70-containing tRNAs, and is prevented by the editing activity that clears the mischarged amino acid. Previously it was assumed that the specificity for recognition of tRNA(Ala) for editing was provided by the same structural determinants as used for aminoacylation. Here we show that the editing site of alanyl-tRNA synthetase, as an artificial recombinant fragment, targets mischarged tRNA(Ala) using a structural motif unrelated to that for aminoacylation so that, remarkably, two motifs (one for aminoacylation and one for editing) in the same enzyme independently can provide determinants for tRNA(Ala) recognition. The structural motif for editing is also found naturally in genome-encoded protein fragments that are widely distributed in evolution. These also recognize mischarged tRNA(Ala). Thus, through evolution, three different complexes with the same tRNA can guard against mistaking glycine or serine for alanine.
Collapse
|
104
|
Ataide SF, Wilson SN, Dang S, Rogers TE, Roy B, Banerjee R, Henkin TM, Ibba M. Mechanisms of resistance to an amino acid antibiotic that targets translation. ACS Chem Biol 2007; 2:819-27. [PMID: 18154269 DOI: 10.1021/cb7002253] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural and functional diversity among the aminoacyl-tRNA synthetases prevent infiltration of the genetic code by noncognate amino acids. To explore whether these same features distinguish the synthetases as potential sources of resistance against antibiotic amino acid analogues, we investigated bacterial growth inhibition by S-(2-aminoethyl)-L-cysteine (AEC). Wild-type lysyl-tRNA synthetase (LysRS) and a series of active site variants were screened for their ability to restore growth of an Escherichia coli LysRS null strain at increasing concentrations of AEC. While wild-type E. coli growth is completely inhibited at 5 microM AEC, two LysRS variants, Y280F and F426W, provided substantial resistance and allowed E. coli to grow in the presence of up to 1 mM AEC. Elevated resistance did not reflect changes in the kinetics of amino acid activation or tRNA (Lys) aminoacylation, which showed at best 4-6-fold improvements, but instead correlated with the binding affinity for AEC, which was decreased approximately 50-fold in the LysRS variants. In addition to changes in LysRS, AEC resistance has also been attributed to mutations in the L box riboswitch, which regulates expression of the lysC gene, encoding aspartokinase. The Y280F and F426W LysRS mutants contained wild-type L box riboswitches that responded normally to AEC in vitro, indicating that LysRS is the primary cellular target of this antibiotic. These findings suggest that the AEC resistance conferred by L box mutations is an indirect effect resulting from derepression of lysC expression and increased cellular pools of lysine, which results in more effective competition with AEC for binding to LysRS.
Collapse
Affiliation(s)
| | | | | | | | - Bappaditya Roy
- Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700 019 West Bengal, India
| | - Rajat Banerjee
- Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700 019 West Bengal, India
| | - Tina M. Henkin
- Department of Microbiology
- Ohio State Biochemistry Program
- Ohio State RNA Group
| | - Michael Ibba
- Department of Microbiology
- Ohio State Biochemistry Program
- Ohio State RNA Group
| |
Collapse
|
105
|
Miranda I, Rocha R, Santos MC, Mateus DD, Moura GR, Carreto L, Santos MAS. A genetic code alteration is a phenotype diversity generator in the human pathogen Candida albicans. PLoS One 2007; 2:e996. [PMID: 17912373 PMCID: PMC1991585 DOI: 10.1371/journal.pone.0000996] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 09/18/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The discovery of genetic code alterations and expansions in both prokaryotes and eukaryotes abolished the hypothesis of a frozen and universal genetic code and exposed unanticipated flexibility in codon and amino acid assignments. It is now clear that codon identity alterations involve sense and non-sense codons and can occur in organisms with complex genomes and proteomes. However, the biological functions, the molecular mechanisms of evolution and the diversity of genetic code alterations remain largely unknown. In various species of the genus Candida, the leucine CUG codon is decoded as serine by a unique serine tRNA that contains a leucine 5'-CAG-3'anticodon (tRNA(CAG)(Ser)). We are using this codon identity redefinition as a model system to elucidate the evolution of genetic code alterations. METHODOLOGY/PRINCIPAL FINDINGS We have reconstructed the early stages of the Candida genetic code alteration by engineering tRNAs that partially reverted the identity of serine CUG codons back to their standard leucine meaning. Such genetic code manipulation had profound cellular consequences as it exposed important morphological variation, altered gene expression, re-arranged the karyotype, increased cell-cell adhesion and secretion of hydrolytic enzymes. CONCLUSION/SIGNIFICANCE Our study provides the first experimental evidence for an important role of genetic code alterations as generators of phenotypic diversity of high selective potential and supports the hypothesis that they speed up evolution of new phenotypes.
Collapse
Affiliation(s)
- Isabel Miranda
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Rita Rocha
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Maria C. Santos
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Denisa D. Mateus
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Gabriela R. Moura
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Laura Carreto
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Manuel A. S. Santos
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
106
|
Beebe K, Waas W, Druzina Z, Guo M, Schimmel P. A universal plate format for increased throughput of assays that monitor multiple aminoacyl transfer RNA synthetase activities. Anal Biochem 2007; 368:111-21. [PMID: 17603003 PMCID: PMC3833075 DOI: 10.1016/j.ab.2007.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/12/2007] [Accepted: 05/14/2007] [Indexed: 11/20/2022]
Abstract
Aminoacyl transfer RNA (tRNA) synthetases are intensely studied enzymes because of their importance in the establishment of the genetic code and their connection to disease and medicine. During the advancement of this field, several assays were developed. Despite many innovations, the sensitivity, simplicity, and reliability of the radiometric assays (which were among the first to be developed) have ensured their continued use. Four activities are measured by these assays: active site titration, amino acid activation, aminoacylation, and posttransfer editing (deacylation). In an effort to maintain the advantage of these assays while enhancing throughput, reducing waste, and improving data quality, a universal 96-well filter plate format was developed. This format facilitates the assays for all four of the widely studied activities.
Collapse
Affiliation(s)
- Kirk Beebe
- Department of Molecular Biology and Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - William Waas
- Department of Molecular Biology and Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhanna Druzina
- Department of Molecular Biology and Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Min Guo
- Department of Molecular Biology and Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paul Schimmel
- Department of Molecular Biology and Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Corresponding author: Phone: (858)-784-8970, Fax: (858) 784-8990,
| |
Collapse
|
107
|
Bacher JM, Schimmel P. An editing-defective aminoacyl-tRNA synthetase is mutagenic in aging bacteria via the SOS response. Proc Natl Acad Sci U S A 2007; 104:1907-12. [PMID: 17264207 PMCID: PMC1794292 DOI: 10.1073/pnas.0610835104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mistranslation in bacterial and mammalian cells leads to production of statistical proteins that are, in turn, associated with specific cell or animal pathologies, including death of bacterial cells, apoptosis of mammalian cells in culture, and neurodegeneration in the mouse. A major source of mistranslation comes from heritable defects in the editing activities of aminoacyl-tRNA synthetases. These activities clear errors of aminoacylation by deacylation of mischarged tRNAs. We hypothesized that, in addition to previously reported phenotypes in bacterial and mammalian systems, errors of aminoacylation could be mutagenic and lead to disease. As a first step in testing this hypothesis, the effect of an editing defect in a single tRNA synthetase on the accumulation of mutations in aging bacteria was investigated. A striking, statistically significant, enhancement of the mutation rate in aging bacteria was found. This enhancement comes from an increase in error-prone DNA repair through induction of the bacterial SOS response. Thus, mistranslation, as caused by an editing-defective tRNA synthetase, can lead to heritable genetic changes that could, in principle, be linked to disease.
Collapse
Affiliation(s)
- Jamie M. Bacher
- The Skaggs Institute for Chemical Biology, and Departments of Molecular Biology and Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC-379, La Jolla, CA 92037
| | - Paul Schimmel
- The Skaggs Institute for Chemical Biology, and Departments of Molecular Biology and Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC-379, La Jolla, CA 92037
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
108
|
Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 2006; 443:50-5. [PMID: 16906134 DOI: 10.1038/nature05096] [Citation(s) in RCA: 479] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 07/19/2006] [Indexed: 11/08/2022]
Abstract
Misfolded proteins are associated with several pathological conditions including neurodegeneration. Although some of these abnormally folded proteins result from mutations in genes encoding disease-associated proteins (for example, repeat-expansion diseases), more general mechanisms that lead to misfolded proteins in neurons remain largely unknown. Here we demonstrate that low levels of mischarged transfer RNAs (tRNAs) can lead to an intracellular accumulation of misfolded proteins in neurons. These accumulations are accompanied by upregulation of cytoplasmic protein chaperones and by induction of the unfolded protein response. We report that the mouse sticky mutation, which causes cerebellar Purkinje cell loss and ataxia, is a missense mutation in the editing domain of the alanyl-tRNA synthetase gene that compromises the proofreading activity of this enzyme during aminoacylation of tRNAs. These findings demonstrate that disruption of translational fidelity in terminally differentiated neurons leads to the accumulation of misfolded proteins and cell death, and provide a novel mechanism underlying neurodegeneration.
Collapse
Affiliation(s)
- Jeong Woong Lee
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|