101
|
Muhoza B, Xia S, Wang X, Zhang X, Li Y, Zhang S. Microencapsulation of essential oils by complex coacervation method: preparation, thermal stability, release properties and applications. Crit Rev Food Sci Nutr 2020; 62:1363-1382. [DOI: 10.1080/10408398.2020.1843132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bertrand Muhoza
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Xuejiao Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
102
|
de Lima CSA, Balogh TS, Varca JPRO, Varca GHC, Lugão AB, A. Camacho-Cruz L, Bucio E, Kadlubowski SS. An Updated Review of Macro, Micro, and Nanostructured Hydrogels for Biomedical and Pharmaceutical Applications. Pharmaceutics 2020; 12:E970. [PMID: 33076231 PMCID: PMC7602430 DOI: 10.3390/pharmaceutics12100970] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Hydrogels are materials with wide applications in several fields, including the biomedical and pharmaceutical industries. Their properties such as the capacity of absorbing great amounts of aqueous solutions without losing shape and mechanical properties, as well as loading drugs of different nature, including hydrophobic ones and biomolecules, give an idea of their versatility and promising demand. As they have been explored in a great number of studies for years, many routes of synthesis have been developed, especially for chemical/permanent hydrogels. In the same way, stimuli-responsive hydrogels, also known as intelligent materials, have been explored too, enhancing the regulation of properties such as targeting and drug release. By controlling the particle size, hydrogel on the micro- and nanoscale have been studied likewise and have increased, even more, the possibilities for applications of the so-called XXI century materials. In this paper, we aimed to produce an overview of the recent studies concerning methods of synthesis, biomedical, and pharmaceutical applications of macro-, micro, and nanogels.
Collapse
Affiliation(s)
- Caroline S. A. de Lima
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil; (C.S.A.d.L.); (T.S.B.); (J.P.R.O.V.); (A.B.L.)
| | - Tatiana S. Balogh
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil; (C.S.A.d.L.); (T.S.B.); (J.P.R.O.V.); (A.B.L.)
| | - Justine P. R. O. Varca
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil; (C.S.A.d.L.); (T.S.B.); (J.P.R.O.V.); (A.B.L.)
| | - Gustavo H. C. Varca
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil; (C.S.A.d.L.); (T.S.B.); (J.P.R.O.V.); (A.B.L.)
| | - Ademar B. Lugão
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil; (C.S.A.d.L.); (T.S.B.); (J.P.R.O.V.); (A.B.L.)
| | - Luis A. Camacho-Cruz
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, Mexico; (L.A.C.-C.); (E.B.)
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, Mexico; (L.A.C.-C.); (E.B.)
| | - Slawomir S. Kadlubowski
- Institute of Applied Radiation Chemistry (IARC), Lodz University of Technology, Wroblewskiego No. 15, 93-590 Lodz, Poland;
| |
Collapse
|
103
|
Olarte Mantilla SM, Shewan HM, Shingleton R, Stokes JR, Smyth HE. Ability to detect and identify the presence of particles influences consumer acceptance of yoghurt. Food Qual Prefer 2020. [DOI: 10.1016/j.foodqual.2020.103979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
104
|
Yan W, Zhang B, Yadav MP, Feng L, Yan J, Jia X, Yin L. Corn fiber gum-soybean protein isolate double network hydrogel as oral delivery vehicles for thermosensitive bioactive compounds. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105865] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
105
|
Sabet S, Seal CK, Akbarinejad A, Rashidinejad A, McGillivray DJ. “Positive-negative-negative”: a colloidal delivery system for bioactive compounds. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
106
|
Michel SSE, Kilner A, Eloi JC, Rogers SE, Briscoe WH, Galan MC. Norbornene-Functionalized Chitosan Hydrogels and Microgels via Unprecedented Photoinitiated Self-Assembly for Potential Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:5253-5262. [PMID: 35021700 DOI: 10.1021/acsabm.0c00629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Access to biocompatible self-assembled gels and microgels is of great interests for a variety of biological applications from tissue engineering to drug delivery. Here, the facile synthesis of supramolecular hydrogels of norbornene (nb)-functionalized chitosan (CS-nb) via UV-triggered self-assembly in the presence of Irgacure 2959 (IRG) is reported. The in vitro stable hydrogels are injectable and showed pH-responsive swelling behavior, while their structure and mechanical properties could be tuned by tailoring the stereochemistry of the norbornene derivative (e.g., endo- or -exo). Interestingly, unlike other nb-type hydrogels, the gels possess nanopores within their structure, which might lead to potential drug delivery applications. A gelation mechanism was proposed based on hydrophobic interactions following the combination of IRG on norbornene, as supported by 1H NMR. This self-assembly mechanism was used to access microgels of size 100-150 nm, which could be further functionalized and showed no significant toxicity to human dermofibroblast cells.
Collapse
Affiliation(s)
- Sarah S E Michel
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS81TS, U.K
| | - Alice Kilner
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS81TS, U.K
| | - Jean-Charles Eloi
- Chemical Imaging Facility, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS81TS, U.K
| | - Sarah E Rogers
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS81TS, U.K
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS81TS, U.K
| |
Collapse
|
107
|
Engineering oral delivery of hydrophobic bioactives in real-world scenarios. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
108
|
Ji X, Liu G, Cui Y, Jia W, Luo Y, Cheng Z. A hybrid system of hydrogel/frog egg‐like microspheres accelerates wound healing via sustained delivery of
RCSPs. J Appl Polym Sci 2020. [DOI: 10.1002/app.49521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xuan Ji
- Department of StomatologyThe Second Hospital of Jilin University Changchun China
| | - Guomin Liu
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun China
| | - Yutao Cui
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun China
| | - Wenyuan Jia
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun China
| | - Yungang Luo
- Department of StomatologyThe Second Hospital of Jilin University Changchun China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agriculture University Changchun China
| |
Collapse
|
109
|
Egg-box model-based gelation of alginate and pectin: A review. Carbohydr Polym 2020; 242:116389. [PMID: 32564839 DOI: 10.1016/j.carbpol.2020.116389] [Citation(s) in RCA: 300] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Abstract
Alginate and pectin are emblematic natural polyuronates that have been widely used in food, cosmetics and medicine. Ca-dependent gelation is one of their most important functional properties. The gelation mechanisms of alginate and pectin, known as egg-box model, were believed to be basically the same, because their Ca-binding sites show a mirror symmetric conformation. However, studies have found that the formation and the structure of egg-box dimmers between alginate and pectin were different. Very few studies have reviewed those differences. Therefore, this study was proposed to first summarize the intrinsic and extrinsic factors that can influence the gelation of alginate and pectin. The differences in the effect of these factors on the gelation of alginate and pectin were then discussed. Meanwhile, the similarity and difference in their gelation mechanism was also summarized. The knowledge gained in this review would provide useful information for the practical applications of alginate and pectin.
Collapse
|
110
|
Silva RC, Trevisan MG, Garcia JS. β-galactosidase Encapsulated in Carrageenan, Pectin and Carrageenan/Pectin: Comparative Study, Stability and Controlled Release. AN ACAD BRAS CIENC 2020; 92:e20180609. [PMID: 32267306 DOI: 10.1590/0001-3765202020180609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
The present study investigated the encapsulation of β-galactosidase in carrageenan, pectin and its hybrid hydrogels by using the ionotropic gelation method. The material obtained was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG/DTG) and scanning electron microscopy (SEM). The effects of pH, temperature and storage time were evaluated in terms of the catalytic activity of the free and encapsulated enzyme. Addition studies were conducted evaluating the performance of catalytic activity in vitro conditions. Carrageenan, pectin and hybrid hydrogels presented encapsulation efficiency of 58 ± 1%, 72 ± 1% and 77 ± 2%, respectively. The pectin hydrogel showed the higher β-galactosidase activity in pH and temperature tests. However, the carrageenan hydrogel exhibited best stability after been stored for three months. Carrageenan and pectin hydrogels were 2.0 and 2.4 times more efficiently than commercial tablet in the releasing β-galactosidase under in vitro conditions, respectively. The results suggest that pectin and carrageenan hydrogels may be useful for the development of new formulation of β-galactosidase.
Collapse
Affiliation(s)
- Renata Cristina Silva
- Laboratory of Analysis and Characterization of Pharmaceuticals - LACFar, Institute of Chemistry, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, 37130-001 Alfenas, MG, Brazil
| | - Marcello G Trevisan
- Laboratory of Analysis and Characterization of Pharmaceuticals - LACFar, Institute of Chemistry, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, 37130-001 Alfenas, MG, Brazil
| | - Jerusa Simone Garcia
- Laboratory of Analysis and Characterization of Pharmaceuticals - LACFar, Institute of Chemistry, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, 37130-001 Alfenas, MG, Brazil
| |
Collapse
|
111
|
McClements DJ. Enhancing Efficacy, Performance, and Reliability of Cannabis Edibles: Insights from Lipid Bioavailability Studies. Annu Rev Food Sci Technol 2020; 11:45-70. [DOI: 10.1146/annurev-food-032519-051834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The legal sale of cannabis-enriched foods and beverages for medical or recreational purposes is increasing in many states and countries, especially in North America and Europe. These food-based cannabis delivery systems vary considerably in their compositions and structures, ranging from low-viscosity watery beverages to solid fatty chocolates. The rate and extent of release of the bioactive components in cannabis within the human gastrointestinal tract (GIT) affect their health and psychoactive effects. Studies with other types of hydrophobic bioactives, such as nutraceuticals and vitamins, have shown that food composition and structure have a major impact on their bioaccessibility, transformation, and absorption within the GIT, thereby influencing their bioavailability and bioactivity. This review outlines how insights on the bioavailability of other lipophilic bioactives can be used to facilitate the design of more efficacious and consistent cannabis-enriched products intended for oral consumption. In particular, the importance of food-matrix composition (such as fat type and level) and structural organization (such as fat domain dimensions) are discussed.
Collapse
|
112
|
Microbeads of Sodium Caseinate and κ-Carrageenan as a β-Carotene Carrier in Aqueous Systems. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02426-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
113
|
Li S, Chen W, Hu X, Feng F. Self-Assembly of Albumin and [FeFe]-Hydrogenase Mimics for Photocatalytic Hydrogen Evolution. ACS APPLIED BIO MATERIALS 2020; 3:2482-2488. [DOI: 10.1021/acsabm.0c00194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuyi Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weijian Chen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiantao Hu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
114
|
Jo YK, Lee D. Biopolymer Microparticles Prepared by Microfluidics for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903736. [PMID: 31559690 DOI: 10.1002/smll.201903736] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Biopolymers are macromolecules that are derived from natural sources and have attractive properties for a plethora of biomedical applications due to their biocompatibility, biodegradability, low antigenicity, and high bioactivity. Microfluidics has emerged as a powerful approach for fabricating polymeric microparticles (MPs) with designed structures and compositions through precise manipulation of multiphasic flows at the microscale. The synergistic combination of materials chemistry afforded by biopolymers and precision provided by microfluidic capabilities make it possible to design engineered biopolymer-based MPs with well-defined physicochemical properties that are capable of enabling an efficient delivery of therapeutics, 3D culture of cells, and sensing of biomolecules. Here, an overview of microfluidic approaches is provided for the design and fabrication of functional MPs from three classes of biopolymers including polysaccharides, proteins, and microbial polymers, and their advances for biomedical applications are highlighted. An outlook into the future research on microfluidically-produced biopolymer MPs for biomedical applications is also provided.
Collapse
Affiliation(s)
- Yun Kee Jo
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
115
|
|
116
|
Fan Y, Zeng X, Yi J, Zhang Y. Fabrication of pea protein nanoparticles with calcium-induced cross-linking for the stabilization and delivery of antioxidative resveratrol. Int J Biol Macromol 2020; 152:189-198. [PMID: 32105693 DOI: 10.1016/j.ijbiomac.2020.02.248] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 01/23/2023]
Abstract
In this study, pea protein isolate (PPI) nanoparticles were fabricated with calcium-induced cross-linking and the potential as a nano-carrier for protecting resveratrol (RES) from degradation as well as improving its antioxidant activities was investigated. Ca2+ ions concentration and pH value had significant impacts on the formation of PPI nanoparticles. Dissociation assays suggested that PPI nanoparticles were mainly formed and stabilized by Ca2+ ions induced salt-bridge, hydrophobic interaction, and hydrogen bonding. Encapsulation efficiency (EE) and Loading amount (LA) of RES in PPI nanoparticles was 74.08%, and 30.24 μg/mg protein, respectively. Fluorescence emission results suggested that the formation of RES-PPI nanoparticles was primarily driven with hydrophobic interaction. AFM results clearly indicated that both RES-PPI nanocomplexes and RES-PPI nanoparticles were nano-scale, spherical shaped and distributed uniformly. RES-PPI nanoparticles exhibited higher physicochemical stability (Z-average diameter stability and RES retention) than RES-SPI nanocomplexes. Antioxidant ability of RES can be remarkably enhanced with both PPI-based nano-delivery systems. Ca2+ ions induced PPI nanoparticles obtained in this study have the great potential as functional delivery systems for hydrophobic nutraceuticals in food, and pharmaceutical industry.
Collapse
Affiliation(s)
- Yuting Fan
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xianxie Zeng
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jiang Yi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Yuzhu Zhang
- Western Regional Research Center, ARS, USDA, Albany, CA 94710, United States
| |
Collapse
|
117
|
Cao Y, Mezzenga R. Design principles of food gels. ACTA ACUST UNITED AC 2020; 1:106-118. [PMID: 37127997 DOI: 10.1038/s43016-019-0009-x] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022]
Abstract
Naturally sourced gels from food biopolymers have advanced in recent decades to compare favourably in performance and breadth of application to their synthetic counterparts. Here, we comprehensively review the constitutive nature, gelling mechanisms, design approaches, and structural and mechanical properties of food gels. We then consider how these food gel design principles alter rheological and tribological properties for food quality improvement, nutrient-modification of foods while preserving sensory perception, and targeted delivery of drugs and bioactives within the gastrointestinal tract. We propose that food gels may offer advantages over their synthetic counterparts owing to their source renewability, low cost, biocompatibility and biodegradability. We also identify emerging approaches and trends that may improve and expand the current scope, properties and functionalities of food gels and inspire new applications.
Collapse
|
118
|
Tarone AG, Cazarin CBB, Marostica Junior MR. Anthocyanins: New techniques and challenges in microencapsulation. Food Res Int 2020; 133:109092. [PMID: 32466932 DOI: 10.1016/j.foodres.2020.109092] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 12/31/2022]
Abstract
Anthocyanins are a bioactive compound belonging to the flavonoid classthatis present in human nutrition through plant-based foods. Due to their antioxidant properties, several health benefits related to their consumption are reported in the literature. The stability of the color and the properties of anthocyanins is strongly affected by pH, solvent, temperature, and other environmental conditions. In addition, the insufficient residence time of anthocyanins in the upper digestive tract causes apartialabsorption, which needs to be improved. These factshave led researchers to investigate new forms of processing that provide minimal degradation. Microencapsulation is a promising possibility to stabilize anthocyanin extracts and allow their addition to food products in a more stable form. The microcapsules can still provide a prolonged gastrointestinal retention time caused by the improvement of the bioadhesive properties in the mucus covering the intestinal epithelium. Although there are efficient and emerging techniques, anthocyanins microencapsulation is still a challenge for the food industry. The purpose of this work is to provide an overview of anthocyanins structure, absorptionand protection, and to show the main conventional and emerging microencapsulation methods and their pros and cons.
Collapse
Affiliation(s)
- Adriana Gadioli Tarone
- School of Food Engineering, University of Campinas - UNICAMP, 13083-862 Campinas, SP, Brazil
| | | | | |
Collapse
|
119
|
Birgul Akolpoglu M, Inceoglu Y, Kizilel S. An all-aqueous approach for physical immobilization of PEG-lipid microgels on organoid surfaces. Colloids Surf B Biointerfaces 2020; 186:110708. [DOI: 10.1016/j.colsurfb.2019.110708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
|
120
|
Ma D, Huang Q, Wu Y, Chen J, Lu X, McClements DJ, Wang Y. Encapsulation of emulsions by a novel delivery system of fluid core–hard shell biopolymer particles to retard lipid oxidation. Food Funct 2020; 11:5788-5798. [DOI: 10.1039/d0fo00725k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colloidal delivery systems could be designed to retard lipid oxidation in foods, thereby extending their shelf-lives and improving their nutritional quality.
Collapse
Affiliation(s)
- Da Ma
- Department of Food Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Qiqi Huang
- Department of Food Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Yuli Wu
- Department of Food Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- National R&D Center for Freshwater Fish Processing
| | - Jing Chen
- Institute for Advanced and Applied Chemical Synthesis
- Jinan University
- Zhuhai 519070
- China
| | - Xuanxuan Lu
- Department of Food Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | | | - Yong Wang
- Department of Food Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- Guangdong International Joint Research Center for Oilseeds Biorefinery
| |
Collapse
|
121
|
Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnol Adv 2020; 38:107287. [DOI: 10.1016/j.biotechadv.2018.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/02/2018] [Accepted: 08/03/2018] [Indexed: 01/21/2023]
|
122
|
Tripodi E, Lazidis A, Norton IT, Spyropoulos F. Food Structure Development in Emulsion Systems. HANDBOOK OF FOOD STRUCTURE DEVELOPMENT 2019. [DOI: 10.1039/9781788016155-00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A number of food products exist, in part or entirely, as emulsions, while others are present in an emulsified state at some point during their production/formation. Mayonnaise, butter, margarine, salad dressing, whipped cream, and ice cream represent some of the typical examples of emulsion-based foods. Controlled by both formulation and processing aspects, the emulsion architecture that is formed ultimately determines many of the attributes of the final food product. This chapter initially provides an overview of the basic constituents of emulsions and their influence on the microstructure and stability of conventional as well as more complex systems. The available spectrum of processing routes and characterization techniques currently utilized (or emerging) within the area of emulsions is then discussed. The chapter concludes with a concise outline of the relationship between food emulsion microstructure design and its performance (textural, rheological, sensorial, etc.).
Collapse
Affiliation(s)
- Ernesto Tripodi
- Chemical Engineering Department, University of Birmingham UK
| | - Aris Lazidis
- Chemical Engineering Department, University of Birmingham UK
- Nestlé Product Technology Centre, York UK
| | - Ian T. Norton
- Chemical Engineering Department, University of Birmingham UK
| | | |
Collapse
|
123
|
Wang M, Doi T, Hu X, McClements DJ. Influence of ionic strength on the thermostability and flavor (allyl methyl disulfide) release profiles of calcium alginate microgels. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
124
|
Sun R, Xia Q. Nanostructured lipid carriers incorporated in alginate hydrogel: Enhanced stability and modified behavior in gastrointestinal tract. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
125
|
Release mechanism of lipid nanoparticles immobilized within alginate beads influenced by nanoparticle size and alginate concentration. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04538-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
126
|
Michel SES, Dutertre F, Denbow ML, Galan MC, Briscoe WH. Facile Synthesis of Chitosan-Based Hydrogels and Microgels through Thiol–Ene Photoclick Cross-Linking. ACS APPLIED BIO MATERIALS 2019; 2:3257-3268. [DOI: 10.1021/acsabm.9b00218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sarah E. S. Michel
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Fabien Dutertre
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Mark L. Denbow
- Fetal Medicine Unit, St Michael’s Hospital, Southwell Street, Bristol BS2 8EG, United Kingdom
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Wuge H. Briscoe
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
127
|
Longo GS, Pérez-Chávez NA, Szleifer I. How protonation modulates the interaction between proteins and pH-responsive hydrogel films. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2018.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
128
|
Encapsulation and controlled release of hydrophobic flavors using biopolymer-based microgel delivery systems: Sustained release of garlic flavor during simulated cooking. Food Res Int 2019; 119:6-14. [DOI: 10.1016/j.foodres.2019.01.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/21/2022]
|
129
|
G. Gómez-Mascaraque L, Martínez-Sanz M, Fabra MJ, López-Rubio A. Development of gelatin-coated ι-carrageenan hydrogel capsules by electric field-aided extrusion. Impact of phenolic compounds on their performance. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
130
|
Brosel-Oliu S, Mergel O, Uria N, Abramova N, van Rijn P, Bratov A. 3D impedimetric sensors as a tool for monitoring bacterial response to antibiotics. LAB ON A CHIP 2019; 19:1436-1447. [PMID: 30882115 DOI: 10.1039/c8lc01220b] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The presence of antimicrobial contaminants like antibiotics in the environment is a major concern because they promote the emergence and the spread of multidrug resistant bacteria. Since the conventional systems for the determination of bacterial susceptibility to antibiotics rely on culturing methods that require long processing times, the implementation of novel strategies is highly required for fast and point-of-care applications. Here the development and characterization of a novel label-free biosensing platform based on a microbial biosensor approach to perform antibiotic detection bioassays in diluted solution is presented. The microbial biosensor is based on a three-dimensional interdigitated electrode array (3D-IDEA) impedimetric transducer with immobilized E. coli bacteria. In 3D-IDEA to increase the sensitivity to superficial impedance changes the electrode digits are separated by insulating barriers. A novel strategy is employed to selectively immobilize bacteria in the spaces over the electrode digits between the barriers, referred to here as trenches, in order to concentrate bacteria, improve the reproducibility of the E. coli immobilization and increase the sensitivity for monitoring bacterial response. For effective attachment of bacteria within the trenches an initial anchoring layer of a highly charged polycation, polyethyleneimine (PEI), was used. To facilitate immobilization of bacteria within the trenches and prevent their deposition on top of the barriers an important novelty is the use of poly(N-isopropylmethacrylamide) p(NIPMAM) microgels working as antifouling agents, deposited on top of the barriers by microcontact printing. The reported microbial biosensor approach allows the bacterial response to ampicillin, a bacteriolytic antibiotic, to be registered by means of impedance variations in a rapid and label-free operation that enables new possibilities in bioassays for toxicity testing.
Collapse
Affiliation(s)
- S Brosel-Oliu
- BioMEMS Group, Institute of Microelectronics of Barcelona (IMB-CNM, CSIC), Esfera UAB-CEI, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - O Mergel
- Department of Biomedical Engineering-FB40A, University of Groningen University Medical Center Groningen, Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - N Uria
- BioMEMS Group, Institute of Microelectronics of Barcelona (IMB-CNM, CSIC), Esfera UAB-CEI, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - N Abramova
- BioMEMS Group, Institute of Microelectronics of Barcelona (IMB-CNM, CSIC), Esfera UAB-CEI, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain. and Lab. Artificial Sensors Syst., ITMO University, Kronverskiy pr. 49, 197101 St. Petersburg, Russia
| | - P van Rijn
- Department of Biomedical Engineering-FB40A, University of Groningen University Medical Center Groningen, Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - A Bratov
- BioMEMS Group, Institute of Microelectronics of Barcelona (IMB-CNM, CSIC), Esfera UAB-CEI, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
131
|
Wang Y, Guo L, Dong S, Cui J, Hao J. Microgels in biomaterials and nanomedicines. Adv Colloid Interface Sci 2019; 266:1-20. [PMID: 30776711 DOI: 10.1016/j.cis.2019.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 11/28/2022]
Abstract
Microgels are colloidal particles with crosslinked polymer networks and dimensions ranging from tens of nanometers to micrometers. Specifically, smart microgels are fascinating capable of responding to biological signals in vivo or remote triggers and making the possible for applications in biomaterials and biomedicines. Therefore, how to fundamentally design microgels is an urgent problem to be solved. In this review, we put forward our important fundamental opinions on how to devise the intelligent microgels for cancer therapy, biosensing and biological lubrication. We focus on the design ideas instead of specific implementation process by employing reverse synthesis analysis to programme the microgels at the original stage. Moreover, special insights will be, for the first time, as far as we know, dedicated to the particles completely composed of DNA or proteins into microgel systems. These are discussed in detail in this review. We expect to give readers a broad overview of the design criteria and practical methodologies of microgels according to the application fields, as well as to propel the further developments of highly interesting concepts and materials.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Luxuan Guo
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
132
|
Overcoming in vitro gastric destabilisation of emulsion droplets using emulsion microgel particles for targeted intestinal release of fatty acids. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
133
|
Zuluaga-Vélez A, Cómbita-Merchán DF, Buitrago-Sierra R, Santa JF, Aguilar-Fernández E, Sepúlveda-Arias JC. Silk fibroin hydrogels from the Colombian silkworm Bombyx mori L: Evaluation of physicochemical properties. PLoS One 2019; 14:e0213303. [PMID: 30830943 PMCID: PMC6398845 DOI: 10.1371/journal.pone.0213303] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/19/2019] [Indexed: 12/17/2022] Open
Abstract
Hydrogel scaffolds are important materials in tissue engineering, and their characterization is essential to determine potential biomedical applications according to their mechanical and structural behavior. In this work, silk fibroin hydrogels were synthesized by two different methods (vortex and sonication), and agarose hydrogels were also obtained for comparison purposes. Samples were characterized by scanning electron microscopy, infrared analysis, thermo-gravimetrical analysis, confined compression test, and rheological test. The results indicate that nanofibers can be obtained via both silk fibroin and agarose hydrogels. The mechanical tests showed that the Young's modulus is similar to those found in the literature, with the highest value for agarose hydrogels. All the hydrogels showed a shear-thinning behavior. Additionally, the MTT test revealed that silk fibroin hydrogels had low cytotoxicity in THP-1 and HEK-293 cells, whereas the agarose hydrogels showed high toxicity for the THP-1 cell line. The results indicate that silk fibroin hydrogels obtained from a Colombian silkworm hybrid are suitable for the development of scaffolds, with potential applications in tissue engineering.
Collapse
Affiliation(s)
- Augusto Zuluaga-Vélez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | | | | | - Juan Felipe Santa
- Facultad de Ingenierías, Instituto Tecnológico Metropolitano—ITM, Medellín, Colombia
- Grupo de Tribología y Superficies, Universidad Nacional de Colombia, Sede Medellín, Colombia
| | - Enrique Aguilar-Fernández
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan C. Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| |
Collapse
|
134
|
Pravinata LC, Murray BS. Encapsulation of water-insoluble polyphenols and β-carotene in Ca-alginate microgel particles produced by the Leeds Jet Homogenizer. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
135
|
Zhang Q, Li L, Lan Q, Li M, Wu D, Chen H, Liu Y, Lin D, Qin W, Zhang Z, Liu J, Yang W. Protein glycosylation: a promising way to modify the functional properties and extend the application in food system. Crit Rev Food Sci Nutr 2018; 59:2506-2533. [DOI: 10.1080/10408398.2018.1507995] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Lin Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Qiuyu Lan
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Meili Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Dingtao Wu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
136
|
Yao Y, Liao W, Yu R, Du Y, Zhang T, Peng Q. Potentials of combining nanomaterials and stem cell therapy in myocardial repair. Nanomedicine (Lond) 2018; 13:1623-1638. [PMID: 30028249 DOI: 10.2217/nnm-2018-0013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cardiac diseases have become the leading cause of death worldwide. Developing efficient strategies to treat such diseases is of great urgency. Stem cell-based regeneration medicine offers a novel approach for heart repair. However, low retention and poor survival rate of engrafted cells limit its applications. Nanomaterials have shown great potentials in addressing above issues due to nanoparticles-bio interactions. Therefore, combining nanomaterials and stem cell therapy is of great interest and significance for heart repair. Herein, we provide a comprehensive understanding of the applications of four types of nanomaterials (nanogels, polymeric nanomaterials, inorganic nanomaterials and exosomes) in stem cell therapy for myocardial repair. In addition, we launch an initial discussion on current problems and more importantly, possible solutions for myocardial repair.
Collapse
Affiliation(s)
- Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral Implant Center, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruichao Yu
- Department of Pathophysiology & Molecular Pharmacology, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Place, Boston, MA 02215, USA
| | - Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
137
|
Controlling lipid digestion profiles using mixtures of different types of microgel: Alginate beads and carrageenan beads. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
138
|
Steiner BM, McClements DJ, Davidov-Pardo G. Encapsulation systems for lutein: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.10.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
139
|
Liu J, Xu D, Cao Y, Wang B, Wang S, Sun B. Modification of Physicochemical Properties by Heteroaggregation of Oppositely Charged Lactoferrin and Soybean Protein Isolate Coated DHA Emulsion Droplets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12306-12315. [PMID: 30346753 DOI: 10.1021/acs.jafc.8b02713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, the effect of heteroaggregation (HA) on the physicochemical stability and the formation of volatile substances of DHA emulsions was investigated. HA-DHA emulsions were produced by combination of lactoferrin (LF)-DHA and soy protein isolate (SPI)-DHA emulsions at pH 6.0. Zeta-potentials, droplet sizes, stability, and microstructures were measured as a function of different ratios of LF-DHA to SPI-DHA droplets. DHA oxidation of single and HA emulsions was determined through measurements of lipid hydroperoxides, thiobarbituric acid reactive substances, and the formation of volatile substances. LF-DHA to SPI-DHA droplets ratios of 5:5, 4:6, and 3:7 formed stable emulsions. The lowest zeta-potential, biggest droplet size, and optimum physical stability of heteroaggregated emulsion occurred at a 5:5 of LF-DHA to SPI-DHA droplet ratio. Microstructure behavior indicated that the HA emulsions (LF-DHA droplets/SPI-DHA droplets = 5:5) formed specific three-dimensional uniform networks. The formation of thiobarbituric acid reactive substances, lipid hydroperoxides, and volatile compounds including hexanal and ( E, E)-2,4-heptadienal decreased in HA compared to single emulsions. The results indicated that the physicochemical stability of DHA emulsions was enhanced and that the formation of volatile substances was inhibited by HA. It thus demonstrated the utilization of HA to improve the stability of bioactive compounds in emulsions.
Collapse
Affiliation(s)
- Jiawei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food & Chemical Engineering, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety , Beijing Technology & Business University , Beijing , China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food & Chemical Engineering, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety , Beijing Technology & Business University , Beijing , China
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food & Chemical Engineering, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety , Beijing Technology & Business University , Beijing , China
| | - Bei Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food & Chemical Engineering, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety , Beijing Technology & Business University , Beijing , China
| | - Shaojia Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food & Chemical Engineering, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety , Beijing Technology & Business University , Beijing , China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food & Chemical Engineering, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety , Beijing Technology & Business University , Beijing , China
| |
Collapse
|
140
|
Colloidal characteristics and functionality of rationally designed esculin-loaded hydrogel microcapsules. J Colloid Interface Sci 2018; 530:444-458. [DOI: 10.1016/j.jcis.2018.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/04/2023]
|
141
|
Biocatalysis by Transglutaminases: A Review of Biotechnological Applications. MICROMACHINES 2018; 9:mi9110562. [PMID: 30715061 PMCID: PMC6265872 DOI: 10.3390/mi9110562] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
The biocatalytic activity of transglutaminases (TGs) leads to the synthesis of new covalent isopeptide bonds (crosslinks) between peptide-bound glutamine and lysine residues, but also the transamidation of primary amines to glutamine residues, which ultimately can result into protein polymerisation. Operating with a cysteine/histidine/aspartic acid (Cys/His/Asp) catalytic triad, TGs induce the post-translational modification of proteins at both physiological and pathological conditions (e.g., accumulation of matrices in tissue fibrosis). Because of the disparate biotechnological applications, this large family of protein-remodelling enzymes have stimulated an escalation of interest. In the past 50 years, both mammalian and microbial TGs polymerising activity has been exploited in the food industry for the improvement of aliments' quality, texture, and nutritive value, other than to enhance the food appearance and increased marketability. At the same time, the ability of TGs to crosslink extracellular matrix proteins, like collagen, as well as synthetic biopolymers, has led to multiple applications in biomedicine, such as the production of biocompatible scaffolds and hydrogels for tissue engineering and drug delivery, or DNA-protein bio-conjugation and antibody functionalisation. Here, we summarise the most recent advances in the field, focusing on the utilisation of TGs-mediated protein multimerisation in biotechnological and bioengineering applications.
Collapse
|
142
|
Wang S, Attah R, Li J, Chen Y, Chen R. A pH-Responsive Amphiphilic Hydrogel Based on Pseudopeptides and Poly(ethylene glycol) for Oral Delivery of Hydrophobic Drugs. ACS Biomater Sci Eng 2018; 4:4236-4243. [PMID: 33418822 DOI: 10.1021/acsbiomaterials.8b01040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Oral administration is a noninvasive and convenient drug delivery route most preferred by patients. However, poor stability in the gastrointestinal tract and low bioavailability of hydrophobic drugs has greatly limited their oral administration. To address this problem, we report a pH-responsive, amphiphilic hydrogel drug carrier based on a pseudopeptide poly(l-lysine isophthalamide) (PLP) and poly(ethylene glycol) (PEG). The hydrogels were prepared by a simple N-(3-(dimethylamino)propyl)-N'-ethyl carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) coupling reaction, and the cross-linking was confirmed by infrared spectroscopy and differential scanning calorimetry analyses. Because of the pH-responsive conformational alteration of PLP, the hydrogels were relatively hydrophobic and collapsed at acidic pH, but became hydrophilic and swollen at neutral pH. The amphiphilicity enabled the hydrogels to well retain and protect hydrophobic model drugs in the simulated gastric fluid, but efficiently release them in the simulated intestinal fluid. These results suggested that the pH-responsive amphiphilic hydrogels are promising candidates for oral delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Reva Attah
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Jiali Li
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Yitong Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
143
|
Alehosseini A, Gomez del Pulgar EM, Gómez-Mascaraque LG, Martínez-Sanz M, Fabra MJ, Sanz Y, Sarabi-Jamab M, Ghorani B, Lopez-Rubio A. Unpurified Gelidium-extracted carbohydrate-rich fractions improve probiotic protection during storage. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.06.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
144
|
Labie H, Perro A, Lapeyre V, Goudeau B, Catargi B, Auzély R, Ravaine V. Sealing hyaluronic acid microgels with oppositely-charged polypeptides: A simple strategy for packaging hydrophilic drugs with on-demand release. J Colloid Interface Sci 2018; 535:16-27. [PMID: 30273723 DOI: 10.1016/j.jcis.2018.09.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
A simple route to deliver on demand hydrosoluble molecules such as peptides, packaged in biocompatible and biodegradable microgels, is presented. Hyaluronic acid hydrogel particles with a controlled structure are prepared using a microfluidic approach. Their porosity and their rigidity can be tuned by changing the crosslinking density. These negatively-charged polyelectrolytes interact strongly with positively-charged linear peptides such as poly-l-lysine (PLL). Their interactions induce microgel deswelling and inhibit microgel enzymatic degradability by hyaluronidase. While small PLL penetrate the whole volume of the microgel, PLL larger than the mesh size of the network remain confined at its periphery. They make a complexed layer with reduced pore size, which insulates the microgel inner core from the outer medium. Consequently, enzymatic degradation of the matrix is fully inhibited and non-affinity hydrophilic species can be trapped in the core. Indeed, negatively-charged or small neutral peptides, without interactions with the network, usually diffuse freely across the network. By simple addition of large PLL, they are packaged in the core and can be released on demand, upon introduction of an enzyme that degrades selectively the capping agent. Single polyelectrolyte layer appears as a simple generic method to coat hydrogel-based materials of various scales for encapsulation and controlled delivery of hydrosoluble molecules.
Collapse
Affiliation(s)
- Hélène Labie
- Univ. Bordeaux, ISM, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, 16 Avenue Pey Berland, 33607 Pessac Cedex, France
| | - Adeline Perro
- Univ. Bordeaux, ISM, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, 16 Avenue Pey Berland, 33607 Pessac Cedex, France
| | - Véronique Lapeyre
- Univ. Bordeaux, ISM, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, 16 Avenue Pey Berland, 33607 Pessac Cedex, France
| | - Bertrand Goudeau
- Univ. Bordeaux, ISM, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, 16 Avenue Pey Berland, 33607 Pessac Cedex, France
| | | | - Rachel Auzély
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), Affiliated with Université Joseph Fourier, 601 rue de la Chimie, 38041 Grenoble, France
| | - Valérie Ravaine
- Univ. Bordeaux, ISM, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, 16 Avenue Pey Berland, 33607 Pessac Cedex, France.
| |
Collapse
|
145
|
Recent development of lactoferrin-based vehicles for the delivery of bioactive compounds: Complexes, emulsions, and nanoparticles. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.06.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
146
|
McClements DJ. Enhanced delivery of lipophilic bioactives using emulsions: a review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility. Food Funct 2018; 9:22-41. [PMID: 29119979 DOI: 10.1039/c7fo01515a] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many researchers are currently developing emulsion-based delivery systems to increase the bioavailability of lipophilic bioactive agents, such as oil-soluble vitamins, nutraceuticals, and lipids. Oil-in-water emulsions can be specifically designed to improve the bioavailability of these bioactives by altering their composition and structural organization. This article reviews recent progress in understanding the impact of emulsion properties on the bioaccessibility of lipophilic bioactive agents, including oil phase composition, aqueous phase composition, droplet size, emulsifier type, lipid physical state, and droplet aggregation state. This knowledge can be used to design emulsions that can enhance the bioavailability and efficacy of encapsulated hydrophobic bioactives.
Collapse
|
147
|
|
148
|
Kwiecień I, Kwiecień M. Application of Polysaccharide-Based Hydrogels as Probiotic Delivery Systems. Gels 2018; 4:E47. [PMID: 30674823 PMCID: PMC6209284 DOI: 10.3390/gels4020047] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
Polysaccharide hydrogels have been increasingly utilized in various fields. In this review, we focus on polysaccharide-based hydrogels used as probiotic delivery systems. Probiotics are microorganisms with a positive influence on our health that live in the intestines. Unfortunately, probiotic bacteria are sensitive to certain conditions, such as the acidity of the gastric juice. Polysaccharide hydrogels can provide a physical barrier between encapsulated probiotic cells and the harmful environment enhancing the cells survival rate. Additionally, hydrogels improve survivability of probiotic bacteria not only under gastrointestinal track conditions but also during storage at various temperatures or heat treatment. The hydrogels described in this review are based on selected polysaccharides: alginate, κ-carrageenan, xanthan, pectin and chitosan. Some hydrogels are obtained from the mixture of two polysaccharides or polysaccharide and non-polysaccharide compounds. The article discusses the efficiency of probiotic delivery systems made of single polysaccharide, as well as of systems comprising more than one component.
Collapse
Affiliation(s)
- Iwona Kwiecień
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland.
| | - Michał Kwiecień
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| |
Collapse
|
149
|
Ma D, Tu ZC, Wang H, Zhang Z, McClements DJ. Microgel-in-Microgel Biopolymer Delivery Systems: Controlled Digestion of Encapsulated Lipid Droplets under Simulated Gastrointestinal Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3930-3938. [PMID: 29595967 DOI: 10.1021/acs.jafc.8b00132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Structural design principles are increasingly being used to develop colloidal delivery systems for bioactive agents. In this study, oil droplets were encapsulated within microgel-in-microgel systems. Initially, a nanoemulsion was formed that contained small whey protein-coated oil droplets ( d43 = 211 nm). These oil droplets were then loaded into either carrageenan-in-alginate (O/MC/MA) or alginate-in-carrageenan (O/MA/MC) microgels. A vibrating nozzle encapsulation unit was used to form the smaller inner microgels ( d43 = 170-324 μm), while a hand-held syringe was used to form the larger outer microgels ( d43 = 2200-3400 μm). Calcium alginate microgels (O/MA) were more stable to simulated gastrointestinal tract (GIT) conditions than potassium carrageenan microgels (O/MC), which was attributed to the stronger cross-links formed by divalent calcium ions than the monovalent potassium ions. As a result, the microgel-in-microgel systems had different gastrointestinal fates depending upon the nature of the external microgel phase; i.e., the O/MC/MA system was more resistant to rupture than the O/MA/MC system. The rate of lipid digestion under simulated small intestine conditions decreased in the following order: free oil droplets > O/MC > O/MA > O/MA/MC > O/MC/MA. This effect was attributed to differences in the integrity and dimensions of the microgels in the small intestine, because a hydrogel network surrounding the oil droplets inhibits lipid hydrolysis by lipase. The structured microgels developed in this study may have interesting applications for the protection or controlled release of bioactive agents.
Collapse
Affiliation(s)
- Da Ma
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01060 , United States
| | - Zong-Cai Tu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
- College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , People's Republic of China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Zipei Zhang
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01060 , United States
| | - David Julian McClements
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01060 , United States
| |
Collapse
|
150
|
Liu L, Zhang Y, Yu S, Zhang Z, He C, Chen X. pH- and Amylase-Responsive Carboxymethyl Starch/Poly(2-isobutyl-acrylic acid) Hybrid Microgels as Effective Enteric Carriers for Oral Insulin Delivery. Biomacromolecules 2018; 19:2123-2136. [DOI: 10.1021/acs.biomac.8b00215] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Liang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Ying Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Shuangjiang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhen Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| |
Collapse
|