101
|
Deehan EC, Yang C, Perez-Muñoz ME, Nguyen NK, Cheng CC, Triador L, Zhang Z, Bakal JA, Walter J. Precision Microbiome Modulation with Discrete Dietary Fiber Structures Directs Short-Chain Fatty Acid Production. Cell Host Microbe 2020; 27:389-404.e6. [PMID: 32004499 DOI: 10.1016/j.chom.2020.01.006] [Citation(s) in RCA: 304] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Dietary fibers (DFs) impact the gut microbiome in ways often considered beneficial. However, it is unknown if precise and predictable manipulations of the gut microbiota, and especially its metabolic activity, can be achieved through DFs with discrete chemical structures. Using a dose-response trial with three type-IV resistant starches (RS4s) in healthy humans, we found that crystalline and phosphate cross-linked starch structures induce divergent and highly specific effects on microbiome composition that are linked to directed shifts in the output of either propionate or butyrate. The dominant RS4-induced effects were remarkably consistent within treatment groups, dose-dependent plateauing at 35 g/day, and can be explained by substrate-specific binding and utilization of the RS4s by bacterial taxa with different pathways for starch metabolism. Overall, these findings support the potential of using discrete DF structures to achieve targeted manipulations of the gut microbiome and its metabolic functions relevant to health.
Collapse
Affiliation(s)
- Edward C Deehan
- Department of Agricultural, Nutritional and Food Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Chen Yang
- Department of Agricultural, Nutritional and Food Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Maria Elisa Perez-Muñoz
- Department of Agricultural, Nutritional and Food Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Nguyen K Nguyen
- Department of Agricultural, Nutritional and Food Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Christopher C Cheng
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Lucila Triador
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Zhengxiao Zhang
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jeffrey A Bakal
- Patient Health Outcomes Research and Clinical Effectiveness Unit, Division of General Internal Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jens Walter
- Department of Agricultural, Nutritional and Food Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; APC Microbiome Ireland, School of Microbiology, Department of Medicine, and APC Microbiome Institute, University College Cork - National University of Ireland, Cork T12 YT20, Ireland.
| |
Collapse
|
102
|
Pan M, Hidalgo-Cantabrana C, Goh YJ, Sanozky-Dawes R, Barrangou R. Comparative Analysis of Lactobacillus gasseri and Lactobacillus crispatus Isolated From Human Urogenital and Gastrointestinal Tracts. Front Microbiol 2020; 10:3146. [PMID: 32038579 PMCID: PMC6988505 DOI: 10.3389/fmicb.2019.03146] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/29/2019] [Indexed: 12/24/2022] Open
Abstract
Lactobacillus crispatus and Lactobacillus gasseri are two of the main Lactobacillus species found in the healthy vaginal microbiome and have also previously been identified and isolated from the human gastrointestinal (GI) tract. These two ecological niches are fundamentally different, notably with regards to the epithelial cell type, nutrient availability, environmental conditions, pH, and microbiome composition. Given the dramatic differences between these two environments, we characterized strains within the same Lactobacillus species isolated from either the vaginal or intestinal tract to assess whether they are phenotypically and genetically different. We compared the genomes of the Lactobacillus strains selected in this study for genetic features of interest, and performed a series of comparative phenotypic assays including small intestinal juice and acid resistance, carbohydrate fermentation profiles, lactic acid production, and host interaction with intestinal Caco-2 and vaginal VK2 cell lines. We also developed a simulated vaginal fluid (SVF) to study bacterial growth in a proxy vaginal environment and conducted differential transcriptomic analysis between SVF and standard laboratory MRS medium. Overall, our results show that although strain-specific variation is observed, some phenotypic differences seem associated with the isolation source. We encourage future probiotic formulation to include isolation source and take into consideration genetic and phenotypic features for use at various body sites.
Collapse
Affiliation(s)
- Meichen Pan
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Claudio Hidalgo-Cantabrana
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Yong Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rosemary Sanozky-Dawes
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
103
|
|
104
|
Prophages in Lactobacillus reuteri Are Associated with Fitness Trade-Offs but Can Increase Competitiveness in the Gut Ecosystem. Appl Environ Microbiol 2019; 86:AEM.01922-19. [PMID: 31676478 PMCID: PMC6912086 DOI: 10.1128/aem.01922-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages derived from lysogens are abundant in gut microbiomes. Currently, mechanistic knowledge is lacking on the ecological ramifications of prophage carriage yet is essential to explain the abundance of lysogens in the gut. An extensive screen of the bacterial gut symbiont Lactobacillus reuteri revealed that biologically active prophages are widely distributed in this species. L. reuteri 6475 produces phages throughout the mouse intestinal tract, but phage production is associated with reduced fitness of the lysogen. However, phage production provides a competitive advantage in direct competition with a nonlysogenic strain of L. reuteri that is sensitive to these phages. This combination of increased competition with a fitness trade-off provides a potential explanation for the domination of lysogens in gut ecosystem and how lysogens can coexist with sensitive hosts. The gut microbiota harbors a diverse phage population that is largely derived from lysogens, which are bacteria that contain dormant phages in their genome. While the diversity of phages in gut ecosystems is getting increasingly well characterized, knowledge is limited on how phages contribute to the evolution and ecology of their host bacteria. Here, we show that biologically active prophages are widely distributed in phylogenetically diverse strains of the gut symbiont Lactobacillus reuteri. Nearly all human- and rodent-derived strains, but less than half of the tested strains of porcine origin, contain active prophages, suggesting different roles of phages in the evolution of host-specific lineages. To gain insight into the ecological role of L. reuteri phages, we developed L. reuteri strain 6475 as a model to study its phages. After administration to mice, L. reuteri 6475 produces active phages throughout the intestinal tract, with the highest number detected in the distal colon. Inactivation of recA abolished in vivo phage production, which suggests that activation of the SOS response drives phage production in the gut. In conventional mice, phage production reduces bacterial fitness as fewer wild-type bacteria survive gut transit compared to the mutant lacking prophages. However, in gnotobiotic mice, phage production provides L. reuteri with a competitive advantage over a sensitive host. Collectively, we uncovered that the presence of prophages, although associated with a fitness trade-off, can be advantageous for a gut symbiont by killing a competitor strain in its intestinal niche. IMPORTANCE Bacteriophages derived from lysogens are abundant in gut microbiomes. Currently, mechanistic knowledge is lacking on the ecological ramifications of prophage carriage yet is essential to explain the abundance of lysogens in the gut. An extensive screen of the bacterial gut symbiont Lactobacillus reuteri revealed that biologically active prophages are widely distributed in this species. L. reuteri 6475 produces phages throughout the mouse intestinal tract, but phage production is associated with reduced fitness of the lysogen. However, phage production provides a competitive advantage in direct competition with a nonlysogenic strain of L. reuteri that is sensitive to these phages. This combination of increased competition with a fitness trade-off provides a potential explanation for the domination of lysogens in gut ecosystem and how lysogens can coexist with sensitive hosts.
Collapse
|
105
|
|
106
|
Laganenka L, Sander T, Lagonenko A, Chen Y, Link H, Sourjik V. Quorum Sensing and Metabolic State of the Host Control Lysogeny-Lysis Switch of Bacteriophage T1. mBio 2019; 10:e01884-19. [PMID: 31506310 PMCID: PMC6737242 DOI: 10.1128/mbio.01884-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022] Open
Abstract
Bacterial viruses, or bacteriophages, are highly abundant in the biosphere and have a major impact on microbial populations. Many examples of phage interactions with their hosts, including establishment of dormant lysogenic and active lytic states, have been characterized at the level of the individual cell. However, much less is known about the dependence of these interactions on host metabolism and signal exchange within bacterial communities. In this report, we describe a lysogenic state of the enterobacterial phage T1, previously known as a classical lytic phage, and characterize the underlying regulatory circuitry. We show that the transition from lysogeny to lysis depends on bacterial population density, perceived via interspecies autoinducer 2. Lysis is further controlled by the metabolic state of the cell, mediated by the cyclic-3',5'-AMP (cAMP) receptor protein (CRP) of the host. We hypothesize that such combinations of cell density and metabolic sensing may be common in phage-host interactions.IMPORTANCE The dynamics of microbial communities are heavily shaped by bacterium-bacteriophage interactions. But despite the apparent importance of bacteriophages, our understanding of the mechanisms controlling phage dynamics in bacterial populations, and particularly of the differences between the decisions that are made in the dormant lysogenic and active lytic states, remains limited. In this report, we show that enterobacterial phage T1, previously described as a lytic phage, is able to undergo lysogeny. We further demonstrate that the lysogeny-to-lysis decision occurs in response to changes in the density of the bacterial population, mediated by interspecies quorum-sensing signal AI-2, and in the metabolic state of the cell, mediated by cAMP receptor protein. We hypothesize that this strategy enables the phage to maximize its chances of self-amplification and spreading in bacterial population upon induction of the lytic cycle and that it might be common in phage-host interactions.
Collapse
Affiliation(s)
- Leanid Laganenka
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Timur Sander
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | | | - Yu Chen
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
107
|
Sinha A, Maurice CF. Bacteriophages: Uncharacterized and Dynamic Regulators of the Immune System. Mediators Inflamm 2019; 2019:3730519. [PMID: 31582898 PMCID: PMC6754933 DOI: 10.1155/2019/3730519] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
The human gut is an extremely active immunological site interfacing with the densest microbial community known to colonize the human body, the gut microbiota. Despite tremendous advances in our comprehension of how the gut microbiota is involved in human health and interacts with the mammalian immune system, most studies are incomplete as they typically do not consider bacteriophages. These bacterial viruses are estimated to be as numerous as their bacterial hosts, with tremendous and mostly uncharacterized genetic diversity. In addition, bacteriophages are not passive members of the gut microbiota, as highlighted by the recent evidence for their active involvement in human health. Yet, how bacteriophages interact with their bacterial hosts and the immune system in the human gut remains poorly described. Here, we aim to fill this gap by providing an overview of bacteriophage communities in the gut during human development, detailing recent findings for their bacterial-mediated effects on the immune response and summarizing the latest evidence for direct interactions between them and the immune system. The dramatic increase in antibiotic-resistant bacterial pathogens has spurred a renewed interest in using bacteriophages for therapy, despite the many unknowns about bacteriophages in the human body. Going forward, more studies encompassing the communities of bacteria, bacteriophages, and the immune system in diverse health and disease settings will provide invaluable insight into this dynamic trio essential for human health.
Collapse
Affiliation(s)
- Anshul Sinha
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
108
|
Pu Y, Chang L, Qu Y, Wang S, Zhang K, Hashimoto K. Antibiotic-induced microbiome depletion protects against MPTP-induced dopaminergic neurotoxicity in the brain. Aging (Albany NY) 2019; 11:6915-6929. [PMID: 31479418 PMCID: PMC6756889 DOI: 10.18632/aging.102221] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022]
Abstract
Although the brain-gut axis appears to play a role in the pathogenesis of Parkinson's disease, the precise mechanisms underlying the actions of gut microbiota in this disease are unknown. This study was undertaken to investigate whether antibiotic-induced microbiome depletion affects dopaminergic neurotoxicity in the mouse brain after administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP significantly decreased dopamine transporter (DAT) immunoreactivity in the striatum and tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra of water-treated mice. However, MPTP did not decrease DAT or TH immunoreactivity in the brains of mice treated with an antibiotic cocktail. Furthermore, antibiotic treatment significantly decreased the diversity and altered the composition of the host gut microbiota at the genus and species levels. Interestingly, MPTP also altered microbiome composition in antibiotic-treated mice. These findings suggest that antibiotic-induced microbiome depletion might protect against MPTP-induced dopaminergic neurotoxicity in the brain via the brain-gut axis.
Collapse
Affiliation(s)
- Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Siming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kai Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| |
Collapse
|
109
|
Taskinen MR, Packard CJ, Borén J. Dietary Fructose and the Metabolic Syndrome. Nutrients 2019; 11:nu11091987. [PMID: 31443567 PMCID: PMC6770027 DOI: 10.3390/nu11091987] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Consumption of fructose, the sweetest of all naturally occurring carbohydrates, has increased dramatically in the last 40 years and is today commonly used commercially in soft drinks, juice, and baked goods. These products comprise a large proportion of the modern diet, in particular in children, adolescents, and young adults. A large body of evidence associate consumption of fructose and other sugar-sweetened beverages with insulin resistance, intrahepatic lipid accumulation, and hypertriglyceridemia. In the long term, these risk factors may contribute to the development of type 2 diabetes and cardiovascular diseases. Fructose is absorbed in the small intestine and metabolized in the liver where it stimulates fructolysis, glycolysis, lipogenesis, and glucose production. This may result in hypertriglyceridemia and fatty liver. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important. Here we review recent evidence linking excessive fructose consumption to health risk markers and development of components of the Metabolic Syndrome.
Collapse
Affiliation(s)
- Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Medicine Unit, Diabetes and Obesity, University of Helsinki, 00029 Helsinki, Finland
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden.
| |
Collapse
|
110
|
Abstract
Intestinal cues driving prophage induction in the microbiota are largely unknown. In this issue of Cell Host & Microbe, Oh et al. (2018) reveal that dietary fructose- and microbiota-derived short-chain fatty acids promote AckA-mediated acetic acid biosynthesis, triggering a stress response that facilities phage production.
Collapse
Affiliation(s)
- Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
111
|
Abstract
Bacteriophages are the most prominent members of the gut microbiome, outnumbering their bacterial hosts by a factor of 10. Phages are bacteria-specific viruses that are gaining attention as highly influential regulators of the gut bacterial community. Dysregulation of the gut bacterial community contributes to dysbiosis, a microbiome disorder characterized by compositional and functional changes that contribute to disease. A role for phages in gut microbiome dysbiosis is emerging with evidence that the gut phage community is altered in dysbiosis-associated disorders such as colorectal cancer and inflammatory bowel disease. Several recent studies have linked successful fecal microbiota transplantation to uptake of the donor’s gut phage community, offering some insight into why some recipients respond to treatment whereas others do not. Here, we review the literature supporting a role for phages in mediating the gut bacterial community, giving special attention to Western diet dysbiosis as a case study to demonstrate a theoretical phage-based mechanism for the establishment and maintenance of dysbiosis.
Collapse
Affiliation(s)
- Derek M Lin
- Medicine Service, New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| | - Henry C Lin
- Medicine Service, New Mexico VA Health Care System, Albuquerque, New Mexico, USA.,Department of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
112
|
Leshem A, Horesh N, Elinav E. Fecal Microbial Transplantation and Its Potential Application in Cardiometabolic Syndrome. Front Immunol 2019; 10:1341. [PMID: 31258528 PMCID: PMC6587678 DOI: 10.3389/fimmu.2019.01341] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Newly revealed links between inflammation, obesity, and cardiometabolic syndrome have created opportunities to try previously unexplored therapeutic modalities in these common and life-risking disorders. One potential modulator of these complex disorders is the gut microbiome, which was described in recent years to be altered in patients suffering from features of cardiometabolic syndrome and to transmit cardiometabolic phenotypes upon transfer into germ-free mice. As a result, there is great interest in developing new modalities targeting the altered commensal bacteria as a means of treatment for cardiometabolic syndrome. Fecal microbiota transplantation (FMT) is one such modality in which a disease-associated microbiome is replaced by a healthy microbiome configuration. So far clinical use of FMT has been overwhelmingly successful in recurrent Clostridium difficile infection and is being extensively studied in other microbiome-associated pathologies such as cardiometabolic syndrome. This review will focus on the rationale, promises and challenges in FMT utilization in human disease. In particular, it will overview the role of the gut microbiota in cardiometabolic syndrome and the rationale, experience, and prospects of utilizing FMT treatment as a potential preventive and curative treatment of metabolic human disease.
Collapse
Affiliation(s)
- Avner Leshem
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Horesh
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Department of General Surgery B and Organ Transplantation, Sheba Medical Center, Ramat Gan, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
113
|
Abstract
Bacteriophages, viruses specific to bacteria, regulate bacterial communities in all known microbial systems. My research aims to determine how they interact with the trillions of bacteria found in the human gut. Bacteriophages, viruses specific to bacteria, regulate bacterial communities in all known microbial systems. My research aims to determine how they interact with the trillions of bacteria found in the human gut. To do this, I apply a whole-systems perspective on both communities, considering bacteriophage replication cycles, bacterial and bacteriophage diversity, temporal dynamics, interactions, and responses to perturbations. Building upon ecological concepts and an array of independent and complementary techniques, I study the human gut from a microbial perspective. In contrast with bacteria, working with bacteriophage communities comes with many significant challenges, starting with the limited experimental toolkit and curated databases. Yet an increasing number of studies are pushing these scientific boundaries every day. In the human gut, future research that includes bacteriophages will lead to many exciting and warranted research avenues. From phage therapy and immunization to targeted drug delivery, the sky is the limit in my opinion.
Collapse
|
114
|
Alexander LM, Oh JH, Stapleton DS, Schueler KL, Keller MP, Attie AD, van Pijkeren JP. Exploiting Prophage-Mediated Lysis for Biotherapeutic Release by Lactobacillus reuteri. Appl Environ Microbiol 2019; 85:e02335-18. [PMID: 30683744 PMCID: PMC6498169 DOI: 10.1128/aem.02335-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus reuteri has the potential to be developed as a microbial therapeutic delivery platform because of an established safety profile, health-promoting properties, and available genome editing tools. Here, we show that L. reuteri VPL1014 exhibits a low mutation rate compared to other Gram-positive bacteria, which we expect will contribute to the stability of genetically modified strains. VPL1014 encodes two biologically active prophages, which are induced during gastrointestinal transit. We hypothesized that intracellularly accumulated recombinant protein can be released following bacteriophage-mediated lysis. To test this, we engineered VPL1014 to accumulate leptin, our model protein, inside the cell. In vitro prophage induction of recombinant VPL1014 released leptin into the extracellular milieu, which corresponded to bacteriophage production. We also employed a plasmid system that does not require antibiotic in the growth medium for plasmid maintenance. Collectively, these data provide new avenues to exploit native prophages to deliver therapeutic molecules.IMPORTANCE Lactic acid bacteria (LAB) have been explored as potential biotherapeutic vehicles for the past 20 years. To secrete a therapeutic in the extracellular milieu, one typically relies on the bacterial secretion pathway, i.e., the Sec pathway. Overexpression of a secreted protein can overload the secretory pathway and impact the organism's fitness, and optimization of the signal peptide is also required to maximize the efficiency of the release of mature protein. Here, we describe a previously unexplored approach to release therapeutics from the probiotic Lactobacillus reuteri We demonstrate that an intracellularly accumulated recombinant protein is released following prophage activation. Since we recently demonstrated that prophages are activated during gastrointestinal transit, we propose that this method will provide a straightforward and efficient approach to deliver therapeutics in vivo.
Collapse
Affiliation(s)
- Laura M Alexander
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Donald S Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | |
Collapse
|